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Introduction 
 
Current methods for routine international 
evaluations are based on pre-processed 
information. This puts several restrictions on the 
method of analysis that can be used. For example, 
comparisons need to be made on genetic 
evaluation unit bases. Neighboring countries with 
similar production environments cannot be treated 
as genetically identical traits, and environmental 
variation within country cannot be utilized. Also, 
the genetic correlation between countries does not 
only depend on genotype by interaction, but on 
differences between national evaluation systems 
as well. 
 
 Access to individual performance records 
allows for international evaluations that can 
bypass some of the shortcomings of pre-processed 
input. Two procedures that consider variation in 
production environments between and within 
country, and in addition allow for more uniform 
processing of data, have been suggested for 
international genetic evaluation using 
performance records. The multiple-trait herd 
cluster model (Weigel & Rekaya, 2000) stratifies 
herds according to production environment based 
on information on environmental descriptors. In 
the genetic evaluation model production in each 
herd cluster is treated as genetically separate trait. 
Reaction norms (Kolmodin et al., 2001) models 
the phenotype as a function of environmental 
descriptor. 
 
 The objective of this study was to compare  
the results from the multiple-trait herd cluster 
model and the reaction norm model with results 
from models that treat country as production 
environment. 
 
  
 
 
 

Material and Methods 
 
Data 
 
First lactation test day observations on milk yield 
for Guernsey cows with a first lactation between 
January 1990 and December 1999 was available 
from four countries: Australia (AUS), Canada 
(CAN), United States (USA) and South Africa 
(ZAF). Data files contained information on test 
day yield, days in milk at test day, calving date, 
herd and region, date of birth and sire, dam, 
maternal grandsire and granddam. Table 1 
presents the number of cows, test day records and 
herds in each data set prior to edits. 
 
Table 1. Descriptive statistics of data before edits. 

  # cows # test day 
records 

# herds 

AUS 10,343 147, 197 606 

CAN 7,097 97,641 154 

USA 87,608 922,931 1,863 

ZAF 3,030 32,216 56 

 
 After data edits, incomplete lactation records 
were extended to 305 day lactation length, and 
analyses were based on 305 day lactation yields. 
For a description of the data edits and procedure 
for extension see Fikse et al. (2001). 
 
 Lactation yields were only included in 
subsequent analyses for cows sired by bulls with 
daughters in at least 10 herds. This was done to 
assure that pedigree information was available for 
bulls. Pedigree information was completed with 
records for bulls taken from the February 2000 
routine international evaluation for the Guernsey 
breed. 
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Statistical Models 
 
Model ST: 
 
y = fixed + sire + e 
 
 The simplest model in this study was a single 
trait sire model, with one sire and one residual 
variance common to all countries. Fixed effects 
included were herd×year×season of calving, age 
at calving and heterosis class. 
 
Model SThet: 
 
yi = fixedi + sire + ei, i=1…4 
 
 In this case, country specific residual variance 
and fixed effect solutions were estimated, relaxing 
some of the assumptions of the previous model. 
That is, for each country a separate set of 
solutions for age at calving and heterosis class and 
residual variance was computed. A sire variance 
common to all countries was assumed. 
 
Model MT: 
 
yi = fixedi + sirei + ei, i=1…4 
 
 The performance records equivalent to Mace 
allowed for a country specific sire variance in 
addition to residual variance and fixed effect 
solutions. This model also yielded genetic 
correlations between countries. 
  
Model HC: 
 
yi = fixedi + sirei + ei, i=1…C 
 
 Herds were grouped into clusters with the K-
means algorithm that minimized the within-cluster 
sums of squares (NAG, 19xx). The distance was 
computed as the weighted squared difference for 
nine environmental descriptors. These 
environmental descriptors were found to be able 
to distinguish between production environments 
in another study (Fikse et al., 2001). Weight given 
to each variable was based on both the genetic 
correlation between milk production in extreme 
environments (5% and 95% percentile values for 
herd averages of environmental descriptor) and 
the phenotypic correlation between herd averages 
for all environmental descriptors, taken from the 
study by Fikse et al. (2001). 
 

 Lactation yields were subsequently analyzed 
with a multiple trait sire model, in which each 
cluster was treated as a separate trait. The same 
three fixed effects were included as for the 
previous models. Fixed effect solutions, sire and 
residual variance were specific for each cluster. 
 
Model RR: 
 
y = fixed + sire(env) + e 
 
 Reaction norms for milk production were 
estimated with a random regression model. As 
environmental gradient the herd average for milk 
peak yield was chosen, which was the 
environmental descriptor with the lowest genetic 
correlation between milk production in extreme 
environments (Fikse et al., 2001). The regression 
model included both an intercept and linear term. 
 
 
Implementation 
 
Inferences about dispersion parameters were made 
from posterior distributions obtained with Gibbs 
sampling. Bounded uniform priors were used for 
the fixed effects. For the residual and sire variance 
weakly informative prior distributions were used. 
 
 A single chain with length 150,000 was run 
for all analyses. Burn-in and thinning parameters 
were determined with the Gibanal program 
(VanKaam, 1998). 
 
 
Model comparison 
 
Support for each model was determined with the 
Bayesian Deviance Information Criterion (DIC). 
DIC combines goodness of fit and model 
complexity, and was computed as: 
  

, 
 
 

where pD is the effective number of parameters, 
and D(θ) the expectation of Bayesian deviance. 
For computational details the reader is referred to 
Spiegelhalter et al. (1998). 
 
 

( ) 2 DDIC D p= +�
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Results and Discussion 
 
The lowest average milk production is realized in 
the countries practicing grazing systems (Table 2). 
Standard deviation of 305d milk production was 
very similar for all four countries (~ 1,200 kg). 
 
Table 2. Number, mean and standard deviation of 
lactation records per country. 

 # µ σ  

AUS 8,432 4,210 1,175 

CAN 6,417 5,385 1,220 

USA 51,493 5,750 1,276 

ZAF 2,279 4,450 1,215 

 
 
ST, SThet & MT 
 
Estimated heritability ranged between .30 and .33 
for CAN and USA for the ST, SThet and MT 
analyses (Table 3). Estimated sire and residual 
variances for both CAN and USA were also 
consistent between all three analyses (Table 4 & 
5). A common sire variance for all four countries 
was estimated for the ST and SThet model, but the 
residual variance was left to vary in the SThet 
model, and the lower residual variance in that case 
resulted in a high heritability for AUS and ZAF. 
Residual variance for the SThet and MT model 
were consistent for all models, yielding lower 
heritability for AUS and ZAF compared to the 
SThet analysis. These results indicate that both 
sire and residual variance are heterogeneous 
between countries. 
 
 The genetic correlation between countries 
obtained with the MT model were between .86 
and .90 except for CAN-ZAF (Table 6).  
 
 
HC 
 
Three clusters were identified. One cluster could 
be characterized as large herds with much 
variation of production within herd. The other two 
clusters contained smaller herds, but differed in 
intensity determined from the within-herd 
standard deviation and days in milk when the peak 
yield was realized. 
 

Table 3. Estimated heritability for the models ST, 
SThet and MT. 

 ST SThet MT 

AUS  .53 .41 

CAN  
.32 

.33 .31 

USA  .30 .32 

ZAF  .47 .15 

 
Table 4. Estimated sire variance for the models 
ST, SThet and MT. 

 ST SThet MT 

AUS   47.6 

CAN  
68.5 

 
68.3 

66.7 

USA   71.7 

ZAF   22.8 

 
Table 5. Estimated residual variance for the 
models ST, SThet and MT. 

 ST SThet MT 

AUS  435.9 436.7 

CAN  
754.9 

741.4 735.8 

USA  809.4 809.9 

ZAF  501.0 506.3 

 
Table 6. Estimated genetic correlations for the MT 
model. 

 CAN USA ZAF 

AUS .90 .87 .87 

CAN  .87 .78 

USA   .86 

 
 
 Estimated heritability in cluster 1 and 3 was 
.36 and .34, respectively, but was smaller for the 
second cluster (Table 7). The genetic correlations 
between the second and the other clusters were .91 
and .92 (Table 7), indicating that the production 
environment was slightly different. 
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Table 7. Estimated genetic parameters for the HC 
model. 

 Cluster 1 Cluster 2 Cluster 3 

 
2
sσ  

 

 
64.6 

 
63.8 

 
75.2 

 
2
eσ  

 

 
700.1 

 
787.8 

 
790.5 

h2/rg .36 .92 .95 

  .29 .91 

   .34 

 
 
RR 
 
Sire variance for the intercept and the slope of the 
reaction norms was 66.4k and 4.8k, respectively. 
The genetic correlation between both terms was 
.57. The residual variance was with a value of 
755.7k very similar to that of the ST model (Table 
5). Heritability in an average environment equaled 
.36, and the estimated correlation between milk 
production in extreme environments was .62. 
 
 
Model comparison 
 
The ST model had poorest goodness of fit judged 
from the residual sums of squares (Table 8). 
However, improved fit for some of the other 
models was at the expense of an increased 
effective number of parameters. The SThet model 
performed best as it had the lowest value for DIC 
(-749.). 
 
 
Conclusions 
 
Results indicated that variances were 
heterogeneous between production environments, 
whether classified by country or through 
environmental descriptors. There was little 
justification for treating production environments 
as separate traits, and we hypothesize that a model 
that allows for heterogeneous sire and residual 
variances will have a better fit than any of the 
models presented in this study.  
 

Table 8. Results from the comparison between 
models. 

 Deviance Eff. no. 
parameters 

      DIC 

ST 0. 6372. 0. 

SThet -788. 6411. -749 

MT -796. 6433. -734. 

HC -181. 6464. -89. 

RR -64. 6491. 77. 
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