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Introduction 
 
In international genetic evaluation of dairy bulls 
using MACE, information from each country or 
region is regarded as a different trait. This leads to 
a requirement of knowing variances and 
covariances among trait expressions in different 
countries. If only one trait is included per country 
no residual covariances exists. However, it is 
often desired to include several traits per country 
and in these cases also residual covariances 
between traits recorded within country must be 
known. In practice genetic and residual variances 
and covariances are never known without 
uncertainty. However, current practice has been to 
estimate these parameters and then proceed 
performing genetic evaluations as if the estimated 
parameters were the true values. 
 

When new breeds are initiating international 
genetic evaluations, or new countries are added to 
existing evaluations, the genetic ties between 
different countries or regions may be weak. An 
example in question is the desire to conduct 
international comparisons for conformation traits 
in Ayrshires (Klei & Lawlor, 2001). In such cases 
information available is inadequate to estimate 
across country genetic (co) variances using 
REML methodology.  
 

For conformation there are usually several 
traits of interest recorded per country so that 
within country residual covariances must be 
estimated. Madsen et al. (2000) presented 
methodology to estimate such within country 
residual covariances. Their methods furthermore 
estimated the genetic variances and covariances 
based on all available information and not only on 
selected well-connected subsets (Sigurdsson et al., 
1998; Klei & Weigel, 1998). In addition the 
method of Madsen et al. (2000) allowed the 
estimation of standard errors of across country 
genetic correlations. Large standard errors on a 
genetic correlation between two countries 
indicates weak genetic ties between the countries 
involved and, therefore, the standard error 

provides a summary of both direct and indirect 
genetic ties between the countries involved. 
 

The problems mentioned above have lead to 
the desire of developing a method where prior 
information on variances and covariances can be 
introduced in the estimation of (co) variance 
components for MACE and a Bayesian 
framework is then a natural choice. Prior 
information on variances and covariances for use 
in international genetic evaluation can come from 
either similar traits recorded in other breeds or 
from the same traits recorded in ”similar” 
countries. The two approaches can of course be 
combined. 
 

The purpose of this paper is to present a 
Bayesian method for the estimation of across 
country genetic variances and covariances and 
within country residual variances and covariances 
for use in MACE. The method presented will also 
include Bayesian prediction of breeding values for 
all bulls on all national scales, where the posterior 
uncertainty about the variances and covariances is 
taken into account. 

Methods 

 
Model 
 
The general model for MACE as presented by 
Schaeffer & Zhang, (1993) is: 
 

eZsZQgCcy +++= ,              [1] 
 
where y is a vector of deregressed national proofs 
or daughter yield deviations (DYDs), c is a vector 
of country effects, g is a vector of phantom parent 
group effects, s is a vector of random bull effects 
and e is a vector of random residuals. 
 

Using the same formulation as Madsen et al. 
(2000), where phantom parent groups are assumed 
to be defined within country of origin, the model 
can be written as: 
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eZsZQfy ++= ,               [2] 
 
where f is a vector of phantom parent group + 
country effects. 
 

The conditional distribution of y given the 
location parameters f and s is: 
 

[ ]RZsZQfRsfy ,N~,,| o + ,              [3] 

 
where R0 is a matrix of residual variances and 
covariances. The covariances are only defined 
when both traits involved are recorded in the same 
country; otherwise the corresponding element is 
set to zero. 
 

The matrix R is block diagonal with each 
block corresponding to the traits a bull have 
recorded in each country where he have data. In 
general the residual variance of records for use in 
MACE is heterogeneous. This is because the 
number of daughters per bulls varies considerably. 
Therefore the degree of heterogeneity is known up 
to proportionality. Often this can be solved using 
a weighted analysis: 
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where Rkc is the diagonal block in R for bull k in 
country c, where all traits is recorded and W is a 

diagonal weighting matrix with cin  on the i´th 

diagonal where nci is the number of records on 
trait i in country c. If some traits are missing in 
country c the corresponding row in Rk must be 
deleted. 
 

If the number of records per trait varies in a 
country the elements in Rk must be computed as: 
 

)n,nmin(/r
jij,ij,i cccc σ=               [5] 

 
where 

j,iCσ is the residual (co) variance between 

trait i and j in country c and 
icn  and 

jcn are the 

number of records for trait i and j in country c. 
This assumes that the trait with the smallest 
number of records is measured on a subset of the 
animals recorded for the other trait. 
  

The distribution of s is assumed to be: 
 

[ ]AG0Gs ⊗00 ,N~| ,              [6] 

where 0G is the matrix of variances and 

covariances due to bulls and A the additive 
relationship matrix. 
 

Priors and full conditionals 

Flat priors were assumed for the elements in f. For 
the covariance matrices we assumed inverse 
Wishart distributions as: 
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where Ct is the product of the number of countries 
involved  (C) times the number of traits included 

in the analysis (t) and ∑
=

C

0i
it  is a summation over 

the number of traits recorded per country. This 
yields the dimension of the bull and residual 
covariance matrices, respectively. }e,a{x∈V and 

}e,a{x∈ν  denotes the scale parameter and the 

corresponding degree of belief parameter for the 
bull and residual covariance matrices. In this 
parameterisation the scale parameter (V) is a prior 
(co) variance matrix that have the same value as 
the mean of the prior distribution and, therefore, 
the elements are in then usual order of magnitude. 
 

The method proposed is implemented using 
the Gibbs sampler. To do this we need the fully 
conditional distributions of all parameters in the 
model given all other parameters and the data. 
The fully conditional distributions of the location 
parameters are all normal (Jensen et al., 1995).  
 

The fully conditional distributions of the 
covariance matrices G0 and R0 are inverse 
Wishart: 
 

[ ]aaaa00 ,qIW),,,|(p SVRsfyG ++= ννν  

 
and 
 

[ ]eeee00 ,nIW),,,,|(p SVGesfyR ++= ννν  

 
where Sa is the sum of squares and crossproducts 
of bull effects and Se is the sum of squares and 
crossproducts of residuals after rescaling to the 
original scale by applying the weights. In this 
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formulation it is clearly seen that prior 
information is weighted with the information in 
the data. 
 

Implementation of the Gibbs sampler 

 
The method is implemented as an option in the 
general DMU-software package of Madsen and 
Jensen (1999), to improve mixing a blocking 
strategy was applied as described in Jensen et al. 
(1995). Convergence of the algorithm was 
checked using the method of batching which also 
estimate the effective posterior sample size. 
Furthermore we plotted traces of selected 
variables and computed lag-correlations. Posterior 
densities were estimated using the non-parametric 
approach of Scot (1992). 

Application 

 
The procedure was tested on a small bivariate 
example dataset. The data was from an 
experiment where 428 calves in 56 progeny 
groups. The progeny groups were split on two 
different feeding regimes and daily gain under the 
two regimes were regarded as two different traits. 
A bivariate model including fixed effects and 
random effects of sire and residual were used to 
estimate sire variances and co-variances. Due to 
the experimental design no residual covariance 
existed. The data was analysed using AI-REML 
(Jensen et al., 1996) and using the new procedure 
where prior information was provided with 
varying degree of prior belief. In addition 
analysis, where residuals were assumed to have 
heterogeneous variance was also run. This was 
done in order to test the estimation of residual 
variance in models with heterogeneity known up 
to proportionality. 
 
 
Results  
 
Results are summarised in Table 1. It is clearly 
seen that conducting the analysis using a weak 
prior yields results similar to the REML estimates. 
The REML estimates are identical to posterior 
mode estimates under flat priors and thus there 

will be differences between Bayesian and REML 
estimates. The standard errors are large due to the 
small data set. By increasing the prior degree of 
belief the posterior means becomes closer to the 
prior and the posterior standard error of the 
estimates becomes smaller. Applying different 
weights for the residual variances rescales the 
posterior mean of residual variance exactly in 
proportion to the weights whereas the sire 
variance remains unchanged (results not shown).  
 
 
Discussion 
 
A limitation of the procedure developed is that 
full prior co-variance matrices with equal prior 
degree of belief on each element must be 
provided. It may be possible to develop a method 
with different prior degree of belief for each 
individual element. In practice, however, we do 
not believe this to be a limitation. The amount of 
prior belief that an analyst wants to put in prior 
information from other breeds or from other 
countries will always be based on a somewhat 
subjective judgement. 
 

When the amount of information provided in 
the data accumulates this information will 
dominate the information in the prior if the prior 
degree of belief is not very large. 
 

From the Gibbs sampler it is also possible to 
obtain posterior estimates of sire breeding values 
on all the national scales included in the model. 
The estimates and the posterior variance of these 
estimates will take the uncertainty about (co) 
variance parameters into account. 

Conclusion 

 
The test example presented in the previous 
paragraphs have demonstrated that we have 
developed and implemented a Gibbs sampler that 
can run multivariate models with heterogeneous 
residual variances and varying degree of prior 
information. The method is implemented in a 
general software package and, therefore, also can 
be applied to estimated (co) variance matrices for 
use in MACE. 
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Table 1. Results of analysis of example data using REML (Asymp s.e). and Bayesian posterior means with 
varying prior information (posterior s.e.). 
 
 Sire effect Residual 
Analysis 2

1σ  12σ  2
2σ  2

1σ  2
2σ  

REML  302.1  14.5  602.3  12811.0  7009.47 
  (920.2  461.3  575.4  1471.0  789.5) 
      
Bayesian      
 Prior  300.0  10.0  600.0  12000.0  7000.0 
      
 PDB* = 5  291.6  11.3  551.4  12752.5  7043.5 
  (190.2  158.4  270.2  1231.6  711.3) 
      
 PDB = 10  302.4  10.5  584.9  12718.2  7012.2 
  (143.6  126.6  227.2  1212.7  695.3) 
      
 PDB = 100  301.6  9.3  601.1  12489.3  7001.2 
  (44.2  41.8  84.0  1005.1  567.9) 
*) PDB = Prior degree of belief 
 
 


