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Abstract 

 

Genomic predictions (GEBVs) are often validated by predicting later deregressed conventional 

evaluations or daughter yield deviations (dEBVs or DYDs) from earlier GEBVs. Predicting later 

GEBVs from earlier GEBVs could be easier for the public to understand and to verify than standard 

validation and could be applied to single-step models where the GEBVs account for genomic 

preselection but the later dEBVs do not. Genomic validations could also predict deregressed GEBVs 

(dGEBVs) that include only the new information from the gain in reliability. Changes in genetic trend 

or rank can also be tested as in validation of conventional EBVs by including extra regressions such as 

on birth year, parent average (PA), or expected future inbreeding (EFI) from the earlier evaluation. The 

new validation can compute model squared correlations (R2) that ideally should be high, indicating 

stable evaluations, and predict GEBV difference (GEBVlater – GEBVearlier) to give residual R2 that ideally 

should be low, indicating that changes in evaluations are not a function of other known factors or the 

earlier GEBV. The new validation methods were applied to U.S. GEBVs for 8 main traits. For most, the 

regressions on birth year indicated that genetic trend decreased as daughters were added, the regressions 

on PA were negative, indicating too much blending of PA with direct genomic value, the regressions on 

EFI were not significant, and regressions on earlier GEBV were >1.0 when the extra regressions were 

included. The model R2 ranged from 48 to 79%, and the residual R2 ranged from 3 to 18%. These new, 

more flexible methods give a more complete picture of GEBV properties and how models may be 

improved to reduce bias and improve prediction accuracy. 
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Introduction 

 

Countries participating in Interbull evaluations 

have validated their genetic and genomic 

models for many years. Trend tests 1, 2, and 3 

(Boichard et al., 1995) can detect biases in 

estimates of genetic trend but are applied only 

to conventional estimated breeding values 

(EBVs) of proven bulls. Test 4 checks for 

stability of EBV or Mendelian sampling 

variance. 

Genomic validation (Mäntysaari et al., 

2010) can detect biases in the slope of response 

to selection but is only applied to test how well 

genomic EBVs (GEBVs) of young bulls match 

their later daughter yield deviations (DYDs). A 

new, combined validation could test both 

genetic trend and the slope of EBV or GEBV 

response for both young and old bulls in multi-

step or single-step evaluations by including 

additional regressions, such as for birth year, 

when predicting final GEBV or deregressed 

GEBV (dGEBV) from earlier GEBV.  

The standard Interbull genomic validation 

does not test birth year trend, proper blending of 

genomic with pedigree data, effects of 

inbreeding or other issues. Because later DYDs 

might be biased by genomic pre-selection, 

future options for genomic validation would be 

to use later GEBVs (Legarra and Reverter, 

2018) or dGEBVs as the dependent variable 

instead of later DYDs or deregressed EBVs 
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(dEBVs). Such methods could give better 

results for testing single-step evaluations (e.g., 

ssGBLUP). 

 

Materials and Methods 

 

Prediction of later data should account for 

selection in earlier data. Conventional DYD 

excludes genomic information and could be 

biased. The later GEBV contains information 

from the earlier GEBV but is not independent. 

A simple dEBV is often created by separating 

parent average (PA) from progeny information 

to obtain a dependent variable  

        dEBV = PA + (EBV – PA)/RELdiff,  

where RELdiff is reliability (REL) calculated 

from the difference of total minus PA effective 

daughter contributions (EDCs). Similarly, a 

dGEBV can be created from the difference 

between earlier and later GEBVs: 

dGEBV = GEBVearlier + 

  (GEBVlater – GEBVearlier)/RELdiff. 

The RELs of GEBVlater and GEBVearlier are 

both converted to EDCs, and then the difference 

of EDClater – EDCearlier is converted back to REL 

to obtain RELdiff. The dGEBVs are weighted in 

the validation by this RELdiff computed from the 

difference in RELs. An animal’s dGEBV gets 

no weight in the regression if the later 

evaluation had no gain in REL. Using dGEBV 

as the dependent variable helps to correctly 

estimate any biases. Those are often 

underestimated using GEBVlater because of the 

part-whole relationship of GEBVearlier with 

GEBVlater and REL < 1.0 (Macedo et al., 2020). 

Bulls with less accurate dGEBVs have more 

error variance and get less weight in the 

validation, whereas a correct weighting strategy 

is not clear if GEBVlater was used as the 

dependent variable.  

Gains in REL of dGEBV come from added 

parent information and higher RELPA, genomic 

information from larger reference populations, 

own records for cows, daughter records as 

summarized in DYDs, and granddaughter 

records that might provide more information 

than daughters but are not included in DYDs. 

The validation tests the sum of all changes in 

GEBVs weighted by RELdiff obtained from all 

sources as a function of REL. Including other 

regressions such as on bull age can test if the 

genetic trend changes when the young bulls 

later add daughter records. Including 

regressions such as on PA or inbreeding can test 

if the blending of genomic and pedigree 

information is optimal or if bulls highly related 

to the population change more than others. 

Regressions were computed using official 

GEBVs for 8 traits of 3,504 U.S. Holstein bulls 

with daughters in >10 herds in December 2020 

but none in December 2016. The U.S. 

evaluations had a base change during that time 

as well as changes in the multi-trait estimation 

of productive life, fertility evaluation models, 

and the net merit formula. The base of the 

earlier GEBVs was adjusted to the later base 

using recent bulls that had little change in REL 

during the 4 years. The base adjustment for each 

trait used bulls born since 2005 that had ≥500 

daughters and an REL of 97% in 2016. 

Numbers of bulls to change the base ranged 

from 845 for yield traits to only 30 for heifer 

conception rate. More flexible edits are needed 

for smaller breeds or populations. 

U.S. evaluations adjust for inbreeding 

because it affects many traits (VanRaden, 

2005). Thus, GEBVs may change for bulls with 

an average relationship to the breed (EFI) that 

increases during the 4 years between earlier and 

later data because they, their sire, or their 

grandsires may contribute much DNA to the 

breed. While predicting 2020 GEBV from 2016 

GEBV, a regression was also included on the 

bull’s 2016 EFI to measure changes in GEBV 

associated with inbreeding. In other countries 

that have not adjusted for inbreeding, 

nonadditive genetic effects of inbreeding and 

changing populations of mates could also 

explain changes in EBVs or GEBVs across time 

and regressions that differ from 1.0. 
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To allow simpler comparisons of intercepts 

(b0) and regressions (b1) across traits and 

factors, t-test values are presented instead of 

standard errors or probabilities of a larger 

t-value. The unitless t-values preserve the 

direction and magnitude of the regressions but 

are approximate because changes for family 

members may be correlated. Values less than ±2 

are statistically insignificant; values larger than 

±2 are significant (P < 0.05), but much higher 

values might be required for biological 

significance because many bulls were included. 

Also, the t-test values for b1 check if the 

regression on previous GEBV is statistically 

different from 1.0 rather than different from 0.  

Squared correlations (R2) are presented in 2 

ways. Use of dGEBV as the dependent variable 

gives model R2, whereas use of the dGEBV 

difference (dGEBVlater – GEBVearlier) gives 

residual R2. Ideally the model R2 should be 

high, indicating stable evaluations, but the 

residual R2 should be low, indicating that 

changes in evaluations are not a function of 

other known factors or the earlier GEBV. Thus, 

GEBV changes should not be predictable, and 

earlier GEBVs should be adjusted to the later 

genetic base to make comparisons meaningful.  

 

Results & Discussion 

 

Simple regressions that used different 

dependent variables gave similar b0 and b1 but 

much different R2 because of the information 

included (Table 1). The regression b1 was near 

1.0 without extra regressions as in standard 

genomic validation. The DYD gave lowest 

model R2 by predicting only new daughter 

records, whereas dGEBV had higher R2 by 

including information from all new phenotypes 

and genotypes; GEBV had highest R2 by also 

predicting earlier information.  

The 3 extra regressions were each significant 

whether fit separately or together (Table 2). 

Later dGEBV declined for the youngest bulls, 

those with highest PA, and those with higher 

EFI. The b1 became much greater than 1.0 when 

extra regressions were added. As an example, 

the b1 for milk yield with only birth-year 

regression added increased to 1.08 (0.08 higher 

than the expected 1.0) and had a standard error 

of only 0.03 (not shown), giving a highly 

significant t-value of 7.1 for b1 difference from 

1.0. Without the extra regressions, the 

regression of later dGEBV on earlier GEBV for 

milk yield was 0.99 with a model R2 of 69%. 

With all 3 terms added, the model R2 increased 

to 77% from 69% in the simple validation.  

Regressions for 7 other traits from the 

validation model with 3 extra regressions are 

presented in Table 3. The b1 are >1.0 for most 

traits, and corresponding PA regressions are 

negative because U.S. GEBVs have put extra 

weight on traditional PA or EBV to reduce 

overestimation in the youngest birth years. The 

b0 are near 0 for yield traits but larger for some 

other traits because for example the fertility 

models were revised during those 4 years. The 

birth year regressions were negative for yield 

traits, indicating that genetic trend estimates 

declined with additional later data, but were 

small for most other traits. Those regressions 

for yield may imply that trend is too high in 

youngest bulls or is too low in progeny-tested 

bulls because of preselection bias. Similar 

regressions and R2 gains were obtained in 

Canada when birth year and PA regressions 

were included for yield. 

Regressions on EFI were all negative, 

indicating that GEBVs of the most popular bulls 

decreased more than expected. In Table 3,  

model R2 was higher for traits with higher 

heritability such as yield traits, and residual R2 

was smaller for less heritable traits. The residual 

Table 1. – Comparison of dependent variables used 

for validating genomic predictions of milk yield  

Dependent 

variable b1 

t-test  R2 (%)  

b1
a  b0  Residual Model 

DYD 1.03   1.9 −14.4  0.10 59 

dGEBV 0.99 −0.9 −16.5  0.02 69 

GEBV 0.99 −0.8 −16.3  0.02 72 

aTest of b1 difference from expected 1.0. 
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R2 sums the variance for the 3 regressions: birth 

year, EFI, and b1 difference from 1.0. The 

prediction correlations were very good for all 

traits but lower for heifer conception rate 

because of a smaller reference population and 

lower heritability.  

Previous efforts to pass Interbull validation 

may have restricted the GEBVs of young bulls 

too far for some traits. The previous blending of 

the direct genomic value with PA had reduced  

b0 bias but also reduced R2. As a result, rankings 

may be less accurate than possible for young 

bull predictions, and breeders may have shifted 

back to using progeny-tested bulls more than 

deserved if GEBVs of top young bulls are 

underestimated.  

Based on these results, the weight on 

traditional EBVs for yield traits was reduced in 

the U.S. selection index blending from the 

previous 15% down to 10% for several traits of 

Holsteins in August 2021. This adjustment does 

not affect the marker effects but is an option in 

a later program that does the blending. 

Reducing this weight has very little effect on 

progeny-tested bulls because of small 

differences between their traditional and 

genomic EBVs but gives more weight to the 

direct genomic values of young animals.  

 

Conclusions 

 

Validation could use published GEBV or 

dGEBV and ssGBLUP. Predictions of GEBV 

are simple to explain but not independent. Later 

dGEBVs are independent of earlier GEBVs. 

Extra regressions can show which bull groups 

change and why. Trend differences may reflect 

inflation of GEBVs for the youngest bulls or 

preselection bias in GEBVs for progeny-tested 

bulls. Models may need revision to balance 

accuracy and bias. 
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