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Abstract 
 
Assessment of the constancy of variance of Mendelian sampling (MS) effects across generations is 
regarded as a useful tool for validation of genetic evaluation models that assume linearity of the 
offspring-parent regression or, more strongly, multivariate normality. Therefore, finding a well-posed 
method for inferring possible changes (or lack thereof) in the variance of MS effects over time is 
important. Here, we examine a procedure proposed by Sorensen et al. (2001) for inferring the 
trajectory of genetic variance under selection, which relies on absence of missing data and ignorability 
of selection. The method was used to assess changes in Mendelian sampling variance under some 
animal breeding situations with progressing amounts of missing data. Results from simulations 
indicate that, after discounting for inbreeding, the segregation variance was inferred well in most 
cases. However, constancy of variance of MS effects could not be corroborated under a sire model or 
when heritability was low. It seems that the variance of MS effects does not provide a sensitive 
enough end-point for discriminating between right and wrong evaluation models in many cases. 
 
 
Introduction 
 
The usefulness of the international genetic 
evaluations conducted at the Interbull Centre 
depends on the quality of input data provided 
by national genetic evaluation centers in the 
Interbull member countries. Another important 
factor is whether or not the assumptions made 
(implicitly or explicitly) in genetic evaluation 
models hold. Many methods have been 
suggested for validating genetic evaluation 
models (see Jorjani, 2003).  
 

In particular, much emphasis has been 
placed on examining trends in the means and 
variances of predicted additive genetic values 
and of Mendelian sampling, MS, terms (e.g. 
Boichard et al., 1995; Thompson, 2002; Klei et 
al., 2002). This focus is related to the 
dependence of predicted breeding values on 
the input genetic parameters, especially in 
multi-trait models. The underlying rationale is: 
if genetic parameters are modeled and inferred 
appropriately, then there should be little reason 
for geneticists to worry about other parts of the 
evaluation models. However, this is debatable. 
Poor functional forms, lack of adequate 
transformation, non-linearity of effects, 

presence of limited-dependent variables (due 
to categorization and censoring), and effects of 
outliers may be as important as the input 
genetic parameters. On the other hand, the 
effect of genetic parameter values on the 
evaluations is very apparent, since slight 
changes in the values may produce differential 
shrinkage of deviations from contemporary 
groups. It must be kept in mind, however, that 
model selection and validation is a very 
complex issue (Burnham & Anderson, 2002; 
Sorensen & Gianola, 2002), and an 
examination of the behavior of putative MS 
terms may fail to reveal model inadequacies.  

 
Here, we take the narrow point of view of a 

standard animal breeding model in which 
additive genetic effects are drawn from a 
multivariate normal process. The idea behind 
using MS for assessing model validity is as 
follows: under this infinitesimal model, and in 
the absence of inbreeding, the variance of MS 
(segregation variance) is assumed to be 
constant across generations. Let 
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where γi and aj are the MS and breeding values 
of animal i (i=1, 2, …, N), respectively; aj is 
the breeding value of ancestor j (usually sire 
and dam/maternal-grandsire), and ai,j is the 
additive genetic relationship between animal i 
and animal j. Under the “animal” model, an 
individual it (i=1t. 2t,…, Nt) born in generation 
t, with known sire (s) and dam (d), has as 
Mendelian sampling term: 
 

½ ½
it itit it s sa a aγ = − −        [2] 

 
This is assumed to be distributed as: 

 
2~ (0, 2 (1 ( ) 2))it a s dN F Fγ σ − +        [3]  

 
where Fs and Fd are the sire’s and dam’s 
inbreeding coefficients, respectively, and σ2

a is 
the base population additive genetic variance. 
As inbreeding accrues, the MS variance 
decreases, so the model may hold and, yet, the 
MS variance change due to inbreeding only. 
The effect of inbreeding can be discounted by 
noting that the rescaled MS term:  
 

* 21 ( ) 2 ~ (0, 2)it it s d aF Fγ γ σ= − +      [4]  

 
has a constant variance, across individuals and 
generations. If, given data, the variance of the 
rescaled γ*

it effects is found to be constant over 
time, this should be construed as lack of 
evidence for refuting the infinitesimal model. 
The question is how the variance of γ*

it can be 
inferred at any point of the selection process.  
 

Parameter estimation methodology 
employed currently in connection with national 
genetic evaluations is ambiguous with respect 
to which population the estimates pertain to. 
There is agreement in that “unbiased” 
estimates of the genetic parameters for an 
unselected, non-inbred, base population can be 
derived from likelihood functions through 
inclusion in the analysis of the numerator 
relationship matrix (A) and of all data used for 
selection decisions. However, it is less clear 
whether or not the variance of predicted 
breeding values for animals born in a certain 
year can be regarded as an estimate of the 
genetic variance for that year, or as another 
estimate of the base population value based on 
a sample of animals born in the year in 
question, or as none of the above. 

A simple method for inferring segregation 
variance at any time follows directly from 
Sorensen et al. (2001). These authors define 
the parameter “additive genetic variance at 
time t” as the dispersion of breeding values 
about the appropriate generation mean, 
conditionally on the genotypic values of the 
individuals born in the cohort in question. A 
similar definition applies to the MS variance at 
time t, after rescaling for the effect of 
inbreeding. Since the breeding values or the 
MS terms are unobserved, the latter (as well as 
the MS variance) must be inferred somehow. 
A simple frequentist procedure might consist 
of a method of moments fit, where the BLUP 
of the MS (after rescaling) is used in the 
formulae for the variance at time t. This does 
not take uncertainty into account, plus 
population parameters are estimated with error. 
A Bayesian treatment solves these problems, 
but at the expense of introducing prior 
distributions. 

 
Sorensen et al. (2001) make use of missing 

data theory developed during the 1970’s and 
later (Little, 1976; Rubin, 1976), and present a 
Bayesian procedure (see also Gianola & 
Fernando, 1986). A key assumption of 
Sorensen et al. (2001) is that whatever 
selection has taken place must be ignorable, in 
a well defined and precise sense. The paper 
should be consulted for details of the technical 
argument. In the proposed method, Sorensen et 
al. (2001) infer the base population parameters 
simultaneously with the variance of breeding 
values of any cohort of animals born during 
the selection process, with all parameters 
inferred from marginal posterior distributions 
(so uncertainty is fully accounted for). Their 
procedure makes use of all the available data, 
but selection must be “ignorable”, as pointed 
out earlier. For example, if the conditional 
distribution of the missing data given the 
observed data is degenerate (i.e., all data 
employed for selection decisions are included 
in the analysis), selection is ignorable. On the 
other hand, if selection is for 2 correlated 
traits, but only records for one of the traits are 
used in the analysis, the selection process 
cannot be ignored; this has also been shown in 
the literature using less formal procedures. 

 
The purpose of the present study is to 

assess empirically the stringency of the 
ignorability conditions under some common 
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animal breeding situations. For this purpose, 
genetic parameters (including the variance of 
Mendelian sampling terms) were inferred in a 
series of in silico populations undergoing 
ignorable or non-ignorable selection. 
 
 
Material and Methods 
 
The infinitesimal model was used to simulate 
40 (“small” population) or 100 (“large”) 
animals per sex in an unselected, non-inbred, 
base population. For each animal, two 
phenotypes were simulated from the bivariate 
normal distribution: 
 

2 2

1 1 1 21

2 2

1 2 2 22

0
,

0
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N
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+     

     +     
∼       [5] 

 
where the σ2

ij (i=a, e; j=1, 2) are additive 
genetic or environmental variances, and ρ is 
the genetic correlation between traits; the 
environmental correlation was zero.  
 

Values for σ2
ij were chosen in such a way to 

give coefficients of heritability h2=0.05, 0.25 
or 0.50; simulated values of the genetic 
correlation were ρ=0.2, 0.5 or 0.8, and σ2

pj 
=100 was the phenotypic variance for trait j 
(j=1, 2). Each generation, a fraction of animals 
(5%, 25% or 50%) was selected as parents, 
either at random (designated as I5), or based on 
the indexes (I): 

 
I4 = 4/4 y1 + 0/4 y2 
I3 = 3/4 y1 + 1/4 y2 
I2 = 2/4 y1 + 2/4 y2 
I1 = 1/4 y1 + 3/4 y2 
I0 = 0/4 y1 + 4/4 y2 
 
In I4, selection is based entirely on trait 1, and 
in I0 selection is on trait 2; the other three 
indexes represent 2-trait selection scenarios. 
 

The two traits were either expressed in both 
sexes or only in females (in which case males 
were selected at random). Selected animals 
were mated randomly. For offspring, the 
breeding values were simulated using a 
standard rearrangement of Eq. [2]. The same 
procedure was repeated for 10 additional 
generations; each selection protocol was 
replicated 16 times.  

Genetic analysis 
 
We followed Sorensen et al. (2001), as 
outlined below. Given a vector of location 
parameters θ (i.e, systematic effects and 
breeding values), the sampling distribution of 
the single-trait data vector y was a Gaussian 
process described by 
 

2 2

e ey| ,  ~ N (W  , I )θ σ θ σ        [6] 
 
where W is a known incidence matrix, I is an 
identity matrix of order n and σ2

e is the 
residual variance. The θ vector can be 
partitioned into two sub-vectors: b (the 
systematic, non-genetic, effects) and a 
(additive genetic values). The latter were 
assigned the multivariate normal prior 
 

2 2

a aa |A,  ~ MVN (0, A )σ σ        [7] 
 
where A is the additive genetic relationship 
matrix between all individuals, of order q. The 
vector b was assigned an improper uniform 
prior. The unknown variance components σ2

e 
and σ2

a were assigned, a priori, the 
independent scaled inverted chi- square 
distributions:  
 

e

2 -2

e e e e e | , S  ~  S  
ν

σ ν ν χ        [8] 

 
and  
 

a

2 -2

a a a a a | , S  ~  S  
ν

σ ν ν χ        [9] 

 
Here, νe, Se, νa and Sa are known hyper-
parameters specifying the form of the 
corresponding distributions. Hyper-parameter 
values were νe =νa =  -2 and Se =Sa = 0.  
 

Consider now a cohort of individuals born 
in generation t. The additive genetic variance 
at generation t is denoted as σa

2(t), and the 
cohort size is denoted as nt. The additive 
genetic value of an individual sampled from 
generation t, at, is a random variable taking nt 
possible values, each with probability 1/nt. By 
definition, the variance of at is: 
 

2( ) 2 2 2 2

( ) ( )
1

( ) [ ( )] 1 ( )
tn

t

a t t t i t t
i

E a E a n a aσ
=

= − = −∑   [10] 
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where 
 

1( ) ( )( ) 1 tn
it t t i ta E a n a== = ∑       [11] 

 
and ai(t) is the ith additive genetic value in 
generation t. The variance of the segregation 
residuals at generation t is defined in a similar 
manner, but working with [2] or [4] instead of 
with the breeding values. The variance of the 
breeding values and of the segregation 
residuals at any time during the selection 
process was inferred from their corresponding 
marginal posterior distributions, using a Gibbs 
sampling procedure described below. 
 
 
MCMC Gibbs sampling scheme 
 
The Gibbs sampling scheme operated as 
follows: 
1- Sample θ´= (b´, a´) from N ( 21,ˆ eC σθ − ),  

where  
C = [W´W + Σ] ;  
Σ = 












− k1A0
00  ;  

k = σ2
e / σ2

a ; and  
[ ] yW'θΣWW' =+ ˆ ; 
 

2- Sample σ2
i from 2

~

~ −

iiS νχ  , i = e, a, 

where  

e enν ν= + ; 

a aqν ν= + ; 

( ) '( ) /e eS y W y Wθ θ ν= − − ; 
1' /a aS a A a ν−= ; 

 
3- Compute σa

2(t) 2 2

( ) ( )
1

1 ( )
tn

t i t t
i

n a a
=

= −∑ , 

where 
ai is an element of θ; 
 

4- Update and return to the first step.  
 

Extension of the method to the situation 
where Mendelian sampling effects are drawn is 
straightforward, and changes are restricted to 
Step 3 (above), so now: 

a) Calculate γit (Eq. [2]) from the 
sampled values of a; 

b) Calculate σ2(t)
γ  (similar to Eq. [10]); 

c) Calculate γ*
it as in Eq. [4], and 

d) Calculate σ2(t)
γ* (similar to Eq. [10]). 

 
In two-trait models, the additive genetic 

and residual variances are replaced by 2 x 2 
genetic and residual covariance matrices, 
respectively. The mixed model equations are 
modified for a 2-trait situation. The sampling 
procedure is as before, except that the prior 
and fully conditional scaled inverted chi-
squared distributions are replaced by 
appropriate inverse Wishart processes. A new 
parameter appearing in the 2-trait situation is 
the covariance between MS effects for the two 
traits; we did not monitor this during the 
simulations. 

 
For implementing the above algorithm, the 

Gibbs program package (Misztal, 2002) was 
modified as needed. The Gibbs sampler was 
run for 75000 iterations, of which the first 
25000 were discarded as burn-in, and 1 out of 
each 25 consecutive samples was kept for 
examination of posterior distributions, i.e., the 
nominal sample size for inferences was 2000. 

 
Phenotypic records were analyzed with 

univariate or bivariate animal (or sire+maternal 
grand-sire) models including generation effects 
as “fixed”. The fixed effects are 
environmental, since genetic trends should be 
captured in the posterior distributions of the 
breeding values, at least when selection is 
ignorable. For this preliminary report, 160 and 
32 models in small and large populations, 
respectively, were analyzed (Table 1).  
 
 
Results and Discussion 
 
Only main tendencies are reported here. 
Generally speaking, posterior distributions 
captured well the simulated values and their 
fluctuations, though with some bias for 
individual models / replicates. Figure 1 shows 
an example. 
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Figure 1. Simulated values (S) and posterior means (G) of genetic variance (Va), Mendelian sampling 
variance (Vms), Lower and Upper (L, U) 95% probability intervals for genetic variance, variance of 
discounted Mendelian sampling terms (Vdms), and heritability in a population of 40 
animals/sex/generation. There were two traits (h2=0.50 and rg=0.8) expressed in both sexes, 25% of 
animals were selected at random (selection method I5), and genetic evaluation was with a two-trait 
Animal Model. 
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Figure 2a. Animal model analysis of a population of 40 animals / sex / generation. There were two 
traits (h2=0.05 and rg=0.2) expressed in both sexes, 25% of animals were selected for an index of the 
two traits (selection method I3), and genetic evaluation included both traits. Descriptions of curves are 
as in Figure 1. 
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Figure 2b. Sire model evaluation of a population of 40 animals / sex / generation. There were two 
traits (h2=0.05 and rg=0.2) expressed in both sexes, 25% of animals were selected for an index of the 
two traits (selection method I3), and genetic evaluation considered both traits. Descriptions of curves 
are as in Figure 1. Please notice differences of scale between Figures 2a and 2b. 
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Table 1. Percentage of models with a non-zero trend (over generations) in variance of rescaled 
Mendelian sampling terms (σ2(t)

γ*) for small or large populations and several simulation settings.  
 Small Population Size Large Population size 

  
% of models with  
non-zero trends  

% of models with  
non-zero trends 

 
Total # of 

models 
Simulated 

values 
Posterior 

values
Total # of 

models 
Simulated 

values
Posterior 

values 
h2    

0.05 80 2.5 42.5
0.25    32 12.5 15.6 
0.50 80 15.0 18.8

rg    
0.2 80 7.5 33.8  
0.5    32 12.5 15.6 
0.8 80 10.0 27.5

Selection    
5 32 12.5 25.0 8 0.0 12.5 
4 32 18.8 28.1 8 25.0 25.0 
3 32 0.0 40.6
2 32 6.3 34.4 8 25.0 25.0 
1 32 6.3 25.0
0    8 0.0 0.0 

Trait    
1 80 7.5 30.0 16 12.5 0.0 
2 80 10.0 31.3 16 12.5 31.3 

Selection    
0.05    
0.25 160 8.8 30.6 32 12.5 15.6 
0.50    

Evaluation    
1 Only 80  35.0 16 18.8 
1 & 2 80  26.3 16 12.5 

Evaluation    
AM 80  3.8 16 0.0 
SM 80  57.5 16 31.3 

    
Total 160 8.8 30.6 32 12.5 15.6 
 
 
 

The example in Figure 1 represents a 
situation without “missing data” so selection is 
“ignorable”. Posterior means of σ2(t)

a (G_Va) 
follow Monte Carlo fluctuations of the 
simulated values (S_Va), and there is little 
difference between the two trajectories. The 
same is true for posterior means of σ2(t)

γ, σ2(t)
γ* 

and heritability. Posterior means of σ2(t)
γ 

(G_Vms) and variance of the simulated MS 
terms (S_Vms) have a decreasing trend, 
because of inbreeding. When MS terms are 
rescaled (see Eq. [4]), very little fluctuation is 
observed; posterior means of σ2(t)

γ* (G_Vdms) 

and the variance of simulated values (S_Vdms) 
show a flat trend, especially during later 
generations. Upper and lower bounds for the 
95% posterior probability interval for additive 
genetic variance (U_G_Va, and L_G_Va, 
respectively) are also shown in the figure. The 
“true” trajectory is inside of the bounds, so the 
Bayesian analysis gives a correct inference in 
this case.  

 
There are several factors in the simulation 

process (h2, rg, selection method, sex-limited 
expression of the trait and intensity of 
selection) and in the genetic evaluations 
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(number of traits and the evaluation model 
used, i.e., “sire” or “animal” model). These 
create a sequence of “missing data” situations 
and, thus, of degree of “ignorability”. There is 
also the effect of population size: in small 
populations the volatility of the simulation and 
estimation processes is larger. As the amount 
of “missing data” increases, the bias in 
estimation of variances increases as well. Also, 
95% probability intervals widen and, in some 
situations, the simulated values tend to fall 
outside of the interval. An example of this is 
shown in Figures 2a and 2b. In Figure 2a 
(animal model, 2-trait analysis) the “true” 
trajectory of the genetic variance is inside of 
the credibility interval. In Figure 2b (sire 
model, 2-trait analysis), the genetic variance 
and the variance of the MS effects are 
overstated throughout the selection process; 
this is a situation where all data are used in the 
analysis but the relationship information 
employed is incomplete.  

 
In order to see if σ2(t)

γ* has a flat trend over 
generations, the ratio of the posterior mean of 
this variable to the base population total 
additive genetic variance was regressed on 
generation number. Table 1 shows percentages 
of models having regression coefficients 
significantly (p < 0.05) different from 0.  

 
There were 1296 possible models from 

combination of all factors. However, only 160 
and 32 models in the small and large 
population sizes, respectively, are included in 
this report (Table 1). On average, about 70% 
of the models in the small populations and 
87% of the models in the large populations had 
a flat trend for the variance of rescaled MS. 
Note, however, that the ratio used as response 
variable is correlated over generations, so the 
null hypothesis “flat trend” is expected to be 
rejected too often by ordinary least-squares. 
Using a non-parametric test would have been 
more sensible here. Therefore, the following 
results and conclusions should be treated 
cautiously.  

 
There was a clear association between 

evaluation model (animal model vs sire model) 
and non-zero trends in the variance of MS 
terms. For animal models, 3.8% and 0.0% of 
the models in the small and large populations, 
respectively, showed non-zero trends; for the 
sire models, the corresponding figures were 

57.5% and 31.3%. Within models where there 
was a “significant” trend in the posterior mean 
of σ2(t)

γ* (G_Vdms), such trends were between 
1% to 5% of the base population variance per 
generation. However, trends as large as 20% of 
the base population values were observed as 
well.  

 
An association between heritability value 

and a trend of the variance of MS effects was 
found also. In small populations, the difference 
in percentage of models with non-zero trend 
between simulated and posterior values was 
only 3.8% (18.8-15.0) for h2=0.50, while it 
amounted to 40% (42.5-2.5) for h2=0.05. This 
may be related to the precision of the analysis, 
as one would expect genetic variances to be 
more difficult to infer when the signal/noise 
ratio is small, i.e., low heritability. 

 
On the basis of the results from sire models 

and low heritability values, it appears that one 
should be careful about assuming constancy of 
the variance of Mendelian sampling effects 
across all evaluation models and traits. 

 
We found one counter-intuitive result. 

Differences between analyses with only one 
trait vs. two traits were unclear, even when 
selection was based entirely or partially on the 
second trait, with the records on the second 
trait ignored in the evaluation. This will be 
investigated in the future. 

 
Irrespective of the amount of bias in any of 

the parameters monitored, the posterior means 
of σ2(t)

γ* showed much less fluctuation 
(especially in later generations), despite some 
non-zero trends. Perhaps monitoring the 
variance of MS effects is not a sensitive 
enough criterion for discriminating between 
“right” and “wrong” genetic evaluation 
models. 

 
The simulation strategies and evaluation 

models adopted may be did not provide a 
stringent enough test of ignorability. For 
example, missing pedigree information may 
play a vital role, and this was not considered 
here. A lack of a test statistic is also a point of 
concern, because in the analysis of field data 
one is interested to know when a departure 
from expectation can be established. These and 
related questions will be addressed in future 
studies. 
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