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INTRODUCTION
Today’s genetic evaluation schemes involve mod-
els comprising multiple, correlated additive genetic
effects for each animal. These can be multi-trait
(MT) models or random regression (RR) models
which model trajectories in traits recorded repeat-
edly per animal through a set of RR coefficients.
Often we are interested in linear functions of the
resulting breeding value (EBV) estimates. These
may be selection indexes combining EBVs for in-
dividual traits. For instance, BREEDPLAN, the
Australian genetic evaluation scheme for beef cat-
tle currently considers 22 traits (Johnston et al.,
1999). The companion program, BREEDOBJECT

(Barwick and Henzell, 1998) provides a range of
customised selection indexes from the EBVs gen-
erated by BREEDPLAN. For RR models, estimates
of the genetic RR coefficients describe the com-
plete trajectory of genetic merit for each animal.
EBVs for any point on the longitudinal scale can
be obtained by evaluating the regression equations.
Hence, like selection indexes, such derived point
EBVs are linear functions of multiple, estimated
EBVs which are correlated.

When comparing EBVs, we are interested not only
in their values but also in how reliable they are. The
reliability or accuracy of an EBV depends on its
prediction error variance (PEV) relative to the ge-
netic variance. As such, it can be perceived as a
statistic summarising the value of the information
available in calculating the EBV. If the inverse of
the coefficient matrix in the mixed model equations
(MME) is known, PEVs can be found directly from
the diagonal elements of the inverse. However, di-
rect inversion is generally only feasible for small
populations, even if sparse matrix techniques are
used. Hence, a variety of methods have been devel-
oped for approximating PEVs and the resulting ac-
curacies, which are suitable for large scale genetic
evaluation schemes involving millions of animals.

Little attention has been paid to approximating ac-
curacies of linear functions of EBVs. This re-
quires approximation of prediction error covari-
ances (PEC) among individual EBVs as well as
PEVs. This paper describes a simple method to
approximate both PEVs and PECs simultaneously,
developed by Tier and Meyer (2003), extending
the widely used method of equivalent number of

progeny (ENP) from a single number to a matrix
of values for each individual. Examples of approx-
imate reliabilities of linear functions of EBVs for
multi-trait and RR models are given and contrasted
to theoretical values and simulation results.

METHOD
Prediction error (co)variances between effects in a
linear mixed model are given by the correspond-
ing elements of the inverse of the coefficient matrix
in the MME, denoted by C. Approximation meth-
ods available thus generally attempt to adjust diag-
onal elements of C for ‘links’ with other effects in
the model, so that reciprocals of the adjusted di-
agonals closely resemble the diagonal elements of
C−1. Early methods to approximate PEVs for sin-
gle trait analyses first adjusted diagonals of animals
with records for limited subclass sizes, then accu-
mulated adjustments to parents’ diagonals for lim-
ited information on their progeny, and finally ad-
justed diagonals of progeny for the adjusted diago-
nals of their parents, taking care not to double count
the animal considered (e.g. Meyer, 1989). Princi-
ples involved in the more recent procedures and our
method are no different. We need to account for the
value of information on each animal provided by its
own records, its parents and other known ancestors,
its progeny and further descendants, and any col-
lateral relatives. In contrast to previous methods,
however, we are approximating the k× k diagonal
block of C−1 for each animal, corresponding to all
additive genetic effects fitted.

Multi-trait model. Consider k traits with single
records per trait. Let

y = Xb+Za+ e (1)

denote the multi-trait animal model, with y the vec-
tor of observations, b the vector of fixed effects, a
the vector of additive genetic values, e the vector of
residual, and X and Z the incidence matrices relat-
ing observations to effects. Assume that all vectors
are ordered according to traits within animal, and

Var(a) = A⊗G0 Var(e) =∑
i

+Ri

where A is the numerator relationship matrix, G0
and R0 are the k× k matrices of genetic and resid-
ual covariances among traits, ‘⊗’ denotes the Kro-
necker product and ’∑+ the direct matrix sum. Ri
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is the submatrix of R0 for the i−th animal, obtained
by deleting rows and columns for missing traits.
Assume further that animals are ordered from old-
est to youngest, i.e. that elements of a for parents
always precede those of their progeny.

Random regression model With repeated records
per animal in a RR model, we need to expand (1) to
include the permanent environmental (PE) effects

y = Xb+Wp+Za+ e∗ (2)

with y, b and X as above, and p and a the vec-
tors of RR coefficients for animals’ PE and addi-
tive genetic effects, respectively, and e∗ the vector
of residuals. Assume there are k covariables used
to model the animals’ genetic effects. W and Z are
incidence matrices containing covariables relating
regression coefficients to the functions of the con-
tinuous scale (time) along which observations have
been recorded. Residuals e∗m represent temporary
environmental effects, and are assumed indepen-
dently distributed with variances σ2

m.

Var(p) = I⊗P0 Var(e) = Diag{σ2
m}

Value of observations for an animal. Let Di, of
size k×k, denote the block representing the contri-
bution of records for animal i to information on its
own EBVs. This is derived from the data part of the
MME.

Multi-trait model. With PE due to the animal in-
cluded in the residual, Di is simply the submatrix
of C corresponding to the animal’s genetic effects

Di = Z′
iR

−1
i Zi (3)

with Zi the submatrix of Z for the i−th animal.
Genetic evaluation models generally include some
’contemporary group’ effects among the fixed ef-
fects fitted, e.g. herd-test day effects for dairy cat-
tle data. (3) does not account for limited subclass
sizes. When individual i has few contemporaries,
(3) should be modified to be

Di = Z′
i

(
R−1

i −R−1
i (S−1

i )R−1
i

)
Zi (4)

where Si is the block of C pertaining to the contem-
porary groups of which animal i is a member. This
discounts the value of observations to accommo-
date the limited number of contrasts between this
animal and others, and is the multi-trait equivalent
to replacing “1” by (n−1)/n in a univariate, single
record scenario (with n the subclass size).

Random regression model. To obtain the equivalent
in the RR model, we need to ’absorb’ animals’ PE
effects into the corresponding genetic effects

Di = Z′
iR

−1
i Zi −Z′

iR
−1
i Wi

(
W′

iR
−1
i Wi +P−1

0

)−1

W′
iR

−1
i Zi (5)

with Wi the submatrix of W for animal i. As
above, contributions from observations can be dis-
counted using weights wm = (nm − q)/nm ≤ 1 for
the m−th record, with nm the size of subclass to
with the record belongs and q the number of ‘re-
peated’ records it has in that subclass, i.e. replacing
Ri in (5) with R∗

i = Diag{wmσ2
m}.

Value of observations on descendants. In the
second step, we accumulate the values of progeny
and other descendants for each animal, processing
the pedigree ‘upwards’, i.e. from youngest to old-
est. Conceptually, this is obtained by assuming
each progeny has only one parent known and that
this parent has no further information, building the
MME for the animal and the parent, and then ‘ab-
sorbing’ the animal equations into those of the par-
ent. Let Ei denote the k× k block of contributions
for animal i and pi the number of progeny it has.

Ei =
1
3

G−1
0 − 4

9
G−1

0

(
Di +

pi

∑
l=1

El +
4
3

G−1
0

)−1

G−1
0

(6)

This block is accumulated for both sire and dam
of animal i. As the pedigree is processed ‘upwards’
any blocks El required for progeny of animal i have
already been fully determined. (6) is adequate if
animal i has been directly contrasted to relatively
few half-sibs. If the animal’s records were in con-
temporary groups which included many of its half-
sibs, however, Di in (6) would give an overestimate
of the individual’s contribution to its parents. As
above, we can discount the information required by
weighing contributions with a factor determined by
the proportion of sibs in a subclass; see Tier and
Meyer (2003) for details.

Value of observations on ancestors. Finally, we
accumulate the values of parents, ancestors and col-
lateral relatives for each animal by processing the
pedigree from oldest to youngest. However, in the
previous step, the value of descendants for all an-
imals was accumulated. Hence the block E j for
parent j of animal i includes the contribution for i.
This has to be removed first to avoid double count-
ing. The adjusted block is

E∗
j =

1
3

G−1
0 − 4

9
G−1

0

(
−Ei +F j +

4
3

G−1
0

)−1

G−1
0

where F j is the k× k block for parent j in which
contributions from all sources of information has
been accumulated. As the pedigree is processed
‘downwards’, blocks F j have always been finalised
when the contribution of parent j for animal i to
be calculated. The ‘final’ block Fi for an animal is
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then the sum of blocks for its parents, ‘unadjusted’
for the animal, the block for the contribution from
its own records, and the blocks for its progeny

Fi =
ti

∑
j=1

E∗
j +Di +

pi

∑
l=1

El (7)

where ti = 0,1, or 2 denotes the number of known
parents for animal i.

Prediction error covariances. Matrices Ti of ap-
proximate PEV and PEC for the k genetic values
estimated for animal i are then obtained as

Ti = (Fi +G0)
−1 (8)

The approximate reliability of a linear function of
estimated breeding values for animal i is then

ρ2
i = 1−k′Tik/k′G0k (9)

where k is the vector of index weights or covari-
ables evaluated for a given point along the longitu-
dinal scale.

APPLICATION
Data. Data for RR analyses consisted of weight
records for beef cattle from birth to 730 days of
age. Data set I comprised records from an exper-
imental herd, weighing animals at monthly inter-
vals. Data set II were all records available for Aus-
tralian Murray Grey cattle. Data set III comprised
all records for 600 day weight (W600), P8 fat depth
for heifers/steers (P8-H) and bulls (P8-B), and eye
muscle area for heifers/steers (EMA-H) and bulls
(EMA-B) for this breed. Table 1 summarises char-
acteristics of the data structure.

Analyses. RR analyses fitted a cubic regression on
Legendre polynomials of age at recording for di-
rect genetic, maternal genetic, direct permanent en-
vironmental and maternal permanent environmen-
tal effects. Variances among RR coefficients and
heterogeneous measurement error variances were
assumed to be those estimated for Hereford cattle
(Meyer, 2002). Fixed effects fitted were contem-
porary groups (CG) and a quartic regression on LP
of age, with CG defined as herd-sex-management
group-year/month of weighing subclasses for birth
weights, and herd-sex-management group-date of
weighing subclasses otherwise, dividing CGs fur-
ther by applying an “age slicing” of 45 days up to
300 days, and 60 days for higher ages. The multi-
trait analysis (Data set III) fitted a simple animal
model with CGs as fixed effects. All 5 traits were
assumed to have moderate heritabilities (0.2-0.3),
with the same traits measured on different sexes as-
sumed genetically highly correlated (0.8), P8 mea-
sures assumed to have virtually no genetic associ-
ation with the other traits, and EMA assumed have

Table 1. Data structure.
Set I Set II Set III

No. records 75,829 227,219 47,655
Animals in data 7,305 117,977 28,768
. . . 1 obs. 800 58,396 17,838
. . . 2 obs. 545 26,840 2,973
. . . 3 obs. 158 19,795 7,957
. . . 4 obs. 271 10,776 0
. . . ≥ 5 obs. 5,531 2,170 0
Ancestors 1,138 55,149 21,659
Groups (CG) 11,417 54,263 7,407

Table 2. Reliabilities (in %) of RR coefficients.

interc. linear quadr. cubic

Data set I
Simulation 38.2 34.4 23.8 21.7
’True’ 38.6 34.6 23.8 21.8
Approximation 37.8 33.9 24.4 22.8
βT.A 0.999 0.982 0.954 0.949
R2(%) 95.3 95.0 94.6 94.6
Data set II
Simulation 26.5 21.5 9.3 8.7
’True’ 28.0 23.0 11.0 10.5
Approximation 27.8 22.2 9.7 9.5
βT.A 0.956 0.950 0.939 0.906
R2(%) 88.6 85.1 69.4 71.5

have a low genetic correlation (0.4) with W600.
Covariance matrices used are given in Tier and
Meyer (2003). The index used assumed equal em-
phasis for all traits, i.e. k′ = (1 1 1 1 1).
Measures of reliability. Approximate PECs of es-
timated genetic RR were calculated for all animals
as described above, amalgamating maternal covari-
ances with permanent environmental components.
From these, approximate reliabilities of RR coef-
ficients and EBVs for weights at birth, 200, 400
and 600 days were determined. Results were con-
trasted to approximate reliabilities computed using
the procedure of Jamrozik et al. (2000), and ‘true’
reliabilities obtained from the inverse of the coeffi-
cient matrix in the MME using a Gibbs sampling
algorithm as described by Harville (1999) to es-
timate the diagonal blocks for C required, draw-
ing 400,000 Gibbs samples and discarding the first
20,000 samples as burn in. In addition, empirical
reliabilities for the data sets considered were avail-
able from a simulation study (Meyer, 2003), which
calculated reliability as the square of the correlation
between true and estimated breeding value across
all animals.

Criteria. Method were compared by contrasting
means across all animals and by linear regression of
theoretical values obtained from C−1 on their coun-
terparts from approximations.
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Table 3. Reliabilities (in %) of EBVs.

0 d 200 d 400 d 600 d

Data set I
Simulation 40.8 30.8 36.1 37.6
’True’ 41.5 34.8 36.7 38.1
Approximation 43.6 34.2 36.0 37.2

βT.A 0.936 1.017 1.004 0.997
R2(%) 96.0 94.6 95.9 95.8

Jamrozik 45.3 37.7 38.6 39.7
βT.J 0.900 0.912 0.952 0.962
R2(%) 96.8 95.9 97.0 96.9

Data set II
Simulation 28.7 24.7 26.0 26.4
’True’ 30.3 26.2 27.5 27.8
Approximation 31.6 26.5 27.3 27.5

βT.A 0.911 0.955 0.954 0.954
R2(%) 90.2 88.5 89.5 89.0

Jamrozik 34.9 31.0 31.1 31.5
βT.J 0.894 0.885 0.925 0.923
R2(%) 88.8 86.9 88.4 87.8

Table 4. Reliabilities (in %) of EBVs and index.

W600 P8-H P8-B EMA-H EMA-B Index

’True’ 31.5 18.7 17.1 19.1 17.9 30.2
Approx. 28.2 16.4 16.2 15.5 14.9 27.2
βT.A 0.957 0.951 0.951 0.960 0.978 0.970
R2(%) 91.4 84.6 84.0 90.3 88.7 90.2

Results. Reliabilities for estimates of RR coef-
ficients for data set I and II are summarised in
Table 2, together with the regression of ‘true’ on
approximate values (βT.A) and the corresponding
coefficient of determination (R2). On the whole,
there was good agreements between approximate
and theoretical values. Whilst mean approximate
values were slightly lower than ’true’ values, re-
gression coefficients were less than unity, as the ap-
proximation procedure tended to overestimate re-
liabilities for high accuracy animals. Simulation
results tended to be lower than their expectations,
especially for data set II, but with empirical stan-
dard deviations between 2.0 and 2.7% differences
were not significant. R2 values were around 95%
for all RR coefficients for data set I with an average
of 10.4 records per animal, but were dramatically
lower for data set II, in particular the quadratic and
cubic coefficients. With an average of 1.9 records
per animal and few animals with 4 or more records
for this data set, this was not surprising. Doubling
the amount of data by adding a fictitious record
about 100 days after each actual one increased R2

for the quadratic and cubic coefficients to just over
80%.

Corresponding statistics for EBVs at individual
ages are given in Table 3. With the intercept and

linear coefficients dominating the linear function,
differences between individual ages were small.
Again there was good agreement between approx-
imate reliabilities and their ‘true’ values. Approx-
imations using Jamrozik’s method were generally
higher than those from our method, resulting in
lower regression coefficients of ‘true’ on approxi-
mate. R2 values for the two approximations were
comparable, however, with the former performing
slightly better for data set I and copying somewhat
less well with the bad structure of data set II.

Results for the multi-trait analysis are given in Ta-
ble 4. With most animals having W600 records,
but only about 25% of animals having both scan
traits recorded as well, reliability of the index was
largely determined by that of W600. Other indexes
examinded (not shown) yielded similar results.

CONCLUSIONS
Reliabilities of linear functions of estimated breed-
ing values and hence prediction error covariances
can be satisfactorily approximated for data struc-
tures typical for beef cattle. The approximation
procedure described is computationally undemand-
ing and applicable to large scale problems.
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