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________________________________________________________________________________ 
Abstract  
 
Character process models attempt to model the covariance function of test-day records, while ran-
dom regression models attempt to model the production curves of individual animals. The simplest 
character process model is probably the auto-regressive (AR) model. We used AR here to model the 
covariance function, and to predict missing records, where the pattern of missing records resembled 
that of not yet completed lactations. Since the AR model gives about one equation per test-day (or 
test-week here), a new model was developed which only evaluated the covariance function at 9 
knots along the lactation trajectory (ARrt). By choosing the knots at unequal time intervals, the as-
sumption of a stationary process was alleviated. The AR and ARrt models were compared to a ran-
dom regression model that fitted a 4-th order Legendre polynomial (LEG(4)). LEG(4), AR and 
ARrt gave quite different covariance functions, but all three the models seemed approximately 
equally well equipped to predict missing records from part lactations. LEG(4) fitted 16 variance 
components, and 4,755 random effects equations. For AR these figures were 4 and 42,795, respec-
tively, and for ARrt they were 4 and 9,510, i.e. AR and ARrt fitted fewer variance components at 
the cost of more random effects equations. This may prove an advantage for AR and ARrt in small 
data sets, where the accurate estimation of many variance components is not possible. On the other 
hand, many equations may lead to computational problems in large-scale applications. The use of 
weights for the allocation of records to knots resulted in biased parameter estimates for the ARrt 
model. 
________________________________________________________________________________ 
 
 
Introduction 
 
In recent years, test-day models were developed 
which predict breeding values for milk yields 
based on the recordings of individual yields at a 
number of test dates. The main goal was better 
correction for the effects of test dates, and the pre-
diction of breeding values for the shape of the lac-
tation curve, which makes selection for persis-
tency possible. The most commonly used test-day 
model is probably the random regression model 
(RRM; Ptak and Schaeffer, 1993), where the 
curve of breeding values is predicted by a regres-
sion function whose coefficients are included as 
random effects and predicted per animal. Typi-
cally the lactation curves, that are used for the 
fixed prediction of average lactation curves, were 
also used as random regression curves, e.g. Wil-
mink’s (Wilmink, 1987) and the Ali and Schaeffer 
curve (Ali and Schaeffer, 1987). However, also 

polynomials were used as random regression 
curves (e.g., Kirkpatrick et al., 1994).  
 

The random regression curves are often very 
flexible in the fitting of individual curves, but they 
also implicitly define a (co)variance matrix of ge-
netic effects along DIM. This (co)variance matrix 
may have an odd shape, e.g. highly increased 
variances at the beginning and end of the curves 
(Jamrozik et al., 1996). For example, a straight 
line may seem a simple and perhaps reasonable 
curve for the deviation of individual yields from 
the average lactation curve, but it leads to a quad-
ratic curve for the variances, which seems often 
somewhat unrealistic. Also, random regression 
models can not model a correlation structure, that 
asymptotes to zero for days far apart (Jaffrezic and 
Pletcher, 2000). These shortcomings of polyno-
mial RRM are alleviated by increasing their order 
of fit (Pool and Meuwissen, 1999; Pool, 2000), 
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but the number of parameters that need to be esti-
mated is substantially increased.  
 

Character process models do not attempt to 
model the production curve of an animal, but aim 
at modelling the (co)variance function (Jaffrezic et 
al., 2000). This contrasts with the RRMs, whose 
primary aim is to model the production curve, and 
the (co)variance function results from the esti-
mates of the random regression curves. The sim-
plest and computationally most feasible character 
process uses the covariance function: 
 
C(t,s) = σt σs r

|t-s|, 
 
where C(t,s) = covariance between days in milk 
(DIM) t and s; σt (σs) standard deviation at DIM t 
(s); r|t-s| = the correlation between DIM t and s. 
When the data are collected at equally spaced 
intervals, the above character process equals the 
autoregressive model with autoregression 
correlation r (Carvalheira et al., 1998). The above 
character process is called stationary which means 
that the correlation between t and s depends only 
the absolute time difference |t-s| = ∆DIM. The 
latter assumption can be alleviated by a non-linear 
transformation of the time scale, and applying the 
assumption of stationarity on the transformed time 
scale (Nunez-Anton and Zimmerman, 2000). 
 

A limitation of character process models is that 
the curve of breeding values of individuals is not 
explicitly estimated, and may be difficult to ob-
tain. In the case of the autoregressive model, daily 
intervals may be used with missing records when 
an animal is not recorded at this DIM. This results 
in Ndim*N equations for the estimation of breeding 
values for every test-day, where Ndim = number of 
DIM, and N = total number of animals. Solving 
Ndim*N equations will be computationally infeasi-
ble in many practical data sets.  

 
The aim was here to compare the Legendre 

polynomial random regression models with the 
autoregressive model for their ability to predict 
test-day records. Evaluating the breeding values of 
the animals at a limited number of DIM (so called 
knots) reduced the number of equations of the 
autoregressive model, and thus it’s computational 
demands. The fuzzy classification approach of 
Strandberg and Grandinsson (1997) was used to 
assign the records, which are in between two 
knots, to their surrounding knots. By choosing the 
knots at unequal intervals, the time scale was non-

linearly transformed, which alleviated the assump-
tion of a stationary correlation.  
 
 
Methods 
 
Data 
 
The data consisted of 951 lactations (536 first and 
415 later parity from 605 Holstein Friesian cows), 
and 36,288 weekly recordings of test-day yields 
(on average 38 test-day yields per lactation, with a 
maximum of 44 weeks per lactation). Pool and 
Meuwissen (1999) gave a more detailed descrip-
tion of the data. In the following, ‘missing re-
cords’ will refer to records that are actually avail-
able but are excluded from the data set and are 
subsequently predicted by the models. About 50% 
of the lactations contain missing records, and the 
pattern of missing records mimics that of a lacta-
tion in progress, i.e. in lactations with missing re-
cords all records after DIM x are missing, where x 
is varied. The models will be compared for their 
ability to predict the missing records, which will 
be measured by the mean square error of predic-
tion: 
 

MSEP = M
2

M    ij ijij /n)ŷ(y∑ ∈ −   

 
where Σij ∈  M

 denotes summation over the set of 
missing records M; yij (�ij) = j-th weekly test-day 
record of lactation i (prediction); and nM = the 
number of missing records in set M. 
 
 
The complete Autoregressive model (AR) 
 
In the complete autoregressive model, the data 
were modelled by: 
 
yij = xijβ + ai + bij + eij [1] 
 
where β = vector of fixed effects for year-season 
of calving (3-monthly classes), age at calving (4-
monthly age classes), cDIM = class of DIM * par-
ity (weekly classes within  first and later parities), 
and test date (date of milk recording); ai = random 
cow * lactation effect; bij = random effect of j-th 
week within effect ai; eij = random residual effect. 
Note that the fixed effect cDIM fits the average 
lactation curve. The covariance matrices of the 
random effects are: 
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Var(a) = I951 
2
aσ , 

Var(bi) = H44 
2
bσ , 

Var(e) = I36,288 
2
eσ , 

 
where  In = (n × n) identity matrix; bi = vector of 
44 weekly bij values; H44 = (44 × 44) weekly 
autoregression correlation matrix Hst = r|s-t|, with r 
the auto-regression correlation and s and t are 
weeks since the beginning of the lactation. Note 
that if two test-dates in week 2 and 3 are actually 
only 1 day apart, they will still be assumed to be 
one week apart, i.e. fluctuations in the numbers of 
days between test-dates that are not expressed in 
week numbers are not accounted for by this 
autoregressive model. Residual Maximum 
Likelihood (REML) estimates for the parameters 

2
aσ , 2

bσ , 2
eσ  and r were obtained from the 

complete data set (all 36,288 records) using the 
ASREML package (Gilmour et al., 2000). Hence, 
the total number of parameters estimated was 4 
and the total number of random effects fitted was 
(1+44)*951 = 42,795. In the data sets with 
missing records, the missing records were 
predicted using the parameter estimates from the 
complete data set.  
 
 
The reduced and transformed Autoregressive 
model (ARrt) 
 
The autoregressive and other stationary 
correlation models assume equal correlations at 
the k-th diagonal of the correlation matrix, where 
the 0-th diagonal is the main diagonal, and the 1st 
diagonal is first diagonal above the main diagonal 
and so on. In Figure 1, the iso-correlation lines did 
clearly not appear as parallel lines to the diagonal. 
The correlation between week 1 and 1+t reduced 
faster with increasing t, than ad mid-lactation, say, 
between week 21 and 21+t. Also, at the end of the 
lactation, this reduction in correlation seemed 
somewhat faster than at mid-lactation.  Hence, the 
stationary correlation assumption is clearly 
violated.  
 
 
 
 
 
 
 
 

Figure 1. Correlation structure of test-day re-
cords at different DIM obtained from bi-variate 
REML analyses (from Pool and Meuwissen, 
1999).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the following, we will reduce the 
dimensionality of the autoregressive model by 
only evaluating the bij values at a reduced number 
of weeks, which will be called knots. The knots 
will be chosen such that the stationarity 
assumption is as little as possible violated. 
Because we need a knot at the beginning of the 
lactation, the first knot is in week 1, i.e. k1=1. 
Next, we have to find the week k1+t, whose 
correla-tion with week k1 is approximately 0.7, i.e. 
k2=k1+t (where t>0). The latter step is repeated 
until the end of the lactation is reached, and also at 
the end of the lactation a knot was placed (week 
44). The week ki+1=ki+t, whose correlation with 
week ki is ~ 0.7, was found by visual examination 
of Figure 1. This resulted in 9 knots, namely week 
1, 2, 4, 8, 16, 26, 35, 41, and 44.  
 

The basic ARrt model is the same as the AR 
model, except that the number of weeks included 
in the bi vector is reduced from 44 to 9 (i.e. the 9 
knots), which reduces H to a (9 × 9) matrix. 
Furthermore, choosing the knots of Art at unequal 
interval  alleviates  the  stationary  assumption   of  

 
 
 
 
 
 
 
 



 175

the AR model. A problem arises when we have a 
test-record in week 5 while the nearest knots are at 
weeks 4 and 8. This is resolved by the fuzzy 
classification approach of Strandberg and 
Grandinsson (1997). The test-record of week 5 is 
duplicated, where the first duplicate is allocated to 
week 4 and given a weight of (8-5)/(8-4) = 0.75; 
and the second duplicate is allocated to week 8 
with a weight of 1-0.75=0.25. All the in between 
knots test-records are duplicated, allocated to their 
nearest knots and weighted according to their 
distance till the knots. Hence, the number of 
parameters estimates was 4 (same as the AR 
model) and the number of random effects fitted 
was (1+9)*951 = 9,510.  
 
 
The RRM: LEG(4) 
 
Pool and Meuwissen (1999) compared Legendre 
polynomial random regression models of order 0 
to 7 (indicated by LEG(0) to LEG(7)). In this 
comparison, a 4-th order Legendre polynomial 
(LEG(4)) seemed to give a fair  balance between 
fits, i.e. higher orders of fits yielded only marginal 
improvements in MSEP, and number of 
parameters that needed to be estimated. LEG(4) 
fits 5 random effects per lactation, which results in 
5*951 = 4,755 random effects and (5*(5+1)/2)+1 
= 16 estimates of variances and covariances. The 
same set of data and missing records (as in Pool 
and Meuwissen, 1999) was used in this study and 
results of the AR and ARrt models were compared 
to LEG(4).  
 
 
Results 
 
Table 1 yields the parameter estimates of the AR 
and ARrt models, and residual variance from 
LEG(4). Other parameters of the LEG(4) model 
can be found in Pool and Meuwissen (1999). The 
residual variance of AR was lower than that of the 
LEG(4) model, which indicates that the AR model 
explained a larger part of the variance of the data. 
ARrt had yet a smaller residual variance, but this 
may be affected by the weighing of the records. If 
a record has a weight of w, this is equivalent to 
assuming that its residual variance is σe

2/w, and 
this factor 1/w might cause that the true residual 
variance is underestimated by σe

2. The correlation 
between adjacent knots of the ARrt model is 
(0+23.23*.907)/(0+23.23 +2.68) = 0.8132, which 
is higher than 0.7, i.e. the aim when choosing the 
knots. This estimate of the correlation between 

adjacent knots may again be too high because the 
residual variance is underestimated, as explained 
above.  
 
Table 1. Parameter estimates of the AR, ARrt and 
LEG(4) models 
 
Parameter1 AR ARrt LEG(4)2 
 
Var(ai) 2.57 0  
Var(bij) 21.64 23.23  
Auto-correlation 0.97 0.91  
Var(eij) 3.02 2.68 4.38 
 
1  effects ai, bij, and eij denote the lactation effect, 

the effect of week (AR) or knot (ARrt) within 
lactation, and the residual, respectively (Equa-
tion [1]).  

2  For LEG(4) only Var(eij) is given, because only 
this parameter has a comparable parameter in the 
AR and ARrt models. For other parameters of 
LEG(4) see Pool and Meuwissen (1999).  

 
Figure 2 shows the predicted correlation 

structures of the models AR, ARrt, and LEG(4). 
As expected, the iso-correlation lines for the AR 
model are parallel to the diagonal, i.e. AR does 
not account for a faster reduction in correlation 
with increasing ∆DIM earlier (or later) in the 
lactation compared to at mid-lactation. The iso-
correlation curves from the models ARrt and 
LEG(4) do show such a curvature were the 
correlations reduce faster with ∆DIM in early or 
late lactation compared to mid-lactation. Note 
however that for ARrt, the curvature in the iso-
lactation lines is not estimated by the ARrt model 
but entirely defined by the choice of the knot 
points. If the correlations were plotted against the 
knot points instead of actual DIM, the iso-
correlations would also be parallel to the diagonal 
for the ARrt model. Visual comparison between 
Figures 1 and 2b suggests that the correlation at 
the end of the lactation decreases too quickly with 
∆DIM in Figure 2b, which could be remedied by 
choosing the knot-points at the end of the lactation 
further apart.  

 
When comparing AR (Figure 2a) against the 

bi-variate correlations (Figure 1), it seems that the 
correlations at high ∆DIM, i.e. the lowest 
correlations, are somewhat too high. This suggests 
that the correlations in the first order auto-
regressive model do not drop off sufficiently 
quick. In the ARrt model, the correlations seem 
rather high at combinations of DIM. The LEG(4) 
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model seems to give the best correlation structure. 
This is probably due to the large number of 
parameters involved in the LEG(4) model, which 
gives it an increased flexibility.  
 
Figure 2. Correlation structure of test-day re-
cords at different DIM obtained from the different 
models. Above: figure A: AR (upper triangle) and, 
figure B: ARrt (lower triangle). Below: figure C: 
LEG(4)1 model. 
 

 
 

Figure 3 shows the MSEP of later test-day re-
cords using the information of running lactations. 
The MSEP profiles are remarkable similar show-
ing that the models AR, ARrt, and LEG(4) are ap-
proximately equally able to predict missing re-
cords from part lactations. The reduction in num-
ber of random effects equations by using ARrt in-
stead of AR (9,510 vs. 42,795 equations) did 

                                                 
1 Result from model LEG(4) are from Pool and 

Meuwissen (1999). 

clearly not result in a poorer MSEP for the ARrt 
model.  
 
Figure 3. MSEP of missing records of part lac-
tations when the records up to DIM are available.  
 

 
 
Discussion 
 
Three models, AR, ARrt, and LEG(4) were 
mainly compared for their predicted correlation 
structures and MSEP of missing rec??ords of part 
lactations. Low MSEP of missing records, i.e. 
test-day records after DIM t, suggests that a) the 
model explains a large part of the variation of the 
milk yields, and b) the predictions will show little 
changes when the records after DIM t become 
available (because the future records are inline 
with the expectations of the model). These are de-
sirable properties for breeding value estimation, 
which is often based on a substantial number of 
part lactation records. 
 

It is remarkable that AR, ARrt, and LEG(4) 
have fairly different correlation structures, but 
very similar MSEP (Figures 2 and 3). It seems that 
accurate prediction of correlation structures is not 
critical for the MSEP of missing observations. 
This suggests that we can easily reduce the 
dimensionality of the model for the correlation 
structure, as long as the shape of the correlation 
structure is not too different from the bi-variate 
correlations. The latter is for instance the case for 
the LEG(1) model, which yields concave instead 
of the convex iso-correlation lines (Figures 2b-c) 
(Pool and Meuwissen, 1999). The AR and ARrt 
models have each 4 parameters to describe the 
covariance structure, and were thus quite extreme 
in reducing the dimensionality of the covariance 
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model. When the covariance function is estimated 
from a small data set, the estimates of the 16 
parameters of the LEG(4) model might show 
considerable estimation error while the estimates 
of the 4 parameters of AR and ARrt might still be 
reasonably accurate. These estimation errors will 
be further increased when genetic and 
environmental covariance functions are estimated. 
Hence, the AR and ARrt models may be preferred 
over LEG(4) when the data set is relatively small 
and/or genetic and environmental covariance 
functions are estimated. 
 

It may be noted that LEG(4) models the com-
plete covariance function, while AR and ARrt 
only model the correlations, and assume a con-
stant variance across the lactation. This assump-
tion is reasonable in the current data set (see Pool 
and Meuwissen, 1999), but will not hold in gen-
eral. Hence, in many situations, also variances 
along DIM need to be modelled which will require 
an increased number of parameter estimates 
(Jaffrezic et al., 2000). Generally it is envisaged as 
an advantage that the variances and correlations 
are modelled by different curves, which makes it 
easier to choose a suitable curve for the variances 
and for the correlations (Jaffrezic and Pletcher, 
2000).  
 

The fuzzy classification implies that 
Cov(y(DIM1); y(DIM2)) is obtained by linear in-
terpolation from the known covariances at the 
knots, i.e. Cov(y(L1);y(L2)), Cov(y(U1),y(L2)), 
Cov(y(L1),y(U2)), and Cov(y(U1),y(U2)), where 
y(DIM1) = milk yield at day in milk DIM1, and L1 
(L2) is the knot just before DIM1 (DIM2); and U1 
(U2) is knot just after DIM1 (DIM2). This linear 
interpolation works reasonable well in areas where 
the covariance function is approximately linear. 
But it will be poor around the top of the curve (i.e. 
where the variances are modelled). For example, 
let DIM1=DIM2 be in week 3, L1=L2 is in week 2, 
and U1=U2 is in week 4, then Var(y(3)) = 
.25*[Var(y(2)) + Var(y(4)) + 2*Cov(y(2);y(4))], 
i.e. the average of 4 terms of which two terms are 
covariances instead of variances. The covariance 
terms are lower than the variances, such that the 
model expects Var(y(3)) to be substantially 
smaller than Var(y(2)) and Var(y(4)). In the data 
set, probably all three variances were approxi-
mately equal, which may have been accommo-
dated by the model by overestimating the auto-
regression coefficient somewhat (i.e. increase 
Cov(y(2);y(3)), and by overestimating Var(bij) 
(i.e. increase Var(y(2))+Var(y(4))). Both overes-

timations seem to have happened in Table 1, i.e. 
Var(bij) is increased relative to the AR model, and 
the correlation between knots is higher than ex-
pected (0.8132 vs. 0.7; see Results section). An 
alternative to the current fuzzy logic approach, 
where the records are weighted, is to include the 
weights in the design matrix of bij, i.e. [1] may be 
replaced by  
 
yij = xijβ + ai + wbij + (1-w) bi(j+1) + eij,  
 
where w = the weight at the knot of bij. This does 
not avoid the above averaging of the 4 
(co)variance terms, but it may avoid the biased 
estimation of σe

2.  
 

Another problem with the fuzzy logic 
classification occurs when we extent the current 
model to a genetic model. The straightforward 
extension involves an autoregressive correlation 
matrix for the genetic and for the permanent 
environmental effects, i.e. it involves genetic and 
permanent environmental autocorrelations and 
genetic and permanent environmental knots. 
However, we can not assign the genetic part of a 
record to some knots and the environmental part 
to other knots since we do not know which part of 
the record is genetic and which part is 
environmental (although we could perhaps use 
their estimates, but still the model would become 
much more complicated). Hence, extending the 
ARrt model to a genetic model is much easier if 
the same knots could be used for both the genetic 
and the permanent environmental curves. Perhaps, 
in practice, we will find that the genetic co-
variance function and the permanent 
environmental covariance function change more 
rapidly and more slowly at approximately the 
same DIMs, such that using the same knots for 
both curves gives a reasonable approximation. 
Note that the extension of the AR model to a 
genetic model is conceptually straightforward: it 
simply involves having genetic and permanent 
environmental ai and bij effects. However, this 
model may give computational difficulties, be-
cause the number of equations may become very 
large.    
 
Conclusion 
 
The LEG(4), AR and ARrt models proved ap-
proximately equally well equipped to predict the 
missing records of part lactations, despite that they 
are very different models with quite different co-
variance structures. The AR and ARrt model may 
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be especially useful in small data sets, because 
they require the estimation of only a few variance 
components. In large scale applications, LEG(4) 
may be computationally easier because LEG(4) 
requires much fewer equations than ARrt and es-
pecially than AR. Further research is needed to 
reduce the computational problems of AR and 
ARrt models, and some estimation biases due to 
the assignment of records to knots in the ARrt 
model.  
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