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Abstract 

In the context of single-step genomic evaluations, current methods for predicting interim genomically 

enhanced breeding values (GEBV) for young, genotyped animals only consider new genotypes while 

ignoring new phenotypes. The aim of this study was to develop a method for predicting interim GEBV 

for animals associated with genotypes and/or phenotypes not included in a previous single-step genomic 

evaluation. The method thus developed relies on a Bayesian view of the linear mixed model for pedigree 

Best Linear Unbiased Prediction (BLUP). Assuming that single nucleotide polymorphism (SNP) effects 

are known a priori, it can be shown that a single-step genomic BLUP is equivalent to a pedigree BLUP 

with a prior mean based on direct genomic values and a prior covariance structure matrix requiring only 

pedigree information. Our method was tested on real data extracted from the December 2019 run of the 

Dutch-Flemish 4-trait evaluation for temperament and milking speed. The initial single-step evaluation 

included 6 520 406 animals (including 444 genetic groups), 4 147 302 records, and 144 086 genotypes. 

Four subsequent monthly single-step evaluations were performed by adding genotypes and phenotypes 

acquired during the corresponding additional period. Interim GEBVs for all animals in the pedigree 

were also computed for each month using our method and based on the SNP effects estimated by the 

initial single-step evaluation. For all traits, Pearson correlations between estimated SNP effects obtained 

from the initial single-step evaluation and from the four subsequent single-step evaluations decreased 

slightly over time, but were all higher than 0.98. By considering GEBVs obtained from the subsequent 

monthly single-step genomic evaluations as the references, accuracies of interim GEBVs for animals 

that were only newly genotyped, only phenotyped, or both, ranged between 0.98 and 1.00 across all 

traits. The corresponding dispersion biases ranged between 0.99 and 1.01. Therefore, our method results 

in accurate interim genomic predictions for all groups of animals. 
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Introduction 

Currently, the single-step genomic 

evaluation (Legarra et al., 2014) is the method 

of choice for simultaneously analyzing 

phenotypic and pedigree information of 

genotyped and non-genotyped animals with 

genomic information of genotyped animals. A 

first approach is the so-called single-step 

genomic best linear unbiased prediction 

(ssGBLUP; Aguilar et al., 2010; Christensen 

and Lund, 2010) that includes genomic 

information by combining genomic and 

pedigree relationships into a combined 

genomic-pedigree relationship matrix. A 

second approach is the so-called single-step 

single nucleotide polymorphism (SNP) BLUP 

(ssSNPBLUP; Fernando et al., 2014; Liu et al., 

2014) that fits the SNP effects explicitly as 

random effects in the model. However, both 

single-step approaches are still computationally 

demanding with a large number of genotyped 

animals, even if several approaches have been 

proposed in the literature to reduce these 

computational costs (e.g., Misztal et al., 2014; 

Mäntysaari et al., 2017; Vandenplas et al., 

2020). Therefore, methods were developed to 

predict interim genomic enhanced breeding 

values (GEBV) of young animals in a limited 
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amount of time without performing a full 

single-step evaluation (Lourenco et al., 2015; 

Pimentel et al., 2019). These methods rely on 

the multiplication of the genotypes of young 

animals by the estimated SNP effects obtained 

from the previous single-step genomic 

evaluation. However, these methods do not 

consider possible newly acquired phenotypes of 

young animals. The aim of this study was 

therefore to develop and test a method for the 

prediction of interim GEBVs for animals with 

genotypes and/or phenotypes not included in a 

previous single-step genomic evaluation. 

 

Materials and Methods 

Model 

In this study we derive our proposed 

method from the ssSNPBLUP linear equations 

proposed by Liu et al. (2014). If we assume that 

estimates of SNP effects �̂� are known before 

performing a single-step genomic evaluation, 

then we can assume the following prior 

multivariate normal (𝑀𝑉𝑁) distributions for the 

genetic additive effects 𝐮: 

[𝐮|�̂�, 𝐀∗] ∼ 𝑀𝑉𝑁(�̂�, 𝐀∗𝜎𝑢
2) 

with 

�̂� = [
𝐀𝑛𝑔𝐀𝑔𝑔

−1

𝐈
] 𝐙�̂� 

and 

𝐀∗−1 = [
𝐀𝑛𝑛 𝐀𝑛𝑔

𝐀𝑔𝑛 𝐀𝑔𝑔 + (
1

𝑤
− 1)𝐀𝑔𝑔

−1], 

where the subscripts 𝑛 and 𝑔 refer to 

ungenotyped and genotyped animals, 

respectively, 

 𝐀−1 = [
𝐀𝑛𝑛 𝐀𝑛𝑔

𝐀𝑔𝑛 𝐀𝑔𝑔
]
−1

= [
𝐀𝑛𝑛 𝐀𝑛𝑔

𝐀𝑔𝑛 𝐀𝑔𝑔] is 

the inverse of the pedigree relationship matrix 

partitioned between genotyped and 

ungenotyped animals, 𝑤 is the proportion of 

additive genetic variance explained by the 

residual polygenic effects, 𝜎𝑢
2 is the genetic 

variance, 𝐙 is the genotyped matrix centered 

with observed allele frequencies, and 𝐈 is an 

identity matrix. 

The system of equations associated with 

these assumptions is written as follows: 

[
𝐗′𝐑−1𝐗 𝐗′𝐑−1𝐙
𝐙′𝐑−1𝐗 𝐙′𝐑−1𝐙 + 𝐀∗−1𝜎𝑢

−2] [
�̂�
�̂�
] =

[
𝐗′𝐑−1𝐲

𝐙′𝐑−1𝐲 + 𝐀∗−1𝜎𝑢
−2�̂�

] (1) 

where �̂� is the vector of estimated fixed effects, 

𝐲 is the vector of records, 𝐑−1 is the inverse of 

the residual variance structure matrix, and 𝐗 and 

𝐙 are incidence matrices relating records to the 

fixed and additive genetic effects, respectively. 

The system of equations (1) is equivalent 

to a single-step genomic evaluation, either 

ssGBLUP (Christensen and Lund, 2010) or the 

ssSNPBLUP proposed by Liu et al. (2014), 

from which the estimates of SNP effects �̂� 

would be computed. It can be shown that the 

system of equations (1) is equivalent to the 

system of equations (16) of Liu et al. (2014) 

after some algebra. 

By using the estimates of SNP effects 

from a previous single-step genomic evaluation, 

the proposed system of equations (1) can be 

used to compute interim GEBVs for all 

genotyped and ungenotyped animals by 

considering previously included and newly 

acquired genotypes and phenotypes. 

Data 

The new method was tested on a dataset 

and associated variance components provided 

by CRV BV (The Netherlands) and extracted 

from the December 2019 run of the Dutch-

Flemish four-trait evaluation for temperament 

and milking speed (CRV, 2020a, 2020b). 

Performances in both countries were considered 

as different traits, with genetic correlations 

between Dutch and Flemish traits higher than 

0.85. A single record per animal was observed. 

The four-trait mixed model included random 

effects (additive genetic and residual), fixed co-

variables (heterosis and recombination), and 

about:blank#mme
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fixed cross-classified effects (herd × year × 

season at classification, age at classification, 

lactation stage at classification, milk yield and 

month of calving). More details can be found in 

CRV documents (CRV, 2020a, 2020b). 

Single-step evaluations 

A total of five ssSNPBLUP evaluations 

were performed: the initial ssSNPBLUP 

evaluation that included all phenotypes and 

genotypes available until month 0, and four 

subsequent monthly ssSNPBLUP evaluations 

that included additional data available until the 

corresponding month (from month 1 until 

month 4). The initial ssSNPBLUP evaluation 

aimed to mimic a routine ssSNPBLUP 

evaluation, and the four subsequent 

ssSNPBLUP evaluations were considered as 

reference evaluations for validating our 

developed interim genomic prediction method. 

For the initial ssSNPBLUP evaluation, a 

total of 4 147 302 records were available, the 

pedigree included 6 520 406 animals (including 

444 genetic groups), and the genotypes of 144 

086 animals were available (Table 1). Only the 

genotypes of the animals with a record included 

in a single-step evaluation and of their ancestors 

were considered. After removing non-

segregating SNPs and SNPs with a minor allele 

frequency lower than 0.01, genotypes included 

37 995 segregating SNPs. 

The four subsequent monthly 

ssSNPBLUP evaluations were performed by 

adding to the initial data sets, the phenotypes 

acquired during the corresponding additional 

period, as well as the genotypes of the newly 

phenotyped animals and of their ancestors. The 

different amounts of genotypes and phenotypes 

added at each additional period (in comparison 

to the initial datasets) can be found in Table 1. 

Interim genomic prediction 

For each additional month (i.e., from 

month 1 until month 4), interim GEBVs were 

computed for all animals in the pedigree using 

the method’s system of equations (1) and the 

estimated SNP effects obtained from the initial 

ssSNPBLUP evaluation. 

 

Table 1. Amounts of genotypes and phenotypes available for the initial single-step evaluation and added each 

month to the initial datasets. 

 
 

Evaluation at month 

  0 +1 +2 +3 +4 

Genotypes  144 086 +2 644 +4 359 +7 492 +9 680 

Phenotypes Trait 1 3 814 020 +8 664 +15 057 +25 448 +32 861 

 Trait 2 3 480 757 +6 673 +11 567 +20 140 +25 644 

 Trait 3 176 632 +0 +0 +0 +0 

 Trait 4 360 453 +1 436 +2 556 +3 356 +4 437 

Analysis 

For all traits, Pearson correlations between 

estimated SNP effects obtained from the initial 

ssSNPBLUP evaluation and from the four 

subsequent monthly ssSNPBLUP evaluations 

were computed. Furthermore, for the four 

interim genomic predictions, we computed (a) 

accuracy defined as the Pearson correlation 

between GEBVs of the subsequent 

ssSNPBLUP and interim GEBVs, (b) level bias 

defined as the difference between mean GEBV 

from the subsequent ssSNPBLUP evaluations 

and the corresponding mean interim GEBV, in 

genetic standard deviation units, and (c) 

dispersion bias defined as the slope of the 

regression of GEBVs from the subsequent 

ssSNPBLUP evaluations on the interim 

GEBVs. For the four interim genomic 

predictions, the different estimators were 

computed for animals with (a) a genotype 

acquired since the initial ssSNPBLUP 

evaluation, (b) a record acquired since the initial 

ssSNPBLUP evaluation, (c) both, and (d) for 

about:blank#mme
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animals without new genotype or phenotype, 

i.e. all other animals in the pedigree. 

The systems of equations for all the 

ssSNPBLUP evaluations and interim genomic 

predictions were solved using a two-level 

preconditioned conjugate gradient (PCG) 

approach implemented in a Fortran 2003 

program (Vandenplas et al., 2019, 2020). For all 

the systems, the PCG approach iterated until the 

criterion CK defined by Vandenplas et al. 

(2021) was ≤ 0.5. 

 

Results & Discussion 

On average, for each subsequent monthly 

ssSNPBLUP evaluation, around 2 400 

genotypes (that is about 1.7 % of the amount of 

genotypes available in the initial single-step 

evaluation) were added to the genotype set used 

by the previous monthly ssSNPBLUP 

evaluation. The number of phenotypes added 

monthly to each subsequent ssSNPBLUP 

evaluation and interim genomic prediction 

varied from 0 (trait 3) to around 8 200 (trait 1; 

Table 1). The amounts of animals without 

newly acquired genotype and phenotype, with 

newly acquired genotype, with newly acquired 

phenotype, or both, are in Table 2. 

For all traits, Pearson correlations between 

SNP effects estimated by the initial 

ssSNPBLUP evaluation and by the subsequent 

ssSNPBLUP evaluations were equal to 0.997 

for month 1, 0.995 for month 2, 0.991 for month 

3, and 0.988 for month 4. These correlations 

close to 1 show that the estimated SNP effects 

are little influenced by the additional 

phenotypes and genotypes. Further research is 

needed to analyze the stability of estimated SNP 

effects across time. 

 

Table 2. Amounts of animals without newly acquired genotype and phenotype, with newly acquired genotype, 

with newly acquired phenotype, or both. 

Animals Trait Month 
  

1 2 3 4 

Without new genotype or phenotype 1 6 511 509 6 504 893 6 494 151 6 486 556 
 

2 6 512 862 6 507 376 6 497 933 6 491 613 
 

3 6 517 762 6 516 047 6 512 914 6 510 726 
 

4 6 516 675 6 5141 19 6 510 443 6 507 521 

With a new genotype only 1 233 456 807 989 
 

2 871 1 463 2 333 3 149 
 

3 2 644 4 359 7 492 9 680 
 

4 2 295 3 731 6 607 8 448 

With a new phenotype only 1 6 253 11 154 18 763 24 170 
 

2 4 900 8 671 14 981 19 113 
 

3 0 0 0 0 
 

4 1 087 1 928 2 471 3 205 

With a new genotype and phenotype 1 2 411 3 903 6 685 8 691 
 

2 1 773 2 896 5 159 6 531 
 

3 0 0 0 0 
 

4 349 628 885 1232 

 

 

Figures 1, 2, and 3 depict accuracy, level 

bias, and dispersion bias of interim GEBVs, 

respectively, for the four subsequent monthly 

evaluations, and for the animals with newly 

about:blank#table_addedgenopheno
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acquired genotype, with newly acquired 

phenotype, both, as well as for animals without 

new genotype and phenotype. Overall, across 

all traits, all subsequent evaluations and all 

groups of animals, the accuracies ranged 

between 0.98 and 1.00 (Figure 1), the level 

biases ranged between -0.02 and 0.00 genetic 

standard deviation (Figure 2), and the 

dispersion biases ranged between 0.99 and 1.01 

(Figure 3). Therefore, the proposed interim 

genomic prediction method yields highly 

accurate interim GEBVs for all animals with or 

without newly acquired genotype or phenotype. 

The main differences between interim GEBVs 

and GEBVs from subsequent ssSNPBLUP 

evaluations were mainly observed for animals 

with a newly acquired genotype (with or 

without a new phenotype). For these animals 

the accuracies decreased over time, while the 

absolute values of level bias increased. 

 

 
Figure 1. Accuracies of interim GEBVs for animals with newly acquired genotype (green), newly acquired 

phenotype (red), both (blue), and for animals without new genotype and phenotype (purple). 
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Figure 2. Level biases (expressed in genetic standard deviation) of interim GEBVs for animals with newly 

acquired genotype (green), newly acquired phenotype (red), both (blue), and for animals without new genotype 

and phenotype (purple). 

 

 
Figure 3. Dispersion biases of interim GEBVs for animals with newly acquired genotype (green), newly acquired 

phenotype (red), both (blue), and for animals without new genotype and phenotype (purple). 

 

In comparison to interim genomic 

prediction methods previously proposed in the 

literature (e.g., Lourenco et al., 2015; Pimentel 

et al., 2019), our proposed prediction method 

considers newly acquired phenotypes for 

computing interim GEBVs, without solving a 

ssSNPBLUP evaluation. Furthermore, as it can 

be deduced from the system of equations (1), 

and based on a computational approach as 

detailed in Vandenplas et al. (2020), the 

computational costs (in terms of time and 

memory) of the proposed interim genomic 

prediction method are similar to the 

computational costs of solving a pedigree 

BLUP with a PCG approach. Therefore, our 

method could be of interest for evaluating traits 
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for which phenotypes (or pseudo-phenotypes 

like deregressed proofs) would be available at 

the same time as genotypes. 

Our method also has the advantages of 

correctly considering GEBV mean, genetic 

groups associated with animals not included in 

the initial ssSNPBLUP evaluation, and the 

implicit imputation of genotypes. Issues with a 

mean shift in interim GEBVs and with genetic 

groups were reported in the literature, together 

with possible solutions (e.g., Lourenco et al., 

2015; Pimentel et al., 2019). Such issues cannot 

appear with our method because all (old and 

new) animals in the pedigree are considered 

simultaneously for the interim prediction. 

Finally, as mentioned by Pimentel et al. (2019), 

interim genomic predictions that do not involve 

the solving of a system of equations derived 

from a single-step mixed model equations (e.g., 

Lourenco et al., 2015; Pimentel et al., 2019) can 

only yield approximate GEBVs, because the 

newly acquired genotypes not included in a 

single-step evaluation cannot influence the 

GEBVs of genotyped and ungenotyped animals 

(through linear imputation) included in this 

evaluation (Shabalina et al., 2017; Pimentel et 

al., 2019). With our method, the newly acquired 

genotypes will influence the GEBVs of all 

animals included in the system of equations (1) 

through the imputation of DGVs of 

ungenotyped animals. Indeed, as already 

mentioned, our interim genomic prediction 

method will result in the same GEBVs as a full 

single-step evaluation if the estimated SNP 

effects are the same in both evaluations. 

The interest of our proposed interim 

genomic prediction method over methods 

previously proposed in the literature (e.g., 

Lourenco et al., 2015; Pimentel et al., 2019), 

will depend on several factors, such as the 

structure of the phenotype and genotype 

datasets, the amount of animals with newly 

acquired phenotypes and genotypes, or even the 

time available for computing interim genomic 

predictions. Indeed, the computational costs of 

our method are expected to be higher than 

previously proposed methods for which one of 

the main costs is the multiplication of the 

genotype matrix by the estimated SNP effects. 

As discussed above, however, our method is 

more robust than previously proposed interim 

prediction methods. 

 

Conclusions 

Assuming that the SNP effects are known 

a priori, i.e. from a recent single-step genomic 

evaluation, we developed a method for 

computing interim genomic predictions for 

animals with newly acquired genotype, 

phenotypes, or both. We showed that our 

method results in accurate interim genomic 

predictions for all groups of animals. 
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