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1. Introduction 
 
Finnish genetic evaluation of dairy cattle is based 
on test-day (TD) yields, applying a multiple-trait 
random regression TD model. The model 
considers the first lactation milk, protein, and fat 
yield, plus the later lactation milk, protein, and fat 
yield as different traits, where all the later 
lactations are modelled as repeated observations 
(Lidauer et al., 2000). Currently, yields are scaled 
to correct for differences in variance among later 
lactations. Heterogeneous variance among herd-
test-days (HTD) and time is ignored. 
 

Heterogeneous variance deteriorates BLUP 
properties of solutions of breeding values, which 
reduces reliability of ranking of breeding 
candidates. Accuracy of bull dam selection would 
benefit most from correcting heterogeneous 
variance properly. Accounting for heterogeneous 
variance by fitting multiplicative mixed model 
equations (Kachman and Everett, 1993) was 
found most appealing for several reasons as given 
in Meuwissen et al. (1996). It accounts for genetic 
differences among breeds, which is important 
under Finnish circumstances where herds 
typically consist of different breeds, and the 
breeds are evaluated simultaneously. Further, it 

assumes a homogeneous heritability among herds; 
it accounts for reduced variance in later lactations 
due to selection; and it avoids selection that 
favours animals from inferior breeds and from 
herds with closely related animals (Meuwissen et 
al., 1996). 

 
Objective of this work was to elaborate, 

whether it is feasible to correct for heterogeneous 
variance in large TD data by applying a 
multiplicative mixed models approach 
(Meuwissen et al., 1996) for a multiple-trait 
random regression TD model. 
 
 
2. Material and methods 
 
2.1 Models 
 
Random regression test-day model 
The original model was a multiple-trait multiple-
lactation reduced rank random regression TD 
model, having different model equations for first 
and later lactations  (Lidauer et al., 2000). A TD 
yield, made on days in milk d, was modelled for 
first lactation as,  
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and for later lactations as, 
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where trait F  is first lactation milk, protein, or fat 
yield (i.e., F=1,2,3) and trait L is later lactation 
milk, protein, or fat yield (L=4,5,6). Thus, there 
were 6 traits in the statistical model. The model 
for TD yields of later lactations described 
observations of different lactations as repeated 
observations. 
 

The fixed effects were age at calving (AGE), 
days carried calf (DCC), year × month of 
production (YM), herd × year of production (HY), 
and a regression function of d, nested within 
calving year × calving season × parity (CYSP)  
(see Lidauer et al., 2000). 

 
The random effects were herd-test-day (htd), 

regression coefficients for the breeding values aor 

(r=1,..,12), the non-genetic lactation curves within 

first lactation and across later lactations por 

(r=1,..,12), corresponding non-genetic lactation 
curves within later lactations wor (r=1,..,6), and 
measurement error e.ijklmnopq, respectively.  
 
Multiplicative random regression test-day model 
Effects in the multiplicative random regression 
TD model were identical with those in the original 
model. However, data were assumed to be 
homogeneous within strata and heterogeneous 
across strata. TD observations for the same trait, 
which belonged to the same year × month × parity 
class i and the same HTD class j represented a 
stratum. TD-yields that belonged to a first 
lactation stratum of trait F, or to a later lactation 
stratum of trait L were modelled as:  

 

FijFFijFFijFFijFFijFijFij epWaZhCbXy ++++=λ , or  

LijLLijLLijLLijLLijLLijLijLij ewLpWaZhCbXy +++++=λ ,  

 
 
respectively. The vectors b⋅, h⋅, a⋅, p⋅, w⋅, and e⋅ 
contained fixed effects, random HTD, genetic 
animal, non-genetic animal across all lactations 
and within lactation, non-genetic animal within 
later lactations, and residual effects of trait F or L, 
respectively. The matrices X⋅ij, C⋅ij, Z⋅ij, W⋅ij, and 
L⋅ij were design matrices related to observations in 
stratum ij, and λ⋅ij was a multiplicative adjustment 
factor for all observations on a particular trait of 
stratum ij, and was calculated as 

( )jieij
..5.0

.
ββλ +−= . 

 
The β-values are estimates for the 

heteroskedasticity in the TD data and were 
estimated simultaneously while solving the model 
for breeding values. For each of the traits the same 
model for estimating the heteroskedasticity was 
defined:  

 
,__ ijjhtdiYMPijs εββµ +++=  

 
where sij was an estimate for stratum ij; µ was the 
overall mean; βYMP_i was a fixed year × month × 
parity classification; βhtd_j was a random HTD 
classification; and εij was the residual. For random 
βhtd-effects a within herd correlation structure 
according to a first order autoregressive model 
(Wade and Quaas, 1993) was assumed. 

The pseudo-observation sij was estimated for 
each trait as given in Meuwissen et al. (1996). At 
iteration round q: 

 
[ ] [ ] [ ]( ) [ ]q

ij
q

ij
q

jhtd
q

iYMPij zws
1

__

−
++= ββ , 

where [ ]
[ ] [ ]

ije

q
ij

q
ijq

ij n
w

2

1

4

ˆˆ
2

+
′

=
σ
yy

is the variance of 

[ ]q
ijz , and [ ]

[ ] [ ] [ ]( )
22

ˆ
2

ij

e

q
ij

q
ijij

q
ijijq

ij

n
z −

−′
=

σ
λλ yyy

;  

ijy  is the vector of observations in stratum ij; 
[ ]q
ijŷ is the vector of expectations for ijy [ ]q

ijλ  in 

round q; [ ]q
ijλ is the multiplicative adjustment factor 

for stratum ij at round q; 2
eσ is the residual 

variance of the particular trait; and nij is the 
number of observations in stratum ij.  

When solving for β-effects, sij was weighted by 
wij, resulting mixed model equations of the 

form: [ ][ ] [ ] [ ]sWS� SWS q1qq ′=+′ +∆ , where s was 

the vector of sij’s; β contained the β-effects; S was 
the corresponding design matrix; W was diagonal 
with wij’s on the diagonal; and ∆ had the form:  
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where H was the block diagonal matrix of a first 
order autoregessive process for the random βhtd-
effects. The correlation between consecutive 
HTDs within herd ( htdρ ) and the 

variance 2
htdβσ were estimated via derivative free 

REML using a sample of the data, which included 
600 herds. 
 

Two modifications were made on the approach 
of Meuwissen et al. (1996). First, variance 
components for the random regression TD model 
were not re-estimated. Second, Meuwissen et al. 
(1996) considered a single trait model. 
Generalization of the method to multiple traits 

would require the covariances between traits. This 
would be a grand methodological and 
computational challenge. For simplicity, the 
adjustment factors were estimated independently 
across traits. To guarantee the same mean for all 
traits for the adjustment factors, the overall mean 
for the β-estimates was excluded when calculating 
λ⋅ij.    
  
 
2.2 Solving strategy 
 
Both, the random regression TD model and the 
model for β-effects were solved by preconditioned 
conjugated gradient method. The following 
iterative scheme was found best in respect to time 
used to attain the convergence of  λ⋅ij factors:   

 
For iteration cycle q=0 start with  the initialization: 

1) perform 10 rounds of iterations to solve for breeding values 
2) set β=0; and perform 50 rounds of iterations to solve for β-effects 
3) calculate the multiplicative adjustment factors λ⋅ij   

For iteration cycles q=1,2,… 
 1) calculate ijy λ⋅ij  

 2) perform 3 rounds§ of iterations to solve for breeding values 

3) calculate sij and wij values 
 4) perform 20 rounds of iterations to solve for β-effects 
 5) calculate the multiplicative adjustment factors λ⋅ij   
            6) if  convergence of λ⋅ij values, exit cycle 
Finnish the iteration of breeding values until converged 
§ perform 20 rounds of iterations for q = 20, 40, and 60. 
  
 

The multiplicative adjustment factors were 
considered converged when 

[ ] [ ]( ) [ ] [ ]( ) [ ] [ ]qqqqTqq λλλλλλ Τ
/11 −− −−  was 

smaller than 10-7. 
 
 
2.3 Test data 
 
The data for testing included all Finnish TD yields 
from all lactations of cows that calved for their 
first time after 1987. TD yields were included 
until June 2000. There were 1.09 million cows, 
which had on average 9.4 [14.3], 4.4 [6.7], and 4.4 
[6.7] TD observations on milk, protein, and fat 
yield in first and [later] lactations, respectively, 
giving in total 26.3 million TD records. Pedigree 
data comprised of 1.57 million animals of three 

breeds (Ayrshire, Holstein-Friesian and 
Finncattle). 
 
 
3. Results 

Four estimation cycles were performed to obtain 
parameters for the autoregressive process. Then 

the ratio of 2
htdβσ  over 2

εσ  was 0.08 [0.16], 0.17 

[0.16], and 0.13 [0.15] for first [later] lactation 
milk, protein, and fat yield, respectively. 
Estimates for the htdρ  were 0.95 [0.96], 0.82 

[0.82], and 0.81 [0.80] for first [later] lactation 
milk, protein, and fat yield, respectively. A ρhtd of 
0.85 was chosen for setting up H.  
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There were 61 million unknowns and 17 
million adjustment factors to be estimated. 
Convergence of the adjustment factors was 
reached after 54 main cycles. Total computing 
time was about twice of the time needed for 
solving the original model. 

 
The method removed heterogeneous variance 

among HTDs, later lactations, and time. Standard 
deviation (SD) of the milk yield was 20% larger 
in herds with best cows than in average herds, but 
after adjustment for heterogeneous variance it was 
about same (Table 1). After adjustment, average 
intra HTD variance of residuals was similar 
between small and large herds, and among later 
lactations (Table 2). Further, the multiplicative 
model removed heterogeneous variance among 
years, but not among seasons (Figure 1). 

 
Accounting for heterogeneous variance had 

little effect on estimated breeding values (EBV) of 
bulls, but large effect on EBVs of cows. The 
correlation between EBVs from both models were 
between 0.994 and 0.997 for active bulls (born 
within 1991 to 1993 and having at least 60 
daughters with records) and between 0.983 and 
0.987 for cows born in 1996, but correlations were 
between 0.73 and 0.91 for the best 1000 cows. 
Only 340 cows remained in the group of best 500 
cows when accounting for heterogeneous 
variance. The genetic SD of EBVs from the 
multiplicative model were between 13% and 19% 
smaller for active bulls and between 17% and 
21% smaller for cows born in 1996. Genetic trend 
over time showed between 21% and 25% smaller 
yearly progress for bulls and between 10% and 
23% less for cows when applying the 
multiplicative model. 

 
 
 
 
 
 
 

4. Conclusions 
 
Applying multiplicative mixed models 
(Meuwissen et al., 1996), to account for 
heterogeneous variance, is feasible for large TD 
models. Results from this study were consistent 
with findings presented in the literature 
(Meuwissen et al., 1996; Robert-Granié et al., 
1999). However, additional work is needed to 
elaborate whether the presented method is valid 
for the multiple-trait model. Further, work should 
also concentrate on the robustness of the 
presented method when more data accumulates.      
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Table 1. Mean and standard deviation (SD) of a sample of later lactation milk yields (kg) without (y) and with 
adjustment (yadj) for heterogeneous variance, by different groups of herds. The sample included all milk yields 
recorded in 1998 
    Herds of best 
  All herds  500 cows 
  y yadj  y yadj 
Number of herds  17215 17215  383 416 
Size of contemporary group Mean 8.0 8.0  11.2 10.8 
 SD 3.9 3.9  5.2 4.8 
Average milk yield of contemporary group Mean 21.8 20.4  25.5 20.3 
 SD 3.4 1.6  3.3 1.4 
SD of milk yield in contemporary group Mean 6.5 5.7  7.8 5.8 
 SD 1.3 0.7  1.1 0.5 
 
 
Table 2. Average intra herd-test-day variance of residuals for milk yield (kg2) of herds with an average milk yield 
between 24.0 and 25.0 kg, by different model, herd size, and lactation 
   Lactation 
 Herd size 1 2 3 4 5 
Original 5-12 3.02 5.61 5.57 5.26 5.22 
 16-55 3.27 6.03 5.76 5.76 5.10 
       
With 5-12 2.00 3.20 3.46 3.56 3.67 
adjustment 16-55 2.03 3.17 3.36 3.36 3.56 
      

Fig 1. Comparison of residual variance (var(ê)) for milk yield (kg2) among time between a model 
without and with adjustment for heterogeneous variance. 
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