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Abstract 
 
In the standard threshold model, differences among statistical subpopulations in the distribution of ordered 
polychotomous responses are modeled via differences in location parameters of an underlying continuous scale. A 
new model is proposed whereby subpopulations can also differ in dispersion parameters. Heterogeneity in such 
parameters is described using a structural linear model and a loglink function involving continuous or discrete 
covariates. Inference (estimation, testing procedures, goodness-of-fit) about parameters in fixed effects models is 
based on likelihood procedures. Bayesian techniques are also described to deal with mixed effects model 
structures. Numerical applications to the analysis of calving difficulties in cattle are shown and discussed.  
 
 
1. Introduction 
 
An appealing model for the analysis of ordered 
categorical data is the so-called threshold model. The 
threshold model postulates an underlying (liability) 
continuous distribution rendered discrete via 
threshold values. The probability of response in a 
given category can be expressed as the difference 
between continuous cumulative distribution 
functions having as arguments the upper and lower 
thresholds minus the mean liability for 
subpopulation divided by the corresponding standard 
deviation. Usually the standard deviations are 
assumed to be known and equal, or proportional to 
known quantities.The purpose of this paper is to 
extend the standard procedure (S-TM) to a 
heteroskedastic threshold model (H-TM) with a 
structural approach on the unknown dispersion 
parameters. For simplicity, the theory will be 
presented using a fixed effects model and likelihood 
procedures for inference. Mixed model extensions 
based on Bayesian techniques will also be outlined.  
 
2. Theory 
 
2.1. Statistical model  
 
The overall population is assumed to be stratified 
into several subpopulations (eg: subclasses of sex, 
parity, age, genotypes, etc) indexed by i =1,2,...,I  
representing potential sources of variation. Let J  be 
the number of ordered response categories indexed 

by j , and y i+ = yij +{ } be the (Jx1)vector whose 

element yij +  is the total number of responses in 

category j  for subpopulation i . The vector y i+  can 
be written as a sum  
 

 y i+ = y ir
r =1

ni∑ ,  [1] 

 
(over the ni  observations made in subpopulation i ) 

of indicator vectors y ir = yi1r , yi 2r ,..., yijr ,..., yiJr( )'  
such that yijr =1 or 0  depending on whether a 

response for observation (r ) in population ( i ) is in 
category ( j ) or not.  

Given ni  independent repetitions of y ir , 
the sum y i+  is multinomially distributed  
 
 y i+ ~ M(ni ,Πi ) ,  [2] 
 

with parameters ni = yij+
j =1

J∑  and probability 

vector Πi = Π ij{ }.  

In the threshold model, the probabilities Π ij  

are connected to the underlying continuous variables 
Xir  with threshold values τ j  via the statement 

 
 Π ij = Pr(τ j −1 < Xir ≤ τ j ) ,  [3] 

 
with τ0 = −∞  and τ J = +∞  , so that there are J −1 
finite thresholds. 

Assuming Xir ~ id(ηi,σ i
2 ) , this becomes: 
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 Π ij = F(
τ j −ηi

σ i

) − F(
τ j −1 −ηi

σ i

) , [4] 

 
where F(x)  is the CDF of some continuous 
distribution. Classical choices are: i) F(x) = Φ(x)  

for the normal and ii) F(x) = 1 + exp(−x)[ ]−1
 for 

the logistic.  
The mean liability (ηi) for the ith  

subpopulation is  modelled as in Gianola and Foulley 
(1983) and Harville and Mee (1984), and as in 
generalized linear models (McCullagh and Nelder, 
1989) in terms of the linear predictor 
 
 ηi = xi

'β .   [5] 
 
Here, the vector  of unknowns (β ) involves fixed 
effects only and x i  is the corresponding (px1) 
vector of qualitative or quantitative covariates. 

In the H-TM, a structure is imposed on the 
scaling parameters. As in Foulley and Quaas (1995), 
the natural logarithm of σ i  is written as a linear 
combination of some unknown (rx1) real-valued 
vector of parameters (δ ), 
 
   ln(σ i ) = pi

'δ , [6] 
 
pi

'  being the corresponding row incidence vector of 
qualitative or continuous covariates.  
 
2.2. Estimation  
Let τ = τ j{ } for j=1,2,..., J-1 and α = τ' ,β' ,δ'( )' . 

In fixed effects models with multinomial data, 
inferences about α  can be based on likelihood 
procedures. Here, the loglikelihood L(α; y)  can be 
expressed, apart from an additive constant, as: 
 

 
  
L(α; y) = yij +

j =1

J∑i =1

I∑ ln(Π ij ) , [7] 

 
The maximum likelihood (ML) estimator of 

α  can be computed using a second order algorithm. 
A convenient choice for multinomial data is the 
scoring algorithm, because the Fisher information 
measure is simple here. The system of equations to 
solve iteratively can be written as: 

 
 J(α)α= α[k ] ∆α[k+1] = U(α;y)α =α [k ] , [8] 

 
where U(α;y) = ∂L(α;y) / ∂α  and 

J(α) = −E ∂ 2 L(α;y)/ ∂α∂α'[ ] are the score 

function and the Fisher information matrix, 
respectively; k is an iterate number. Analytical 
expressions for the elements of U(α;y)  and I(α)  

are given in the appendix. for the probit and logit 
links. These are generalizations of formulae given by 
Gianola and Foulley (1983) and Harville and Mee 
(1984).  
 
2.3. Goodness-of- fit and Hypothesis testing 
The two usual statistics, the Pearson X2  and the 
(scaled) deviance D* can be used to check the 
overall adequacy of a model. These are 
 

 X2 = yij + − ni
ˆ Π ij( )2

j =1

J∑i =1

I∑ / ni
ˆ Π ij , [9] 

 

where ˆ Π ij = Π ij( ˆ α )  is the ML estimate of Π ij , and 

 
 D* (y, ˆ α ) = 2 L(y;y) − L( ˆ α ;y)[ ]. [10] 

 
Above, D* is based on the likelihood ratio 

statistic for fitting the proposed model against a 
saturated model having as many parameters as there 
are algebraically independent variables in the data 
vector, ie I(J −1)  here. Data should be grouped as 
much as possible for the asymptotic chi-square 
distribution to hold in [9] and [10] (Mc Cullagh and 
Nelder, 1989; Fahrmeir and Tutz, 1994). The degrees 
of freedom to consider here are I(J −1)  (saturated 
model) minus (J −1) + rank(X) + rank(P)[ ] 
(model under study), where X  and P  are the 
incidence matrices for β  and δ  respectively. 
Formulae [9] and [10] are special cases of the power 
divergent statistics introduced by Read and Cressie 
(1984).  

Hypothesis testing about γ = β' ,δ'( )'  can be 
carried out via either the Wald test or the likelihood 
ratio (or deviance) test.  
 
2.4. Numerical application 
 
2.4.1. Material 
 The data set analyzed was a contingency table of 
calving difficulty scores (from 1 to 4) recorded on 
purebred Blonde d’Aquitaine cows (Menissier and 
Sapa, 1995 personal communication) distributed 
according to sex of calf (males, females) and calving 
parity (0=unknown; 1,2 and 3 for first, second, third 
calvings and above respectively). Scores 3 and 4 
were pooled on account of the low frequency of 
score 4. The distribution of the 12183 records by 
sex-parity combinations is displayed in table 1. The 
raw data revealed the usual pattern of highest calving 
difficulty in male calves out of younger dams.  
Method/ Data were analyzed with standard (S-TM) 
and heteroskedastic (H-TM) threshold models using 
either the normal or the logistic as the distribution of 
liability. Location and dispersion parameters were 
described using fixed models involving sex (S) and 



 

 

5

parity (P) as factors of variation. In both cases, 
inference was based on maximum likelihood 
procedures. A log-link function was used for 
standard deviations.  
 
2.4.2. Results  
The S-TM does not fit the data whatever the 
distribution assumed or the model considered (full 
and additive). The deviance (D) of the full model 
(S+P+SP) was equal to 22.2 and 52.9 for 7 degrees 
of freedom with the normal and logistic respectively 
and the SP interaction effects were not significant 
(D=1.31, P-value=0.72 and D=1.58, P value=0.66 
with 3 degrees of freedom for the normal and logistic 
respectively). A closer look at the observed and 
expected numbers indicates that the S-TM leads to 
an underestimation of difficult calvings in males and 
an overestimation in females. Fitting a H-TM 
decreases the chi-square and deviance. A model with 
even fewer parameters and having a better fit than 
the full S-TM can be adjusted to the data. This 
model includes sex and parity as additive covariates 
for location parameters and sex as the only covariate 
for dispersion parameters. Liability turns out to be 
more concentrated around the mean in females than 
in males, the estimation of the standard deviation of 
females (vs males set to 1) being smaller under the 
logistic (0.806) than under the normal (0.885).  
 
3. Mixed models 
 
Correlations can be accounted for conveniently via a 
mixed model structure on the ηi 's, written now as 

 
 ηi = xi

'β + zi
' u , [11] 

 
where the fixed component x i

'β  is as before, and u  
is a (qx1) vector of Gaussian random effects with 

corresponding incidence row vector z i
' .  

For simplicity, we will consider a one-way 
random model, ie u ~ N(0,Aσu

2 )  (A  is a positive 
definite matrix of known elements such as kinship 
coefficients), but the extension to several u-
components is straightforward. The random part of 
the location is rewritten as in Foulley and Quaas 
(1995) as z i

' σui
u * where u * is a vector of standard 

normal deviates, and σui
 is the square root of the u-

component of variance, the value of which may be 
specific to subpopulation i. For instance, the sire 
variance may vary according to the environment in 
which the progeny of the sires is raised. 
Furthermore, it will be assumed that the ratio 
σui

/ σ i , where σ i  is now the residual variance, is 

constant across subpopulations. In a sire by 
environment layout, this is tantamount to assuming 

homogeneous intraclass correlations (or heritability) 
across environments, which seems to be a reasonable 
assumption in practice. Thus, the argument hij  of the 

CDF in [4] and [7] becomes 
 

hij =
τ j − x i

'β − z i
'σui

u *

σ i

=
τ j − xi

'β
exp(pi

' δ)
− z i

' ρu *,     [12] 

where ρ = σui
/ σ i .  

 
 

In the fixed model, parameters τ,β,δ  were 
estimated by maximum likelihood. Given ρ , a 
natural extension would be to estimate these and u * 
by the mode of their joint posterior distribution 
(MAP). To mimic a mixed model structure, one can 
take flat priors on τ,β  and δ . The only informative 
prior is then on u *, ie, u* ~ N(0,A) . Thus 
 
ˆ τ , ˆ β , ˆ δ , ˆ u * = Argmax p(y | τ,β,δ,u*,ρ )p(u*)[ ].[13] 
 
MAP solutions can be computed with minor 
modifications from [8]. The only changes to 

implement are to replace: i) β  by θ = (β' ,u # ' )'  
with u# = ρu* , ii) X = (x1,x2, ...,x i ,..., x I )'  by 

S = (s1,s2, ...,si ,...,s I )'  with si
' = (x i

' ,σ iz i
' ) ; iii) add 

ρ−2A−1  to the coefficients of the u x u block 
pertaining to the random effects on the left hand side 
and −ρ−2A−1u[k ]  to the u-part of the right hand side. 
The system to solve can be written as: 
 

T L'θ S L' δ P

S' Lθ S' WθθS + Σ− S' WθδP

P' Lδ P' WθδS P' WδδP

 

 

 
 
 

 

 

 
 
 

[k ]
∆τ
∆θ
∆δ

 

 

 
 
 

 

 

 
 
 

[k+1]

=
ξ

S' vθ − Σ−θ
P' v

δ

 

 

 
 
 

 

 

 
 
 

[k ]

,[14] 

 

where Σ− =
0 0

0 ρ−2A −1

 
  

 
  

and T , vθ = vβ , 

Lθ = Lβ , Wθθ = Wββ , Wθδ = Wβδ  as expressed in 

the appendix.  

 
A further step would be to estimate ρ  

using an EM marginal maximum likelihood 
procedure based on 
 

ρ 2[k +1] = E u # ' A−1u# | y, ρ 2[k ]( )/ q , [15] 

 
This may involve either an approximate calculation 

of the conditional expectation of the quadratic in u #
 

as in Harville and Mee (1984) or a Monte Carlo 
calculation of this conditional expectation via, for 
example, the so-called Stochastic-EM algorithm 
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(Celeux and Diebolt, 1985) or Monte-Carlo EM 
(Natarajan, 1995). Alternative procedures for 
estimating ρ  might be also envisioned, such as the 
iterated re-weighted REML of Engel et al (1995). A 
test example based on simulated calving scores with 
sire and maternal grandsire effects is shown in table 
3 and 4. Notice that genetic evaluation and selection 
can be directly carried out on MAP values of u * 

(σ ui
 units) or u # = ρu * (σ ei

 units).  

 
4. Conclusion 
 
The threshold model offers great flexibility for 
fitting ordinal categorical data such as those arising 
in animal breeding (eg calving scores). In particular 
a further step can be achieved by implementing a 
structural heteroskedastic model for the argument of 
the CDF describing the cumulative probability of 
response. Relationships between the H-TM and 
models with variable thresholds have been already 
discussed by Foulley and Gianola (1996), the main 
feature of H-TM being its lower dimentionality and 
its simpler interpretation.  

From a genetic point of view, the potential 
increase in selection response by selecting on H-TM 
versus S-TM based EBV’s is likely to be not very 
large but within the usual range of improvement 
already observed after the implementation of new 
statistical methods. Preliminary simulation work 
carried out on a sire - maternal grand sire design 
indicates an increase of the coefficient of 
determination of about 4 to 7% depending on the 
sample characteristics and parameter values. Further 
research is also needed to assess the question of the 
number of categories considered in relation to the 
corresponding misclassification issues or other 
aspects of subjective appraisal of performance . In 
the analysis of calving difficulty, it might also be 
interesting to develop a joint analysis of continuous 
(birth weight, gestation length) and ordered 
polychotomous traits using an heteroskedastic 
approach.  
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Table 1. Goodness-of-fit of threshold models applied to calving scores in the  
Blonde d’Aquitaine breed. (regular TM; probit) 

 Observed & Expected Numbers* 
 

Statistics of fit@ 
 

SP # 1 2 3  1 2 3 Χ2 
 

10 488 (484.3) 423 (430.9) 118 (113.8) -0.17 +0.38 -0.39 0.33 
11 55 (51.4) 65 (72.3) 33 (29.3) -0.50 +0.86 -0.69 1.48 
12 563 (558.2) 535  (545.2) 162 (156.7) -0.21 +0.44 -0.43 0.41 
13 1990 (1958.3) 1525 (1592.5) 424 (388.2) -0.72 +1.69 -1.82 6.67 
20 300 (305.5) 178  (165.9) 22 (28.6) +0.31 -0.94 +1.23 2.50 
21 69 (69.2) 51 (50.6) 11 (11.2) +0.02 -0.06 +0.07 0.01 
22 761 (769.3) 433 (414.7) 61 (71.0) +0.30 -0.90 +1.19 2.31 
23 2559 (2583.5) 1216 (1161.1) 141 (171.3) +0.48 -1.61 +2.32 8.20 

# S: 1=male , 2=female; P: 0=unknown, 1=parity 1,2=parity 2,3=parity 3 and above;  
* Observed and (Expected) numbers; @(E-O)/√E, and Pearson's Χ2 in the last column 

 
 

Table 2. ML estimates and their asymptotic standard errors (SE) for parameters of threshold models 
applied to calving difficulty scores in the Blonde d'Aquitaine breed 

 Standard TM  Hetero TM  
Parameters Normal Logistic Normal Logistic 
Threshold  2-3 1.297 ± 0.017 *1.331 ± 0.019 1.239 ± 0.021 *1.237 ± 0.023 
 µ 1x1 0.423 ± 0.091 *0.424 ± 0.090 0.350 ± 0.065 *0.321 ± 0.061 
 S 2 -0.494 ± 0.136 *-0.488 ± 0.134 -0.341 ± 0.026 *-0.296 ± 0.023 
  0 -0.350 ± 0.097 *-0.350 ± 0.097 -0.274 ± 0.070 *-0.247 ± 0.066 
 P 2 -0.280 ± 0.096 *-0.281 ± 0.095 -0.236 ± 0.067 *-0.215 ± 0.063 
Location  3 -0.416 ± 0.092 *-0.420 ± 0.092 -0.359 ± 0.065 *-0.329 ± 0.061 
  0 0.139 ± 0.151 *0.157 ± 0.149   

 S x P 2 0.064 ± 0.144 *0.078 ± 0.142   

  3 0.075 ± 0.139 *0.097 ± 0.137   

Dispersion S 2   -0.123 ± 0.027 -0.215 ± 0.031 
 Χ2 (D)  21.90 (22.33) 50.71 (52.88) 3.65 (3.63) 5.63 (5.54) 
Test DF  7 7 9 9 
 P-val  0.0026 1E-8 0.93 0.77 
Sample size: N=12183 
Logistic: *original entries for threshold values and position parameters are divided by 15π/16√3 
S: Sex effect stands for s

2
 - s

1
 (females - males) in additive models and  µ

21
 - µ

11
  

      (females - males in parity 1) in models with interaction. 

P: Parity effects stands for p
j
 - p

1 
(j

th
 parity - 1

st
 parity) for j = 0, 2, 3 in additive models  

      and µ
1j

 - µ
11

 (j
th

 parity - first
 
parity among males) in models with interaction. 

 
SP: Interaction effects (SP) stand for spj = (µ

2j
 - µ

1j
) - (µ

21
 - µ

11
 ) (differences between  

      female - male deviations in parity j and parity 1) for j = 0, 2, 3. 
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Table 3. A test example for mixed threshold model analyses  

No Environmental factors Genetic factors Categories 
 a b s t [1] [2] [3] 

1 1 1 1 4 23 27 13 
2 1 2 1 4 14 21 22 
3 1 1 1 7 20 16 6 
4 1 2 1 7 13 5 3 
5 1 2 1 8 9 5 4 
6 1 1 2 6 6 18 12 
7 1 1 2 7 13 5 3 
8 1 2 2 8 39 10 5 
9 2 1 2 8 51 26 4 

10 2 2 3 5 8 8 5 
11 2 1 3 5 16 24 17 
12 2 2 3 5 14 13 3 
13 2 3 3 2 60 37 14 
14 2 2 3 2 22 13 4 
15 2 3 4 7 27 9 3 
16 2 3 4 8 9 5 4 
17 2 2 4 9 30 19 8 
18 2 2 4 5 23 11 2 

a,b,s,t: stand for factors a, b (fixed) and sire and maternal grand sire (random) respectively 
Non zero elements (i,j)=(j,i) of the numerator relationship matrix are:  
(1,2)=(8,9)=1/4; (1,5)=(2,5)=(3,7)=(4,6)=(8,10)=(9,10)=1/2 (i,i)=1, for any i=1,2,...,10 
 
 
Table 4. MAP estimates of parameters and their precision (SE) 

Parameter Estimate SE Parameter Estimate SE 

Fixed1 τ2 − τ1 1.0096 0.0980 ηR
*  0.0000 0.0000 

 ηR −τ1  0.2802 0.3056 a2
* − a1

*  -0.2072 0.1159 

 a2 − a1  -0.1392 0.2038 b2
* − b1

*  0.1080 0.1145 

 b2 − b1  -0.1920 0.1190 b3
* − b1

*  0.2425 0.1595 

 b3 − b1  -0.1520 0.2115    

Random2 s1  0.0214 0.2240 t1  0.0120 0.3492 

 s2  -0.2973 0.2166 t2  -0.3888 0.2475 
 s3  0.3031 0.2157 t3  -0.0257 0.3451 
 s4  -0.0906 0.2078 t4  0.2466 0.2224 
 s5  -0.0764 0.2838 t5  -0.0288 0.2383 
 s6  0.0896 0.2747 t6  0.6076 0.2514 
 s7  0.0752 0.2782 t7  -0.2869 0.2057 
 s8  -0.0486 0.2923 t8  -0.1746 0.2069 
 s9  0.0252 0.2943 t9  0.0904 0.2418 
 s10  -0.0094 0.3015 t10  -0.0337 0.3363 

1:τ 1,τ 2:threshold values; ηR = η + a1 + b1; ηR
* = η* + a1

* + b1
*  

a1,a2;(a1
*,a2

* ) : location and log-scaling effects of levels 1 and 2 of factor a 

b1,b2,b3;(b1
*,b2

*,b3
* ) : location and log-scaling effects of levels 1,2 and 3 of factor b 

2: estimates of components of variance and covariance for sire (s) and maternal grand sire effects (t) are: sire / 
residual variance=0.0937; mgs/residual variance=0.1492 and sire-mgs covariance/residual variance= 0.0416 
(correlation =0.3514)  
All values are expressed in residual standard deviation units, the link function being the probit.  
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Appendix 

Expressions for the score function U  and the information matrix J  

U  is defined as: U = (∂L / ∂τ)' ,(∂L / ∂β)' ,(∂L / ∂δ)'[ ]' .  

Letting hij =
τ j − ηi

σ i

, a general expression for the probability Π ij  is  Π ij = F hi , j( )− F hi , j −1( ),  

where F x( ) = Φ(x)  and F x( ) = 1 + exp(−x)[ ]−1
 for the probit and logit links respectively.  

 
∂L

∂τ
= ξ  

 ξ = ξ j{ }=
∂L

∂τ j

 
 
 

 
 
 

=
yij

Π ij

−
yi , j +1

Π i, j +1

 

 
 

 

 
 

i =1

I∑ f (hij )σ i
−1

 
 
 

  

 
 
 

  
j =1,2,...,J −1.  [A.1] 

where yij  stands for yij + = yijr
r =1

ni∑ . 

 
∂L

∂β
= vβ,ix i = X'vβ

i =1

I∑ , [A.2] 

 vβ = vβ,i{ }=
yij

Π ij
j =1

J∑ f (hi, j −1 ) − f (hij )[ ]σ i
−1

 
 
 

 
 
 

; i =1,2,...,I . 

Similarly, letting ψ(x) = xf (x):  

 
∂L

∂δ
= vδ ,ipi = P 'vδ

i =1

I∑ , [A3] 

 v δ = vδ,i{ }=
yij

Π ij
j =1

J∑ ψ(hi , j −1) − ψ(hij)[ ] 
 
 

 
 
 

; i =1,2,...,I . 

Notice the remarkable symmetry in expressions [A.2] and [A.3]. 

Finally, U can be expressed as:  

 U(α;y) =
ξ

X' vβ

P 'vδ

 

 

 
 
 

 

 

 
 
 

,  

with expressions for ξ , vβ  and vδ  given in [A.1], [A.2] and [A.3]. Elements of the information matrix J(α)  

include the expectations of minus the second derivatives.The following derivatives will be considered: threshold-

threshold; β -threshold; δ -threshold; β -β ; β -δ , and δ -δ . 

a)threshold-threshold derivatives 

 E −
∂2 L

∂τ j
2

 

 
 

 

 
 =

ni

σ i
2 f (hij)[ ]2 1

Π ij

+
1

Π i, j +1

 

 
 

 

 
 

i=1

I∑ . [A.4] 

 E −
∂ 2 L

∂τ j∂τ j +1

 

 
 

 

 
 = − σ i

−2 ni

Π i, j +1
i =1

I∑ f (hij ) f (hi, j +1) , [A.5] 

and 

 
  

∂ 2 L

∂τ j∂τ l

= 0, for   j − l > 1.  
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b)β -threshold derivatives 

 

  

E −
∂ 2 L

∂τ j∂β

 

 
 

 

 
 = lβ ,ij

i =1

I∑ xi = X' Lβ, j , [A.6a] 

 

  

Lβ , j = lβ,ij{ }=
ni

σ i
2 f (hij)

f (hi , j −1) − f (hij)

Π ij

−
f (hij ) − f (hi , j +1)

Π i, j +1

 

 
 

 

 
 

 
 
 

  

 
 
 

  
; i =1,2,...,I , 

 E −
∂ 2L

∂β∂τ
 
 
 

 
 
 = X' Lβ , [A.6b] 

 Lβ Ix(J−1)[ ]
= Lβ,1,Lβ, 2, ...,Lβ, j ,..,Lβ ,J−1( ).  

c) δ -threshold derivatives 

 

  

E −
∂ 2L

∂τ j∂δ

 

 
 

 

 
 = lδ,ij

i =1

I∑ pi = P' Lδ , j , [A.7a] 

 

  

Lδ, j = lδ ,ij{ }=
ni

σ i

f (hij )
ψ(hi, j −1) − ψ(hij )

Π ij

−
ψ(hij) − ψ(hi , j +1)

Π i , j +1

 

 
 

 

 
 

 
 
 

  

 
 
 

  
; i =1,2,...,I  

 E −
∂2 L

∂δ∂τ
 
 
 

 
 
 = P' Lδ  [A.7b] 

 Lδ Ix(J−1)[ ] = Lδ,1,Lδ,2 ,..., Lδ, j , ..,Lδ, J−1( ). 

The remaining elements can be easily obtained using Fisher's information measure for a multinomial distribution, 

ie 

 
  
E −

∂2 L

∂ϕk∂ϕl

 

 
 

 

 
 = ni

i=1

I∑ 1

Π ij
j =1

J∑ ∂Π ij

∂ϕk

∂Π ij

∂ϕl

. [A.8] 

Applying [A.8] here leads to:  

d)β − β  derivatives 

 E −
∂ 2L

∂β∂β'

 
 
 

 
 
 = wββ,ii

i =1

I∑ x ix i
' = X' WββX , [A.9] 

 Wββ = Diag wββ,ii{ }= Diag
ni

σ i
2

f (hi, j −1 ) − f (hij )[ ]2
Π ij

j =1

J∑
 
 
 

  

 
 
 

  
,i =1,2,...,I . 

e)β − δ  derivatives 

 E −
∂ 2 L

∂β∂δ'

 
 
 

 
 
 = wβδ,ii

i =1

I∑ x ipi
' = X' WβδP , [A.10] 

 Wβδ = Diag wβδ,ii{ }= Diag
ni

σ i

f (hi , j −1) − f (hij )[ ]ψ(hi , j −1) − ψ(hij )[ ]
Π ij

j =1

J∑
 
 
 

  

 
 
 

  
, i =1,2,...,I . 
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 E −
∂ 2 L

∂δ∂δ'

 
 
 

 
 
 = wδδ,ii

i =1

I∑ pipi
' = P' WδδP , [A.11] 

 Wδδ = Diag wδδ,ii{ }= Diag ni

ψ(hi , j −1) − ψ(hij)[ ]2

Π ij
j =1

J∑
 
 
 

  

 
 
 

  
, i =1,2,...,I . 

Finally J(α)  can be written in condensed form as: 

 J(α) =
T L'β X L' δ P

X' Lβ X' WββX X' WβδP

P' Lδ P' WβδX P' WδδP

 

 

 
 
 

 

 

 
 
 

, [A.12] 

where T = tjk{ } is a (J −1)x(J −1)  symmetric band matrix having as elements: tjj = E −∂ 2L / ∂τ j
2( ), and 

tj , j +1 = E −∂ 2 L / ∂τ j∂τ j +1( ), given in [A.4} and [A.5].  

These expressions can be extended to obtain the MAP of parameters in a mixed model structure by 

replacing i) β  by θ = (β' , u#' )'  with u# ~ N(0, ρ2A)  ( ρ σ σ2 2 2= =u ii
/ constant ); ii)X  by 

S = (s1,s2, ...,si ,...,s I )'  with si
' = (x i

' ,σ iz i
' ) ; 

and making the appropriate adjustments for prior information as shown below 

 

T L'θ S L' δ P

S' Lθ S' WθθS + Σ− S' WθδP

P' Lδ P' WθδS P' WδδP

 

 

 
 
 

 

 

 
 
 

[k ]
∆τ
∆θ
∆δ

 

 

 
 
 

 

 

 
 
 

[k+1]

=
ξ

S' vθ − Σ−θ
P' v

δ

 

 

 
 
 

 

 

 
 
 

[k ]

, [A.13] 

where Σ− =
0 0

0 ρ−2A −1

 
  

 
  

and vθ = vβ , Lθ = Lβ , Wθθ = Wββ , Wθδ = Wβδ  as expressed in [A.2], [A.6ab], [A.9] 

and [A.10] respectively.  
 


