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Abstract 
 
Current attempts at validation of national genetic evaluation systems lack a satisfactory level of 
transparency. Further, those internationally agreed validation methods that are in effect rely heavily 
on validation of the genetic theory underlying national evaluation model. The present paper is an 
attempt to distinguish among different levels of validation, to briefly review some trend in 
validation studies, and a start point for a house-keeping check-list of validation. 
 
 
Introduction 
 
Validation of national genetic evaluation systems 
(N-GES) is a seemingly difficult issue, partly 
because the issue at hand is a complicated one. 
However, before one gets into the technicalities of 
validation an urgent question is: “What is the 
target of validation”? There is a need to 
distinguish three different targets: 
 

a) Genetic theory underlying evaluation 
model; 

b) Evaluation model used in N-GES; and 
c) N-GES. 

 
Validation of the genetic theory underlying N-

GES as such is a legitimate scientific question and 
it is of interest to all quantitative geneticists and 
animals breeders. However, this is a question of 
primarily academic interest that needs to be 
addressed by utilization of the data accrued 
through appropriately designed experiments and 
analyzed accordingly. There is also a long 
tradition on this in our scientific community (see 
for example: Clayton & Robertson, 1957). To test, 
say, the infinitesimal model, and its associated 
assumptions such as constancy of variances, is of 
little interest unless it has a strong bearing on 
published values of EBV/PTA of animals. Let’s 
be clear about the fact that in the Interbull 
community we are committed to the industry, 
especially farmers. With these points in mind, it 
seems that validation of genetic theory underlying 
genetic evaluation model is a too narrow target 
and a slightly misguided one. 

 
 

In contrast to the (a) above, validation of N-
GES in its entirety is a too wide of a target to be 
focused on by the Interbull Community alone. It is 
worth mentioning that “GES is meant to include 
all aspects from population structure and data 
collection to publication of results. Each and 
every statistical treatment of the data that has a 
genetic-breeding motivation or justification is an 
integrated part of GES” (Jorjani et al., 2001). This 
is a target more suitable to be handled by 
Interbull’s parent organization, ICAR and its 
working groups, especially the working group on 
“Quality Assurance”. There are also 
organizational aspects related to the validation of 
N-GES that need to be addressed by governmental 
agencies, breeding organizations, and so on. 
 

Based on the preceding arguments, we, at the 
Interbull Centre and the Interbull community, 
need to concentrate on the second target, i.e. 
validation of evaluation model used in N-GES. 
This target, as alluded to in this paper, 
encompasses previous validation / verification 
methods and tools.  
 
 
Validation of evaluation model 
 
Before embarking on a discussion of validation of 
evaluation models may I point to the fact that 
animal breeders commonly have multiple roles to 
play: the roles of a statistician, a geneticist, a 
market planner, and an extension specialist, not to 
mention other minor roles. This strange combina-
tion has had some unfortunate consequences. Our  
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role as geneticists has prevented us from 
exploring a variety of models, our role as 
extension specialists has forced us to adopt 
models that are easy to explain, and so on. What 
seems to be accommodating for the others, and 
therefore suffering, is our role as statisticians, 
with the final result that statistics role has been 
reduced to an under-exploited tool. Let me bore 
the reader with a long quote from Oscar 
Kempthorne (1976): 
 
“It is interesting that one can obtain some results 
without invoking Mendelism at all, but merely use 
purely statistical ideas of correlation and 
regression. One can go further, I believe. The 
whole area of selection can be approximated by 
purely statistical ideas of correlation and 
regression. The ideas of Mendelism merge with 
these ideas, as Fisher showed (more or less), and 
the fact that the theory does not need Mendelism 
in some respects, and one can almost say, does 
not use Mendelism is, I think, a reason for it 
having a moderate degree of robustness in 
relation to assumptions. Apart from a difficulty I 
shall mention later, one could proceed as follows. 
 
Let there be a population; let rules of forming 
mating couples be defined in terms of metric traits 
of individuals and/or in terms of relationship; let 
there be selection of individuals on the basis of 
metric traits or metric traits of related 
individuals; and finally let the offspring be 
measured. Then without an atom of formal 
Mendelism and with a large data set, the joint 
distribution of offspring and parents can be 
determined. One can examine this distribution 
and determine a prediction equation, which one 
can then apply for a few generations. The only 
flies in the ointment for this proposal are that 
every covariance have to be determined from data 
and not inferred from, say, a coefficient of 
relationship and heritability, and large data sets 
would be needed to control sampling error.  
 
So one could have a completely empirical 
selection procedure and a purely empirical 
process of obtaining a prediction of the result of 
continued selection. I suggest that this type of 
thinking should not be dismissed as a cranky idea. 
The reason that some predictions of the results of 
selection theory seem to work is that they are 
based on a process rather close to what I have 
sketched.” 
 
 

Having this in mind there are at least three 
approaches to validation of evaluation models:  
 

1- The old statistical way 
2- The old heuristic way 
3- The right way 

 
 
Validation of evaluation model: The old 
statistical way 
 
In the days before our current highly sophisticated 
computers became available a statistician would 
start with a careful consideration of the problem, 
study design and protocol for data collection. 
Then, our imaginary and thorough statistician 
would think of a model for evaluation. 
Consequently, based on Fisher’s likelihood theory 
the model structure is assumed to be known (i.e. 
to be correct and true) and that only the 
parameters in that structural model are to be 
estimated. Finally, one needs to determine the 
precision of the estimated parameters.  
 

Thorough validation of the evaluation method 
then would involve several steps: 
 
1- Assess conformity to the protocol for data 

collection by: 
 

1.1 Check the data for logical 
inconsistencies by checking uniqueness 
of ID’s, cross-checking of the life 
history milestones (dates for birth, 
insemination, calving) in parents and 
offspring, and so on. 

1.2 Explore the data exhaustively by tables, 
graphs, plots of various descriptive 
statistics (including 1st to 4th moments), 
properly cross-classified for all of the 
explanatory variables considered in the 
model. 

1.3 Examine conformity of the data to the 
assumptions of the model, such as 
distributional properties (e.g. normality) 
or homogeneity of variances. 

 
2- Investigate the fit of the model to the data by a 

variety of statistical tools that, depending on 
the statistician’s school of thought, are 
available for this purpose. Examples are 
RMSE, R2, deviance, or formal χ2 goodness-
of-fit, etc. 
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3- Check the results against theoretical 
expectations that one has from the 
biology/genetics of the issue under 
examination or the statistical properties and 
consequences of the analysis model. 
Equivalent to the checks for data one has to: 

 
3.1  Explore the results exhaustively by 

tables, graphs, plots of various 
descriptive statistics, properly cross-
classified for all of the explanatory 
variables considered in the model. 

3.2 Examine the solutions for main effect(s) 
and residuals in the same exhaustive 
way described in 1.2 and 3.1 above. 

 
What has been described above is believed to 

be in common practice in all national genetic 
evaluation centers around the world. An 
examination of the fields for “criteria for inclusion 
of the data” and “method of validation” in the 
countries’ fact sheets in the latest Interbull survey 
(Jorjani, 2000; IBB 24) prove that extensive 
validatory measures are employed by different 
countries. However, unfortunately there is no 
transparent record of what is performed in one 
country available to the rest of the world. More 
importantly, it is not known how and when the 
results lead to changes of the evaluation models. 
 

In order to increase transparency, and also to 
provide a better opportunity for a mutual learning 
among evaluation centers, we need to set up a 
check-list of what verification / validation tools 
should be employed and try to keep it as updated 
as possible. 
 
 
Validation of evaluation model: The old 
heuristic way 
 
Presently, the most widely used methods of 
validation (Boichard et al., 1995) result from a 
heuristic utilization of the knowledge of genetic 
structure of dairy cattle populations, statistical 
properties of the evaluation models and the 
genetic theory underlying these models. The 
problem with the methods currently sanctioned by 
Interbull (Boichard et al., 1995) and many others 
proposed validation / verification methods (e.g. 
Thompson, 2001; Klei et al., 2002) is that they 
focus heavily on examination of means and 
variances    of   estimated    breeding   values   and 
 

Mendelian sampling terms. It is very easy to see 
that national evaluation models are capable of 
yielding more information than just breeding 
values and Mendelian sampling terms. An 
example of other quantities is daughter yield 
deviations (DYD) that is used in Interbull 
Validation Method II (Boichard et al., 1995) and 
the method proposed by Liu et al. (2003). 
However, national evaluation models are way too 
under-utilized. Maybe an example helps in 
shedding some light on this matter. 
 

The example to be discussed is taken from 
evaluation model in the USA for two reasons. 
First, through the paper by VanRaden & Wiggans 
(1991) we probably know more about this model 
than any other country’s model. Second, the paper 
by VanRaden & Wiggans (1991) has been very 
influential, both because of its educational value 
and also because of its extension to other 
situations (e.g. Mrode & Swanson, 1999, 2002, 
VanRaden, 2001; and Liu et al., 2003). The 
evaluation model described by VanRaden & 
Wiggans (1991) is as follows: 
 

gy Mm Za ZA g Pp Cc e= + + + + +  
 
where  
 
y = Standardized milk, fat, or protein yield 
m = Vector of effects for management group 
a = Vector of effects for random portion of 

additive genetic merit 
g = Vector of effects for unknown-parent 

group 
p = Vector of effects for permanent 

environment 
c = Vector of effects for herd-sire interaction 
M = Incidence matrix for management group 
Z = Incidence matrix for random portion of 

additive genetic merit 
ZAg = Incidence matrix for unknown-parent 

group (Ag = Related animals to the 
unknown-ancestor group) 

P = Incidence matrix for permanent 
environment 

C = Incidence matrix for herd-sire interaction 
e = Error 
 

Based on the above model and the usual 
assumptions about variances, the MME are as 
follows. 
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VanRaden & Wiggans (1991) working on the 
second row of this system of equations (Equation 
for u) manage to derive an array of useful 
measurements, one of which is DYD, that are 
being used in many areas, from understanding of 
the results to the validation of evaluation models. 
 

An intuitive question is that would it be 
possible to utilize this and other parts of the same 
equation system to arrive at other measurements? 
Whether this turns out to be labeled with the 
derogatory name of “unsuccessful fishing 
expedition” or the flattering name of “new 
heuristic validation methods” remains to be seen. 
But, without being exhaustive, let’s examine some 
other possibilities. 
 
 
Equation for m (management groups) 
 
Can we examine the vector of management group 
solutions: 
 
• To identify an appropriate distribution to 

model management groups? 
• To identify cases of preferential treatment, 

very bad management, outbreak of disease, 
sub-clinical disease, etc. by studying outliers? 

• To study the correlation of management group 
effects & their sizes to better understand 
heterogeneous variances? 

• If management group solutions prove to be 
heteroscedastic, can we assume that pre-
adjustments have not been effective? 

 
 
Equation for g (unknown parent groups) 
 
Is it so unrealistic to assume that: 
 
• Solutions should be constant across 

evaluations? 
• Elements of this must be significantly different 

from each other? 
• There should be a correspondence between this 

and the “a” value in a conventional conversion 
equation? 

• For countries with deep pedigrees it should be 
possible to treat some animals as unknown and 
compare their solutions as members of the 
unknown parent groups with their EBV as 
known animals? 

 
 
Equation for p (permanent environment effects) 
 
Permanent environment (PE) effect, as its name 
suggests, is an environmental effect. However, it 
must be remembered that because it is specific to 
the animal, it is partly environmental and partly 
genetic, in the sense that it is related to the 
genotype of the animal at the time of conception, 
but in contrast to the additive genetic value, it is 
not heritable / transmittable. In a way, as it is 
customary in simulation studies, it should be 
treated just like breeding value of the animal, that 
is, to acknowledge that it takes a random value, 
constant for the whole lifetime of the animal. 
Therefore, in a limited way, and for specific 
purposes, all the assumptions imposed on 
breeding values can be imposed on permanent 
environment effect. 
 

Further, a comparison of some new attempts to 
model quantitative genetic variation (San 
Cristobal-Gaudy et al., 1998; Hill, 2002; and 
Sorensen & Waagepetersen, 2003) suggests that 
what we used to define as permanent environment 
effect may indeed be related to a genetic ability to 
influence residual variance. In this sense, there 
might be a confounding and correspondence 
between PE and the slope of a norm of reaction 
curve, which undoubtedly is under genetic control 
(Kolmodin et al., 2002, 2003). 
 

Conditional on the discussion above, estimates 
of the PE must remain constant across 
evaluations, be constant over lifetime, follow the 
same distributional properties of BV/EBV. 
Alternatively and conservatively, consecutive 
estimates of PE must have high auto-correlation 
among themselves and the regression of new 
estimate on old estimate should be equal to unity. 
 
 
Equation for c (sire-herd interaction) 
 
Inclusion of a sire-herd interaction term in the 
model actually suggests that we explicitly have 
singled out one environmental descriptor 
(explanatory variable) as having interaction with a 
major random effect, and implicitly that such 
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interactions for other environmental descriptors 
are negligible. Studies conducted by the 
Wisconsin group (e.g. Weigel & Rekaya, 2000; 
Zwald et al., 2001) and at the Interbull Centre 
(Fikse et al., 2001) on Holstein and Guernsey 
breeds, respectively, suggest that even other 
environmental descriptors may have non-trivial 
effects. 
 

The purpose of the above questions and 
arguments is to point to the fact that a) Evaluation 
model are modeling more than just breeding 
values, and b) We may be surprised to see other 
validation tools emerge if we look beyond 
breeding values. 
 
 
Validation of evaluation model: The right way 
 
We have seen in the past how the choice of 
national evaluation models has been influenced by 
seemingly small, yet ingenious methodological 
achievements (e.g. Henderson, 1976), by 
technological progress made in computer 
performance (e.g. adoption of iterative methods 
and even random regression models), and by 
market forces.  
 

In my opinion we are on the verge of a new 
change of paradigm in choice of evaluation 
models in N-GES. The change that we are about 
to experience is a move away from single model 
evaluations to multi-model evaluations. The 
prerequisites for this change have been 
accumulated gradually during the past two 
decades or so, and now there are both 
methodological and technological means to 
extend the application of multi-model evaluations 
from academic research to real life situations. 
 

Multi-model evaluation is a logical extension 
of Fisherian method of data analysis alluded to 
before. In the same way that estimation of 
parameters has been considered as an 
optimization problem, one can extend the 
optimization principle to cover even the process 
of model selection. Different steps of a multi-
model evaluation can be summarized as: 

 
 
 
 
 
 

 

a) Formulation of a set of models; 
b) Model selection; 
c) Estimation of parameters; and 
d) Obtaining measurement of precision (including 

the uncertainty about the model). 
 

As an analogy one can compare the first two 
steps of this process to a classical multiple 
regression analysis, in which a set of a priori 
explanatory variables are examined to arrive at a 
smaller set that provide optimum levels of bias 
and variance. 
 

Multi-model evaluation is still an area of active 
research in both frequentist and Bayesian schools 
of thought (see for example Burnham & 
Anderson, 2002; and Sorensen & Gianola, 2002, 
respectively). Despite their differences, both 
frequentist and Bayesian statisticians advocate 
multi-model approachs and not surprisingly they 
arrive at a large number of similar 
recommendations. 
 
 
Formulation of a set of models 
 
In a frequentist setting formulation of a set of 
models can start with a global model that includes 
all relevant effects that our scientific 
understanding of the subject deems relevant. One 
should investigate the fit of the global model to 
the data and proceed with the analysis of the data, 
and formulation of more parsimonious models, 
only if the global model provides an acceptable fit 
to the data and narrow confidence intervals. 
 

Alternatively, in a Bayesian setting one can 
start with a very simple model and build up more 
complex models based on the examination of, say, 
posterior predictive distributions. 
 
 
Model selection 
 
Obviously as the number of parameters in the 
model increases, i.e. the model gets more 
complex, the fit is improved, bias decreases and 
variance increases. The following schematic 
diagram is used to ease the discussions.  
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Conceptually it may be possible to find a 
model that lies at the intersection of the two 
curves shown in this figure, but this happens very 
seldom. A model lying to the left of the 
intersection is an underfitted model and a model 
to the right of the intersection an overfitted model. 
The balance between these two is a dilemma to an 
animal breeder because of the multiple roles that 
we have. As extension specialists we would like 
to see as parsimonious a model as possible. Then 
we would be able to explain the results very easily 
to farmers. However, for prediction of “future” 
data we would like to have a model with low 
prediction error variance.  
 

In any case, modern statisticians, in both 
frequentist and Bayesian camps, as judged by 
their advocacy of different “information 
criterion=IC” prefer a more parsimonious model 
(principle of parsimony being defined (Box & 
Jenkins, 1976) as a model with the smallest 
possible number of parameter for adequate 
representation of the data.). 
 

There are a number of methods available for 
selection of a model, especially from a Bayesian 
perspective (by using the Bayes Factor, and all the 
IC methods that might or might not rely on it). 
However, from a frequentist point of view there is 
no theoretical foundation for the notion of 
hypothesis testing with a fixed α level for model 
selection (Burnham & Anderson, 2002). 

 
 
 
 
 

 

Cross validation has widely been studied and 
suggested as a basis for model selection (e.g. 
Thompson, 2001). For this purpose, the data are 
divided into two parts. The first part is used for 
model fitting; and the second (which may contain 
only one data point) is used for validation.  
 
 
Model averaging 
 
As noted by Box (1976) all models are wrong, but 
some are useful. Therefore, if none of the models 
is “true”, then the question arises that why should 
we choose a model, rather than average a small 
number of more plausible models.  
 

In Bayesian model averaging (BMA) 
uncertainties pertinent to the relative plausibility 
of each model are taken into account. It can be 
shown that, with the exception of the very 
unlikely event of having the “true” model among 
the models, BMA has better predictive 
performance than any of the models alone 
(Sorensen and Gianola, 2002). 
 

It is worth mentioning that the number of all 
possible (conjectural) models to be considered in 
BMA may be very large. However, one can use 
the available scientific knowledge to weed out 
some of the possible (but purely speculative) 
combinations of model building elements (for 
more statistical aspects of how to reduce the 
number of models see, for example, Hoeting et 
al., 1999).  
 
 
Conclusions 
 
In order to bring our validation tool box into order 
we need to think of a comprehensive check-list 
for all “purely statistical” aspects of data analysis. 
For the genetically motivated “heuristic” 
validation method we need to expand our horizon 
and even consider other things that are modeled in 
the national genetic evaluation models. And 
finally we need to be more open minded to the 
newly developed computing intensive mulimodel 
evaluations and their imbedded validation 
mechanisms. 
 
 

Bias 

Number of parameters 

Variance 
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