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1. Introduction 
 
National genetic evaluation results form the 
basis of Interbull services. The current method 
for quality assurance is mainly determined by 
the consistency of consecutive evaluation 
results and is based on thorough statistical 
examination (Klei et al., 2002). In a separate 
project, national genetic evaluation programs 
are being tested on simulated data sets with 
known properties (Täubert et al., 2002). Data-
mining (DM) offers an alternative way to 
examine data and extract valuable information 
(Han and Kamber, 2000), potentially leading to 
inference on data quality. In a recent progress 
report, the development of a DM algorithm for 
the analysis of national genetic evaluation 
results was presented (Banos et al., 2003). 
Data quality was assessed by subjective 
inspection of DM results. The present study 
introduces a method to evaluate DM 
application results with objective criteria 
leading, when necessary, to the automatic 
issuing of warnings or alarm signals. 
 
 
2. Material and Methods 
 
2.1 Data description and data-mining module 
 
Data and algorithms used were as described in 
Banos et al. (2003). Briefly, national genetic 
evaluations for production traits (milk, fat, 
protein) computed between February 1999 and 
February 2003 in 9 countries that had not 
changed their national genetic evaluation 
model during this period, were obtained from 
the Interbull Center. A separate data set of a 
certain country-evaluation run combination 
that included known errors was also obtained. 
A classification algorithm was developed, 
based on the C4.5 decision-tree classifier 
(Quinlan, 1993). Bull proofs were first 
categorized (min-max categorization on a scale 
1-10) and a decision-tree model was then 

induced based on the associations discovered 
between the class variable (bull proof) and four 
input variables (bull birth year, type of proof, 
number of daughters and origin of bull). In the 
previous report (Banos et al., 2003) predictions 
led to by associations discovered had been 
qualitatively compared to actual proofs and 
discrepancies had been confirmed in the data 
set with the known errors. 
 
 
2.2 The bin fitter (or examining categorized 
bull proofs) 

 
Bull proofs in the various decision-tree nodes 
are expected to follow normal (Gaussian) 
distribution. This is a result of normalization 
during data pre-processing. A tool measuring 
the correctness (or goodness or quality) of fit 
to the Gaussian distribution in each node 
would be useful. Since data were binned (i.e., 
categorized, with values 1-10), a bin fitter was 
used to fit data in each decision-tree node to 
the Gaussian distribution. The following chi-
square value was estimated for this matter: 

 
 
 
 
 

 
where hi  is the number of bull proofs (height) 
of the ith bin (category), xi is the categorized 
bull proof corresponding to the ith bin, f(xi) is a 
linear function of xi that minimizes the chi-
square value, and σi is the error variance in the 
ith bin. Minimization of the above quantity 
leads to the optimum estimates of the mean 
and standard deviation that define the best 
fitting Gaussian to our distribution. 

 
The value of chi-square is a good measure 

for defining the quality (goodness) of fit, 
nevertheless, it is dependent on the number of 
data entries in each distribution. The more 
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points there are, the harder it will be to get a 
Gaussian distribution by chance, unless the 
data really follow such distribution. Thus, we 
had to normalize the value of chi-square. The 
key concept here is the degrees of freedom (df) 
that were computed as follows:  

 

paramndataNdf −=  

 
where Ndata is the number of independent data 
points and nparam  is the number of fitting 
parameters. In this case there were always two 
fitting parameters (mean and standard 
deviation). Thus, df =Ndata – 2. We can define 
now as “quality of fit” measure (criterion) the 
normalized value of chi-square over df. 
 

df
squarechiQuality −

=  

 
This quality of fit criterion was calculated 

separately for each node of the induced 
decision-trees. When results truly follow 
Gaussian distribution, this value is expected to 
be no greater than 1. In case of significant 
deviations, a warning is issued, indicating 
possible erroneous distribution of bull proofs.  
 
 
2.3 F- tests on node variance in consecutive 
evaluation runs 

 
With the bin fitter, the nodes of each decision-
tree model were individually compared to the 
expected Gaussian distribution. A more 
powerful approach would be to compare 
corresponding node distributions from 
different models (evaluation runs) against each 
other. Since the application of data mining 
indicated that there is a pattern in the structure 
of the decision-trees, it is possible to compare 
corresponding node distributions in decision-
tree models induced from different evaluation 
runs. It should be noted there were no 
differences in national genetic evaluation 
models across runs and no new bulls were 
allowed into the system (Banos et al., 2003), 
therefore, the variance of genetic proofs in 
corresponding nodes of two consecutive 
evaluation runs is expected to remain stable. 
This was tested with the following F-test, 
based on the ratio of two independent chi-

square variables divided by their respective 
degrees of freedom.  
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where s2 is the sample variance and σ2 the 
estimate of the true variance of each node in 
evaluation runs 1 and 2. This F-test is designed 
to compare two sample variances (s1 and s2,) 
(Triola, 2003). So, if variances are equal, the 
F-value will be 1 (null hypothesis). Rejecting 
the null hypothesis for a particular node would 
imply that the node is “suspicious” in this 
respect. This criterion was fitted to decision-
tree nodes of consecutive evaluation runs. 
When an exact corresponding node was 
missing in the following run, then comparisons 
were with the closest “parent” node. 
 
 
2.4 The alarm firing system 
 
A combination of the above two criteria was 
used to provide us with the necessary power to 
detect and isolate potential disruptions in the 
data sets. The technique developed issues 
warning at two levels, the “yellow” and the 
“red”. If a node fails one of the two tests (i.e. 
either the chi-square or the F-test with the 
corresponding node of the subsequent run) 
then a yellow warning is issued. If a node fails 
both tests, then a red alarm is fired.  
 
 
3. Results 

 
Figure 1 shows the quality of fit test (chi-
square) applied to five data sets, corresponding 
to consecutive genetic evaluation runs in a 
country; one of these data sets was knowingly 
erroneous (D4_e) and the other four had no 
known errors. The dotted horizontal line 
represents the threshold value, above which 
there was significant (P<0.05) deviation from 
the expectation and the node was considered to 
have failed the test. In D4_e, the values 
obtained for three nodes (1.2, 1.2.1 and 1.3.2) 
clearly exceed the others and the threshold. In 
the case of node 1.2.1, actually, this value 
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tended to infinity. These nodes were associated 
with bulls born between 1979 and 1985 (node 
1.2.1) or bulls born between 1987 and 1990 
that had more than 169 daughters (node 1.3.2). 
In such cases, a yellow warning was issued. 
Figure 2 shows the Gaussian fit for the 
histogram induced in these two nodes, 
demonstrating clear departure from normality.  
In   the   other  cases,   chi-square  values  were  
 
 
 
 
 
 
 
 

fairly consistent across all nodes, except for 
data set D1, node 1.1 (associated with bulls 
born before 1971) where genetic evaluation 
results may warrant closer inspection. The 
same tests were applied to two other countries 
without known errors in any of their data sets. 
In all cases, the calculated chi-square value 
was lower than the threshold. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Quality of fit (chi-square) test for four data sets (runs) without known errors (D1-D4) and 
one with known errors (D4_e) in one country; values exceeding the dotted horizontal line indicate 
departure from normality. 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Gaussian fit for the histogram in nodes 1.2.1 (left) and 1.3.2 (right) from D4_e dataset.  
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When the F-test was applied to node-by-

node comparison of consecutive evaluation 
runs, four (4) yellow warnings were issued in 
the case of D4_e. Two of these warnings were 
associated with nodes where yellow warnings 
had been also issued by the chi-square test. 
These two were upgraded to red alarms. Some 
additional yellow warnings were issued to 
neighboring nodes that were affected by 
distribution disruptions in the “red” nodes. 
Interestingly, a yellow warning was also issued 
in one case of consecutive data sets without 
known problems (D4-D5). The node affected 
pertained to bulls born between 1971 and 1980 
and had more than 131 daughters. The same 
node had successfully passed the chi-square 
test. It should be also noted that node 1.1 in 

D1, where a yellow warning was issued by the 
chi-square test, passed the F-test.   

 
In one of the other two countries, two (2) 

yellow warnings were issued in two separate 
comparisons of official national evaluations. 
One was for bulls born after 1986 and the other 
for bulls born in the same period and had more 
than 958 daughters; both nodes had 
successfully passed the chi-square test. No 
warnings were issued for the third country.  

 
Table 1 summarizes results from the 

combination of the chi-square and F-test in 
five consecutive evaluation run models, in 
three countries (one of which included the 
knowingly erroneous data set).  

 
 
Table 1. Number of nodes where yellow warnings or red alarms were issued, for five data sets 
(consecutive runs) without known errors (D1-D5) and one with known errors (D4_e) in three 
countries. 
 
 Country 1 Country 2 Country 3 
Model comparison Yellow Red Yellow Red Yellow Red 
 
 D1-D2 1 0 0 0 0 0 
 D2-D3 0 0 0 0 0 0 
 D3-D4 0 0 1 0 0 0 
 D3-D4_e 3 2 - - - - 
 D4-D5 1 0 1 0 0 0 
 

 
It should be noted that all yellow warnings 

and red alarms issued were for older bulls. 
This could be either because there are 
genuinely no problems with the evaluation of 
younger bulls in the countries studied here or 
because there is not enough information in the 
input variables and data available for the 
system to discover patterns within younger 
animal groups. More detailed data and 
additional input variables might be required for 
this matter. 
 
 
4. Summary and Conclusions  

 
We presented a new alarm firing system that 
exploits results of DM application to national 
genetic evaluations of dairy bulls. The system 
examines the discovered patterns by 
combining two methods for individual and 
pairwise evaluation of decision-tree nodes. 

Each node distribution in the model is 
examined with regards to quality of fit to the 
Gaussian distribution; furthermore, its variance 
is compared to the corresponding node 
variance of the subsequent evaluation run. 
Results so far showed that this system is able 
to capture errors that are also confirmed by the 
standard Interbull procedure. Some additional 
warnings warranting closer examination were 
also issued. Furthermore, the key utility of this 
platform lays in its capacity to identify the 
exact node where the alarm is issued, leading 
to closer inspection of the potentially 
erroneous data and the genetic evaluation 
model that generated them. The ultimate goal 
of data mining is knowledge discovery. In this 
context, future analysis of genetic evaluation 
results could be searching for hidden patterns 
and information. In addition to the four input 
variables used in this study, additional 
variables describing the data might be needed. 



  150

References 
 
Banos, G., Mitkas, P.A., Abas, Z., Symeonidis, 

A.L., Milis, G. & Emanuelson, U. 2003. 
Quality control of national genetic 
evaluation results using data mining 
techniques; a progress report, Proc. 2003 
Interbull Annual Meeting, 31, 8-15. 

Han, J.W. & Kamber, M. 2000. Data-miming: 
Concepts and techniques. Morgan 
Kaufmann. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Klei, L., Mark, T., Fikse, F. & Lawlor, T. 
2002. A method for verifying genetic 
evaluation results. Proc. 2002 Interbull 
Meeting, 29, 178-182.  

Quinlan, J.R. 1993. C4.5: Programs for 
Machine Learning. San Mateo: Morgan 
Kaufmann. 

Triola, M.F. 2003. Elementary Statistics, 
Pearson Addison Wesley. 

Täubert, H., Swalve, H.H. & Simianer, H. 
2002. The Interbull audit project Part II: 
Development of a program for auditing 
breeding value estimation programs. Proc. 
2002 Interbull Meeting, 29, 165-167.  


