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Abstract 
 
This paper selectively reviews breeding objectives, genetic evaluation systems, use of 
individual genes and the design of breeding programs. Consideration of costs in the 
breeding objective shows that feed conversion efficiency (FCE) is the most important 
trait. A simple model of nutrient requirements suggests that FCE is more highly 
correlated with milk yield in a low nutrition environment than in a high nutrition 
environment. An international experiment to test this hypothesis could be worthwhile. 
Mastitis resistance, fertility and longevity are important traits, but as much for their effect 
on milk income as costs. Research on genetic evaluation systems is focusing on use of 
test day yields, international evaluations, non-additive variance, non-linear models and 
the use of individual genes. Models with a non-linear relationship between traits and 
possibly censored data (e.g. between milk yield and days open) deserve investigation. 
Individual genes and mapped QTL can be included in genetic evaluations by use of linear 
models, combined segregation-linkage analysis or finite locus or gene based models. The 
use of these genes will lead to the selection of young bulls and heifers to breed bulls, thus 
reducing generation intervals and increasing genetic gain, but with an increase in 
variability of response or risk. Methods to make selection more robust to errors in 
parameter estimates, biased data and bad luck are needed. 
 
 
 
 
Introduction 

 
This paper reviews a wide field of 

research including breeding objectives, 
selection criteria, genetic evaluation 
systems, use of individual genes and 
design of breeding programs, but it does 
so very selectively, and I have attempted 
to introduce some new ideas and suggest 
priority areas for future research. 
 

 
2. Breeding objectives 

 
Breeding objectives for dairy cows 

have been reviewed by Groen et al. (1997) 

and the methodology for setting objectives 
by Goddard (1998a). The economic value 
of milk components depends on the milk 
payment system and has been considered 
elsewhere. Therefore, I will concentrate 
on traits other than yield and milk 
composition. 

 
A very simple objective might be 
 
Profit = Income – Animal costs – Feed costs 

 
Following Smith et al. (1986), I have 
assumed that, in the long term, there are 
no fixed costs: all costs are proportional to 
either the amount sold (and reflected in 
the price received), or the number of 
animals maintained or the amount of feed 
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required. Visscher et al. (1994) argued 
that in a pasture based system most costs 
are proportional to the amount of feed 
used including the cost of land. 
Consequently, in pasture based systems, 
the feed costs can account for 80% of the 
total costs. Brascamp et al. (1985) argued 
that the average profit from dairying, 
when all costs are included, is close to 
zero or else investment capital would flow 
into the industry until profit, after 
allowing return on investment as a cost, 
returned to near zero. Therefore, in the 
profit function above, on average, Income  
= Animal costs  + Feed costs. Then the 
economic weight of each trait is the 
increase in profit due to a one unit 
increase in that trait while all other traits 
are held constant (note that mean profit is 
zero before this change but not after it). 
For simplicity, I will assume that all 
income comes from sale of milk, although 
the calculations could be extended to 
include income from calves and cull cows. 
Thus, the simplified profit function 
contains just three traits: milk yield, feed 
conversion efficiency (FCE) and animal 
costs. The relative economic weights of 
these three traits depend only on the 
average animal costs as a proportion of 
total income (p). A 1% increase in milk 
yield or a 1% decrease in animal costs 
causes an increase in profit which is p% of 
income, while a 1% increase in FCE 
causes a (1-p)% of income increase in 
profit. Economic weights depend on the 
other traits included in the profit function. 
Here the economic weight for milk 
production is reduced because FCE is also 
included in the model. Consequently, the 
benefit from increasing yield, while FCE 
is held constant, is only a reduction in the 
animal costs. This is true whether or not 
the output of milk is fixed provided that 
mean profit equals zero. Thus, provided 
feed costs are greater than animal costs 
(per unit of milk), the economic weight for 
FCE is greater than that for milk yield 
(when expressed per percentage change in 
each trait). 

If animal costs are a small proportion 
of total costs, the economic weight of 
traits that reduce costs per animal are 
unlikely to be high. Mastitis resistance and 
fertility are two traits that affect cost per 
animal, but they also affect income 
through effects on milk yield. In theory, 
effects on yield should not be counted as 
part of the economic weight of mastitis or 
fertility because yield is already in the 
profit function. However, in practice yield 
may be measured in such a way that these 
effects are not included and therefore need 
to be included as part of the economic 
weight of fertility or mastitis. 

Most studies have not included FCE as 
a trait in the profit function. That is they 
have not calculated the economic weight 
of milk yield while holding FCE constant. 
Typically they have assumed that feed 
intake increases with milk yield but not so 
much that FCE remains constant. 
Consequently they have found the 
economic weight of milk yield to be 
higher than that calculated above. To aid 
comparison with other studies, I will now 
assume a profit function which does not 
include FCE as a trait but which increases 
feed intake to meet the requirement of 
increased milk yield. Economic weights 
per genetic standard deviation for mastitis 
and fertility (Philipsson et al., 1994) have 
been claimed to be as high as half the 
economic weight of milk yield (when FCE 
is not included in the profit function). 
However, these results depend on the 
specific production system assumed and I 
am concerned that some double counting 
of effects on milk yield may still be 
occurring (see also discussion by Groen et 
al., 1997). Fertility is important in 
seasonal calving systems or if the value of 
calves is very high, but in north America 
and parts of Australia where neither of 
these apply, the optimum inter-calving 
interval may be 14 months and there is 
little benefit in reducing it below the 
existing mean. Even in these 
circumstances, other fertility traits still 
have a value because, for instance, they 
affect semen and insemination costs, but 
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this supports an economic weight much 
less than half that of milk yield. Other 
health traits will also affect animal costs 
but are not as important as mastitis and 
fertility. Selection for milk yield is 
expected to reduce fertility and resistance 
to mastitis. If this occurs, and if the 
economic value of these traits increases as 
the mean declines, then they should be 
given a greater economic weight than 
would be calculated based on the current 
means. However non-genetic 
improvements in fertility and mastitis 
resistance may compensate for the 
expected genetic decline. 

 
Two other traits considered important 

by Australian dairy farmers are 
temperament and milking speed. 
Temperament is valued highly for quality 
of life reasons and milking speed 
somewhat less highly, because it affects 
milking time and hence labour costs. 
Length of herdlife is also economically 
important with an economic weight up to 
half that of milk yield (Visscher et al., 
1994). Much of the culling in dairy herds 
is voluntary culling for reasons such as 
infertility, mastitis, low production, poor 
temperament. Therefore, the trait in the 
profit function should be ‘culling for 
reasons not already included in the profit 
function’. Consequently, as the profit 
function is made more complete, the 
economic weight of length of herdlife 

declines. Alternatively, the effect of 
mastitis on herdlife can be excluded from 
the economic weight of mastitis, but the 
herdlife trait in the breeding objective 
defined to include culling for mastitis.  

 
 

3. Selection Criteria 
 
Although breeding objectives should 

be as complete as possible, this does not 
mean that all traits should be recorded and 
included in the selection criteria. Whether 
or not to record a trait depends on whether 
it increases the accuracy of selection 
enough to cover the cost of recording, 
analysing and explaining the new traits.  

Consider the case of a profit function 
with two uncorrelated traits and assume 
we already record the more important. 
Should we record the second trait? 
Assume that selection is on EBVs based 
on large progeny tests so we can treat the 
EBVs as if they were 100% accurate, and 
that the second trait has an economic 
weight per genetic standard deviation s 
times the first trait. The accuracy of 
selection using the first trait only is a 
fraction 1 1( *+ s s)  of the accuracy 
obtained by recording both traits. Table 1 
lists this accuracy for some values of s 
showing that recording a trait that is ¼ as 
important as the main trait improves the 
accuracy of selection by only 3%.  

 
Table 1. Accuracy of selection (rTI) and prediction error variance (PEV) when a second 

trait is deleted from the selection criterion 
 

Economic weight of 
the second trait relativ
to the first 

Genetic correlation 
between traits = 0.00

Genetic correlation 
between traits = -0.50

 
 rTI PEV rTI PEV 

 
1.00 0.70 0.50 0.50 0.75 
0.50 0.89 0.20 0.87 0.25 
0.25 0.97 0.06 0.97 0.06 

     
Calculations of rTI, such as these, 

imply that the gains from recording traits 
other than the most important are small. 
However perhaps that is not the correct 

conclusion. The variability of selection 
response depends on 1-rTI

2 and Table 1 
shows that recording additional traits 
reduces variability of response 
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substantially. Table 1 also shows that rTI 
benefits more from including a second 
trait when the genetic correlation between 
the traits is unfavourable, but the gain in 
accuracy are still not great. However, if 
the profit function is non-linear so that a 
decline in the second trait is more costly 
than an increase is valuable, or when the 
traits combine non-linearly, the benefit 
from recording a second trait may be 
larger than indicated in the table. My 
conclusion is that we do not seem to have 
a clear method by which we decide which 
traits to record and use for selection. 

 
Genetic evaluation for somatic cell 

count is now common. Recording mastitis 
would improve the accuracy of EBVs for 
this trait, but is limited by the cost of 
recording. Similarly, EBVs for fertility 
and other health traits are restricted by 
failure to record the necessary data. 

 
 

4. Feed Conversion Efficiency 
 
FCE is favourably correlated with 

milk yield so, even though it is more 
important than yield, the benefit from 
recording it is limited by this genetic 
correlation. The correlation is reported to 
be >0.8 in most studies (Veerkamp, 1998), 
but this may be misleading because some 
studies have fed according to production 
and almost no studies have measured feed 
intake over a full year. 

 
A simple model of production and 

intake is as follows. The total feed 
consumed (Y) is divided into that used for 
maintenance (N) and that used for milk 
production (M). This assumes that 
eventually a cow must reach a sustainable 
state in which she returns to the same 
body weight at calving as the last time she 
calved. Assume there is no variation in the 
efficiency with which feed not required 
for maintenance (M) is converted to milk 
so that milk yield is just a constant times 

M and we can treat M as milk yield for 
these calculations. With this simple model 
and assuming reasonable parameters such 
as those in Table 2, it is impossible to 
generate a correlation between yield and 
FCE that is as high as that between yield 
and intake. However, Veerkamp(1998), in 
a review of the literature, found the 
genetic correlation between intake and 
yield was only 0.45 - 0.65 (i.e., lower than 
between yield and FCE). This discrepancy 
between the prediction of the model and 
actual estimates is because intake and 
yield were typically measured during a 
period in which the highest yielding cows 
are losing weight. Thus cows, which lost 
weight during the period of measurement, 
appear highly efficient, but this high 
efficiency is not sustainable because the 
cow cannot indefinitely lose weight. If a 
sustainable yearly cycle is considered, the 
genetic correlation between FCE and milk 
yield is almost certainly lower than 
usually reported and perhaps about 0.7. 
Consequently, the benefit in rTI from 
recording FCE is larger than previously 
thought. Considering an objective which 
contains only yield and FCE, the benefit is 
a gain of 20% if feed costs are 80% of 
total costs and 8% if feed costs are 50% of  
all costs. 



 

 
Table 2. Correlations between milk yield, intake and FCE (means are of feed partitioned to 

production and maintenance relative to that for maintenance; CV is coefficient of 
variation)  

 
  Yield Maintenance Intake FCE 
Mean 2 1 3  
CV 0.10 0.08 0.08    0.033 
    
Milk yield  0.40 0.95 0.68 
Maintenance   0.66 -0.40 
Intake    0.43 

 
 
This approach to formulating breeding 

objectives and selection criteria including 
FCE has been challenged by others. They 
point out that selection for high FCE is 
selection for reduced intake at the same 
level of milk yield, and they argue that 
this will accentuate the energy deficit in 
early lactation and perhaps increase the 
incidence of infertility and health 
disorders. These concerns can be 
overcome by recognising that the 
objective is FCE over a complete and 
sustainable lactation cycle and by 
recording fertility and health traits and 
selecting on them directly. The simple 
model of intake described makes it clear 
that the aim is to improve FCE by 
increasing yield and reducing maintenance 
requirements, not by reducing intake while 
leaving requirements unchanged. 
Nevertheless, low maintenance 
requirements might be correlated with 
poor fertility or health and, if that were so, 
the genetic parameters would need to 
reflect that fact. 

This analysis does not solve the 
problem of which traits to record. It may 
be that recording intake is not profitable. 
If any recording of intake is to be done it 
should be considered in relation to a 
complete objective including fertility and 
health traits. It is tempting to consider 
recording residual feed intake because this 
would account for differences in weight 
loss during the recorded period. However, 

this is just one linear combination of the 
traits recorded and it is more logical to use 
normal selection index calculations to 
maximise the correlation between 
selection criterion and objective. Although 
the breeding objective should include feed 
intake over a complete production cycle, 
this does not mean that we must measure 
feed intake over a complete cycle. The 
selection criteria might be based on intake 
measured over a short period, provided we 
use the correct genetic covariances among 
the traits measured and those in the 
breeding objective. 

The simplest traits to record, which are 
correlated with maintenance requirement 
and hence with FCE, are body weight and 
other measures of size such as hip height 
or the type trait stature. Depending on the 
correlations between these traits and 
maintenance requirements, recording them 
may generate much of the benefits from 
recording intake. One might expect that 
smaller cows with the same milk yield 
would suffer increased stress and more 
culling, but this does not appear to be the 
case (Rogers et al., 1991; Boldman et al., 
1992; Harris et al., 1992). 

Another argument advanced for 
selecting for high feed intake (ie low FCE) 
is that cows with a high intake could be 
fed a less expensive diet. There is no 
direct evidence for this. If this is the 
breeding objective, it would be much 
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simpler to feed a less expensive diet and 
record milk yield. 

 
5. Genotype by environment 
interactions (G x E) 

 
The yields of milk in different 

environments are different traits that are 
not perfectly correlated. Genetic 
correlations among yields in North 
America and European countries are high 
(e.g., > 0.9), but lower between these 
countries and Australia (0.82) and New 
Zealand (0.77). This pattern suggests that 
the critical factor in the environment is 
level of feeding. The Northern 
Hemisphere countries use a high feeding 
level whereas New Zealand relies on 
pasture and Australia is in-between. This 
interpretation is supported by studies 
within countries that have found the 
genetic correlation between yield in high 
producing and low producing herds to be 
about 0.8-0.9 (Veerkamp and Goddard, 
1998). All these genetic correlations (rg) 
are likely to be slightly underestimated 
due to differences in the definition of yield 
and because any imperfections in the 
statistical model tend to cause an 
underestimate of rg. However this cannot 
account for the pattern of correlations 
observed. 

 
The existence of these G x E mean that 

each country should select on the basis of 
EBVs for production under its own 

conditions, but these EBVs should use all 
available data, including international 
data, as the INTERBULL EBVs do. Can 
the recording of yield under a range of 
environments be used to increase the 
accuracy of selection for the breeding 
objective in each country? Consider the 
simple model of feed intake used earlier. 
What will happen if we vary the quality 
and quantity of feed on offer to the cows? 
I will assume that the ranking of 
genotypes for intake stays the same but, as 
nutrition declines, the variation in intake 
declines. Table 3 shows the correlations 
predicted by this model. To generate a 
genetic correlation of 0.8 between milk 
yield in a high nutrition environment and a 
low nutrition environment requires that 
the standard deviation of intake be only 
0.4 times as great in the restricted 
environment. Under these conditions yield 
in either environment is still correlated 
with FCE in the same environment, but 
yield in the poor environment is especially 
correlated with FCE in the good 
environment. This is because yield in the 
poor environment and FCE in either 
environment are correlated with low 
maintenance requirements. Yield in the 
good environment has a correlation of 
only 0.23 with FCE in the poor 
environment. This is a very important 
parameter for countries with low nutrition 
environments and which import most of 
their genetic improvement from northern 
America and western Europe. 

  
Table 3. Correlations between traits milk yield and feed conversion efficiency (FCE) 

measured in a high (h) and low (l) nutrition environment. 
 

 Milk-h FCE-h Milk-l FCE-l
Milk-h - 0.68 0.81 0.24 
FCE-h  - 0.98 0.87 
Milk-l   - 0.76 
FCE-l    - 
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The model of intake and yield used 
here is almost certainly too simple. For 
instance, there may be traits, other than 
low maintenance requirement, that 
increase adaptation to a pasture diet. 
However, a more realistic model might 
well not change the main conclusions very 
much. These conclusions are important 
and relatively easily tested. Specifically, is 
yield in a high nutrition environment 
poorly correlated with FCE under poor 
nutrition, whereas yield under poor 
nutrition is highly correlated with FCE in 
all environments? If this were true it 
would encourage progeny testing of bulls 
simultaneously in countries with both high 
and low nutrition environments. 

 
 

6. Genetic Evaluation Systems 
 
Genetic evaluation systems have been 

continuously researched and upgraded in 
an effort to increase the correlation 
between EBVs and the breeding objective. 
Calculation of EBVs is usually based on 
an animal model BLUP. Recent trends in 
research have been the use of international 
data, test-day data, multi-trait models, 
non-linear models, non-additive genetic 
variation and inclusion of individual 
genes. 

The use of test-day yields instead of 
lactation yields as data for the BLUP 
should increase the accuracy of EBVs for 
two reasons: 
• better modelling of environmental 

effects through herd-test-day terms, 
• better modelling of random effects by 

treating yields at different times as 
different traits.  

It appears that the genetic correlation 
between early and late lactation yields is 
only about 0.5 (Kaiser and Goddard, 
unpublished). If yields at different stages 
of lactation are to be recognised as 
different traits, then it is reasonable to 
treat different lactations as different traits 
also. This implies the use of a multi-trait 

model with many traits. Estimation of the 
(co)variances among all these traits can be 
improved by using covariance functions 
which utilise the ordering of yields within 
a lactation (Veerkamp and Goddard, 
1998). An equivalent model can be 
constructed using random regression, 
although estimates of variance 
components using these models have so 
far proved unreliable (Van der Werf et al., 
1998). Both methods reduce the 
dimensionality of the multi-trait model 
which can improve the accuracy of the 
EBVs because less parameters must be 
estimated, and reduce the computer 
resources needed (Wiggans and Goddard, 
1997). 

Multi-trait models would also seem 
appropriate for groups of correlated traits 
where some records are typically missing 
or censored such as yield, fertility and 
survival. 

Non-linear models have usually been 
used for discrete traits such as calving 
ease. A topic that has had little 
consideration is non-linear relationships 
between traits. For instance, yields are 
sometimes corrected for days open using a 
non-linear function. However days open is 
a trait with some genetic variance, so it 
should be included as a y-variable. One 
method is to analyse yield corrected (non-
linearly) for days open and days open as 
two traits in a multi-trait model. However, 
days open may be missing on many 
records in a non-random manner. An EM 
algorithm similar to Ducroq and Besbes 
(1993) may be possible, but alternatively 
MCMC methods offer a very flexible way 
to fit complex models and deserve further 
consideration. 

Non-additive inheritance such as 
dominance, epistasis, mitochondrial, 
maternal effects, and gene imprinting 
could affect milk yields. Analyses done to 
date suggest the variance components 
associated with these effects are small 
(e.g., Kaiser et al., 1998). Even if these 
non-additive effects exist, the use that can 
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be made of them is limited. For instance, 
including dominance in the model 
improves the accuracy of predicting 
breeding value and phenotype only 
marginally even if the loci in the 
simulated data all show dominance 
(Goddard, 1998b). 

There is no guarantee that more 
complex models yield more accurate 
EBVs. We should test this empirically 
rather than rely on the argument that 
because they represent the biology more 
closely they must be better. Complex 
models rely on modelling the inter-
relationships among many parts such as 
traits; this modelling may be incorrect and 
relies on estimates of the parameters in the 
model. An alternative is to analyse profit 
or a trait closely related to it directly. This 
would in theory be less accurate but may 
be more robust (Meuwissen and Goddard, 
1997a). Visscher and Goddard (1995) 
found the heritability of 'lifetime profit' to 
be 0.13 to 0.19. 

Multi-trait models use estimates of the 
(co)variance matricies in place of the true 
parameters. Consequently the resulting 
EBVs are less accurate than expected and 
this error increases sharply with the 
number of traits. One example of this 
problem occurs when many type traits are 
used to calculate EBVs for longevity. The 
estimation errors in the genetic covariance 
matrix make the EBVs for longevity 
appear much more accurate than they 
actually are (Visscher, 1994; Goddard and 
Thompson, 1998). This problem cannot be 
overcome by examining the estimated 
covariance matrix and selecting the most 
informative traits to include in the EBV 
calculations. Methods of minimising these 
problems through bending and shrinking 
have been suggested, but more research to 
find the best solution is needed. One 
useful approach is to re-estimate selected 
parameters or the accuracy of a proposed 
index in a completely independent data 
set. 

An obvious source of inaccuracy in 
EBVs is bias in the data, such as that 
caused by preferential treatment of some 
cows in a herd. The decrease in mean 
EBV of bulls from parent average to first 
crop daughters to second crop daughters is 
evidence of bias in the EBVs at least. 
Genetic evaluation systems already 
include features designed to minimise the 
effects of this bias. For instance, the 
inclusion of herd x sire interactions is 
mainly to limit the damage done by a 
group of half-sisters in one herd. The main 
advantage of including additional genetic 
effects in the model, such as cytoplasmic 
inheritance or dominance deviations, may 
be to reduce bias in EBVs due to 
preferential treatment of groups of related 
cows. If this is our aim should not we 
address it directly rather than as a by-
product of other models? How much bias 
is in the data, can we detect it and how do 
we minimise its effect? At least one AI 
stud believes the bias is so great that they 
do not use the yield of a cow or her female 
ancestors when selecting bull dams. 
Conversely, the small variance 
components estimated for non-additive 
effects argue that preferential treatment of 
related cows is not common. 

 
 

7. Individual Genes 
 
Typing individual genes, using DNA 

technology, provides a new source of data 
to increase the accuracy of selection and 
to increase our understanding of dairy 
traits. Three classes of genes can be 
recognised: 
• genes mapped using linkage to random 

markers,  
• identified genes, 
• genes which are neither mapped nor 

identified. 
Several genes affecting milk yield and 
composition have been mapped (Georges 
et al., 1995). Their gene substitution 
effects are in the range half to one 



 

standard deviation. These effects are likely 
to be overestimates because they are the 
largest of many estimated. Nevertheless it 
is surprising that such large genes are 
segregating for traits which have long 
been subject to selection. 

None of the genes that have been 
mapped in the genome screens have so far 
been identified but that is an obvious 
target for current research. The main 
genes known to affect milk production are 
the milk protein genes. The discrepancies 
among published estimates of the effects 
of these genes on yield of milk, fat and 
protein should warn us about the 
difficulties of estimating the effects of 
new genes or mapped chromosome 
segments. The clearest result is that 
polymorphism at κ-casein and β-
lactoglobulin affect the synthesis of their 
own protein and hence its concentration as 
a proportion of all protein (Van 
Eenennaam and Medrano, 1991; Ehrmann 
et al., 1997). These effects are probably 
due to polymorphisms in the control 
regions of the genes rather than those in 
the coding region which are the basis for 
typing the alleles. This implies that there 
is linkage disequilibrium between the 
alleles in the coding and control regions, 
which is not unexpected given the tight 
linkage between them. These genes affect 
the manufacturing properties of the milk. 
It has recently been claimed that some 
alleles of β-casein trigger diabetes in 
children that are predisposed to it, but the 
evidence for this is not yet convincing. 

The milk protein genes have not been 
used for selection, in part because their 
effects are not large enough or reliable 
enough. AI studs with the relevant 
information are now considering the use 
of the genes mapped by markers. This 
information is difficult to use because the 
linkage phase between the QTL and the 
markers can be different in every family. 
Fernando and Grossman (1989) and 
Goddard (1991) showed how to 
incorporate marker data into BLUP 

calculation of EBVs. These models 
assume an infinite number of QTL alleles 
and cannot cope with dominance. An 
alternative approach uses a combination of 
segregation analysis and mixed models 
and can utilise dominance at the QTL 
(Meuwissen and Goddard, 1997b). 
Henshall and Goddard (1998) found that 
this new approach could generate faster 
genetic gain from marker assisted 
selection when dominance existed at the 
QTL, but in some simulations performed 
worse than the BLUP based method. 

In the absence of marker data, 
segregation analysis can only demonstrate 
the existence of major genes with very 
large effects. I am not aware of any for 
milk production. However models based 
on a finite number of genes can be used to 
analyse quantitative traits in place of the 
usual infinitesimal model. The first finite 
loci or gene based models assumed that all 
genes had the same effect to make them 
computationally tractable (Stricker and 
Fernando, 1998), but MCMC techniques 
allow much more flexible models to be 
used (Goddard, 1998b). The advantage of 
these models is that they can fit non-
additive effects such as dominance (Pong-
Wong et al., 1998) and a combination of 
individual genes and polygenes more 
easily than infinitesimal models (Goddard, 
1998b). 

 
 

8. Design of breeding programs 
 
Since Nicholas and Smith (1983) there 

have been many studies claiming that a 
MOET nucleus herd would make faster 
genetic gain that progeny testing 
programs, yet we are still using progeny 
testing!? There are several reasons for 
this: 
• the gains from MOET were initially 

overestimated,  
• they did not assume the large number 

of bulls now progeny tested world 
wide, 
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• the market for semen expects reliable 
EBVs, 

• some traits are less heritable than milk 
yield, 

• the migration path from progeny 
testing to nucleus herd is not easy.  

Let me explain the last point. To move to 
a full nucleus design, you have to use 
young bulls as sires of sons. Yearling bulls 
are about 4 years of progress ahead of the 
proven bulls but lack the selection 
differential due to progeny testing. This 
selection differential is about 1.7 genetic 
standard deviations, whereas four years 
gain is about 0.8. For a yearling bull to 
have as high an EBV as the best proven 
bulls you must be able to select among 
young bulls based on pedigree with an 
accuracy of about 0.4. If yearling bulls 
and heifers are always used for mating 
then this accuracy is possible and the 
nucleus scheme is at least competitive 
with progeny testing. But when the sires 
and dams of bulls have been selected in a 
progeny test design, little further selection 
accuracy is possible among the young 
bulls. Consequently the best bull is a 
proven bull and the design does not 
change to a full nucleus design. A gradual 
change may occur if even a small number 
of young bulls are selected as sires of 
sons, but evaluating young bulls on a ‘sire 
pathway index’, instead of an animal 
model EBV, makes this less likely to 
occur. 

However, current breeding programs 
do use MOET. They are, in fact, hybrid 
designs in which a dispersed nucleus 
breeds bulls which are progeny tested in 
the wider population (Meuwissen, 1991). 
The nucleus is defined by the use of bulls 
that are bull sires. MOET is used in these 
matings and the heifer offspring are the 
replacements for the nucleus. In this way 
MOET is used on the cows to breed cows 
pathway but only within the nucleus herd. 

Selection based on DNA tests could 
provide the accuracy of selection among 
young bulls that would result in the best 

surpassing the best proven bulls. This 
would tip the program  over into a full 
nucleus design and potentially raise the 
rate of genetic gain. However, before this 
can happen we need to map more QTL 
with significant effects on important traits 
and we need a structure for collecting data 
that produces marker assisted EBVs on the 
young bulls. At the moment, by the time 
linkage phase is established in a family, 
that family is no longer supplying young 
bulls. Alternatively, we must identify the 
QTL and test for them directly or at least 
find markers in strong linkage 
disequilibrium with the QTL.  

Even if marker assisted selection is 
successful, I would advocate that progeny 
testing be maintained, despite the fact that 
some young bulls would have the highest 
EBVs, because: 
• without progeny testing dairy farmers 

will have no way to compare bulls 
from different companies, 

• we will not have markers for all 
important traits, 

• progeny testing may be needed to 
correct errors in estimates of 
individual gene effects and to find new 
genes, 

• the  variabilty of outcome (i.e., risk) is 
high with a nucleus design relying on 
marker assisted selection (Meuwissen 
and Sonesson, 1998). 

If progeny testing is to continue in this 
new design, it must not be too expensive. 
We must keep bulls less expensively, and 
not pay dairy farmers to use young bulls. 
Performance recording would have to be 
paid for by the dairy farmers to aid their 
own management, although AI studs 
might pay for some selective recording. 
 
 
9. Conclusions 
 
1. The economic weight of FCE is higher 

than that of milk yield if feed costs are 
greater than animal costs. 
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2. Among other traits, mastitis and 
fertility are most important with 
economic weights up to half that of 
milk yield. However, these estimates 
may be inflated by double counting the 
effects on milk production. 

3. The choice of traits to record is often 
not supported by economic analysis. 

4. A simple model of FCE suggest that it 
is less well correlated with milk yield 
than previously reported, but that it 
may be more highly correlated with 
milk yield in an environment with a 
lower level of nutrition. Conversely, 
milk yield in a high nutrition 
environment may be poorly correlated 
with FCE in a low nutrition 
environment. These predictions, if 
confirmed, have important 
implications for international dairy 
breeding programs. 

5. Non-additive variance in milk yield is 
small. 

6. Genetic evaluation systems are already 
using test-day data and international 
data in multi-trait analyses. The 
number of traits included will 
probably grow but strategies are 
needed to control the loss of accuracy 
from using estimated covariance 
matrices in place of  the true ones. 

7. Non-linear models could be developed 
to account for non-linear relationships 
between traits, possibly implemented 
by EM algorithms or MCMC methods. 

8. The detection of bias in performance 
records and minimization of its effect 
on EBVs should be attacked directly. 

9. Individual genes affecting milk 
production are being mapped and 
hopefully identified. Methods will be 
necessary to include information on 
these genes in genetic evaluation 
systems. Current options include linear 
models, segregation analyses and 
gene-based models. 

10. Dairy breeding programs are a hybrid 
with a dispersed nucleus producing 
bulls which are progeny tested in the 
wider population. They will change to 
a full nucleus design when  selection 
on marker loci  gives an accuracy of 
selection among young bulls of higher 
than 0.4. 

11. A large progeny test in which traits in 
the breeding objective are directly 
recorded is a very robust selection 
method. Complex genetic evaluation 
systems with many traits and which 
rely on indirect selection and DNA 
markers to select young bulls are not 
so robust. Strategies to increase 
robustness or decrease risk in future 
dairy improvement programs are 
needed. 
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