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Introduction 
 
In multiple across country evaluations 
(MACE) of dairy bulls, (Shaeffer & Zhang, 
1993), different national evaluations are re-
garded as different traits. This has the advan-
tage of taking differences in trait definitions 
and national evaluation systems into account 
as well as possible genotype by environment 
interactions due to e.g. climate and/or differ-
ences in productions-systems and -
circumstances. The disadvantage is that a 
genetic (co)-variance matrix of dimension 
corresponding to the number of traits included 
is required. The expression of similar traits in 
different countries tends to be highly corre-
lated. As the number of countries increases, 
the corresponding covariance matrix will tend 
to have one or more non-positive eigenvalues, 
indicating that it is not of full rank. Previous 
methods for the estimation of (co)-variance 
matrices for MACE have been REML based 
on the EM algorithm of Dempster et al. 
(1977). This algorithm is generally known to 
have very slow convergence properties, and 
furthermore it is difficult to estimate standard 
errors of the estimates obtained with the EM-
algorithm. The multivariate AI-REML algo-
rithm of Jensen et al. (1997) generally has 
very good convergence properties, and in 
most cases, it can provide standard errors of 
resulting estimates. 
 

In many cases, it is desired to include more 
than one trait per country. This may; for ex-
ample, be the case when analysing somatic 
cell count and clinical mastitis where all coun-
tries have somatic cell count evaluations but 
only a small subset of countries has evalua-
tions on clinical mastitis. This introduces re-
sidual co-variances between traits that are 
recorded in the same country since they typi-
cal are recorded on the same set of animals. 
Current methods for estimation of (co)-
variance matrices for MACE have assumed 
zero residual co-variances. In the algorithm of 

Jensen et al. (1997), a complete specification 
of existence or non-existence of residual co-
variances is possible. 
 

Current methods generally assume that the 
ratio between sire and residual variances 
within countries are known, and tend to per-
form best if only a well-connected subset of 
the data is analysed (Sigurdsson et al. 1996, 
Klei & Weigel, 1998). In analysing all data 
from all bulls evaluated in each country, it 
should be possible to estimate sire variances 
for each country at the same time as estimat-
ing sire co-variances and existing residual co-
variances. In the present approach sire and 
residual variances in each country is always 
estimated and it is therefore conjectured that 
more efficient and unbiased estimated will be 
obtained by including data from all bulls 
evaluated. 
 

The purpose of this paper is to present an 
extension of the algorithm of Jensen et al. 
(1997) for use in the estimation of (co)-
variances in across country models. This in-
cludes: 

 
• Development of an AI-REML algorithm 

that handles records with different resid-
ual variance, due to different number of 
daughters per sire in the analysis. 

• Modify the algorithm in order to estimate 
(co)-variance matrices of reduced rank. 

• Modify the across country model to ac-
cept residual co-variances among traits if 
more than one trait per country is included 
in the analysis. 

 
 
Methods 
 
Model 
The MACE model (Schaeffer & Zhang, 
1993): 

y = Cc + ZQg + Zs + e 
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where y is a vector of de-regressed proofs, c is 
a vector of fixed country effects, g is a vector 
of fixed phantom group effects, s is a vector 
of random bull effects, and e is a vector of 
random residuals. C, Z, and Q are design 
matrices relating de-regressed proofs to coun-
tries and bulls, and relating bulls to phantom 
groups respectively. 
 

Following the same ideas as Klei & 
Weigel, (1998) where unknown parents were 
assigned to phantom parent groups on a 
within country basis, the MACE model be-
comes: 

y = ZQf + Zs + e 
 
with the following distributional properties: 

 
where f is a vector of fixed phantom group + 
country effects, G is the (co)-variance matrix 
among elements in s, and R is the residual 
(co)-variance matrix 
 

Since the actual daughter records are usu-
ally not known at the international level, the 
residual co-variance matrix is assumed to be 
block diagonal with blocks for each bull of 
same size as the number of countries plus 
traits where the bulls have evaluations. For 
example, if bull k has records from two coun-
tries. Trait one is evaluated in both countries 
but trait two is only evaluated in country one, 
then the corresponding block in the residual 
(co)-variance matrix, R, for bull k will have 
the following form: 
 
 
 
 
 
 
where the first subscript refers to country and 
the last two to traits within country respec-
tively. The elements rc.i,j are 
σc.i,j/min(nC.i,nC.j), where σc.i,j is the residual 
co-variance between trait i and j in country c 
and nC.i is the effective number daughters for i 
trait in country c. This assumes that the trait 
with the smallest number of records is meas-
ured on a subset of the animals recorded for 
the other trait. 

Algorithm 
The algorithm used is an extension of the 
multivariate algorithm presented by Jensen et 
al. (1997). This involves computing first and 
second derivatives of the likelihood function 
and estimating the (co)-variance matrices in a 
Newton-Raphson like algorithm. Use of 
sparse matrix methodology is necessary for 
efficient implementation of such a procedure 
(Misztal & Perez-Enciso, 1993). Algorithms 
based on second differentials are not guaran-
teed to stay within the parameter space and 
therefore the algorithm gradually can switch 
to an EM-algorithm in order to guarantee that 
the likelihood function increases in each itera-
tion. 
 

The above-mentioned methods were ex-
tended to include models for records with 
heterogeneous residual variance (different 
number of daughters per bull). In each itera-
tion the resulting (co)-variance matrices is 
checked to be positive definite. If one or more 
non-positive eigenvalues are detected the cor-
responding covariance matrix was replaced 
with: G0 = H∆H´, where ∆ is a diagonal ma-
trix of modified eigenvalues and H is the cor-
responding set of orthonormal eigenvectors. 
In practice non-positive eigenvalue were re-
placed with a small positive number τ. The 
effect of this is that the corresponding dimen-
sion is dropped in the (co)-variance matrix but 
in general, all variances can still be estimated. 
 

A full description of the algorithm will be 
presented in Madsen & Jensen (2000). 

 
 
Materials 
 
The algorithm was tested on three datasets: 
 

The first dataset were in principle the same 
as described by Mark et al. (2000) and in-
cluded real data (evaluations) on somatic cell 
count (SCC) on 21963 bulls from nine coun-
tries. This dataset forms a well-connected 
subset as defined by Sigurdsson et al. (1996). 
Thus, for this dataset, a nine by nine sire co-
variance matrix should be estimated and all 
residuals were assumed to be uncorrelated. 
 

The second dataset consisted of data from 
the same nine countries but extended with 
results from all evaluated bulls with at least 50 
daughters in one of the nine countries. In total 
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data on 34978 bulls were included. Further-
more, the dataset included evaluations on 
clinical mastitis (CM) from three of the nine 
countries.  
 

To test the possibility of estimating within 
country residual co-variances a subset con-
taining SCC and CM for the three countries 
were build. For this third dataset, a 6 by 6 sire 
(co)-variance matrix should be estimated. 
SCC and CM were assumed to have residual 
co-variances within the county. 

 
 
Results and Discussion 
 
Number of rounds to convergence, dimension 
and rank of the resulting covariance matrix for 
the three datasets are shown in Table 1. 
 
Table 1. Estimation statistics for test datasets 

Sire (co)-variance matrix Data- 
Set 

# of 
iterations Dim. Rank % var. expl. 

1 50 9 7 99.7 
2 86 9 6 99.6 
3 37 6 5 99.9 

 
The amount of work in one round of AI-

REML is roughly the same as in one round of 
EM-REML since, usually, the major part of 
the time is used on computing the sparse in-
verse of the MME. The results shows that 
large (co)-variance matrices of reduced rank 
can be estimated with a relatively low number 
of iterations. The stopping criterion used was 
that the norm of the gradient vector should be 
less than 10-4. Generally, this corresponds to a 
much smaller round to round change in the 
parameter vector. In comparison, the analysis 
of Mark et al. (2000) took more than 1000 
rounds for convergence, although from a dif-
ferent set of priors. 
 

Results from analysis of dataset 1 and 2 on 
SCC from nine countries are shown in Table 
2. For comparison, estimates from Mark et al. 
(2000) using the algorithm of Klei & Weigel 
(1998) are included. The results from dataset 
1 (the well-connected subset) clearly show 
that very similar estimates were obtained from 
the two methods. Standard errors (s.e.) of 
genetic correlations between SCC in different 
countries range between .01 and  .46.  If coun- 

 

try four is excluded, the range is between .01 
and .03. The reason for the large s.e. of esti-
mates related to country four is that only 54 
bulls with evaluations from this country is 
included in the “well-connected” subset. 
 

The correlations estimated on dataset 2 
were generally lower than the estimates from 
dataset 1. Especially correlations involving 
countries 1, 3, and 4 were lower. The reason 
could be the same bias problem as shown by 
Sigurdsson et al. (1996), and Klei & Weigel, 
(1998) using all data. Another reason could be 
differences/bias in the national evaluation 
system. The possible bias problem will be 
addressed in Madsen & Jensen (2000). Also 
here, very accurate (0.01 < s.e. < 0.03) results 
were found, except for country four. 
 

The estimated genetic and residual correla-
tions for the third dataset are in Table 3. The 
genetic correlations between SCC and CM 
within country are between .49 and .58. Re-
sidual correlations within country range from 
.11 to .35. This shows that residual correla-
tions can be estimated. Methods assuming 
these correlations to be zero may lead to bi-
ased inferences. The bias-/unbiasedness of 
these estimators will also be addressed in 
Madsen & Jensen (2000). 
 

All three analysis showed that a reduction 
in rank of the (co)-variance matrices were 
possible. This may lead to reductions in com-
putational cost as the dimensions correspond-
ing to non-positive eigenvalues can be 
dropped from the international evaluation. 
Furthermore reducing the rank of the (co)-
variance matrices will lead to models that are 
more parsimonious. In the current implemen-
tation decisions on reducing the rank is made 
purely on mathematical grounds. It may be 
possible to develop a “statistical” rule such 
that all eigenvalues that explains less than a 
certain threshold of all genetic variance is 
dropped. This would lead to models with even 
fewer parameters to be estimated than the 
current implementation. 
 

Earlier methods were tested on simulated 
data with varying degree of connectedness 
and varying heritability of the traits analysed. 
Similar tests will be included in Madsen & 
Jensen (2000) for the current algorithm. 
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Conclusions 
 
• The AI-REML algorithm was able to es-

timate sire covariance matrices for multi-
ple traits recorded in several countries and 
generally converges in much fewer rounds 
of iteration that previously used proce-
dures based on the EM algorithm. 

• The algorithm was able to estimate (co)- 
variance matrices of reduced rank. 

• The algorithm provides standard errors of 
the resulting estimates. 

• The procedure can take non-zero residual 
co-variances into account. Sire and resid-
ual (co)-variances is estimated for each 
trait and in each country where the trait is 
recorded. 
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Table 2. Estimated genetic correlations for somatic cell count (SCC) in nine countries. Asymptotic 
standard error of estimates in parentheses 

 
Country  

Dataset1) 
 
Country 

2 3 4 5 6 7 8 9 
1 
2 
M 

1 
.93 (.01)  
.77 (.01) 
.90 

.80 (.03) 

.79 (.01) 

.80 

.96 (.46) 

.69 (.42) 

.94 

.94 (.01) 

.88 (.01) 

.93 

.96 (.01) 

.93 (.01) 

.96 

.94 (.01) 

.88 (.01) 

.93 

.81 (.03) 

.74 (.03) 

.82 

.94 (.01) 

.82(.01) 

.93 
1 
2 
M 

2 
 .85 (.03) 

.69(.03) 

.85 

.96 (.17) 

.97 (.20) 

.88 

.96 (.01) 

.93 (.01) 

.95 

.94 (.01) 

.86 (.01) 

.94 

.98 (.01) 

.96 (.01) 

.97 

.81 (.03) 

.81 (.03) 

.81 

.89 (.01) 

.90 (.01) 

.87 
1 
2 
M 

3 
  .84 (.09) 

.65 (.16) 

.79 

.88 (.02) 

.82 (.03) 

.89 

.87 (.02) 

.85 (.03) 

.89 

.87 (.02) 

.80 (.03) 

.88 

.97 (.03) 

.91 (.03) 

.98 

.87 (.02) 

.76 (.02) 

.88 
1 
2 
M 

4 
   .96 (.14) 

.90 (.15) 

.94 

.97 (.14) 

.81 (.35) 

.96 

.97 (.16) 

.91 (.19) 

.94 

.84 (.13) 

.82 (.18) 

.83 

.92 (.13) 

.92 (.14) 

.91 
1 
2 
M 

5 
    .96 (.01) 

.95 (.01) 

.98 

.96 (.01) 

.95 (.01) 

.96 

.88 (.03) 

.88 (.02) 

.89 

.92 (.01) 

.90 (.01) 

.92 
1 
2 
M 

6 
     .97 (.01) 

.95 (.01) 

.97 

.88 (.03) 

.87 (.02) 

.91 

.92 (.01) 

.87 (.01) 

.93 
1 
2 
M 

7 
      .85 (.03) 

.85 (.03) 

.87 

.91 (.01) 

.90 (.01) 

.90 
1 
2 
M 

8 
       .87 (.02) 

.87 (.02) 

.91 
1)  1 estimates from dataset 1, 2 estimates from dataset 2, M estimates from Mark et al. (2000). 
 
 
Table 3. Estimated genetic (above diagonal) and residual (below diagonal) correlation’s between so-

matic cell count (SCC) and clinical mastitis (CM) in three countries (dataset 3). Asymptotic 
standard error of estimates in parentheses 

 
SCC  CM  

Trait 
 

Country 1 2 3  1 2 3 
1  .80 (.21) .96 (.03)  .49 (.05) .82 (.51) .38 (.07) 
2   .83 (.21)  .19 (.34) .58 (.09) .18 (.28) 

S 
C 
C 3     .63 (.07) .68 (.36) .53 (.04) 

1 .32 (.05)     .09 (.81) .92 (.09) 
2  .35 (.11)     -.10 (.47) 

C 
M 

3   .11 (.12)     
 


