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Introduction 
 
One of the major problems of international 
genetic evaluations is the estimation of genetic 
covariances. The use of structural models has 
been suggested to exploit patterns in the 
genetic correlations matrix and to reduce the 
number of parameters to estimate. 
 

The structural model project of Delaunay 
et al. (2002) is a part of PROTEJE. It proposed 
to use the countries themselves to characterize 
genetic correlations between them, instead of 
external information as in the structural model 
of Rekaya et al. (2001). The genetic 
correlations between two countries are defined 
as an exponential function of the Euclidian 
distance between these countries. In this 
structural model, (k+1) countries can be 
represented in a k-dimensional space. The 
reduction of the number of dimensions of the 
space allows to reduce the number of 
parameters that has to be inferred. For 
example, in a 3-dimensional space only 72 
coordinates need to be estimated to compute 
325 genetic correlations between 26 countries. 

 
The structural model of Delaunay et al. 

(2002) was successfully tested on simulated 
data, and on the current genetic correlations 
matrix used by Interbull. The aim of the 
present study was to apply the structural model 
for estimation of genetic correlations on field 
data, and to compare these results with the 
corresponding estimates obtained with an 
“unstructured” model. An additional aim was 
to study the possible use of the coordinates of 
different structural models related to the same 
space, to calculate directly genetic correlations, 
without having to estimate them.  
 
 
 

Material and Methods 
 
Data available were deregressed national 
breeding values of bulls and their effective 
daughter contributions (EDC) used for 
Holstein milk yield international genetic 
evaluation of February 2003 (26 populations, 
here after referred to as countries). Different 
subsets of countries were considered.  
 

The sire model currently used in 
international genetic evaluations was applied 
(Schaeffer, 1994). Each observation was 
weighed by the EDC of the bull. Genetic 
groups were considered as fixed effects and 
based on selection path*year of birth*origin. 
Small groups were merged, first by origin, and 
then by year of birth. Minimum group size was 
500 bulls to avoid problems with inference of 
small group sizes when group effects are 
assumed fixed.  
 

Two different models were used for the 
genetic covariances: the structural model (SM) 
and an “unstructured” model, called classical 
model (CM). In both cases, the residual 
variances and the genetic variances within 
countries were estimated. In the classical 
model the genetic covariances across countries 
were estimated. In the structural model the 
coordinates for each axis were estimated for 
each country.  
 

The choice of countries to define axes for 
the structural model was based on results of 
cluster analyses of Weigel and Zwald (2002). 
The aim was to select axes countries that 
represented distinct production environment. 
The Netherlands defined the origin of the 
space, USA the first axis, New Zealand the 
second axis and Hungary the third axis, unless 
mentioned otherwise.  
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AI-REML algorithm implemented in the 
program AIREMLUPG (Druet et al., 2003) 
was used for parameters estimation. It also 
provided the asymptotic standard errors of the 
estimates. For the structural model, the AI-
REML algorithm used a simplified average 
information matrix, ignoring non-zero terms of 
the second derivative of the genetic 
(co)variance matrix that occur when 
covariances are a non-linear function of the 
parameters. (Gilmour et al., 1995). For the 
classical model, the update of the genetic 
covariance matrix combined the AI with an 
EM, if a pure AI update yielded parameters 
outside the parameters space (Jensen et al., 
1997). For the structural model, the update was 
based on a line search procedure in which the 
step size was repeatedly divided by two until 
the likelihood increased (Dennis and Schnabel, 
1983). 
 

The structural and the classical models 
were compared using the estimated genetic 
correlations, minus two times the logarithm of 
the likelihood function and two information 
criteria that take into account the number of 
parameters to estimate: Akaike’s Information 
Criterion (AIC) and Schwarz’ Bayesian 
Information Criterion (BIC). The total number 
of deregressed national breeding values was 
used to compute BIC. BIC put more penalties 
on the number of parameters than AIC 
(Wolfinger, 1993).  
 
 
Results and Discussion 
 
1. Comparison of structural and classical 

models (SM and CM). 
 
Genetic correlations between five countries 
(the four axes countries and Denmark) were 
estimated with three different models: the 
classical model (CM5), a structural model with 
four dimensions (SM45) and a parsimonious 
structural model, with three dimensions 
(SM35). Total number of observations was 
32730, for 31009 bulls and 33 genetic groups. 
 

SM45 and SM35 gave the same estimates 
of the genetic correlations and coordinates (not 
shown), and had the same -2logL (Table 1). 
Thus, information criteria were lower for 
SM35, since it had one parameter less. 
 

Table 1. Number of parameters, -2logL and 
information criteria for CM5, SM45 and 
SM35. 

 CM5 SM45 SM35 

No. parameters 20 20 19 
-2log L 424709.3 424717.0 424717.0 
AIC 424749.3 424757.0 424755.0 
BIC 424917.1 424924.8 424914.4 
 
 
Table 2. Estimated genetic correlations from 
SM35 and their standard errors (above 
diagonal), deviations (SM35-CM5) in 
estimated genetic correlations and deviations 
in standard errors (below diagonal). 

 NLD USA NZL HUN DNK 

 0.927 0.779 0.857 0.955 NLD 
 (0.006) (0.016) (0.015) (0.007) 

0.002  0.724 0.886 0.968 USA 
-0.001  (0.012) (0.020) (0.011) 
-0.005 0.017  0.685 0.747 NZL 
0.011 0.006  (0.026) (0.019) 
-0.001 -0.001 -0.005  0.872 HUN 
-0.004 0.004 0.008  (0.020) 
-0.001 -0.006 -0.056 -0.006  DNK 
-0.010 -0.005 0.007 -0.007  

 
 
Table 3. Number of bulls with records in the 
country (on the diagonal) and number of 
common bulls (above the diagonal). 

 DNK FIN FRA NLD USA NZL AUS HUN 
DNK 4538 15 82 135 110 85 77 91 
FIN  607 26 21 19 15 10 14 
FRA   8037 253 420 146 180 120 
NLD    6461 622 357 257 172 
USA     17458 431 484 289 
NZL      2997 412 147 
AUS       3544 110 
HUN        1276 
AUS: Australia; DNK: Denmark; FIN: Finland; FRA: France; HUN: Hungary; NLD: 
The Netherlands; NZL: New Zealand. 

 
Genetic correlations estimated by SM35 

were very close to those estimated with CM5, 
except the one between Denmark and New 
Zealand that differed by almost 0.06 (Table 2). 
This correlation was based on the lowest 
number of common bulls in this subset of 
countries, which could explain why it was less 
stable than the others (Table 3). The higher -
2logL observed for SM35 was compensated by 
the reduction of parameters as shown by lower 
BIC criteria. 
 

CM5 and SM45 gave different estimates 
of genetic correlations, although SM45 had the 
same number of parameters. CM5 had a better 
fit than SM45 as indicated by the lower -
2logL. One explanation could be that SM45 
imposed more constraints on the genetic 
correlations. Delaunay et al. (2002) had 
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 Axes countries 
 From SM36FRAAUS 
From SM36DNKFIN 

Figure 1. Combination (CALC) of the 
coordinates obtained from SM36FRAAUS  
and SM36DNKFIN. 

already mentioned this problem for a spatial 
representation of the correlations. For example, 
three countries A, B and C could be 
represented in 2 dimensions. Correlations 
between A and B could be transformed into a 
distance DAB, using the definition of the 
correlation in the structural model. Similarly, 
the other correlations determine DAC and DBC. 
But if the sum of DAC and DBC is less than DAB, 
then a spatial representation of these genetic 
correlations is impossible. The triangle 
(A,B,C) can not be formed. This was observed 
for the genetic correlations estimated with 
CM5; they could not be converted into 
coordinates in a 4-dimensional space.  
 
 
2. Use of the estimated coordinates to 

calculate the correlations. 
 
Two sets of countries were analyzed with the 
structural model. The first set included the 4 
axes countries plus France and Australia 
(SM36FRAAUS: 39773 observations). The 
second set included the same axes countries 
plus Denmark and Finland (SM36DNKFIN: 
33337 observations). The two sets of 
coordinates obtained were combined. 
Coordinates between countries in this common 
space were used to calculate distances and 
genetic correlations (CALC) (Figure 1). Thus, 
correlations between France-Denmark, France-
Finland, Australia-Denmark and Australia-
Finland were obtained without having to 
estimate them.  
 

The eight countries were also analyzed 
jointly with the structural model (SM38: 44918 
observations) and with a classical model 
(CM8).  
 

Genetic correlations calculated (CALC) 
and estimated with SM38 were nearly the same 
(Table 4). In SM38, the number of ancestors 
was larger than in each SM36, which could 
have created additional genetic links between 
countries and could explain the differences 
with CALC. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4. Genetic correlations (standard errors) 
calculated from SM36 (CALC) or estimated 
with SM38 and CM8. 
 DNK FIN 

CALC 0.930 0.825 
SM38 0.930 (0.012) 0.833 (0.024) 

FRA 

CM8 0.941 (0.003) 0.798 (0.009) 
    

CALC 0.810 0.729 
SM38 0.812 (0.013) 0.733 (0.025) 

AUS 

CM8 0.823 (0.007) 0.643 (0.013) 
 
 
Table 5. -2logL and information criteria for 
CALC, SM38 and CM8. 

 CALC SM38 CM8 
-2logL 572423.7a 572419.9 572389.0 
 572422.7b   
AIC - 572487.9 572477.0 
BIC - 572783.8 572859.9 
a. calculated with residual and sire variances obtained from the two SM36 
b. calculated with residual and sire variances obtained from SM38 

 
 

For CALCa the residual and sire variances 
obtained from the two SM36 analyses were 
used to compute -2logL while for CALCb 
those estimated with SM38 were used (Table 
5). Thus, the difference between CALCa and 
CALCb could be attributed to the different 
residual and sire variances. CALCb and SM38 
had the same residual and sire variances, but -
2logL were different due to the differences in 
the genetic correlations. BIC favoured SM8 in 
comparison to CM8 because of the decrease of 
the number of parameters to estimate from 44 
with CM38 to 34. 
 



 178

3. General Discussion 
 
Selection of countries to define the axes, and 
number of dimension for the structural model 
are important issues. Information criteria could 
be used to determine the best combination of 
axes countries. When information criteria 
values are the same, the structural model with 
axes countries that defined the larger volume 
in the space gave more precise estimated 
coordinates (see Minéry (2003) for an 
illustration). This volume could also be 
considered to select the best axes countries. 
 

Furthermore, it seems reasonable to 
include at least one well-connected country 
among the axes countries, like the USA. 
Genetic correlations involving poor connected 
countries are estimated with too little precision 
for such countries to be chosen as axes 
countries. 
 

This study shows that the structural model 
could allow a drastic decrease of the number of 
runs to estimate the correlations between 
countries. Only coordinates in the space 
defined by the axes countries would need to be 
estimated. But before using this method, it 
would be necessary to ensure that new 
participating countries are correctly 
represented in the space defined by the axes 
countries chosen. 

 
Most of the correlations estimated with 

SM or CM were similar or lower than those 
used by Interbull in February 2003. This is 
partly due to differences in data selection, 
procedures used by Interbull to estimate 
correlations for poor connected countries, and 
difference in choice of residual variances 
(Interbull uses heritabilities provided by the 
countries). 
 

Estimation of the parameters with the 
structural model needed 0.6 Gb of memory and 
took some hours on a Intel Xeon 2.8 GHz 
computer for 5 countries, to 2.1 Gb and a half 
day for 8 countries. It is feasible to apply in 
test run. The number of iterations with the 
structural model was usually higher than with 
the classical model. Some improvements of the 
algorithm can be done with respect to the rules 
of convergence and the way to change the step 
size.  
 

Finally, the structural model could be 
tested on other traits, like conformation traits 
which are less correlated across countries than 
production traits. The best combinations of 
countries to define axes would not be 
necessarily the same as for milk yield. The 
main question will be to know how much the 
differences between genetic correlations 
estimated with the structural model and with 
the classical model are acceptable compared to 
the benefit of reducing the number of 
parameters. 
 
 
Conclusion  
 
The structural model of Delaunay et al. (2002) 
applied on Holstein milk yield international 
data and using an AI-REML algorithm was 
able to explain genetic covariance between 
countries. These examples show that reduction 
of the number of parameters is possible with 
the structural model. This reduction 
compensated the constraints of the spatial 
representation. These results are promising and 
much more drastic reduction of the number of 
parameters could be planned in the future. 
Moreover, the use of the coordinates of the 
countries to calculate the genetic correlations 
could reduce the number of runs (thus the 
time) needed to determine the all genetic 
(co)variance matrix. 
 

Determination of the best axes countries 
and the optimal number of axes needs to be 
investigate further, using information criteria 
and regarding the volume of the space defined 
by the axes countries. An efficient procedure 
to select the best axes countries with the 
optimal number of axes countries should be 
defined and tested.  
 
 
References 
 
Delaunay, I., Ducrocq, V. & Boichard, D. 

2002. A structural model for the matrix of 
genetic correlations between countries in 
international evaluations. Proc. 7th 
WCGALP. CD-ROM comm. no 01-14. 

Dennis, J.E. & Schnabel, R.B. 1983. 
Numerical methods for unconstrained 
optimization and nonlinear equations. 



 179

Prentice-Hall, Englewood Cliffs, New 
Jersey, USA. 378 p. 

Druet, T., Jaffrézic, F., Boichard, D. & 
Ducrocq, V. 2003. Modeling lactation 
curves and estimation of genetic 
parameters for first lactation test-day 
records of French Holstein cows. J. Dairy 
Sci. 86, 2480-2490. 

Gilmour, A.R., Thomson, R. & Cullis, B.R. 
1995. Average Information REML: An 
efficient algorithm for variance parameters 
estimation in linear mixed models. 
Biometrics 51, 1440-1450. 

Jensen, J., Mantysaari, E.A., Madsen, P. & 
Thompson, R. 1997. Residual maximum 
likelihood estimation of (co) variance 
components in multivariate mixed linear 
models using average information. Jour. 
Ind. Soc. Ag. Statistics 49, 215-236. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Minéry, S. 2003. Application of a structural 
model to estimate genetic correlations 
between countries. Report of MSc. 47 p. 

Rekaya, R., Weigel, K. & Gianola, D. 2001. 
Application of a structural model for 
genetic covariances in international dairy 
sire evaluations. J. Dairy Sci. 84, 1525-
1530. 

Schaeffer, L.R. 1994. Model for international 
evaluation of dairy sires. J. Dairy Sci. 77, 
2671-2678. 

Wolfinger, R. 1993. Covariance structure 
selection in general mixed models. Comm. 
Statist.-Simula. 22(4), 1079-1106. 


