
INTERBULL BULLETIN NO. 56. Leeuwarden, The Netherlands, April 26 – 30, 2021 

111 

 

Dry matter intake, methane emissions and microbiome profiles as 

new traits for feed efficiency  
J. López-Paredes1, A. Saborío-Montero2, N. Charfeddine1, J.A Jiménez-Montero1 and O. González-

Recio23   
1Spanish Holstein Association, CONAFE 

2Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria 

3Universidad Politécnica de Madrid 

 

Abstract  

This study estimated the genetic parameters for feed efficiency, dry matter intake, methane 

production, and ruminal microbiome profile in order to incorporate feed efficiency into the breeding 

goal. Data consisted of 11,042 weekly averaged records for dry matter obtained from 551 cows in 5 

farms, as well as 4,624 methane emission measurements using a non-dispersive infrared methane 

detector installed within the feed bin of the automatic milking system during 14 to 21 days period 

from 1,501 cows in 14 farms. In addition, ruminal content was extracted from 437 cows with methane 

phenotypes. Data for milk yield, protein yield, fat yield, fertility, body depth, rump width, chest width 

and predicted live weight from 11,228 cows were included in the analysis. Heritability and genetic 

correlations were estimated from bivariate models within a single step framework using AIREML. 

The heritability estimate for dry matter intake was moderate (0.16±0.03), with a genetic correlation 

with milk yield of 0.41 (0.11), and with type traits ranging from 0.25 to 0.49. Heritability estimates for 

methane production (0.17±0.05) and methane concentration (0.18±0.04) were moderate, and their 

genetic correlations with milk yield were close to zero (-0.05±0.11 and 0.04±0.11). Higher genetic 

correlations were estimated with type traits, ranging from 0.14 to 0.59. Genetic correlations between 

methane traits and dry matter intake were positive and ranged from 0.20±0.48 to 0.27±0.43. This 

suggests a correlated response in methane emissions when selecting for more ravenous animals.  The 

microbiome aggregated variables showed higher positive genetic correlation with methane traits 

(0.53±0.19 and 0.87±0.19), and dry matter intake (0.32±0.36). These results highlight an important 

interrelationship between methane production and dry matter intake, with a significant role of the 

microbiome composition. The results suggest that selecting cows that make a more efficient utilization 

of energy intake is feasible through selection on correlated type traits such as body capacity, stature, 

and body depth, without compromising high productive performance. Selection for lower methane 

emissions is expected to have similar results. The inclusion of the microbiome composition may assist 

on a more efficient selection on both, lower emissions and higher feed efficiency. However, proper 

weights must be applied in the selection indices to maintain current genetic trends on productive and 

functional traits. 
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Introduction 

Genetic improvement of feed efficiency in 

cattle, which is cumulative and permanent, is a 

mean to achieve efficiency gains for a more 

profitable and sustainable production system 

(Berry and Crowley, 2013). The inclusion of 

traits related to feed efficiency into the 

breeding goal in dairy cattle and their 

improvement will impact on the herd 

profitability, where feed accounts for the 

largest part of operating costs in dairy 

production (>40%, Connor, 2015). In addition, 

the decrease of feed demand will rise the 

environmental sustainability of livestock 
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farming through a minor land and resources 

intended for animal feeding. Moreover, it will 

involve a reduction of the environmental 

impact belong to dairy farming, which account 

the 13% of global greenhouse emissions (Leip 

et al., 2010). Ruminant are considered among 

the most important source of global CH4 

emissions from livestock, which is equivalent 

to producing around 4,623 Mt of CO2e per 

year (Gerber et al., 2013) and which represent 

a loss between 2% and 12% of gross energy 

intake (Johnson and Johnson, 1995). On the 

other hand, CH4 has an estimated lifetime of 

10 years (IPCC, 2013) and hence, its 

mitigation would be possible in a short period 

of time. Several studies have analyzed traits 

such as dry matter intake or methane emissions 

and their inclusion into dairy cattle breeding 

program (Berry and Crowley, 2013; de Haas et 

al., 2016; González-Recio et al., 2020) 

reporting that their improvement thought 

genetic selection is feasible. However, there is 

still a lack of reported values of correlations 

with production and type traits in a large 

dataset such as Manzanilla-Pech et al. (2021). 

For instance, it is necessary to clarify the 

possible consequences of selecting for greater 

feed efficiency on other production and type 

traits.  

Other proxies should be analyzed to 

achieve a greater genetic response. In recent 

years, efforts have been made to characterize 

the rumen microbiome and its functionality 

(Saborío-Montero et al., 2020), with the aim of 

implementing nutrition and selective breeding 

strategies to modulate it. The ruminal 

microbiota composition is partially controlled 

by the host genotype, and both affect important 

traits in livestock that are related to efficiency 

and sustainability, including methane 

production (Roehe et al., 2016; Gonzalez-

Recio et al., 2018). Animal breeding can 

modulate the ruminal microbiota through 

selection and to achieve a more efficient 

microbial composition that reduces the use of 

natural resources and generates less methane 

emissions without impairing health and 

productivity (González-Recio et al., 2020; 

López-Paredes et al., 2020).  

The aims of this work were to estimate the 

genetic parameters of dry matter intake, 

methane concentration and methane 

production, and microbiome composition 

variable and their genetic correlation with 

other traits as production, functional, and type 

traits which are related to the animal body size.  

 

Materials and Methods 

Data Description of Dry Matter Intake. 

Data from 551 cows belonging to five 

farms located in Galicia, Asturias, and 

Catalonia, Spanish regions were collected from 

2004 to 2020. The data consisted of 11,042 

records weekly averaged. Records lower than 5 

kg/d and higher than 60 kg/d were removed 

from the data. 

Data Description of methane.  

Data of CH4 from 1,501 cows in 14 

commercial farms from the Spanish regions of 

Basque Country, Cantabria, Girona and 

Navarre were collected from May 2018 to June 

2019 with an automatic milk system (AMS). 

Methane was recorded daily during periods 

ranging from 14 to 21 d in each farm 

overlapping with an official test day record.   

Methane emissions concentration (MeC) 

was measured using a non-dispersive infrared 

methane detector (The Guardian® NG infrared 

gas monitor; Edinburgh Instruments Ltd., 

Livingston, UK) installed within the feed bin 

of the AMS (Hammond et al., 2016).  Methane 

concentration was calculated from the 

eructation peaks (Sorg et al., 2018; Rey et al., 

2019), and were then averaged per cow and 

week and expressed in ppm (MeC). Methane 

production (MeP) expressed in g/d was 

calculated from MeC (expressed in volume 

ppm) based on the equation by Chagunda et al. 

(2009), where live weight (LW) were 

estimated from five traits following Pérez-

Cabal and Charfeddine (2016). A detailed 
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description may be found in López-Paredes et 

al. (2020).  

Data description of microbiome composition  

Principal component analysis (PCA) was 

used to reduce the dimensionality and to 

aggregate the metagenome variance into few 

variables. This was independently performed 

for the taxonomy and functional data sets. 

First, principal component scores of 

compositional description of ruminal 

microbiome (PC1) described by Saborío-

Montero et al. (2021) were used as phenotype 

explaining 31% of the variability at phylum 

level of ruminal microbiome composition.  A 

comprehensive study of the sampling and the 

statistical analyses of the metagenome data 

was presented in Saborío-Montero et al. (2020) 

Data Description of production, functional and 

type traits. 

Milk yield (8,850) and type traits (8,470) 

from cows belonging to the 19 farms with 

methane or DMI phenotypes were included in 

the analysis to estimate the genetic correlations 

between those and efficiency traits. The traits 

included in the analysis were milk yield (MY), 

protein yield (PY), fat yield (FY), fertility 

expressed in days open (Fert), live weight 

(LW), body depth (BD), chest width (CHW), 

rump width (RW) at first lactation.  

Genomic Data.  

One thousand three hundred and thirty-two 

cows were genotyped using the Illumina 

EuroG10K chip (Illumina, San Diego, CA, 

USA). Besides, 314 males were genotyped 

using Illumina BovineSNP50 chip (Illumina, 

San Diego, CA, USA). Low density genotypes 

were imputed to 54,609 SNPs using BEAGLE 

software (Browning et al., 2018), as described 

in Jiménez-Montero et al. (2013) using the 

Spanish reference population provided by 

CONAFE. The SNPs that were not in Hardy-

Weinberg equilibrium (P<0.05) had lower 

allele frequency than 0.05, or were located in 

the sex chromosome were filtered out. As a 

result, a total of 41,228 SNPs were considered 

for further analysis. 

Variance Component Estimation  

A bivariate Single-step genomic REML 

which combines the pedigree and genomic 

relationships was implemented to estimate 

MeC, MeP, PC1, and DMI, and other 

secondary production and type traits variance 

components and correlations following the 

model: 

 
   

  

where y is a n × 1 vector of phenotypic records 

for the trait of interest, b denotes the fixed 

effects for each model with incidence matrix 

X. For MeC, MeP, fixed effects were parity, 

days in milk expressed in moths, and month of 

calving. For PC1 fixed effects were herd-year, 

days in milk expressed in months, month at 

calving and number of calving effect, For 

DMI, and production and type traits fixed 

effects were comparison group (Herd-year), 

days in milk expressed in months, month at 

calving and the effect of partity-age at calving,  

h is the vector of herd-week-robot effect 

included as random effect for MeC and MeP, 

with incidence matrix Zh, u is the vector of 

direct animal genetic effects with association 

matrix Zu, with u ~ N(0,Ha
2) where H is a 

relationship matrix based in the pedigree and 

genomic relationship suggested by Misztal et 

al. (2009), Aguilar et al. (2010)  and Legarra et 

al. (2014). Then, p is the vector of (within 

lactation) permanent effect for MeC, MeP and 

DMI, and e denotes the vector of residuals 

distributed as N(0,Ie
2). All the analyses were 

performed using aireml.f90 from the 

BLUPF90 suit of programs (Misztal et al., 

2002). Only significant effects were included 

in the genetic model (P<0.05) determined by 

the analyses of variance using lmerTest 

Package in R (Kuznetsova et al., 2016). 
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Results & Discussion 

Descriptive statistics 

Table 1 shows the number of cows, number 

of records, mean and standard deviation of 

methane traits, DMI and microbiota PC1. The 

MeC mean was 1.288 ppm reporting higher 

values than 180.22 mg/kg reported by 

Pickering et al. (2015) using a laser methane 

detector. Negussie et al. (2017) estimated 

higher values of MeC of 3,919 ppm (SD 445) 

and MeP of 555 L/d (831 g/d) using 

photoacoustic spectroscopy. The MeP mean 

was 182.5 g/d. This value was lower than other 

recent studies. For instance,  Manzanilla-Pech 

et al. (2021) estimated 392.3 g/d, Pszczola et 

al., (2017) estimated 279 g/d (sd 67.7). 

Manzanilla-Pech et al. (2021) reported a 

comparison of the different methodologies 

employed in four countries. The results 

oscillated from 345 g/d (Denmark) to 466 g/d 

(Australia) with correlation between GSMet 

(Methane standardized by countries) and MeP, 

of 0.99. This comparison of different 

methodologies has been studied in recent years 

in order to validate the results from different 

methods. Garnsworthy et al. (2019) showed 

correlations from 0.72 to 0.89 and 

concordances (Lin’s concordance correlation) 

from 0.30 to 0.88 between the different 

methodologies yielding the largest variability 

between the various methods employed. Our 

differences with other countries may also be 

explained due to recording under commercial 

conditions. The placing of the tube of the 

device into the feed bin of the AMS may have 

an impact on the records of methane, since the 

cloud of the eructed gas may not be entirely 

registered (López-Paredes et al., 2020 and 

González-Recio et al., 2020). Thus, it is 

necessary to include a herd-robot effect in the 

statistical models to adjust for these 

differences. Furthermore, those lower values 

may be partly explained by the larger 

proportion of concentrate in Spanish ration 

compared to other European countries, as 

shown in FAO (2014).  

Averaged values for DMI were 22.85 kg/d 

(SE=4.64). These values were higher than 

14.80-20.17 kg/d estimated by Li et al. (2016) 

in 717 Holstein primiparous cows from 

Denmark, Finland, and Sweden, the 15.7 kg/d 

(SE=3.7) reported by Manzanilla Pech et al. 

(2014) or the 18.5 kg/d estimated by 

Veerkamp and Thompson (1999). Other 

authors reported similar values such as 21.3 

kg/d Manzanilla-Pech et al. (2021) after 

merging data from seven different countries 

and production systems.   

Table  1. Descriptive statistics for methane 

concentration (MeC, ppm), methane production 

(MeP, g/d), dry matter intake (DMI, kg/d), and 

microbiome trait (PC1).  

 no.cows no.records Mean (SD) 

MeC 1,341 4,624 1.288(467.00) 

MeP 1,500 4,624 182.5(67.00) 

DMI 551 11,042 22.85(4.64) 

PC1 437 437 -0.067(5.028) 

 

Table 2 shows the heritability, additive 

variance, permanent effect variance, and 

residual variance for MeC, MeP, PC1, and 

DMI. Heritabilities of MeC were lower than 

0.26 (0.11) estimated for Denmark population 

and similar to 0.15(0.15) for The Netherlands 

population provided by Difford et al. (2018) 

who estimated higher repeatability for MeC 

(0.47-0.80). 

The estimated heritability (0.17-0.18) was 

low-moderate for methane traits involving a 

genetic component in individual methane 

emissions. It was slightly lower than the one 

previously reported by Manzanilla-Pech et al. 

(2016) of 0.23, and 0.25 estimated by Zetouni 

et al. (2018). Repeatability values suggest an 

important individual component for methane 

emissions when the measurements are taken 

within short periods of time. Sampling periods 

were from 2 to 3 weeks’ periods, shorter than 

other studies such as Pszczola et al. (2017) or 

Breider et al. (2019) which reported higher h2 

using random regression models. Therefore, 

longer periods of sampling should be 

investigated further in future studies.  
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Microbiome variable (PC1) showed the 

highest heritability (0.42) among the traits 

studied here. This result suggests that the core 

rumen microbiome is heritable as reported by 

Roehe et al. (2016), Difford et al. (2018), and 

Saborío-Montero et al. (2020).  

 
Table 2. Additive variance (σ2

a), permanent 

variance (σ2
p), residual variance(σ2

e), heritability 

(h2) and repeatability (r2) of methane concentration 

(MeC), methane production (MeP), first principal 

component (PC1) of the microbiome composition, 

and dry matter intake (DMI).  
  MeC MeP PC1 DMI 

σ2
a 

Mean 26,941.00 678.38 8.88 2.51 

s.e 10,527.00 232.25 4.07 0.53 

σ2
p 

Mean 10,0460.00 2,025.00  3.95 

s.e 10,183.00 217.98  0.46 

σ2
e 

Mean 53,696 1,080.80 11.71 8.78 

s.e 1,456.90 29.34 4.03 0.12 

h2 

Mean 0.17 0.18 0.42 0.16 

s.e 0.05 0.04 0.21 0.03 

r2 

Mean 0.70 0.71  0.42 

s.e 0.02 0.02  0.02 

Variance of MeC is expressed in ppm2, MeP is expressed 

in (kg/d)2, and DMI is expressed in (kg/d)2.  

 

Heritability for DMI was 0.16 (0.03) which is 

lower than the values of 0.24(0.02) reported by 

Manzanilla-Pech et al. (2021) in a population 

of 2,360 cows belonging to farms from 6 

different countries, and 0.19 and 0.24 

estimated by Berry et al. (2014) from Canada 

and Australia in an international evaluation of 

feed intake.  The reduced data set and the 

unconnected periods of recording could 

explain the obtained lower estimates. Large 

datasets are scarce in literature due to the 

complexity and cost associated to the feed 

intake records operations. To obtain a larger 

dataset the international collaboration should 

be considered in order to disentangle the 

genetic component of DMI and other traits 

related to feed efficiency. Repeatability of 

DMI was similar to the values reported by 

Manzanilla-Pech et al. (2021) in a larger 

dataset showing the existence of individual 

component for DMI. Repeatabilities were 

higher for methane traits compared to DMI, 

possibly caused by longer sampling periods for 

DMI and larger number of records. 

Table 3 shows the genetic correlations 

between MeC, MeP PC1 and DMI, with 

production, fertility and type traits related to 

capacity of the cow. Correlation between MeC 

and MeP was close to 1 suggesting that both 

traits are similar and highly correlated, leading 

to similar genetic responses regardless the trait 

used. Note that this correlation might be 

overestimated due to MeP was an indirect 

estimate of the actual methane production and 

it was calculated from MeC and estimated LW 

(López-Paredes et al., 2020). Methane traits 

were moderately correlated with PC1 which 

clustered the animal with higher proportion of 

eukaryotes (Saborio-Montero et al. 2021).   

 

Table 3. Genetic correlations (S.E) of milk yield 

(MY), fat yield (FY), protein yield (PY), fertility 

(Fert), live weight (LW), rump width (RW), chest 

width (CHW), Stature (STA), body depth (BD), 

and body condition score (BCS), with methane 

concentration (MeC), methane production (MeP), 

first principal component of the microbiome 

composition (PC1), and dry matter intake (DMI).  

 MeC MeP PC1 DMI 

MeC - 0.97(0.03) 0.42(0.21) 0.20(0.48) 

MeP - - 0.83(0.13) 0.27(0.43) 

PC1 - - - 0.32(0.36) 

MY -0.05(0.11) 0.04(0.11) 0.04(0.28) 0.41(0.11) 

FY  0.30(0.14) 0.32(0.13) 0.18(0.72) 0.50(0.11) 

PY 0.07(0.13) 0.13(0.12) -0.02(0.31) 0.53(0.19) 

Fert 0.02(0.25) 0.02(0.21) 0.04(0.62) 0.09(0.14) 

LW 0.29(0.17) 0.62(0.17) 0.42(0.21) 0.41(0.13) 

CHW 0.31(0.18) 0.58(0.16) 0.05(0.50) 0.49(0.16) 

RW 0.18(0.12) 0.09(0.11) 0.42(0.21) 0.25(0.11) 

STA 0.21(0.16) 0.45(0.20) 0.35(0.46) 0.34(0.12) 

BD 0.14(0.13) 0.49(0.12) 0.35(0.61) 0.25(0.11) 

BCS 0.25(0.16) 0.32(0.14) -0.15(0.37) 0.22(0.19) 

 

Correlations ranged from 0.42 to 0.83, 

consistent with the value of 0.74 reported by 

Saborio-Montero et al. (2021) between MeP 

and PC1, which exposed that there is a 

relationship between the relative abundance of 

eukaryotic microorganisms and the methane 
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production. This relationship and the high 

heritability of PC1 would allow a high accurate 

selection of those animals which enhance the 

mitigation of the methane emissions.  

 Correlations between MY and methane 

traits were close to zero from -0.05 to 0.11, 

without a detriment on MY when selecting for 

lower emissions. These values were lower than 

the ones reported in the literature as 0.43(0.10) 

reported by Lassen and Løvendahl (2016) 

between MeP and fat-protein corrected milk 

using bivariate linear animal models with 

similar size of the data set. Breider et al. 

(2019) reported higher values ranged from 

0.38 to 0.57 (with large standard errors (0.42-

0.52), in a random regression bivariate model 

from 32 to 52 week. Breider et al. (2019) 

analyzed these correlations showing that in 

early lactation, the correlation between MY 

and CH4 production may be negative because 

no CH4 is produced from the body energy 

reserve mobilization. Later in lactation, energy 

for milk production originated from DMI, 

results in CH4 production. This yields positive 

correlations between MY and MeP. Pszczola et 

al. (2019) estimated a low correlation of 

0.15(SE=0.06) between MY and MeP in a 

random regression model. The correlations 

between FY and MeC and MeP shows a 

moderate correlation with FY following 

similar trends as  Dijkstra et al. (2011) and van 

Lingen et al. (2014). This suggests a possible 

increase of emitted CH4 per cow when 

breeding for larger FY. Correlations close to 

zero were found between CH4 traits and PY. 

The correlations between CH4 traits and Fert 

were lower than the ones reported in a 

previous study (López-Paredes et al., 2020) 

with larger SE of the estimates. Nonetheless, 

according to our results we don’t expect an 

impairing response on fertility if including 

CH4 emissions into the breeding goal, 

following the exposed by Gonzalez-Recio et 

al. (2020) which points toward a favourable 

relationship between fertility traits and 

methane emissions. Correlations between type 

traits and CH4 traits were low to moderate, it 

suggests that selecting for greater size animals, 

with larger rumen capacity, could 

consequently lead to larger values for MeP. 

These results confirm the ones previously 

reported by López-Paredes et al. (2020) using 

EBV´s correlations from Calo´s approximation 

(Calo et al., 1973). These values were higher 

than the ones estimated by Zetouni et al. 

(2018) who reported correlations with MeP of 

-0.20(0.13) for CHW, 0.01(0.08) for STA, -

0.03(0.12) for BD, with larger and negative 

correlation for BCS, -0.28(0.10) with an 

opposite trend to our estimates. Zetouni et al. 

(2018) showed that BCS contributes to better 

fertility status in dairy cattle. Therefore, it 

seems reasonable to consider that cows with 

fewer reproductive issues would also produce 

less CH4. However, less feed efficient cows 

make less efficient utilization of the feed with 

lower production but better BCS and fertility, 

and higher fat-tissue deposition, which 

explains the positive correlation with BCS 

(López-Paredes et al., 2020). Further studies 

with larger data set should be developed to 

confirm this relationship.  

Microbiome variable (PC1) presented 

moderately high correlation with methane 

traits, and close to zero with DMI (with large 

SE) with greater correlations for type traits as 

LW, RW, STA, and BD and low correlations 

with production traits. PC1 seems to be a 

variable capable of improving the reduction of 

CH4 without a detriment of productivity of the 

animal. This leads to the use of PC1 as an 

indicator of more efficient cows, since the loss 

of energy from CH4 belonging to enteric 

fermentation is proportionally reduced. 

Saborio-Montero et al. (2020) defined PC1 as a 

representative of the core rumen metagenome, 

to modulate the rumen metagenome towards 

greater efficiency and sustainability, although 

reproducibility across data sets needs to be 

confirmed. 

Dry matter intake showed moderately high 

correlations with production traits expecting 

higher feed intake when selecting for more 

productive cows (higher MY, FY, and PY). 
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Correlation between DMI and MY was 

0.41(0.11) similar to 0.44(0.13) reported by 

Manzanilla-Pech et al. (2016)  in The 

Netherlands and United States joint 

population, and 0.48(0.05) by (Manzanilla-

Pech et al., 2021) in a collaboration action 

between six countries (n=2,320). Veerkamp 

and Brotherstone (1997) estimated correlations 

of 0.34-0.59,0.59-0.55, and 0.86-0.80 between 

DMI and MY, FY, and PY, for heifers and 

heifers + multiparous cows, respectively. 

According to our results, non-favourable 

response might be obtained when selecting for 

lower DMI. for this reason, DMI, and 

production traits such as MY, FY, and PY, 

should be included in an appropriate selection 

index accounting for an appropriate economic 

weight with the aim of achieving a balanced 

genetic response of these traits. We found a 

correlation close to zero between Fert and 

DMI, hence a detriment of Fert is not expected 

with lesser DMI. On the other hand, DMI 

showed positive correlations with type traits 

expecting greater size, with correlations 

between DMI and LW and STA of 0.41, and 

0.34, respectively, and capacity, with 

correlations of 0.49, 0.25, and 0.25 for CHW, 

RW, and BD, respectively. These results were 

in agreement with others values founded in the 

bibliography as 0.27 estimated between LW 

and DMI by Veerkamp and Brotherstone 

(1997), and 0.52(0.35) estimated by Vallimont 

et al. (2010). Manzanilla-Pech et al. (2016) 

estimated correlations of 0.33-0.57, 0.45-0.61, 

0.26-0.49, 0.04-0.13, and 0.24-0.46 between 

DMI, and STA, CHW, BD, RW, and BCS 

respectively, for The Netherlands, and United 

States populations, respectively. According to 

these results, including type capacity traits into 

a selection index for feed efficiency is fully 

justified.  

Conclusions 

According to our results, selecting for more 

efficient cows is feasible using the proposed 

traits (methane, DMI, and microbiome 

variable) as proxies. Methane traits showed 

moderate h2 and they were lowly correlated 

with milk yield. Hence, it is possible to select 

for a decrease of methane emissions without a 

detriment of milk yield. Methane traits showed 

moderate correlations with type traits related to 

capacity of the cow. Dry matter intake showed 

moderate heritability and large correlations 

with live weight, type traits related to capacity 

and production traits. The inclusion of 

microbiome variable may assist on a more 

efficient selection on both lower emissions and 

higher feed efficiency. Including those traits 

into a selection index should be a priority in 

the following years for breeding programs with 

an emphasis on data recording of phenotypes 

related to feed efficiency such as DMI and 

methane traits.  
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