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Abstract 

Genetic groups are often used in genetic evaluations to account for selection that cannot be accounted 

for by kinship. The genetic groups can be fitted as random or fixed effects, both in traditional BLUP 

and in single-step genomic predictions (ssGBLUP). In this study, we investigate how inclusion of 

genetic groups affect the predictive ability and bias in a large-scale three-trait ssGBLUP model for kg 

of milk, fat percentage, and protein percentage in Norwegian Red cattle. Including genetic groups as 

random effects rather than fixed effects reduced bias of breeding values. Specifically, for genotyped 

animals and ungenotyped animals with genotyped offspring and with sparse pedigree data, the bias of 

the Mendelian term of breeding values was reduced by about 25%, when fitting genetic groups as 

random compared to fixed.      
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Introduction   

 

Geno SA has been running single step 

genomic predictions (ssGBLUP) (Christensen 

and Lund, 2010; Legarra et al., 2009) for all 

traits in the routine evaluations of Norwegian 

Red since 2017. All selection has been based on 

indexes from these evaluations, performed 

approximately every second week. For traits 

with strong genetic progress, genetic groups 

(Quaas, 1988) have been used to account for 

selection that cannot be accounted for by 

kinship.  

 The genetic groups were initially modelled 

explicitly as fixed covariate regressions  

(Nordbø et al., 2019), which is equivalent to 

QP-transformation of the inverse of the unified 

pedigree and genomic relationship matrix H-1 

(Misztal et al., 2013). However, this approach 

led to some incorrect extreme EBV levels for 1) 

genotyped individuals with missing ancestry 

and 2) ungenotyped animals with missing 

ancestry and genotyped offspring.  For that 

reason, only the pedigree-based relationship 

matrix A is now augmented to include genetic 

groups, by using QP transformation on A-1.   

 By ignoring the genomic contributions in 

the genetic groups, the abovementioned bias 

was reduced considerably. However, some of it 

seems still to remain. To further improve the 

quality of the genomic predictions, we test in 

this study whether fitting genetic groups as 

random effects versus fixed effects could 

influence the remaining bias. 

 

Materials and Methods 

Modelling 

To investigate the effect of fitting genetic 

groups as fixed versus random, we applied a 

multi-trait repeatability model for lactation 

production of kg milk, fat percentage and 

protein percentage. Approximately 8.1 million 

305-day records from 1st to 5th lactation, on 3.8 

million animals, were included in the data set. 

Heritabilities and genetic correlations are 

shown in Table 1.     
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The following repeatability model was used 

for prediction of breeding values: 𝑦𝑖𝑗𝑘𝑙𝑚𝑛𝑜 =

𝑌𝑀𝐿𝑖 + 𝐴𝐿𝑀𝑗 + 𝐷𝑜𝐿𝑘 + 𝐻5𝑌𝑙 + 𝛽𝑚 ∗ 𝐻𝑒𝑡 +

𝑝𝑒𝑛 + 𝑔𝑒𝑛𝑛 + ℎ𝑦𝑜 + 𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜.  

Fixed effects were YMLi = Year × Month × 

Lactation number, i=1,…1778, ALMj = Age at 

calving × Lactation number × Milking system, 

j=1,…291, DoLk = Days open × Lactation 

number, k=1,…71, and H5Yl = Herd × 5 years 

period, l=1,…132 089.   

Random effects were pen = Permanent 

environment, genn = additive genetics, hyo = 

herd × year, o=1,…682 251, and eijklmno = 

residual error.   

In addition, to correct for heterosis, 

heterozygosity of SNP-markers (Het), was 

fitted as fixed linear regressions (𝛽𝑚) within 

lactation number (m=1,…5). For genotyped 

animals, we used the proportion of heterozygote 

SNPs directly (Iversen et al., 2019). For 

ungenotyped animals, heterozygosity was 

predicted based on linear regression with 

inbreeding coefficient as independent variable. 

The true heterozygosity and inbreeding 

coefficient of the genotyped animals were used 

to estimate the regression coefficients. 

Table 1. Heritabilities (diagonal) and genetic 

correlations between Kg milk, protein % and fat % 

(off-diagonal) 

 Kg milk Protein % Fat % 

Kg milk 0.42   

Protein % -0.44 0.61  

Fat% -0.36 0.62 0.36 

 

The phenotypes (y) had been pre-corrected for 

heterogeneous variance due to Age at calving ×  

Lactation number × Milking System.  

 

Pedigree and genotypes 

The pedigree consisted of 4.8 million 

animals. Missing pedigree data were grouped 

by year of birth and by the following three 

classes: the missing parent is a missing AI sire, 

the missing parent is a missing farm bull, or the 

missing parent is a missing dam. This resulted 

in 118 genetic groups. In total, about 7% of the 

animals had missing dam and 14% had missing 

sire.  

 In total, imputed genotypes were available 

for 124 493 animals with 121 740 SNPs. We 

used equal allele frequencies (0.5) for all SNPs 

when constructing the genomic relationship 

matrix 𝐆 (Aguilar et al., 2010; VanRaden, 

2008), which was subsequently scaled by 

multiplying a parameter to all matrix elements 

to make the average diagonal elements equal to 

1 (Forni et al., 2011). Then the additive pedigree 

relationship matrix was weighted by 10% to 

account for genetic effects that are not captured 

by the SNPs. The HGINV program (Strandén 

and Mantysaari, 2016) was used to build the 

combined inverse pedigree and genomic 

relationship matrix 𝐇−1.  

 To investigate how genetic groups affected 

the predictive ability, we made two different 

prediction models, one where genetic groups 

were fitted as fixed effects, and one where they 

were fitted as random effects. In the latter 

model, they were given the same variance as the 

additive genetic effect. These two scenarios 

were compared with each other and with a 

corresponding best linear unbiased predictions 

(BLUP) model that excluded genomic 

information. All predictions were made, using 

MiX99 (MiX99 Development Team, 2017). 

    

Validations 

For validation of genomic predictions, we 

applied the Interbull’s GEBV test (Mäntysaari 

et al., 2010), where the 5 last years of data  were 

masked before performing genomic 

predictions. The estimated breeding values 

(EBV) were then compared with daughter yield 

deviations (DYD) from the corresponding 

BLUP using weighted linear regression. 

 Level-bias (Nordbø et al., 2019), the average 

change in breeding value when adding an 

animal’s genomic data into 𝐇−1,  was 

investigated by masking the genotypes of 1000 

young animals. To prevent any potential shift in 

levels for all animals between subsequent runs, 

the EBVs were first scaled internally using all 
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Norwegian proven bulls. The mean change in 

EBVs of these 1000 young animals between 

ssGBLUP runs when excluding and including 

their genomic information was then divided by 

the genetic standard deviation as in (Nordbø et 

al., 2019). 

 Further, we looked at how EBVs deviated 

from the parental average for groups of animals. 

The deviation from parental average was 

divided by the genetic standard deviation to 

make the term, MSBias, easier to interpret: 

𝑀𝑆𝐵𝑖𝑎𝑠

= Mean (
𝐸𝐵𝑉 − 0.  5(𝐸𝐵𝑉𝑠𝑖𝑟𝑒 + 𝐸𝐵𝑉𝑑𝑎𝑚)

𝜎𝑔

) 

The relevant groups consisted of genotyped 

animals and ungenotyped animals with 

genotyped offspring, and with zero, one, two, 

three or four missing grandparents.   

Finally, we investigated the genetic trends 

(average of EBVs of animals, based on birth 

year). We then looked at genetic trends from the 

BLUP model versus those from the ssGBLUP 

models, with full or reduced dataset (masked 5 

last years of data). 

 

Results 

The reliabilities, R
2

 and regression 

coefficients, β from the GEBV-test were 

relatively insensitive to the method of including 

genetic groups (Table 2). Both methods gave 

satisfactory reliabilities and regression 

coefficients close to 1 and both models passed 

the Interbull’s GEBV test.  

 

Table 2. Reliabilities, R
2

 and regression coefficients, 

β from the GEBV-test for three traits and the two 

different models, where genetic groups were fitted as 

fixed or random effects   

 Kg milk Protein % Fat % 

 R
2

 β R
2

 β R
2

 β 

Fixed 0.573 1.02 0.63 0.96 0.699 1.11 

Random 0.574 1.02 0.63 0.96 0.700 1.11 

 

The magnitudes of level-biases were small, 

and insensitive to the method for fitting genetic 

groups (Table 3). 

Table 3. The mean change in breeding values when 

including genomic information (level-bias) for three 

traits and the two different models, where genetic 

groups were fitted as fixed vs. random effects   

 Kg milk Protein % Fat % 

Fixed 0.02 0.00 0.00 

Random 0.02 0.00 0.00 

 

Compared with the measures mentioned 

above, MSBias was more sensitive to the method 

for fitting genetic groups. When fitting genetic 

groups as random effects instead as fixed, 

MSBias for Kg Milk was smaller for the group of 

genotyped and ungenotyped animals with 

genotyped offspring (Figure 1). This difference 

was more prominent when the amount of 

missing ancestry was larger. For 3 and 4 

missing grandparents, MSBias was reduced by 

about 25% when fitting groups as random 

versus fixed. MSBias for Protein% and Fat% 

were generally low, about 10% of the values 

obtained for Kg Milk.  

 

 

Figure 1. Mean deviation from parental average 

EBVs (MSBias) for kg of milk, for genotyped animals 

and ungenotyped animals with genotyped offspring, 

and for different number of missing grandparents. 

To the left genetic groups are fitted as fixed and to 

the right, as random effects.   

 

Fitting genetic groups as a random rather 

than fixed made the genetic trend more like the 
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BLUP trend (Figure 2). In addition, the 

correspondence between genetic trends based 

on ssGBLUP predictions with full and reduced 

datasets improved.    

 

Discussion 

In the current study we observed that fitting 

genetic groups as random effects led to less bias 

in ssGBLUP predictions when compared to 

fitting genetic groups as fixed effects. Using 

random groups reduces the MSBias term for 

relevant groups of animals and it gives 

improved correspondence between genetic 

trends for BLUP and ssGBLUP, based on both 

reduced and full data sets. Because of selective 

genotyping of good animals and preferential 

treatment of bull-dams (Pedersen et al., 1995), 

the MSBias should not be expected to be equal to 

zero. However, one should expect that it should 

stay at the same level, independent on the 

amount of missing ancestry. Hence, we 

conclude that the model where the genetic 

groups were fitted as random effects were less 

biased. 

The results from Interbull’s GEBV-test 

indicate that fitting genetic groups as random 

effects gave marginally improved accuracy 

compared to fitting genetic groups as fixed 

effects.  Regression coefficients were the same 

for both approaches. Their magnitudes support 

the hypothesis, together with the good 

correspondence between genetic trends, that the 

genomic predictions for milking traits on 

Norwegian Red are unbiased. Many cows and 

heifers have been genotyped the last couple of 

years, so the reference population has grown 

fast. Random genetic groups will be included in 

our future model development. 

 

 

Figure 2. Genetic trend, in terms of genetic standard 

deviation, 𝜎𝑔, for kg of milk for evaluation without 

genomic information (BLUP) vs. single-step 

evaluations using full (ssGBLUPFull) and reduced 

dataset (ssGBLUPRed). In the upper panel, genetic 

groups were fitted as fixed effects and in the lower, 

as random effects. 
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