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Abstract  

First-lactation test-day milk, fat and protein yields from New York, Wisconsin, and California herds 
were adjusted additively for age and lactation stage. A random regression model with third-order 
Legendre polynomials for permanent environmental and genetic effects was used. This model also 
included a random effect with the same polynomial regressions for 2-yr intervals within herd (herd, 
time period of calving effect). Phenotypic variances were modeled using a mixed model. 
Heritabilities and permanent environment showed the expected pattern. Herd, time period effects 
explained some of the phenotypic variance differences especially at the beginning (12% to 20%) of 
the lactation. Variances increased with time, size of subclass and milking frequency. Month of test 
had only a very limited influence. Low and high milk production level showed increased variances, 
as did late and especially early lactation stages. Repeatabilities of variances observed for a given 
herd, test-day, frequency class across nested variance subclasses based on lactation stage were 14% 
to 17%. 
 
 

Introduction  
 
Although a common assumption of genetic 
evaluation models is homogeneity of 
(co)variances, this assumption is often incorrect 
across time or herds. In test-day models an 
additional reason for unequal variances, is linked 
to lactation stage. For yield data, research done 
mostly on 305-d lactation data showed that the 
most important issue was total yield of the herds. 
Therefore, the objective of this study was to show 
existence of unequal phenotypic variances by 
modeling this heterogeneity of variance jointly 
with (co)variance estimation. 
 
 
Materials and Methods  
 
Data  
 
First-lactation test-day yields from New York, 
Wisconsin, and California were adjusted 
additively for age and lactation stage. Adjustment 
factors were those obtained by Bormann et al. 
(2001). This data was used to create three data 
sets where herds were randomly selected. The 
data sets were very similar in size (72582 to 
76641 records) and production levels (29.0 to 30.7 
kg milk yield). 

(Co)variance Component Estimation Model  
 

(Co)variance components were estimated using an 
accelerated EM-REML algorithm (Gengler et al., 
1999) and the following random regression 
model:  

 

y = Xt + Q(Hh + Z*a + Zp) + e 
 
which can be rewritten as  
 

y = Xt + Qr + e 
 
by setting r = Hh + Z*a + Zp 
 
where y = vector of test-day records for milk, fat, 
or protein yields; t = vector of fixed herd, test day, 
and milking frequency class effects; h = vector of 
random herd, time period (2-yr of calving) effects; 
p = vector of random permanent environment 
effects; a = vector of animal effects (breeding 
values); e = residual effect; X = incidence matrix 
linking y and t; r = vector of regressions; Q = 
matrix of constant, linear, and quadratic modified 
Legendre polynomials: I0 = 1, I1 = 30.5x,  
and I2 = (5/4)0.5(3x2 - 1), where  
x = -1 + 2[(DIM - 1)/(365 - 1)], linking y and r; 
H, Z and Z* = incidence matrices linking y with 



 180

h, p and a. The herd, time period effect was 
introduced as an earlier study on the same data set 
showed that the portion of total variance 
explained by this effect was not negligible 
(Gengler and Wiggans, 2001). 
 
 
Integrated Heterogeneous Variance Adjustment 

 

Meuwissen et al. (1996) developed a method to 
allow joint estimation of breeding values and 
heterogeneous variances which is basically a 
multiplicative mixed model that scales milk 
production records toward a common phenotypic 
variance through computation of a heterogeneity 
parameter at each iteration. Then adjustment 
factors are obtained by modeling those 
heterogeneity parameters and extracting an 
expected variance estimate. This method is 
appealing because it accounts for (co)variances 
among observations and heterogeneity can be 
modeled in a flexible manner. Pool and 
Meuwissen (2000) applied it in a slightly 
modified manner to correct for unequal variances 
due to lactation stage in the estimation of 
(co)variance components. Their method can be 
improved in two ways. First, it should be possible 
to use the original method by Meuwissen et al. 
(1996) because of its greater flexibility and the 
possibility of writing a variance model. Second, 
the scaling of fixed effects can be quite 
problematic especially if several variance 
subclasses exist for the same level. Following a 
suggestion from Pool and Meuwissen (2000) we 
adapted the methods by precorrecting for fixed 
effects at every EM round. The general model 
solved in EM round n+1 can be written as: 
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where the pre-corrected data vector was obtained 
from: 
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One should note that as soon as 

n1n ˆˆ tXtX ≈+ and n1n
�� ≈+ the model can be 

written as: 
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which is a random regression model with scaled 
random effects and a modified version of the 
model of Meuwissen et al. (1996). The diagonal 

matrix 1n+
�  contains the scaling coefficients 
)2/exp( kγ  for every variance subclass k obtained 

from the solutions of the model used to describe 
heterogeneous variances.  
 
 
Heterogeneity Parameter and Model 
 
A feature of the method of Meuwissen et al. 
(1996) is that the modeling of the heterogeneity 
parameter uses a weighted mixed model on 
pseudovariates obtained by summing current kγ  

with the remaining heterogeneity within variance 
subclass. Based on Meuwissen et al. (1996). the 
heterogeneity parameter called z for variance 
subclass k could be developed: 
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where subscript k denotes blocks of matrices or 
vectors associated with records in variance 
subclass k, kn  is the number of records in 

subclass k and 2
eσ  is the residual variance. This 

formula is conceptually similar to a quadratic 
form but for a log-normal distribution,. The 
variance associated with this heterogeneity 
parameter was estimated as: 
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We assume in this development equal weights 

for every test-day record but the formulas can be 
easily modified. The weighted mixed model on 

pseudovariates ( ) zW 1
kdiag −+γ  was written as: 

 

( ) ( ) 



 −+γ=+ − zWWS'��WSS' 1

kdiag1  

 
where � = solutions, S = design matrix linking 
pseudovariates and �; W = diagonal matrix of 
iterative weights with W = ( )[ ]kzVardiag  and 

( ) �� =Var . 
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In contrast to Meuwissen et al. (1996), kγ were 
scaled towards a common base: 

 
base

kk γ−=γ �S  
 

The variance subclass was defined as the 
portion of the records in a given herd, test day, 
and milking frequency class that were as 
homogeneous as possible for lactation stage. 
Therefore, test-day yields were subdivided 
according to days in milk (6-65, 66-125, 126-185, 
186-245, 246-305, 306-365). 

 
The effects used in the variance model were: 
 

- mean; 
- year-season of test (6 month period); 
- month of test (12 months); 
- milking frequency (2x or 3x and more); 
- subclass size (11 classes); 
- subclass milk yield (26 classes); 
- subclass mean days in milk (36 classes of 10 

days). 
 

In addition to all these fixed effects, a random 
herd, test-day, and milking frequency effect was 
fitted. Repeatabilities of the random effects were 
estimated using Method R and the accelerator 
described by Druet et al. (2001).  

 
Results and Discussion  

 
Only results for variance components are given. 
Tables 1 to 3 show the evolution of relative 
variances over the lactation compared to total 
variance. Heritabilities and permanent 
environment followed the expected pattern. 
Heritabilities were intermediate compared to 
results for high, medium and low producing herds 
found in previous studies on the same data 
(Gengler and Wiggans, 2001) as in the present 
study no distinction was made between herd 
production levels. Herd, time period effects 
explained some of the phenotypic variances 
especially at the beginning (12% to 20%) of the 
lactation. 
 

Residual variances were kept constant in 
absolute values over the whole lactation. The 
changes in the residual relative variance reflect 
changes in the total variance. 
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Figure 1.  Relative variances for milk yield. 
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Figure 2.  Relative variances for fat yield. 
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Figure 3. Relative variances for protein yield. 
 

 
Variance Model Solutions 

 
Solutions for fixed effects of the variance model 
reflect on a linear scale the logarithm of variance 
that can be interpreted transforming them into 
multiplicative scaling effects computed as 

)2/solutionexp(− . 
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Mean effects were 0.25, 0.26 and 0.19 for 
milk, fat and protein yields. Figure 4 shows the 
changes in variances over time. Except for a 
certain stagnation in 1992 to 1994 there is a clear 
trend for milk, fat and protein. As milk production 
is in the model, this trend should not be an artifact 
of increased production. 

 
 

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

19901 19921 19941 19961 19981 20001

Year season (1 or 2) of heterogeneity subclass

Milk
Fat
Protein

Figure 4. Variance model solutions for year season of  
 variance subclass effects. 

  
 
Figure 5 shows, however, that the month of 

test had only a very slight influence on the 
variances. 
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Figure 5.  Variance model solutions for month of test 
 of variance subclass effects. 

 
 
Variances increased with subclass size, as 

expected (Figure 6). For very large subclasses 
variances stabilized or tended to decrease slightly. 
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Figure 6. Variance model solutions for subclass size  
 effects. 

 
 
Low and high milk production level showed 

increased variances (Figure 7) as did late and 
especially early lactation stages (Figure 8). 
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Figure 7. Variance model solutions for mean milk 
 yield of variance subclass effects. 
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Figure 8. Variance model solutions for mean days in 
 milk of variance subclass effects. 
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Variances increased with the frequency of 
milking (Table 1). As this is estimated jointly with 
the production level there should be no 
confounding between these effects. 

 
 

Table 1. Variance model solutions for milking 
frequency. 
Milking  Trait 
  Milk Fat Protein 
2x  -0.10 -0.13 -0.09 
3x and more  0.20 0.27 0.19 

 
Repeatabilities of variances observed for a 

given herd, test-day, frequency class across nested 
variance subclasses based on lactation stage were 
14% to 17%. 
 
 
Conclusions 

 
First, this study presents and uses successfully a 
method to model and estimate jointly 
(co)variances and variance heterogeneity in test-
day models. Relative variances followed the 
expected pattern. Heritabilities were intermediate 
compared to results for high, medium and low 
producing herds found in previous studies based 
on the same data. Therefore, one should account 
for these heritability differences in future studies, 
possibly by adjusting weights of test days as it is 
done currently for lactation records. Herd, time 
period effects explained some of the phenotypic 
variances especially at the beginning of the 
lactation. Variances increased with time, size of 
subclass and milking frequency. Month of test had 
only a very limited influence. Low and high milk 
production level showed increased variance as did 
late and especially early lactation stages. 
Repeatabilities of variances for a given herd, test-
day, frequency class were 14% to 17%. 
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