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Introduction 
 
Estimating (co)variance parameters of a 
random regression model for test day yields of 
dairy cattle has been proven to be a 
challenging task due to the complexity of 
(co)variance structure of the test day yields. 
Two common approaches have been practised 
so far for the estimation of parameters: direct 
random regression model approach and 
indirect covariance functions (CF) approach. 
Animal genetic and permanent environmental 
effects are modelled in the direct approach 
with a lactation curve function and 
(co)variance components of random regression 
coefficients (RRC) for both effects are 
estimated jointly with other effects in the 
model. By contrast, in the indirect CF 
approach (co)variance parameters of genetic 
and residual effects are estimated using a 
multivariate model that treats test day yields of 
different lactation stages as genetically distinct 
traits, and then CF are fitted to the estimated 
(co)variance matrices from the first step to 
obtain (co)variances of RRC for additive 
genetic as well as permanent environmental 
effects. The objective of this study was to 
estimate (co)variance components of RRC of a 
random regression test day model for first 
three lactation test day yields via the CF 
approach.  
 
 
Material and Methods 
 
A multi-trait sire model was applied to the first 
three lactation test day yields for each of the 
three biological traits, milk, fat and protein 
yields, to estimate (co)variance components 
via the CF approach: 
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where 

yijklmn  is test day yield at lactation stage m of 

lactation l of cow n, 
µlm  is general mean for lactation stage m of 

lactation l, 
HTDil  is the i-th herd-test-date effect of 

lactation l, 
vpd  is the p-th parameter of Ali-Schaeffer 

function for days in milk (DIM) d, 
βjlp  is the p-th fixed regression coefficient 

for lactation l specific to subclass j, 
sklm  is additive genetic effect of sire k for 

lactation stage m of lactation l, and 
eijklmn  is the residual effect 

 
 For each of the first three lactations six 
lactation stages are defined based on DIM: 5-
50, 51-105, 106-160, 161-215, 216-259, 260-
305. Test day yields from different lactation 
stages are treated as genetically distinct traits 
in model 1.  
 

Raw data from February 2000 German 
Holstein genetic evaluation were selected 
based on the following criteria: HTD classes 
with at least five records, supervised monthly 
testing with two times milkings only, and 
calving years for first three lactations no earlier 
than 1993, 1994 and 1995 respectively. In case 
of duplicate test day records within a lactation 
stage, one record was randomly chosen. Only 
completed lactations were kept for estimating 
parameters. Sires with fewer than 30 daughters 
were discarded to achieve a better data 
structure. The original pedigree file from the 
routine genetic evaluation was used to extract 
pedigree information for all ancestors of cow 
sires. Table 1 shows the structures of the final 
test day data set and sire pedigree file used in 
parameter estimation. For each of the three 
lactations, 420 fixed lactation curves were 
fitted to data based on three calving seasons, 
five classes of age at calving, four breed-region 
classes and seven calving interval classes. 



 
Table 1. Description of the final data set and sire pedigree file for parameter estimation 
Factors Cows Sires 

of cow 
Test day 
records in 
total 

HTD of all 
lactations 

Fixed lactation 
curves in total 

Animals in 
sire pedigree 
file 

Size 1,590,592 5,042 15,605,538 2,986,200 1,260 9,956 
 
 
An iterative approach to estimating 
(co)variance components  
Considering the fact that there are more 
equations of the fixed effects than random sire 
effects in model 1, a so-called iterative two-
step approach (Gengler et al. 1999) was 
implemented in order to estimate the 
parameters efficiently: 
 
Step 1. Estimating the fixed effects of HTD 
and lactation curves using ordinary least 
squares method with model 2: 
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where εijklmn  is residual effect and �sklm is sire 

estimated breeding value (EBV) from the 
previous round of iteration. For the first round 
of iteration sire EBVs from the routine 
evaluation with a fixed regression test day 
model (Reents et al., 1998) were used as 
starting values.  
 
Step 2. Estimating (co)variance components of 
sire effects via restricted maximum likelihood 
using test day records adjusted for the fixed 
effects above: 
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where ξijklmn is residual effect. Variance 

components were estimated via VCE 
(Neumaier and Groeneveld 1998), in which 
analytical gradients of likelihood function are 
explicitly calculated instead of the 
approximation by finite differences and 
maximisation of the likelihood is done by 
quasi-Newton algorithm based on exact first 
derivatives. Mixed model equations are set up 

in memory using sparse matrix storage 
technique and solving the equations is done on 
the basis of Cholesky factorisation. Due to the 
large number of components to be estimated 
for three lactations, the estimation task was 
partitioned into seven 9-trait analyses to obtain 
parameter estimates of all 18 traits. The two 
steps are repeated until all (co)variance 
components and sire EBVs are converged. 
After the iteration process has been completed, 
simple averages of the (co)variance estimates 
from the seven parallel runs were calculated 
for later derivation of (co)variances of RRC. 
Sampling variances of the (co)variance 
component estimates were obtained from VCE 
as well.  
 
Deriving (co)variances of RRC using 
Legendre polynomials of order three:  A total 
of eight mathematical functions: Wilmink 
function, Ali-Schaeffer function, mixed log 
function, Legendre polynomials of order 2 to 
5, and a quadratic function of DIM, were 
selected to derive and compare (co)variances 
of RRC using the estimated (co)variance 
matrices (Liu et al., unpublished data). Based 
on the comparison results, the third-order 
normalised orthogonal Legendre polynomial 
was chosen to derive (co)variances of RRC for 
first three lactation test day yields:  
 

a a z a z1 2 3
23
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where a’s represent RRC, 
z x= − − − −[ ( min) (max min)] / (max min)2
with min and max being minimum and 
maximum DIM values, and x denotes DIM.  
 

Additive genetic ( Gs ) and residual ( Rs ) 
(co)variance matrices of the sire model 1 were 
converted to an animal model basis: G G=4 s , 

R R Gs s= −3 . There have been so far two 
methods, generalised least square inverse 
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(Tijani et al., 1999) and expectation-
maximisation algorithm (Mäntysaari, 1999), 
developed in animal breeding to derive 
(co)variances of RRC based on the estimated 
(co)variance matrices, G and R. Compared to 
Kirkpatrick et al.’s approach (1994), both 
methods ignore the fact that the (co)variance 
estimates are usually associated with different 
standard errors. For instance, the (co)variances 
of first lactation are more precisely estimated 
than those of later lactations as a result of more 
test day records in first lactation. In this study 
Kirkpatrick et al.’s approach as well as the 
generalised least squares inverse approach 
were modified to derive (co)variances of RRC 
for both additive genetic and permanent 
environmental effects.  

 
In the modified generalised least squares 

inverse approach, denoted as Tm, covariance 
matrix of additive genetic RRC, KG , is 
computed in the same way as in Tijani et al. 
(1999): 

 

K (Z'Z) Z'GZ (Z'Z)G
1 1= − −  [4] 

 
where Z is the incidence matrix for additive 
genetic RRC. An iterative procedure to 
separate time-dependent permanent 
environmental effects from time-independent 
error effects has been developed under the 
assumption that for a biological trait error 
effects are independently distributed 
as N ( , )0 E  with a diagonal block 

E Ij e j= σ ( )
2 for lactation j. Note that this 

iterative procedure is not restricted to the 
assumption of a constant error variance 
throughout the course of lactation and it can 
also model heterogeneous error variances 
(Jamrozik and Schaeffer, 1997), e.g. via a link 
function approach (Jaffrezic et al., 2000). Prior 
to the iteration, starting values are assigned to 
(co)variance matrix of permanent 
environmental RRC that must be positive 

definite ( KP
[ ]0 ) and (co)variance matrix of 

permanent environmental effects is computed 

with P   ZK Z'P
[0] [0]= . At iteration round i 

average permanent environmental variance 

σp j
i

( )
[ ]2  is obtained for each of the six lactation 

stages of lactation j and then the average is 
subtracted from corresponding diagonal 

element of R, σR
2 . Error variance σe j

i
( )
[ ]2  is set 

equal to the average of the differences (σR
2 -

σp j
i

( )
[ ]2 ) across all lactation stages of lactation j 

and error variance matrix is updated as 
E Ij

i
e j

i[ ]
( )
[ ]= σ 2 . (Co)variance matrices of 

permanent environmental effects and 
permanent environmental RRC for the next 

round are updated with P R E[ ] [ ]i i+ = −1  and 

K (Z'Z) Z'P Z (Z'Z)P
1 1[ ] [ ]i i+ − + −=1 1 . The 

above steps are repeated until K P  and E  are 
converged. This Tm approach appears to 
guarantee that the estimated matrices of RRC 
are positive definite. 
 

The extended weighted least squares 
method, denoted as Km, estimates 
(co)variances of additive genetic RRC in the 
same way as Kirkpatrick et al. (1994) proposed 
with the following weighted least squares 
equations: 

 
~ ( ' � ) � �c X V X X V g= − − −

s s s
1 1 1  [5] 

 
where ~c vector contains elements of 

KG above diagonal, �g vector contains 

elements of G above diagonal, V matrix has 
diagonal elements being sampling variances of 
all elements in �g , and Xs is determined by the 
Legendre polynomial function (Kirkpatrick et 
al. 1994). For separating permanent 
environmental (co)variances from the residual 
(co)variance R, the same iterative approach as 
in the method Tm is implemented, except that 
the (co)variances of RRC for permanent 
environmental effects are estimated using the 
weighted least squares method as for additive 
genetic effects in the method Km. Note that the 
method Km is based on the similar idea as 
Kirkpatrick et al.’s approach Extrapolating to 
the Diagonal.  
 
 
Results and Discussion 
 
Fortran 90 programs and Unix shell scripts 
were developed for estimating the parameters 
of the multiple trait sire model. The 
computation was conducted on a HP9000 
K460   computer  running   HP-UX  11   and  a  
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Pentium III PC running Linux. Four iterative 
steps were required to get both (co)variance 
estimates and sire EBVs converged, with mean 
relative differences between iteration steps 
being less than 1%. To derive (co)variances of 
RRC based on the (co)variance estimates of the 
sire model, Maple V programs were written for 
Microsoft Windows system. The whole 
estimation took considerable CPU and memory 
resources. For the derivation of (co)variance 
matrix of RRC for permanent environmental 

effects, K P , 25 iteration steps were needed to 
reach convergence using either method Tm or 
Km. Since both methods Tm and Km result in 
similar (co)variances of RRC, indicating the 
high accuracy of the (co)variance estimates of 
the sire model, the derived (co)variance 
matrices of RRC with the method Km were 
then chosen for subsequent analyses. 
 
Derived heritability values on daily basis: 
Figures 1 to 3 show daily heritability values, 
derived based on the (co)variances of RRC, of 
first three lactation test day milk, fat and 
protein yields, respectively. For test day milk 
yields, daily heritability ranges from 0.12 at 

DIM 5 for third lactation to 0.36 at DIM 180 
for first lactation. It is obvious that the 
beginning and end of lactation have lower 
heritability than the middle part. Both the level 
and the pattern of daily heritabilities are as 
normally expected. Low heritability values 
were not found here using the CF approach as 
in Mäntysaari (1999), Strabel and Misztal 
(1999), and Tijani et al. (1999). Later 
lactations have clearly lower heritabilties than 
the first one, and no evident difference in 
heritability was observed between second and 
third lactations. Among the three production 
traits, milk yield has the highest heritability.  
 
 Figure 4 shows the ratios of genetic 
standard deviations of two lactations for test 
day milk yields. The ratio of second or third 
lactation to first lactation is near one from 
early lactation stages up to DIM 200, and then 
it increases rapidly towards the end of 
lactation. By contrast, the ratio between second 
and third lactations stays fairly flat throughout 
the course of lactation. 

 
 

Figure 1. Heritability values of first three
lactation test day milk yields
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Figure 2. Heritability values of first three
lactation test day fat yields
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Derived genetic correlation structure: DIM 30 
at the beginning, DIM 150 in the middle, and 
DIM 250 at the end of lactation were chosen to 
represent the genetic correlation structure of 
test day yields and the results are shown in 
Figures 5 and 6. Genetic correlation between 
two ends of lactation, e.g. between DIM 30 
and 305 or between DIM 5 and 250, is about 
0.5 or 0.45 for first lactation milk yield, which 
agrees with other investigations (Mäntysaari, 
1999; Strabel and Misztal, 1999; Tijani et al., 
1999). Daily yields of second lactation are less 

correlated than daily yields of first lactation. 
Fat and protein yields show a similar genetic 
correlation structure as milk yields. The use of 
the biological lactation curves, Wilmink, Ali-
Schaeffer and mixed log functions, to derive 
(co)variances of RRC, resulted in negative 
genetic correlations between early and late 
lactation stages, whereas the general purpose 
functions, Legendre polynomials and quadratic 
function of DIM, can reproduce the original 
structure of the genetic (co)variance matrix G 
(Liu et al., unpublished data).  



Figure 3. Heritability values of first three
lactation test day protein yields
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Figure 4. Ratio of genetic standard deviations
between two of the first three lactations for
test day milk yields
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Figure 7 presents genetic correlations 
between the same DIM of two lactations for 
test day milk yield. Between first and second 
lactations the genetic correlation ranges from 
0.73 at DIM 305 to 0.86 at DIM 155. A very 
similar genetic correlation curve was observed 
between first and third lactations. It can be 
seen that the middle stages of lactation are 
more highly correlated between lactations than 
the two ends of lactation. The genetic 

correlation of the same DIM between second 
and third lactation is quite high, above 0.95, 
which indicates that the second and third 
lactations are genetically very similar. 
Correlation structure for permanent 
environmental effects was also derived in the 
same way. In general, permanent 
environmental effects at different DIM are less 
correlated than additive genetic effects.

 
 

Figure 5. Genetic correlations between a
given DIM and the remaining part of lactation
for first lactation test day milk yields
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Figure 6. Genetic correlations between a
given DIM and the remaining part of lactation
for second lactation test day milk yields
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Derived phenotypic correlation structure:  
Phenotypic correlation between any two DIM 
of the same lactation or of two different 
lactations was calculated using the 
(co)variance matrices of RRC for additive 

genetic ( K G ) and permanent environmental 

( K P ) effects plus error variances ( E ). 
Discrepancies between the derived and 
observed phenotypic correlation structures may 
indicate erroneous (co)variance estimates of 
RRC. Figure 8 displays the derived phenotypic 
correlations between DIM 30, 150 or 250 and 
the remaining part of lactation for first 
lactation test day milk yield. It should be noted 

that the phenotypic correlation at the selected 
DIM 30, 150 or 250 corresponds to the 
repeatability value at the same DIM. The 
estimated phenotypic correlations between the 
two ends of lactation, e.g. 0.27 between DIM 
30 and 305 or 0.24 between DIM 5 and 250, 
agree with the observed phenotypic 
correlation.  
 
 The heritability estimates are consistent 
with those using a fixed regression test day 
model (Reents et al., 1995) and also with those 
using a random regression test day model 
(White et al., 1999). Compared to first 
lactation, second and third lactations have 
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much lower heritabilities for all three 
production traits, that was also found in a 
random regression model (Strabel and Mistzal, 
1999) and a 305-day lactation model (Visscher 
and Thompson, 1992). By contrast, a reverse 
trend in heritability values was found in 
Jamrozik et al. (1997). Genetic correlation is, 
on average, 0.81 between first and second 
lactations for milk yield, and a similar estimate 
was obtained by Strabel and Misztal (1999) as 
well. However, lower genetic correlation was 
reported in Canadian test day model (Interbull 
Bulletin, No 24).  
 
 Compared to the Legendre polynomials and 
quadratic function of DIM, the biological 
lactation curve functions, Wilmink, Ali-
Schaeffer and mixed log functions, show an 

inability to model the association between 
yields in early and late lactation stages, 
resulting in negative genetic correlation 
between two ends of lactation. This problem 
was reported by Brotherstone et al. (1999) too. 
In addition to the negative genetic correlation, 
additive genetic RRC derived using the three 
biological lactation curves are more highly 
correlated than those using the general purpose 
functions, with the highest correlations 
obtained from Ali-Schaeffer function. This 
means that more rounds of iteration would be 
needed for test day model genetic evaluation 
when the biological lactation curve functions 
were used to describe the (co)variance 
structure of test day yields than the general 
purpose lactation curve functions. 

 
 

Figure 7. Genetic correlations between the
same DIM of two of first three lactations for
test day milk yields

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

5 30 55 80 105 130 155 180 205 230 255 280 305

Days in milk

G
en

et
ic

 c
or

re
la

ti
on

1. and 2. lactation

1. and 3. lactation

2. and 3. lactation

Figure 8. Phenotypic correlation between a
given DIM and the remaining part of lactation
for first lactation test day milk yields
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Summary 
 
A multiple trait sire model was applied to a 
very large test day data set for estimating 
(co)variance components of different lactation 
stages using an iterative two-step procedure. A 
third-order Legendre polynomial was 
subsequently fitted to the estimated 
(co)variances to derive (co)variances of RRC 
for both additive genetic and permanent 
environment effects. Tijani et al’s generalised 
least square inverse approach and Kirkpatrick 
et al.’s weighted least squares approach have 
been modified to separate (co)variances of 
permanent environmental effects from error 
effects. Heritability estimates on daily basis are 
not as low as in some studies where the CF 
approach was also implemented, and the 
heritability estimates are consistent with 
several  studies  using  both  fixed  and random  
 

regression test day models. Genetic 
correlations between any two DIM of the same 
lactation lie within a biologically acceptable 
range. Also the genetic correlations between 
the same DIM of two lactations are close to 
estimates in some previous investigations. The 
derived phenotypic correlations correspond 
well with observed ones. It was found in this 
study that the widely used biological lactation 
curve functions, Wilmink, Ali-Schaeffer and 
mixed log functions, can not model the 
(co)variance structure of test day yields 
correctly, whereas the general purpose 
functions, Legendre polynomials and quadratic 
function of DIM, are able to reproduce the 
original structure of (co)variances of test day 
yields. The presented estimation procedure has 
been shown to be feasible to analyse very large 
test day data set and can give highly accurate 
(co)variance components.  
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