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Introduction 
 
Routine international genetic evaluations for 
conformation traits are performed for Holstein and 
Jersey. Results from a pilot-run for Guernsey 
(Klei & Lawlor, 2002) and a test-run for Brown 
Swiss were promising, and these breeds will 
probably join Interbull conformation evaluations 
in the near future. There is also a strong wish from 
various national Ayrshire societies to have across 
country genetic evaluations for Ayrshire 
conformation traits. However, such evaluations 
are hampered by very poor genetic connectedness 
among Ayrshire populations. Poor connectedness 
makes estimation of genetic correlations and 
contrasts between country effects difficult. In a 
recent study, Klei and Lawlor (2001) estimated 
genetic correlations among conformation traits in 
nine different Ayrshire populations. Results from 
this study were in some cases unexplainable, 
except because of sampling due to weak 
connectedness. 
 

Bayesian methodology incorporates prior 
information in the inference of dispersion 
parameters. With such methodology it is possible 
to use parameters obtained from another breed 
(i.e. Holstein) as prior information in the 
estimation of Ayrshire parameters. This is a viable 
approach when reliable estimates are available 
from another breed, little information is available 
in Ayrshire data, and traits are expected to be 
similar for the two breeds. Recently, the 
classification of Ayrshire conformation traits has 
been harmonised with Holstein, and traits are 
expected to be quite similar between Ayrshire and 
Holstein within countries. The uncertainty of all 
parameters is taken into account in Bayesian 
inferences. Thus if breeding values are predicted 
the uncertainty of genetic parameters and 
contemporary group effects (e.g. country effect) 
are accounted for and affect predictions and their 

reliabilities. This property seems desirable for 
especially poorly connected data. 

 
A Gibbs Sampler applied to Multiple-trait 

Across Country Evaluations (MACE) was 
developed by Jensen and Madsen (2002). The aim 
of this study was to apply this method to 
simultaneously estimate genetic parameters, 
country effects and predict international breeding 
values for Ayrshire conformation traits and to 
study the impact of prior information on posterior 
parameters. 
 

Material and Methods 
 
Data 
 
National genetic evaluation results for 18 Ayrshire 
conformation traits from nine countries were 
available. These countries were Australia (AUS), 
Canada (CAN), Denmark (DNK), Finland (FIN), 
the Unted Kingdom (GBR), Norway (NOR), New 
Zealand (NZL), Sweden (SWE) and the United 
States (USA). For AUS, GBR, NOR and NZL the 
same data as described by Klei and Lawlor (2001) 
were used whereas more recent evaluation results 
were submitted from the other countries. For 
simplicity only results for Fore Udder are shown 
here. Fore udder was chosen because all 
participating countries had data available for this 
trait unlike most other traits. 
 

The amount of genetic ties and total number of 
bulls with data included in the analysis are shown 
in Table 1. The number of genetic ties has 
increased slightly for some country combinations, 
since data were collected by Klei and Lawlor 
(2001), but mostly for those country combinations 
that already had most genetic ties. The use of 
foreign bulls was still very unevenly distributed 
across countries for the Ayrshire data considered 
in this study (Table 1).
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Table 1. Number of common bulls (below diagonal), common ¾ sib families (above diagonal) and total 
number of bulls with data (on diagonal) included in parameter estimation and prediction of breeding values. 
 

 AUS CAN DNK FIN GBR NOR NZL SWE USA  

AUS 148 8 0 1 2 0 3 1 6  

CAN 8 478 2 6 21 0 17 5 70  

DNK 0 2 864 4 0 1 2 17 0  

FIN 1 6 4 1453 1 3 5 29 2  

GBR 2 26 0 1 189 0 11 1 13  

NOR 0 0 1 2 0 1732 0 10 0  

NZL 3 15 2 5 12 0 288 6 11  

SWE 1 5 14 23 1 7 6 586 1  

USA 6 61 0 2 13 0 10 1 175  

 
 
Methods and prior information 
 
National evaluation results were deregressed 
within country (Jairath et al., 2001). The 
deregressed national evaluation results were used 
as dependent variable in Bayesian MACE. The 
same heritabilities as was used in national 
evaluations were used in the deregression. 
Heritabilities ranged between 0.19 (CAN) and 
0.30 (SWE), except for NOR where the 
heritability was 0.061. 
 

A Gibbs Sampler applied to MACE (Jensen & 
Madsen, 2002) was used to simultaneously 
estimate (co)variance components and predict 
international breeding values. Prior (co)variance 
matrices were assumed to follow an inverse 
Wishart distribution with equal prior belief (i.e. 
degrees of freedom; df) for all elements. 
Estimated genetic correlations for Holstein fore 

udder (Interbull, 2002) measured in the same 
countries were used as prior information when 
available. Norway was the only country where 
Holstein estimates were not available. The prior 
correlations between Norway and other countries 
were set to the lowest estimated Holstein 
correlation for the other country. This resulted in 
the prior correlations shown in Table 2. For 
simplicity EM-REML estimates (from a well-
connected subset of the same data) for sire and 
residual variances were used as prior for these 
components. 

 
The same degree of belief (weight) was given 

to the prior for each (co)variance component in 
each analyses, but weights of 5, 10 and 100 df 
were used in different analyses to study the effect 
of weight on prior information on posterior 
estimates. One df corresponds to one extra animal 
with its true breeding value known. 
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Table 2. Prior genetic correlations (above diagonal) and sire standard deviations (on diagonal). 
 

 AUS CAN DNK FIN GBR NOR NZL SWE USA  

AUS .231 .80 .79 .64 .85 .59 .80 .59 .77  

CAN  2.129 .95 .70 .94 .70 .82 .73 .94  

DNK   .751 .78 .92 .78 .89 .81 .92  

FIN    .292 .67 .63 .78 .92 .63  

GBR     .303 .67 .88 .70 .92  

NOR      .849 .72 .59 .63  

NZL       .184 .72 .82  

SWE        .293 .68  

USA         1.633  

 
(Co)variances were also estimated with EM-

REML applied to a reduced set of MACE 
equations (Klei & Weigel, 1998) and country 
effects and breeding values were obtained with 
traditional MACE (Schaeffer, 1994) for 
comparison. 
 

Genetic groups were created based on selection 
path, birth year of the bull and country of first 
registration. A relaxed grouping strategy was used 
to avoid initial problems with many groups having 
very little information, i.e. only 12 groups 
consisting of 398 to 1042 phantom parents were 
formed. 

 
210,000 rounds of iteration were used as burn-

in and were followed by 100,000 rounds with an 
interleave of 10 rounds, i.e. a total of 10,000 
samples were available for inferences for each of 
the three analysis. 

 
 

Results and Discussion 
 
The 10,000 samples used for inferences 
corresponded to 48-199, 66-275 and 502-2254 
effective samples for sire (co)variances for 5, 10 
and 100 df, respectively. Effective sample sizes 
were higher for residual variances and ranged 
between 114-465, 127-298 and 567-2881 for 5, 10 
and 100 df, respectively. Longer chains could be 
run to increase effective sample sizes. The burin 
period was unusually high, which could be due to 
the many parameters which needed to be 
estimated based on little information. There were 
very high auto-correlations between samples 

(lag10 correlations >0.9), which resulted in poor 
mixing and made it necessary to use many rounds 
as burnin. 
 

Estimated genetic correlations for different 
methods and weights on prior information are 
shown in Table 3 for three different country 
combinations representing poor, medium and 
well-connected populations, respectively. 

 
Gibbs sampling estimates were expected to be 

similar to REML estimates when a flat prior was 
used, but were expected to move towards the prior 
correlation as the prior weight increased and at a 
higher rate for poorly connected estimates. Gibbs 
sampling estimates were different from EM-
REML estimates. Differences between Gibbs 
sampling estimates (df=5) and EM-REML 
estimates ranged from -0.04 to 1.25 for all 
countries (average difference was 0.44). But as the 
prior weight (df) increased the estimates did tend 
to move towards the prior correlations, although 
relatively little except for estimates based on little 
information in data. The largest change in 
estimated genetic correlation when increasing the 
prior weight from 5 to 100 df was 0.32 for the 
correlation between NOR and SWE. The largest 
change in the opposite direction of the prior 
correlation was for the correlation between FIN 
and SWE (-0.02) and the average change for all 
correlations was 0.12. 

 
Posterior standard deviations of Gibbs sampling 

estimates were expected to decrease as the  prior  
weight  increased.  On  average this was also the 
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case 5 100 5( . .100%( ) /DF DF DFi e SE SE SE= = =−  was 

on average 10.2 percent for genetic correlations), 
but single posterior standard deviations on 
estimated genetic correlations were higher for 100 
df compared with 5 df. This was because the 
estimated correlations in some cases changed 
substantially, and posterior standard deviations on 
(co)variance components more consistently 
moved in the expected direction, i.e. the relative 

decrease in posterior standard deviations on sire 
(co)variances ranged from 0.0 to 40.4 percent 
when df increased from 5 to 100. Similarly the 
relative decrease in residual (co)variances ranged 
from 6.5 to 54.2 percent. Posterior standard 
deviations tended to be largest for parameters for 
poorly connected countries and countries with low 
heritability. 

 
Table 3. Genetic correlations estimated with EM-REML and mean posterior genetic correlation estimates (± 
posterior standard deviation) for Gibbs sampler (Gibbs) for different weights on prior information (df) and 
three selected country combinations. 
 

Method df  USA-NOR  USA-NZL  USA-CAN   

REML -  .948  .772  .908   

Gibbs 5  .913 ± .057  .906 ± .049  .996 ± .003   

Gibbs 10  .733 ± .131  .906 ± .045  .989 ± .005   

Gibbs 100  .663 ± .056  .917 ± .014  .971 ± .005   

Prior -  .63  .82  .94   

 
 
Estimated genetic parameters for 10 df are 

shown in Table 4. Estimated genetic correlations 
ranged between 0.66 (FIN-NOR) and 0.99 (e.g. 
CAN-USA). Estimated genetic correlation were in 
most cases higher compared with EM-REML 
estimates from the same data (results not shown) 

and showed less variability across countries. 
Posterior standard deviations of estimated genetic 
correlations ranged between 0.005 (CAN-USA) 
and 0.15 (FIN-NOR). Residual correlations were 
also estimated and were close to zero (0.00 to 
0.02) among countries as expected. 

 
 
Table 4. Estimated (± posterior standard deviation) genetic correlations (above diagonal), sire variances (on 
diagonal) and residual correlations (below diagonal) among fore udder in 9 Ayrshire countries (df=10). 
 

 AUS CAN DNK FIN GBR NOR NZL SWE USA  

AUS .054 ± .009 .90 ± .05 .91 ± .05 .88 ± .05 .91 ± .05 .73 ± .13 .95 ± .03 .90 ± .05 .88 ± .06  

CAN .00 ± .03 5.99 ± .62 .99 ± .01 .74 ± .10 .96 ± .02 .75 ± .13 .93 ± .04 .89 ± .05 .99 ± .00  

DNK .00 ± .03 .00 ± .02 .664 ± .068 .79 ± .09 .98 ± .01 .81 ± .10 .96 ± .02 .91 ± .04 .97 ± .01  

FIN .00 ± .02 .00 ± .02 .00 ± .02 .051 ± .007 .80 ± .09 .66 ± .15 .85 ± .06 .91 ± .04 .68 ± .12  

GBR .02 ± .05 .00 ± .04 .00 ± .03 .00 ± .02 .117 ± .016 .80 ± .10 .94 ± .03 .93 ± .03 .94 ± .03  

NOR .00 ± .02 .00 ± .02 .00 ± .02 .00 ± .02 .00 ± .02 .278 ± .079 .83 ± .09 .69 ± .13 .73 ± .13  

NZL .00 ± .04 .00 ± .03 .00 ± .03 .00 ± .02 .00 ± .04 .00 ± .02 .025 ± .004 .90 ± .04 .91 ± .04  

SWE .00 ± .03 .00 ± .03 .00 ± .02 .01 ± .02 .00 ± .03 .00 ± .02 .00 ± .03 .071 ± .011 .86 ± .06  

USA .01 ± .05 .01 ± .04 .00 ± .03 .00 ± .02 .00 ± .05 .00 ± .02 .00 ± .04 .00 ± .03 4.29 ± .51  
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Estimated country effects changed 
substantially for some countries when Gibbs 
Sampling were used to simultaneously estimate 
parameters and predict breeding values compared 
with traditional MACE (Table 5). The prior 
weights and correlations used had a smaller effect 
on estimated country effects. Posterior standard 
deviations on country effects tended to decrease 

with increased prior weights as expected. Further 
studies should be done to determine the impact of 
changes in estimated parameters on breeding 
values. It is likely that breeding values will be 
affected, but changes in some parameters may 
also to some extend be counteracted, e.g. in 
genetic group effects.  

 
Table 5. Estimated country effects (± standard error or posterior standard deviation) for different methods 
and prior weights (df). 
 

Method AUS CAN DNK FIN GBR NOR NZL SWE USA  

I -0.23±0.14 -2.71±0.95 0.75±0.53 0.40±0.22 -0.26±0.17 -2.15±1.54 0.002±.076 0.34±0.32 -1.97±0.70  

II -0.25±0.20 -2.25±1.05 0.84±0.81 0.48±0.29 -0.51±0.18 -2.13±1.83 0.029±.090 0.36±0.37 -1.77±0.92  

III -0.40±0.17 -0.92±0.56 -0.49±0.35 0.29±0.19 -0.29±0.13 -2.03±1.19 0.068±.056 -0.03±0.21 -0.58±0.59  

VI -0.38±0.16 -0.88±0.57 -0.54±0.34 0.29±0.19 -0.31±0.13 -2.25±0.99 0.070±.057 -0.05±0.21 -0.53±0.62  

V -0.37±0.14 -0.97±0.54 -0.55±0.35 0.28±0.18 -0.33±0.13 -2.66±1.35 0.064±.060 -0.03±0.22 -0.58±0.54  

I) Normal MACE and EM-REML; II) Normal MACE, but correlations estimated with Gibbs (df = 10); III) Gibbs (df = 5); VI) Gibbs 
(df = 10); V) Gibbs (df = 100). 

 
 
General discussion: Implications and future 
research 
 
For the current Interbull practice, data on older 
bulls are excluded in breeding value prediction 
and estimation of sire variances to avoid problems 
with heterogeneous variances over time. A well 
connected subset of all historical data is, however, 
used for estimation of genetic correlations. The 
same data set is required for correlation estimation 
and prediction of breeding values when these two 
steps are carried out simultaneously. In this study 
data on all bulls regardless of birth year and 
connectedness were included in the analysis. 
Bayesian Mace can account for heterogeneous 
variances over time. Specific variance 
components can be assigned to groups of bulls, 
e.g. based on birth year. Including all data and 
accounting for heterogeneity in the model have 
theoretical advantages over the current ad hoc 
procedure of employing different data edits for 
different tasks. This was, however, not done in 
this study, since the main aim was to study the 
impact of prior information. Further research 
regarding heterogeneous variance and which data 
to include is needed before any implementation 
can be envisioned. 
 
 

The beliefs on each prior correlation may 
differ, but this was not taken into account in this 
study. Each prior (co)variance had the same 
weight. However, it seems more pertinent to use 
available resources on other research questions 
given the relative small influence of different 
prior weights on most parameters except 
correlations between poorly connected countries. 

 
Computing time for Bayesian MACE was 

higher compared with the current EM-REML 
procedure (Klei & Weigel, 1998). 500,000 rounds 
of iteration took approximately 7 CPU days per 
trait (on an IBM RS6000 Power3-II Thin Node, 
375 MHz computer) for the current 
implementation and for the nine countries 
considered in this study. Therefore, an 
implementation of Bayesian MACE for Holstein 
(at least production and conformation traits) is 
currently not realistic. However, each trait can be 
run on separate computers and no efforts have 
been made to optimize the program for computing 
speed. Also, Bayesian MACE will be most 
advantageous for breeds other than Holstein. This 
is because Holstein data usually contain more 
information compared with other breeds. Thus the 
benefits in terms of being able to incorporate prior 
information are limited for Holstein. 
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If a simultaneous estimation of genetic 
parameters and prediction of breeding values are 
implemented, it will affect the Interbull service 
structure. The turn over time will increase 
substantially for routine runs, but the need for 
test-runs will diminish. The only purpose of a test-
run would be to prepare members for future 
changes and this would even be made more 
difficult when correlations are re-estimated during 
routine runs. The use of Bayesian techniques to 
estimate genetic parameters for genetic evaluation 
is becoming common practise, but a full scale 
Bayesian genetic evaluation that simultaneously 
estimate genetic parameters and predict breeding 
values has not yet been implemented anywhere to 
the knowledge of the authors. Thus little 
experience have been accumulated to support the 
implementation of Bayesian MACE. The results 
on correlations and country effects obtained in 
this study were substantially different compared 
with results from traditional MACE and the dairy 
industry will have to get used to and accept this 
before Bayesian MACE can be implemented.  

 
Further research could address heterogeneous 

variances, computing strategies, the impact of 
estimating residual (co)variances instead of 
keeping them fixed and strategies for handling 
genetic groups in Bayesian MACE. 
 
 
Conclusion 
 
Bayesian MACE was applied for Ayrshire 
conformation (fore udder). Results were generally 
within the range of expectations. The influence of 
different weights on prior information was largest 
for estimated correlations between poorly 
connected countries and small for country effects. 
Estimated genetic correlations were high (0.66 to 
0.99) and the method seemed appropriate for data 
characterized by poor connectedness. However, 
further research on e.g. heterogeneous variance 
and which data to include is needed before we are 
ready for a pilot run. Implementation of Bayesian 
MACE in full scale will reduce the need and 
usefulness of test-runs and will increase the turn-
over time for routine runs. 
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