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Introduction 
 
Genetic evaluations using test day yields or 
somatic cell scores (SCS), instead of lactation 
records, in dairy cattle population have become a 
common practice in an increasing number of 
countries (Reents et al., 1998; Schaeffer et al., 
2000; Stranden and Lidauer, 2001). Because 
random regression models make more realistic 
assumptions on the (co)variance structure of test 
day data than fixed regression models, research 
projects, such as parameter estimations for test 
day yields and SCS (Liu et al., 2000a; 2000b), 
have been conducted in Germany for 
implementing a random regression test day model 
(RRTDM) in national genetic evaluations. In this 
paper we present a new iteration scheme for 
solving mixed model equations (MME) of a 
RRTDM and a new reliability approximation 
method based on the concept of multiple trait 
effective daughter contribution (EDC) . 
 
 
Material and Methods 
 
Model:  Test day yields on a 24-hour daily basis 
from first three lactations are analysed with the 
following random regression model for milk, fat, 
protein yield or SCS: 
 

eZaZpfXhXy ++++= 21 , [1] 
 
where y is a vector of test day yields adjusted for 
heterogeneous herd variance (Reents et al., 1998) 
or SCS of first three lactations of a cow, h is a 
vector of fixed herd-test-date-parity-milking-
frequency (HTD) effects, f is a vector of 
regression coefficients of fixed lactation curve 
effects that are defined by class of calving year, 
age at calving, season of calving, calving interval 
classes (not defined for SCS), and breed-region 
classes (Reents et al., 1998), p and a  represent 
random regression coefficients (RRC) of 
permanent environmental (p.e.) and additive 

genetic effects of the cow, respectively, e is a 
vector of residual effects, 1X , 2X  and Z are 

design matrices for h, f, and p and a, respectively. 
For modelling p and a the normalised orthogonal 
third-order Legendre polynomials have been 
chosen (Liu et al., 2000a), 
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with z representing standardised days in milk 
(DIM) and ia  is the i-th regression coefficient of z 

on test day yield or SCS (Liu et al., 2000a; 
2000b).  
 
Data:  Test day data from May 2001 national 
genetic evaluation for German Holstein and Red 
breeds were used for testing the genetic evaluation 
system based on model [1]. Table 1 presents the 
size of data set after all edits and averaged annual 
growth rates of data from 1998 to 2001. For the 
test run the total number of equations to be solved 
amounted to c.a. 225 millions per trait. With the 
assumption of the annual growth rates shown in 
Table 1, the total number of equations would be 
approximately 260 millions per trait in May 2005. 
 

Milk recording programmes in Germany 
comprise mainly supervised and unsupersived 
monthly testing, with increasingly alternate 
morning and evening testing (AM-PM) 
programmes (Liu et al., 2000c), and also 
Lactocorder scheme in which daily milk yield is 
collected according to monthly testing programme 
and components according to AM-PM 
programme. Table 2 shows the weights on daily 
yields or estimates from the testing programmes in 
the RRTDM genetic evaluation system. Error 
variance associated with test day records in 
genetic evaluations depends on lactation number, 
DIM and testing programme. Up to now 
unsupervised tests are assigned equal weights as 
supervised tests. For test day SCS no 
differentiated weights are considered in genetic 
evaluations. Since all test day records collected by 
milk recording agencies in Germany have milk 



 160 

yield as well as two components, and even SCS 
from 1992 onwards, recorded or estimated on a 
24-hour daily basis, the little extra gain in 
accuracy of estimated breeding  values  (EBV)  by  

 

applying a multiple trait RRTDM to genetic 
evaluations is not justified by the enormous 
increase in computing cost of solving a much 
larger MME.  
 

 
Table 1. Size of data set used in May 2001 test run of genetic evaluation for German Holstein and Red 
breeds and annual growth rates of data averaged over the time period 1998 to 2001 
 Number of  
 cows with 

records 
animals in 
pedigree 

Lactations HTD levels test day records 

May 2001 
evaluation 

9,013,809 13,671,261 18,070,856 12,662,629 147,564,936 

annual growth 
rate (%) 

9.8 6.2 11.6 8.9 12 

   
 
Table 2. Weights assigned to 24-hour daily yields or estimates in RRTDM genetic evaluations 

Milk yield Fat yield Protein yield  
Morning Evening Morning Evening Morning Evening 

Monthly testing 1.00 1.00 1.00 
AM-PM testing 0.92 0.90 0.83 0.82 0.90 0.88 
   - Lactocorder 1.00 1.00 0.83 0.82 0.90 0.88 

 
 
Scheme for solving MME: Ignoring pedigree information, equations pertinent to cow i are: 
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,  [2] 

 
where 0G , 0P and 0R are (co)variance matrices of 

additive genetic, p.e. and error effects, 

respectively, iia is the diagonal element of the 
inverse of relationship matrix for cow i.  
 

The iteration on data technique (Schaeffer and 
Kennedy 1986) is used to solve MME. For 
updating solutions of each effect at a given round 

of iteration, adjusted right-hand-sides (ARHS) are 
calculated using the most recent solutions of the 
other effects and then multiplied with 
corresponding inverted diagonal blocks according 
to the Gauss-Seidel algorithm. At round t of the 
iteration process ARHS are updated for data 
contribution in the following sequence:  

 
)ˆˆˆ(' ]1[]1[]1[

2
1

01
][ −−−− −−−= tttt

h aZpZfXyRXARHS ,     [3] 

 )ˆˆˆ(' ]1[]1[][
1

1
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][ −−− −−−= tttt
f aZpZhXyRXARHS ,    [4] 
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1
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][ tttt
a pZfXhXyRZARHS −−−= − .      [6] 
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Solutions of the effects are updated by solving 
equations, e.g. for p.e. effects 

)ˆˆˆ(')'(ˆ ]1[][
2

][
1

1
0

11
0

1
0

][ −−−−− −−−+= tttt aZfXhXyRZPZRZp
After the data contribution has been processed, 
pedigree is read from the youngest to oldest animals to 

accumulate pedigree contribution following the 
Gauss-Seidel algorithm. For each animal in 
pedigree file ARHS for genetic effects are 
computed in the following sequence: 
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where subscripts a, s and d stand for animal, sire 
and dam, respectively; ad is the diagonal element 

pertinent to animal a in matrix D-1 (Mrode, 1996 

pp 28), and dsa ˆ,ˆ,ˆ are solutions of genetic RRC 
for animal, sire and dam, respectively. Rewriting 
ARHS for h and for a due to data contribution:  
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reveals that accumulating data contribution using 
equations [3] to [6] (Reents et al. 1995, Jamrozik 
and Schaeffer 2000) has to process through all test 
day records. This implicitly sets up the matrices: 

,' 1
01
−RX ,' 2

1
01 XRX − ,' 1

01 ZRX − ,' 1
02 ZRX −

,' 1
0
−RZ ZRZ 1

0'and −  etc. for every cow several 

times during each round of iteration process. Such 
test day record based iteration scheme requires 
unnecessary and redundant operations, since the 
matrices do not change over the rounds of 
iteration. Therefore, a new efficient scheme for 

updating ARHS has been developed for random 
regression models.  
 

As cows can have different number of 
lactations and some irregular pattern of missing 
lactations, updating ARHS on a cow basis may 
not improve the efficiency of the proposed 
iteration scheme much, compared to a lactation 
based scheme for updating ARHS. Applying 
equations [10] and [11] to a single lactation results 
in:  
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where subscript l denotes lactation number. For a 
higher efficiency of the lactation based iteration 
scheme, fixed lactation curve effects are modelled 
with the same mathematical function as p.e. and 
genetic effects, i.e. ZX =2 . Prior to the iteration 

process, the following matrices ,1
0
−

lR ,' 1
0
−

ll RZ  

and 1
0'l l l
−Z R Z (note that IX =l1  and ZX =l2  for 

the RRTDM) are computed and stored for every 
lactation, which are then read in during the 
iteration process for updating ARHS due to data 
contribution. Because solution and ARHS arrays 
for all the effects usually are defined as multi-
dimensional, repeatedly addressing such arrays 
can be time consuming. Therefore, all solution 
and ARHS arrays are also represented with one-

dimensional vectors that share the same memory 
storage with their corresponding multi-
dimensional arrays via Fortran command 
equivalence. The positions of elements of 

llll apfh and,,, in their corresponding solution or 

ARHS arrays are calculated and stored for each 
lactation before the iteration process.  
 

Diagonal blocks for each level of h and f and 
diagonal blocks for p and a for each cow are 
inverted and stored prior to iteration process. As 
diagonal blocks for animals without records 

( 1
0
−Giia ) differ only in iia , different integer 

values of iia*10000 are counted and 
corresponding diagonal blocks are inverted and 
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stored (Tier and Graser, 1991). Since the number 

of different iia*10000 usually is much smaller 
than the number of animals without records, it is 
feasible to keep the different inverted diagonals 
for animals without records in RAM to achieve 
faster iteration. For every animal in pedigree, 
positions of elements of a, s, and d in their multi-
dimensional solution or ARHS arrays are also 
stored prior to iteration process and will be read in 
during each round of iteration. 
 
Approximating reliabilities: The multiple trait 
EDC (Liu et al. 2001) has been applied to 
approximate reliability values of EBV of the 
RRTDM. The approximation method consists of 
three major steps in the sequence: computing own 
data, progeny and parental contributions. 
 

Computing data contribution for a cow 
involves absorbing all fixed effects and her p.e.  
effects into her additive genetic effects. By 

absorbing the major fixed HTD and ignoring the 
minor effect of fixed lactation curve effects, the 
left-hand-side of equations [2] becomes: 
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Further absorbing p.e. effects gives 
[ ]1

0' −+ GWZZ iia  with 

MZ)PMZZMZMW ''( 11
0

−−+−= . 

 
Since error covariances between lactations are 

null, the resulting matrix after the absorption is 
block-diagonal:  

}{' 332211 MZZ,MZZ,MZZMZZ '''diag= with 

diagonal block for lactation I expressed by:  
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where in is the number of test day records of 

lactation i for the cow, 2

jeσ is error variance 

associated with the j-th test, ∑ −= 2
ejh σ , and 

jh is the inverted diagonal for the HTD class the 

j-th test belongs to. The further absorption of p.e. 
into genetic effects gives: 

MZZ)PMZMZ(ZZMZZWZZ ''''' 11
0

−−+−=
. The diagonal structure of the matrix MZZ' can 
be taken into consideration to make the 
calculation of WZZ' more efficient. The 
information contributed by cow’s own test day 
records is WZZ'd =Ψ , from which  reliability is 

computed using 1)IG(I −+Ψ−=ℜ 0dY  and then 

the reliability is converted to EDC using 
1

0YY ])[(4 −− −ℜ−=Ψ GII 1 . 

 
 

Collecting EDC from all progeny is done by 
processing pedigree file from the youngest to 
oldest animals (VanRaden and Wiggans 1991). 
Animal’s reliability contributed by progeny 
adjusted for mate effect is computed as:  

 

])([ *
M4

1
4
1

M-P E)(IEEE 11 −−ℜ−+−=ℜ , 

 

 where *
Mℜ is mate’s reliability calculated 

excluding EDC of this progeny and 

I)(IE 1 −ℜ−= −*
P  with *

Pℜ being the progeny’s 
reliability including information from its 
performance and its progeny but not from its 
parents (Liu et al. 2001). Then the reliability is 
converted to EDC with 

1
0M-PM-P ])[(4 −− −ℜ−=Ψ GII 1  for each progeny. 

The calculation from the youngest to oldest 
animals ensures that EDC from all progeny of an 
animal have been accumulated before calculating 
the animal’s contribution to its parents.  
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Once EDC from all progeny have been 
accumulated, reliability is calculated from the 
oldest to youngest animals to collect parental 
contribution (VanRaden and Wiggans 1991). This 
ensures parental reliability is available before 
progeny reliability is calculated. To avoid double 
counting animal’s contribution to its parents, EDC 
contributed by the animal to its parents must first 
be subtracted from its parental EDC. Then the 

resulting EDC ( *Ψ ) are converted to reliability 

using 1
0

** −+Ψ−=ℜ )IG(I for computing 

parental contribution to that animal. Formulae 

)( **
4
1

PA damsire ℜ+ℜ≈ℜ  and 
1

0
-1

PAPA ])[(4 −−ℜ−=Ψ GII  are used to compute 

EDC contributed from parent average to the 
animal (Liu et al., 2001).  

 
When the three steps are done, the total EDC 

for each animal ( TΨ ) is computed with 

∑Ψ+Ψ+Ψ=Ψ M-PYPAT (Liu et al., 2001) and 

converted to reliability with 
1IGI −+Ψ−=ℜ )( 0T4

1
T . 

 
Breeding value on 305-day lactation basis is 

defined as:  i
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where

iLu is 305-day lactation breeding value for 

lactation i, jd contains d’s for DIM j, ia contains 

regression coefficients of genetic effects for 
lactation i, w contains economic weights of first 
three lactations, and 

}',','{'' D1D1D1wv diag= . Since var(a) = 0G  

and var( â )= Tℜ0G , reliability of combined 

lactation EBV is 
vGv'

vGv'

0

0 T2
ˆ

ℜ=
combuR . By setting 

the i-th element of w to one and the others to null, 

reliability for the i-th lactation EBV 2
ˆ

iLuR can be 

calculated using the same formula as for 2
ˆcombuR . 

 

Results and Discussion 
 
The RRTDM genetic evaluation system has been 
set up using Fortran 90 and automated via Unix 
shell scripts. Library and object files are managed 
via makefile. Record layouts for input and output 
files are uniquely defined and can be easily 
modified for further development of the system. 
Only one parameter file must be changed prior to 
each genetic evaluation. Further details are 
available upon request. The system has being 
tested on a HP Unix computer HP9000/L2000 
equipped with two CPUs and 8Gb RAM. 
 

For the test run the following components were 
kept in RAM: solutions for all the effects, ARHS 
for all but p.e. effect, inverted diagonal blocks for 
both fixed effects and genetic effects for animals 
without records. For the lactation based iteration 

scheme, lll ZRZ 1
0' − for each lactation was held in 

RAM, whereas 1
0
−

lR and 1
0' −

ll RZ were read from 

disk during iteration. The positions of elements of 

llll apfh and,,, for each lactation in their 

corresponding solution or ARHS arrays were kept 
in RAM and the positions of elements of a, s, and 
d for each animal in pedigree were read 
repeatedly from disk. In total, the RAM usage was 
about 5.4Gb per trait for May 2001 test 
evaluation. Disk consumption was minimized by 
using binary storage type.  

 
Figures 1 and 2 show the convergence criterion 

(CC), that is defined as the sum of squares of 
differences in solutions between two consecutive 
rounds of iteration divided by the sum of squares 
of solutions from the last round, for every effect at 
each round of iteration for milk and fat yield, 
respectively. No starting values were used in the 
test run for any of the effects. At round 433, 298, 
and 371 CC satisfied the predefined limit 10-8 for 
all the effects for milk, fat and protein yield, 
respectively. The different rates of convergence 
among the traits can be partially explained by the 
fact that RRC of fat yield are least correlated with 
one another and RRC of milk yield are most 
correlated. It is noteworthy that the effects 
converge at a rather different speed, with HTD 
being fastest followed by p.e., fixed lactation 
curve and genetic effects. Thus, the genetic 
evaluation system will allow, after a certain 
number of initial rounds, variable iteration 
intensity to be imposed on each individual effect, 
which can maximize the rate of convergence 
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within a given time frame in routine genetic 
evaluations. In the RRTDM environmental trends 
are represented in HTD effects and fixed lactation 
curve effects through calving year classes, while 
genetic trends are shown in breeding values. From 
Figure 1 it can be seen that highly accurate 
partitioning of phenotypic trend into genetic and 
environmental components is reflected in slow 
improvement in cc for all but p.e. effects in later 
rounds of iteration. Since p.e. effect does not 
contain any trend, it converged fastest in later 
rounds. The slow convergence for fixed lactation 
curve effects was also caused by small size of 
some classes and the relatively large number of 
classes.  

 
The lactation based iteration scheme needed 

c.a. 12 minutes CPU time per round on a single 
CPU,  which  is  significantly  faster  than  the test  

 
 
 
 
 
 

day record based iteration scheme. Because the 
lactation based iteration scheme, which iterates on 
MME rather than on data, reduces the computing 
cost of RRTDM to ordinary multiple trait models, 
i.e. operations on RRC (namely setting up the 

matrices ,1
0
−

lR ,' 1
0
−

ll RZ lll ZRZ 1
0'and − ) are no 

longer required during iteration. Compared to the 
fixed regression test day model (Reents et al. 
1998) iteration program implemented with the test 
day record based iteration scheme that required 
3.8Gb RAM, the RRTDM iteration program using 
the new lactation based iteration scheme took only 
as much as 3.3 times CPU time on the same 
computer to solve as many as three times more 
equations. The genetic evaluation system enables 
the use of EBV from previous evaluation as 
starting values for iteration process, which can 
further enhance its run time performance. 

 
 

Figures 3 and 4 show reliability values for a 
cow and a progeny tested bull calculated using the 
approximation method.  The lactation progress is 
described with increasing number of tests of first 
three lactations. For the reliability calculation, 
assumptions were made on reliability values of 
bull parents and mates as well as cow parents. It 
can be seen that reliabilities of both individual 
lactation EBV and combined lactation EBV 
increase as daughters of the bull or cow herself 
progress in lactation. The increase in reliability of 
each individual lactation EBV is slowed down 
when no more actual test day records are 

available, e.g. first (second) lactation reliability 
values have increased at a slower rate after first 
(second) lactation is completed. The reliability 
approximation method was developed using both 
computational techniques and genetic theory, thus 
it is both efficient and accurate (Liu et al., 2001).  
A useful feature of this reliability method is that 
relative weights on individual components of 
EBV, data and progeny and parental 
contributions, can be extracted for every EBV so 
that a possible re-construction of any EBV can be 
done in order to explain, verify and evaluate 
genetic evaluation results.  

Figure 1. Convergence criterion (CC) for the effects 
of the RRTDM applied to May 2001 test run of 
genetic evaluation for test day milk yield
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Figure 2. Convergence criterion (CC) for the effects 
of the RRTDM applied to May 2001 test run of 
genetic evaluation for test day fat yield
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Summary 
 
Test day milk, fat, protein yield or SCS on 24-
hour daily basis from first three lactations are 
analysed with a random regression model which 
includes HTD, fixed lactation curve effects, 
permanent environmental, and additive genetic 
effects.  A highly automated and efficient genetic 
evaluation system has been set up for routine 
breeding value estimation for German Holstein 
and Red population, for which huge mixed model 
equations are to be solved, e.g. approximately 225 
million equations per trait for the May 2001 test 
run. To solve such a huge  equation system, an 
efficient lactation based iteration scheme has been 
developed and its efficiency confirmed with the 
test run. Compared to the traditional test day 
record based iteration scheme, the new iteration 
scheme avoids implicit building of random 
regression coefficient related matrices for every 
cow several times at each round of iteration, 
therefore the new iteration scheme reduces the 
computing cost of random regression models to 
ordinary multiple trait models. And this makes it 
possible for routine genetic evaluations for very 
large populations like German Holstein and Red 
breeds to be completed within a reasonable time 
frame. The lactation based iteration scheme 
improves run time performance of the system 
without extra requirement on RAM. The effects in 
the model converge at rather different rates during 
the iteration process, which suggests imposing 
variable iteration intensity to the individual effects 
in order to maximize the rate of convergence 
within a given time frame in routine genetic 
evaluations. A new method using the concept of 
multiple trait effective daughter contribution was 

outlined to approximate reliability of EBV from 
random regression models and was demonstrated 
with two examples. The method combines genetic 
theory and computational techniques, therefore it 
is both accurate and efficient for calculating 
reliability for random regression models applied 
to very large populations.  
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Figure 3. Development of reliabilities of first three 
lactation and combined EBV of SCS for a cow
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a progeny tested bull.
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