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Abstract 

Genetic correlations (rg) between countries are required for international evaluations. The estimation of 

those rg is challenging or even unfeasible using only pedigree and phenotypes when poor connectedness 

between countries is structural in the data due to a limited number of bulls having recorded 

(grand-)offspring across countries. Genomic information could be used to estimate rg between countries 

by capturing connectedness that is not traced by pedigree recordings. Indeed, populations that appear as 

(completely) disconnected through pedigree can, theoretically, be connected through genomic data. 

Thus, our study aimed to investigate if estimates of rg between countries based on genomic information 

are more accurate compared to estimates based on pedigree data, considering different levels of genetic 

connectedness. A maternally affected trait mimicking weaning weight was simulated for two beef cattle 

populations of the same breed. Different levels of connectedness between populations were simulated 

by exchanging different proportions of top sires in the last five generations: 0% (completely 

disconnected), 2.5% (lowly connected), 5% (medium), and 20% (high). Genomic data in the form of 

individual SNP genotypes at medium density were stored in the last three generations and used only for 

the estimation process. rg between populations were estimated using three different relationship 

matrices: i) a pedigree-based relationship matrix (A) including all phenotyped animals; ii) a genomic 

relationship matrix (G) including phenotyped and genotyped animals only from the last three 

generations; and iii) a combined pedigree and genomic relationship matrix (H) including all phenotyped 

and genotyped animals. With disconnected and lowly connected populations, estimates of direct and 

maternal rg were, on average, close to the simulated values when using genomic data through G or H. 

With lowly connected populations, estimates of direct rg were close to the simulated values when using 

A, but estimates of maternal rg showed large variation. With more connected populations, estimates 

obtained with A, G, and H matrices were overall similar. For all scenarios, when using genomic data in 

the estimation process, estimates of rg had smaller standard errors. Our results show that genomic data 

can help the estimation of rg between countries and especially reduce their standard errors for 

populations that appear as completely disconnected or lowly connected through pedigree information, 

such as in beef and (small) dairy cattle populations. 

Key words: genetic correlations between countries, international evaluations, genomic data, GREML, 

maternal traits, cattle. 

Introduction 

International genetic evaluations allow 

breeders to appropriately compare the genetic 

merits of domestic and foreign animals. 

Animals’ estimated breeding values (EBVs) 

obtained from different national evaluations are 

not directly comparable due to differences in 

scales and genetic bases, trait and model 

definitions, and environmental differences 

between countries (Philipsson, 1987; Zwald et 

al., 2003; Jakobsen et al., 2009; Nilforooshan 

and Jorjani, 2022). International evaluations, 

such as those performed by Interbeef (2006) for 
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beef cattle and Interbull (1983) for dairy cattle, 

combine data between countries into a single 

evaluation that takes into account such 

differences and computes animals’ international 

EBVs. Through these international EBVs, 

foreign animals (mainly sires) can be compared 

with domestic ones, helping breeders to make 

their selection decisions. To account for 

differences between countries, international 

evaluations use multi-trait models that treat the 

same trait recorded in different countries as 

different correlated traits (Schaeffer, 1994; 

Phocas et al., 2005). A genetic correlation (rg) 

between countries below unity accounts for 

differences in trait and model definitions, scale 

and genetic bases, and for genotype-by-

environment interactions (Falconer and 

Mackay, 1996; Mark, 2004; Nilforooshan and 

Jorjani, 2022). Moreover, the rg between 

countries effectively models how much the 

information from one country contributes to the 

animals’ international EBV in another country 

(Weigel et al., 2001). Thus, rg between 

countries are crucial for international 

evaluations and directly impact the 

international EBVs. 

Genetic connections are needed to estimate 

rg between countries used in international 

evaluations. These genetic connections are 

usually provided by sires having recorded 

offspring in two or more countries, also called 

“common bulls” (CB). Moreover, for 

maternally affected traits, which are common in 

beef cattle, genetic connections established 

through common maternal grand-sires (CMGS) 

having recorded (grand-)offspring in two or 

more countries are needed to estimate maternal 

rg between countries (Jorjani et al., 2005; 

Pabiou et al., 2014; Bonifazi et al., 2020). 

However, in beef cattle and small dairy cattle 

populations, there is often a low level of genetic 

connectedness, mostly due to the low usage of 

artificial insemination in the former (Berry et 

al., 2016) or the low past exchange of bulls’ 

genetic material between countries in the latter 

(e.g., Jorjani, 2000; Mark et al., 2005a). The low 

genetic connectedness in beef and (small) dairy 

cattle populations makes the estimation of rg 

between countries challenging with current 

pedigree-based methods. Such challenges 

results in long computational times, uncertainty 

around the estimated rg (i.e., large standard 

errors), and even in inestimable rg in the 

extreme case of two completely disconnected 

populations (Jorjani et al., 2005; Mark et al., 

2005a; Venot et al., 2009; Pabiou et al., 2014). 

Individual genomic information in the form 

of single-nucleotide-polymorphisms (SNP) 

markers is increasingly becoming available at 

the national level for beef and (small) dairy 

cattle breeds (e.g., Van Eenennaam et al., 2014; 

Lourenco et al., 2015; Berry et al., 2016; Venot 

et al., 2016; Johnston et al., 2018; Bonifazi et 

al., 2022a; Adekale et al., 2023; Council on 

Dairy Cattle Breeding, 2023). In beef cattle, 

Bonifazi et al. (2022a) showed the feasibility 

and advantages of pooling national phenotypes 

and genotypes into an international single-step 

evaluation. In such settings, genomic data could 

also be used to estimate rg between countries 

and possibly aid the estimation process, 

especially for lowly connected populations. In 

theory, populations that may appear as 

completely disconnected according to the 

pedigree can be connected through genomic 

information (Wientjes et al., 2015; Wientjes et 

al., 2018). Therefore, our study aimed to 

investigate if genomic data help to estimate rg 

between countries more accurately than 

pedigree data, considering different levels of 

genetic connectedness between populations. 

 

Materials and Methods 

 

Two beef cattle populations (POP1 and 

POP2) originating from the same breed were 

simulated, mimicking data from two different 

countries (Figure 1). Each population had data 

on a maternally affected trait simulating 

weaning weight as a representative trait in beef 

cattle international evaluations. Genetic 

parameters were simulated following those 

observed by Bonifazi et al. (2020) in real data. 

The trait heritability was 0.30 and 0.15 for 
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direct and maternal genetic effects, 

respectively, and the within-population direct-

maternal rg was -0.2. The rg between 

populations was 0.8 and 0.7 for direct and 

maternal genetic effects, respectively, and the 

between-population direct-maternal rg was 0. 

About 2,000 QTLs were simulated to be 

randomly distributed across 30 chromosomes of 

1 Morgan length each, and marker effects were 

sampled from a Gaussian distribution. Each 

population was independently selected for 20 

generations (G; Figure 1). Selection was first at 

random (from G0 to G9), followed by selection 

on the total EBV, defined as the sum of direct 

and maternal EBVs with equal weights. 

Pedigree and phenotypic information were 

assumed to be recorded from G7 and G10, 

respectively. Genomic information in the form 

of individual genotypes at medium density 

(~50,000 SNPs) were assumed to be recorded 

for animals from G18 to G20 but not used for 

selection, similar to what has been observed in 

real data in Bonifazi et al. (2022a).  

To simulate different levels of connectedness 

between the two populations, top sires from 

each population were exchanged throughout the 

last five generations (G16 to G20), called 

hereafter common bulls (CB). Four scenarios 

were simulated based on the exchanged 

proportions of top sires being: 0% (scenario 

‘disconnected’), 2.5% (‘low’), 5% (‘medium’), 

and 20% (‘high’), corresponding to exchanging 

0, 1, 2, and 8 sires, respectively, out of the 40 

selected in each population and generation 

(Table 1). Each scenario was replicated 10 

times. Following observations from Bonifazi et 

al. (2020), preferential treatment was simulated 

such that daughters of CB were used as dams in 

the next generation, ensuring the presence of 

common maternal grand-sires (CMGS) and, 

therefore, genetic connections to estimate 

maternal rg between populations. The names of 

the scenarios are based on the level of genetic 

similarity (GS) coefficient for CB (Rekaya et 

al., 1999; Rekaya et al., 2003; Bonifazi et al., 

2020) and follow the definition used in Bonifazi 

et al. (2020): low (GS < 0.05), medium (GS 

between 0.05 and 0.10) and high (GS > 0.10). 

The GS coefficients for CB and CMGS in each 

scenario are in Table 1. 

rg between populations were estimated using 

a bi-variate model in which each population’s 

trait is modelled as a different correlated trait 

with uncorrelated residuals. In each of the four 

simulated scenarios, rg between populations 

were estimated using three different sources of 

information and relationship matrices: 

 A: using phenotypes from G10 to G20, 

with a pedigree relationship matrix. 

 H: using phenotypes from G10 to G20 

and genotypes from G18 to G20, with a 

combined pedigree and genomic 

relationship matrix following Legarra et 

al. (2009).  

 G: using phenotypes and genotypes from 

G18 to G20, with a genomic relationship 

matrix following VanRaden (2008) 

method 1. 

The relationship matrices were built 

considering all 14 generations of pedigree 

information available (G7 to G20). Due to the 

presence of maternal genetic effects, one extra 

generation of pedigree information (i.e., G9 for 

A and H, and G17 for G, respectively) was 

included in the relationship matrix used for the 

estimation of rg between populations to link the 

maternal genetic effect of the dam with the 

phenotype of the offspring in the first 

generation (i.e., G10 for A and H, and G18 for 

G, respectively). Therefore, the G matrix was 

effectively built as an H relationship matrix 

(Legarra et al., 2009). 

The simulation was performed using the R-

package MoBPS  (Pook et al., 2020). The 

relationship matrices were built using calc_grm 

(Calus and Vandenplas, 2016). mtg2 (Lee and 

van der Werf, 2016) was used to estimate EBV 

and rg between populations, employing a CORE 

GREML approach (Zhou et al., 2020) to 

account for maternal effects and using a 

convergence criterion of 1.0 ∙ 10-4. Starting 

values were provided for within-population 

(co)variances, while between-population 

(co)variances starting values were set to 0, 

mimicking the procedure used in international 

evaluations (Bonifazi et al., 2021).

3



INTERBULL BULLETIN NO. 59.  26-27 August 2023, Lyon, France 

 

 

 
 

Figure 1. Schematic overview of the two simulated populations (POP1 and POP2), data collected, and selection 

method. n: number of individuals, G: generation, ♂: sires, ♀: dams. Horizontal arrows indicate the exchange of 

top sires between populations. 
 

 

 

Table 1. Simulated scenarios and connectedness levels between populations 1, 2. 

 

Scenario 
n. of 

CB 

n. off. 

from CB 
GSCB 

3 
Average 

n. CMGS 

Average n. 

grand-off. 

from CMGS 

Average 

GSCMGS 
3 

Disconnected 0 0 0 0 0 0 

Low 10 1,500 0.02 8 2,322 0.04 

Medium 20 3,000 0.05 16 4,544 0.07 

High 80 12,000 0.18 63 15,364 0.23 

 
1 Connectedness is computed from G10 to G20; results are averages of 10 replicates. 
2 n: number, CB: common bulls, GS: genetic similarity, CMGS: common maternal grand-sires. 
3 GS for CB (and CMGS) between two populations is defined as the proportion of recorded offspring (grand-

offspring) born from CB (CMGS) over the total number of recorded offspring (grand-offspring) in the two 

populations. 
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Results & Discussion 

 

Figure 2 shows the estimated rg between 

populations using different relationship 

matrices. As expected, in the disconnected 

scenario, using conventional sources of 

information (i.e., pedigree and phenotypes) 

through the A matrix did not allow to estimate 

rg: estimates did not move from the provided 

starting values. However, using genomic data 

through G or H matrices resulted in estimated 

direct and maternal rg close to the simulated 

underlying true values. With lowly connected 

populations, using the A matrix resulted in 

estimated direct rg close to the simulated values, 

while there was a large variation for the 

estimated maternal rg (Figure 2). For medium 

and highly connected populations, there were 

no large benefits of using genomic data 

compared to using conventional sources of 

information: overall, estimated rg using A, G, 

and H were similar for medium and high 

scenarios. 

With increased connectedness between 

populations, the SE of direct and maternal rg 

were smaller, regardless of the relationship 

matrix used (Figure 3). Furthermore, larger SE 

were observed for maternal rg than for direct rg. 

These results follow the findings of previous 

studies using real data where low levels of 

connectedness between populations were 

associated with large SE of the estimated rg 

(e.g., Venot et al., 2009; Bonifazi et al., 2020). 

In all scenarios, the SE for direct and maternal 

rg were smaller and showed less variation across 

replicates when using genomic information 

through G or H compared to A. Overall, using 

the H matrix resulted in the smallest SE of 

estimated rg, while using the G matrix resulted 

in SE between those obtained with A and H. 

Thus, estimates of rg between populations 

became more accurate, i.e., had smaller SE, 

when genomic information was included in the 

estimation process. 

Computational requirements can partly be 

explained by mtg2 using dense relationship 

matrices for the estimation process instead of 

their inverses. As such, the estimation using A 

and H matrices showed similar computational 

resources (Table 2). The estimation using the G 

matrix required 12.5% of the memory of A and 

H matrices but required 2.43 times more 

computational time. Such computational 

requirements are likely due to the G matrix 

including only the last 4 generations of animals 

with 3 generations of phenotypes and 

genotypes, which, although resulted in a smaller 

matrix size, also led to an increased time to 

convergence (Table 2). 

Overall, the more accurate estimation of rg 

between populations with increasing numbers 

of CB and CMGS, agrees with Mark et al. 

(2005a). This relationship highlights the 

importance of establishing genetic links across 

countries by exchanging frozen semen to 

accurately estimate rg between populations, 

especially when only conventional data is 

available. However, creating such genetic links 

is time-consuming since sires need recorded 

offspring in both populations. 

The results of this study indicate that 

genomic data can be helpful to estimate rg more 

accurately for disconnected and lowly 

connected populations and to reduce the 

associated SE compared to only using pedigree 

and phenotypic data. This was especially the 

case for maternal rg between populations, which 

are reportedly challenging to estimate with low 

connectedness levels (Pabiou et al., 2014; 

Bonifazi et al., 2020; Bonifazi et al., 2021). In 

international evaluations, GS is usually reported 

to estimate connectedness between countries. 

The GS levels of the simulated scenarios are 

close to the values reported in beef and dairy 

cattle international evaluations. In particular, 

low to medium levels of connectedness are 

common in beef cattle. In Limousin, GS 

between countries was equal to 0.04 in Phocas 

et al. (2005) and ranged between 0.02 and 0.15 

in Bonifazi et al. (2023; 2022b; 2020). Venot et 

al. (2009) reported values of GS between 

countries as low as 0.01 for both Limousin and 

Charolais. Therefore, using genomic data could 
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Figure 2. Boxplots of direct (top row) and maternal (bottom row) estimated rg between populations across four 

connectedness scenarios (panels). A, G, and H indicate the different sources of information and relationship 

matrices used in the estimation process. Horizontal dotted lines indicate the simulated values of 0.8 for direct rg 

and 0.7 for maternal rg. Boxplots report estimated values of 10 replicates. One estimated maternal rg in scenario 

“low” using A was out of parameter space (rg >1). 

 

 

Figure 3. Boxplots of direct (left-side) and maternal (right-side) standard errors (SE) of estimated rg between 

populations across four connectedness scenarios (panels). A, G, and H indicate the different sources of information 

and relationship matrices used in the estimation process. 
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help the estimation of rg between beef cattle 

populations with a low exchange of bulls and 

low levels of GS and could reduce the 

uncertainty of the estimated rg, i.e., the 

associated SE (Figure 2 and Figure 3). Similar 

to beef cattle, including genomic data in the 

estimation process could be beneficial for small 

and weakly linked dairy cattle populations such 

as Ayrshire, Guernsey, and Jersey (Jorjani, 

1999; Jorjani, 2000; Mark et al., 2005b). On the 

other hand, for large dairy cattle international 

evaluations in which connectedness levels 

between populations are high, such as those of 

Holstein-Friesian (2000), it is unlikely that 

including genomic data would improve the 

estimation of rg between countries (Figure 2). 

Genomic information is increasingly 

becoming available at the national level for beef 

and small dairy cattle populations. Therefore, 

the proposed approach could be applied to 

estimate rg between countries in (small-breed) 

international beef and dairy cattle evaluations. 

The G matrix used 3 generations of data and 

gave estimated rg between populations similar 

to those obtained with A and H matrices, in 

which 10 generations of data were used. These 

results suggest that three complete generations 

of phenotypes and genotypes could be sufficient 

to estimate rg between countries. However, in 

real data, additional challenges may be expected 

due to an unbalanced number of genotyped and 

phenotyped animals, missing records and 

incomplete pedigrees, and, depending on the 

population, a low number of offspring per dam. 

Finally, the genomic REML estimation 

approach used (Lee and van der Werf, 2016; 

Zhou et al., 2020) assumes that raw genomic 

data is available at the international level to 

calculate the relationship matrices. When 

sharing data is not possible due to privacy or 

political constraints, an approach based on 

summary statistics such as LDSC (linkage 

disequilibrium score regression analysis; Bulik-

Sullivan et al., 2015; van Rheenen et al., 2019) 

could be investigated, albeit it is expected to 

  

 

Table 2. Computational requirements. 

 A G H 

Animals in matrix 

(number) 

66,000 24,000 66,000 

Elapsed time (hours) 3.1 7.3 2.9 

RAM peak usage 

(GBytes) 

106 13 102 

Averages across scenarios and replicates. 

 

require a larger amount of data and to be less 

accurate (Ni et al., 2018; van Rheenen et al., 

2019). 

 

Conclusions 

 

Our simulation results showed that genomic 

data may help to obtain more accurate estimates 

of rg between countries and especially reduce 

their associated standard errors compared to 

current methods using only pedigree and 

phenotypes. Larger advantages were observed 

for estimates of maternal rg and for populations 

that appear completely disconnected or lowly 

connected through pedigree information, such 

as in beef and (small) dairy cattle populations. 
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Abstract 

Unknown parent groups (UPG) allow modelling unobserved selection in unknown parents. Because 

UPG are defined at least partly by year of birth, biased estimates can also bias estimates of environmental 

trends like management. Different modelling of UPG can reduce biases and standard errors. The 4 

fertility traits daughter pregnancy rate (DPR), cow conception rate (CCR), heifer conception rate (HCR) 

and early first calving (EFC) in US dairy cattle make a good study case, because those have been affected 

by selection on correlated traits such as milk yield and have greatly differing recording patterns. Traits 

DPR and CCR are strongly correlated but DPR was recorded since ~1960 and CCR was recorded since 

~2000. For missing traits, current traditional evaluation compress UPG definitions for missing years to 

avoid solving for UPGs with no direct information, and treat UPG as correlated across traits but 

uncorrelated across years (RandomUPGs). New models included: Fixed UPGs; Metafounders fitting 

average coancestry across UPGs based on year of birth (MFDeltaF); or including expected magnitude 

of change due to selection on a correlated trait (MFDeltaG). The data set consisted in 94 million records 

with potentially large numbers of missing values depending on trait and year, a pedigree including 94 

million animals. Genetic evaluations were by BLUP and results are presented for Holstein.  In all cases 

UPGs are treated as “a priori” correlated across traits. Genetic trends resulted in all cases in a fast 

decrease of DPR from 1960 until 2000. For DPR, this descent was most pronounced with RandomUPGs, 

closely followed by MFDeltaF and MFDeltaG, which yielded slightly less change because the inclusion 

of average coancestry results in smaller a priori changes. Similar trends but with larger differences across 

methods were observed for the correlated trait CCR, where the trend is inferred from correlations 

because of absence of records. Trends from 2000 to 2020 for both CCR and DPR were positive, with 

MFDeltaF showing slightly faster increases. Solutions of UPGs/MFs were most noisy with FixedUPGs, 

followed by RandomUPGs, followed by MFDeltaF which was the smoothest. Overall, for traits with 

years of missing records and with selection due to correlated traits not included in the data, modelling 

UPGs as random, and possibly correlated across years, is useful for correct genetic trends. 

Key words: Unknown parent groups, fertility traits, genetic trends, metafounders 

Introduction 

Pedigrees are usually incomplete across all birth 

years in dairy cattle pedigrees and are 

classically modelled using Unknown Parent 

Groups (UPG). The theory of UPG (Masuda et 

al., 2022) becomes more difficult in multiple 

trait situations with complex missing patterns. 

If fit as fixed, UPGs (𝐠) are not a priori 

correlated to each other as shown in the pre-QP 

equations which include them as covariates of 

the form (𝐐′𝐙′𝐑−1𝐙𝐐) 𝐠̂ = 𝐐′𝐙′𝐑−1𝐲 (Quaas,

1988) – however “contributions” from 

descendants of the groups do account for the 

covariance across traits. If UPGs are fit as 

random, usually 𝑉𝑎𝑟(𝐠) = 𝐈⨂𝑮0, which

implies a priori covariance across traits (𝑮0)

but not across levels. However, in a population 

with steady genetic trend the average genetic 

value of missing parents is expected to evolve 

smoothly from one generation or year to the 

next.  The situation in which levels of UPGs are 
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correlated across levels, 𝑉𝑎𝑟(𝐠) = 𝚺⨂𝑮0

(Masuda et al., 2022) with 𝚺 a (not diagonal) 

covariance matrix, has not really been studied. 

Equivalently, the notion of metafounders (MF) 

generalizes the use of UPGs to include changes 

in inbreeding due to (missing) relationships 

among (missing) parents, and allows to “refer” 

relationships to genotypes. MF is also 

conceived to better model across-breed 

relationships. 

Fertility traits in US dairy cattle make a good 

study case for multiple traits and UPGs or MFs. 

Fertility traits evaluations are difficult in a 

multiple trait model with UPGs because of (1) 

low heritability with different lactation weights 

and data pattern for each trait; (2) correlated, 

negative genetic trends caused by selection for 

yield, which is not included in the multiple-trait 

evaluation; (3) correlations might change 

(natural mating vs. AI; hormonal treatments; 

heat detection) and (4) the latest UPG is also 

unstable because heifer fertility arrives before 

cow fertility. 

This work analyses results of different 

modelling of UPGs and MFs on the genetic 

trends of fertility traits and compares the results 

with expectations based on genetic progress. 

Materials and Methods 

Official data files from CDCB tri-annual all-

breed BLUP evaluation of December, 2022 

included 94 million records for four traits: 

daughter pregnancy rate (DPR) and early first 

calving (EFC), both recorded since 1960; cow 

conception rate (CCR) and heifer conception 

rate (HCR), both recorded since 2000. Our 

focus is on DPR and CCR with a high genetic 

correlation of 0.86. Missing records ranged 

from 4% for DPR to 87% for HCR.  

We computed expected decrease in fertility 

from 1960 to 2000 for DPR and CCR due to 

selection on milk yield, based on negative 

correlation of -0.34, estimated Δ𝐺 of 4.2 genetic 

s.d. for milk yield, and genetic s.d. of 4.9 for

DPR and similarly for CCR. 

Pedigree included 94 million animals and 

417 UPGs defined by breed, year of birth and 

pathway (sex of the animal with missing parent, 

sex of its ancestor, and foreign/local origin). 

The Holstein breed had 219 UPGs across 5 

different pathways, where four pathways had 39 

to 56 UPGs (roughly, but not always, every 

year) and unknown parents of foreign bulls had 

12 UPGs. Smaller breeds had far fewer groups 

combined across years and pathways. The 

mininum number of offspring (not necessarily 

with record) to create an UPG was 5000. 

Models included animal and permanent 

effects, contemporary groups (different per 

trait), heterosis and inbreeding. Multiple trait 

MME included ~800 million equations which 

were solved in ~8h using blup90iod3 from 

University of Georgia, with the PCG algorithm. 

The different models for UPGs and MFs are 

detailed next.  

Models for UPGs and MFs 

We first try a model with fixed UPGs. The 

second model was “RandomUPGs” with 

𝑉𝑎𝑟(𝐠) = 𝐈⨂𝑮0. Then we run two models with

metafounders. Thus the third model 

(MFDeltaF)  with 𝑉𝑎𝑟(𝐠) = 𝚪⨂𝑮0 was

inspired by (Sorensen and Kennedy, 1983) 

which describe that the means 𝜇 of each 

generation have the following covariance 

structure: 

 𝜞 = (

𝐴̅0 𝐴̅0 𝐴̅0 …

𝐴̅0 𝐴̅1 𝐴̅1 …

𝐴̅0 𝐴̅1 𝐴̅2 …
… … … …

) ≈

[

0 0 0 …
0 2𝑡1𝛥𝐹 2𝑡1𝛥𝐹 …
0 2𝑡1𝛥𝐹 2𝑡2𝛥𝐹 …
… … … …

] . 

However, 𝚪 obtained in this manner is not 

positive definite. A correct pseudo-inverse in 

this case is of the form, for invertible 𝐁,   

[
𝟎 𝟎
𝟎 𝐁

]
−

= [𝟏′𝐁−1𝟏 −𝟏′𝐁−1

−𝐁−1𝟏 𝐁−1 ] 
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But we did not attempt so. Instead, we used 

a version of 𝚪 that is compatible with genomic 

relationships, i.e. (Wicki et al., 2023)  

𝚪 = [

𝛤1,1 𝛤1,1 𝛤1,1 …

𝛤1,1 𝛤1,1 + 2t1Δ𝐹Γ 𝛤1,1 + 2t1Δ𝐹Γ …

𝛤1,1 𝛤1,1 + 2t1Δ𝐹Γ 𝛤1,1 + 2t2Δ𝐹Γ …
… … … …

] 

with 𝛤1,1 =
2

𝑛𝑠𝑛𝑝
(2𝒑 −

𝟏

2
) (2𝒑 −

𝟏

2
)

′
 , 𝒑 a row 

vector of base allele frequencies and Δ𝐹Γ =

Δ𝐹γ = Δ𝐹 (1 +
Γ11

2
). Matrix 𝚪 was constructed

within breed and pathway. The inverse of 𝚪 is a 

tri-diagonal matrix linking each MF to its 

immediate neighbors. The value of Δ𝐹 was 

estimated to be 0.0014 per year. Inspection 

shows that this is almost identical to inverting a 

structure of the form ([
𝟎 𝟎
𝟎 𝐁

] + 𝟏𝟏′𝑘) , with 𝑘

a large constant that gets confounded with the 

mean. 

For the fourth model, MFDeltaG, given that 

trend of fertility traits was initially due to 

selection on the correlated trait milk yield, we 

also tried a version of the above that would 

include putative change 𝚫𝑮, as follows: 

𝜞 = (

𝟎 𝟎 𝟎 …
𝟎 (𝒕𝟏𝜟𝑮)𝟐 (𝒕𝟏𝜟𝑮)𝟐 …

𝟎 (𝒕𝟏𝜟𝑮)𝟐 (𝒕𝟐𝜟𝑮)𝟐 …
… … … …

) 

In this case, we used the regular Moore-Penrose 

𝚪− (not the optimal choice). The value of Δ𝐺

was estimated to be 0.034 genetic standard 

deviations/year, per the correlation of DPR 

with, and observed genetic trends for, milk 

yield.  

Results & Discussion 

Estimated trends are presented in Table 1 

and Figure 1. Genetic change in Table 1 was 

larger than expected, and all methods gave 

similar results for DPR (with actual 1960-2000 

records) but not for CCR (no records in the 

period, inferred from genetic covariances). The 

expected genetic gain may have been 

underestimated because fertility also suffered 

from selection on “dairy form” (i.e. more 

angular) cows. In Figure 1 there is a genetic 

decrease in CCR followed by an increase. The 

trends differ at the beginning but as UPGs and 

MFs get more descendants and the database 

becomes larger, trends get closer to each other 

and are quite similar over the last 20 years when 

both traits have data. Note that for CCR the 

genetic trend 1960-2000 is entirely inferred 

from genetic covariances with DPR. The DPR 

phenotypic trend is partitioned into 53% genetic 

and 47% environmental trends (Figure 2), 

illustrating that deterioration of fertility is due 

to correlated response for selection for milk 

yield, but also to management changes (Lucy, 

2001). 

Table 1. Genetic change 1960-2000 for DPR and 

CCR  

Figure 1.  Estimated genetic trends for CCR under 

different models 

Finally, Figure 3 shows estimates of 

UPGs/MFs for CCR and different models in 

pathway “21” (unknown sires of foreign dams) 

in Holstein. The estimates align well with those 

for DPR, even if CCR recording started in 2000. 

All models capture correctly the overall trend, 

DPR CCR 

Phenotypic -16.00 - 

Expected genetic -6.86 -5.17

FixedUPGs -9.23 -9.03

RandomUPGs -8.56 -8.33

MetafoundersDeltaF -8.21 -7.93

MetafoundersDeltaG -8.38 -6.49
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but Fixed UPG is very noisy, Random UPG is 

smoother and MFDeltaF gives a smooth, 

continuous line that provides the same long-

term genetic trend 

Figure 2.  Decomposition of phenotypic into genetic 

and environmental trend, DPR. 

Figure 3.  Different solutions of UPGs/MFs for the 

unknown sires of foreign dams pathway along time, 

CCR. 

Conclusions 

Modelling differently UPGs and MFs does 

result in different genetic trends, although the 

effect was small in this large data set. More 

research is needed to ascertain the effect of this 

modelling in smaller data sets with unequal 

recording across traits. Fixed or Random UPGs 

or MFDeltaF provided meaningful results and 

are computationally easy. MFDeltaG gives less 

noisy solutions when there is not enough data. 

MFDeltaG is not recommended as the value for 

Δ𝐺 is trait dependent. MFDeltaG values for ΔG 

could in theory be estimated from each trait’s 

covariance with the index but is less practical 

for most uses. 
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Abstract 

 

We present mathematical approaches for CPU accelerations to calculate matrix multiplications between 

a Single Nucleotide Polymorphism (SNP) matrix and another SNP matrix or a real-valued matrix. These 

accelerations are important in crucial time-relevant calculations of single-step evaluations and other 

methods in genetics. The presented algorithms are much faster than previous algorithms. The C-code is 

released as part of the software project ’miraculix’, which has been integrated into existing software 

such as MoBPS and MiXBLUP. We also discuss precision problems and missing SNP genotypes. 

 

Key words:  CPU, fast calculation, matrix multiplication, SIMD, SSE 
 

 

Introduction 

 

Many free and commercial software packages 

offer a broad range of methods in quantitative 

genetics, such as PLINK (Chang et al., 2015) and 

GCTA (Yang et al., 2011) to name a few. Others 

deal only with specific aspects, e.g., MiXBLUP 

(Vandenplas et al., 2022) with breeding value 

estimation or MoBPS (Pook, 2020) with breeding 

program simulation. In many of these 

applications, the most time-consuming steps are 

related to the Single Nucleotide Polymorphism 

SNP-matrix 𝑍 ∈ {0,1,2}𝑛×𝑠, which is multiplied 

to its transposed or a real-valued matrix. Here, 𝑛 

is the number of individuals and 𝑠 the number of 

SNPs per individual. Many packages uncompress 

the 2-bit-packed SNP-matrix in some way before 

further calculations. Here, some approaches for 

CPUs are presented that avoid this unpacking 

partially or fully. 

We will deal with matrix products of the form 

𝑍⊤𝑍 and 𝑍𝑍⊤, 

which is the so-called unweighted genomic 

relationship matrix (GRM), up to a factor 

(Fragomeni et al., 2017). Afterwards, we will deal 

with products of the form 

𝑍⊤𝑉 

where 𝑉 ∈ 𝑅𝑛×𝑝. As matrix products boil down 

mathematically to a collection of scalar products, 

we consider here scalar products, only. We first 

assume that missing values are absent. Afterwards, 

SNP matrices with missing values are considered 

together with certain precision considerations and 

centring of SNP matrices, since all three problems 

have similar mathematical foundations. We refer 

to Freudenberg et al. (2023a, 2023b) for 

benchmarks, including GPU solutions, and to 

Schlather (2020) for related and former methods. 

 

Materials and Methods 

 

For simplicity and clarity, we will primarily refer 

to commands of the Intel SSE instruction set 

family (128 bits). We comment on AVX2 and 

AVX512 explicitly when extensions of SSE are 

not obvious or when SSE is not enough for the 

given instructions. Note that most SSE commands 

can be easily transferred to the NEON instruction 

set through the header file sse2neon.h, for 

instance, in contrast to AVX commands. 

 

Notations 

In the subsequent pseudo-codes, &, |, and >>    

denote bitwise and, bitwise or, and shift to the 
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right, respectively. The signs ‘+’ and ‘-’ denote 

addition and subtraction in the decimal system. 

They can be interpreted as parallel operations on 

𝑘-bit pieces if it is guaranteed that no 𝑘-bit 

overflow or underflow appears. We will use this 

fact several times, for 𝑘 = 2,4,6,8 bits. 

In case a register is filled by a repeated 

sequence s of bits we write (s)*. For instance, 

(01)* means that zeros and ones are alternated. 

The variable ‘sum’ refers to some register that 

accumulates summands; in case partial sums must 

be calculated first, sum is further added up in a 

variable called `total’. 

Variables in the code pieces refer to Single 

Instruction Multiple Data (SIMD) registers, if not 

indicated differently; 𝑎 and 𝑏 indicate SNP values 

with a certain compressed coding. Finally, 

indexing assumes little endian. 

Mini Lookup Tables

The SSE command _mm_shuffle_epi8 offers a 

lookup table with 16 entries of 1 Byte. AVX 

implementations realize only more parallel 

lookups, while the size of the lookup table does 

not change. The lower 4 bits of each byte in the 

SIMD register are used to realize 16 lookups at 

once at a cheap prize of at most 1 clock cycle. 

Such mini lookup tables have a broad field of 

applications. For instance, they can be used for 

data transformation, adding-up neighboured 2-bit 

values, and to implement population counts (i.e., 

the number of bits in a register that equal 1) on 

systems without genuine popcnt command (Mula 

et al., 2016). We define 

shuffle(x) :=  

_mm_shuffle_epi8(x & (00001111)*, table) +       

_mm_shuffle_epi8((x>>4) & (00001111)*, table) 

where the values of the table depend on the context 

and can always be obtained by simple 

calculations. For instance, the popcnt table is 

{0,1,1,2, 1,2,2,3, 1,2,2,3, 2,3,3,4}. Since ‘sum’ 

may not exceed the value 255, regular clearance of 

‘sum’ is necessary. In case of popcnt this must 

happen after 31 iterations, the latest. 

Large Lookup Tables 

A lookup table with more than 16 entries can still 

be accessed in a reasonable time if the table fits 

well into the L1 cache. Hence, lookup tables for 

AVX registers should be addressed by at most 8-

bit, and ALU registers by at most 14 bits. 

Strassen algorithm 

An important algorithm for calculating a matrix 

product between large matrices is the Strassen 

algorithm (Strassen, 1969). For a quadratic matrix 

𝑍 ∈ 𝑅𝑛×𝑛 the standard costs for the product 𝑍𝑍⊤

are of order 𝑛3, whereas the costs of the Strassen

algorithm are of order 𝑛2.807. Indeed, in a

standard set-up of a double-precision matrix 𝑍, the 

Strassen algorithm is faster than the standard 

algorithm if 𝑛 is larger than about 103. Numerical

experiments suggest that the Strassen algorithm 

will be beaten in a SNP-SNP matrix multiplication 

by the best algorithms presented below up to 𝑛 ≈

106. Note that the Strassen algorithm performs

best in case of quadratic matrices. Otherwise, the

smallest edge length is decisive for its

performance. Hence the Strassen algorithm will

never be an option for calculating 𝑍⊤𝑉 in a single

step framework, where 𝑉 is a vector or a small

matrix. A further disadvantage of the Strassen

algorithm is that its numerical errors are larger

than those of the approaches presented here. Since

the fast multiplication of matrices is still an active

area of research, the limit 𝑛 ≈ 106 may change in

future.

SNP-SNP scalar products by integer product 

An immediate way of calculating the scalar 

product from a compressed 2-bit representation is 

to extract the first two bits of each of the two 

vectors 𝑎 and 𝑏, and to continue with integer 

arithmetic. Then, the next two bits are extracted 

using shifting, and so on. Clearly, this procedure 

can be vectorized. Of advantage here is the SSE 

command _mm_madd_epi16, which multiplies 

and adds two consecutive 16-bit integers so that 

only 7 shifts are necessary. This method is based 

on the 2-bit standard binary coding of {0,1,2}; in 

case of PLINK 1 binary coding, a preceding 

transformation is necessary to the standard 2-bit 

binary coding.  
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The speed can be improved by the following 

consideration. Let 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ {0,1,2} be 4

SNP numbers. The two products 𝑎1𝑏1 and 𝑎2𝑏2

can be calculated in a single multiplication 

through 

(𝑎1 + 2𝑐𝑎2)(𝑏1 + 2𝑐𝑏2)=

𝑎1𝑏1 + 2𝑐(𝑎2𝑏1 + 𝑎1𝑏2) + 22𝑐𝑎2𝑏2

provided the result is identifiable, i.e., the three 

summands on the right-hand side occupy different 

bits in the binary representation of the above 

value. This is the case when 𝑐 > 3. Hence, 

convenient choices for 𝑐 are 𝑐 = 4,6 or 8. For 

instance, choosing 𝑐 = 8 reduces the number of 

calls of _mm_madd_epi16 to 4 and the number of 

shifts to 3 by the following code: 

   for (i=0; i<8; i+=2) 

sum += _mm_madd_epi16((a >> i) &      

(00000011)*, (b >> i) & (00000011)*) 

Clearance of the variable ‘sum’ is necessary after 

7 iterations, 

 total += ((char *) sum)[0] + ((char *) sum)[2] 

The analogue AVX512 command is 

_mm512_dpbusd_epi32, which sums up 4 

products of adjacent 8-bit integers into a 32-bit 

integer. Hence, 𝑐 = 4 and 𝑐 = 8 are not possible 

and 𝑐 = 6 leads to 3 calls of 

_mm512_dpbusd_epi32. 

SNP-SNP scalar products by lookup tables 

The following algorithm relies on data with 

PLINK 1 binary format, where the coding 00𝑝 =

0𝑑, 10𝑝 = 1𝑑  and 11𝑝 = 2𝑑  is used. Here, the

index 𝑝 and 𝑑 denote PLINK 1 binary coding and 

decimal coding, respectively, 

     c:= a xor b 

d:= ~(c >> 1) & c & (01)*  

     sum += shuffle( (a & b) - d ) 

Note that 𝑑 = 01𝑏, if the decimal result is 2, and

𝑑 = 00𝑏  otherwise.

SNP-SNP scalar product for chromosome data 

If data are available per chromosome, we have two 

matrices 𝑍11, 𝑍12 ∈ {0,1}𝑛×𝑠 where the value 1

indicates a deviation from the reference allele and 

𝑍11 + 𝑍12 equals the SNP matrix 𝑍. Then, the

non-centred relationship matrix is given by 

(𝑍11 + 𝑍12)(𝑍11
⊤ + 𝑍12

⊤ )=

𝑍11𝑍11
⊤ + 𝑍11𝑍12 + 𝑍12𝑍11

⊤ + 𝑍12𝑍12
⊤

Note that all scalar products on the right-hand side 

are between binary data, so that the multiplication 

step can be realized by the bitwise & and the 

adding-up by popcnt. Obviously, this algorithm 

can be used also for genomic data after a 

preprocessing step, where the genome data are 

artificially split into data per chromosome. 

SNP-SNP scalar product based on the Hamming 

Distance 

An interesting algorithm has been introduced in 

PLINK (Purcell et al., 2007; Chang et al., 2015) 

and has been based on the idea that a value can be 

represented by the number of bits that equal 1 in a 

4-bit representation. The values of the vectors 𝑎 

and 𝑏 must be coded asymmetrically by two 

mappings 𝑓 and 𝑔, say, as a coding by a single 

mapping is not possible. Then, the bitwise &-

operator is applied before popcnt is applied. Table 

1 gives a possible realisation. 

Table 1. Values for the Hamming distance method. 

𝑓(⋅) ∧ 𝑔(⋅)  𝑔(0)=0000𝑏  𝑔(1)= 0011𝑏  𝑔(2)=1111𝑏

𝑓(0)=0000𝑏    000𝑏 0000𝑏 0000𝑏

𝑓(1)= 0110𝑏    0000𝑏 0010𝑏 0110𝑏

𝑓(2)=1111𝑏    0000𝑏 0011𝑏 1111𝑏

Overview over SNP-SNP algorithms 

Tables 2-6 give an overview over some properties 

of the divers approaches. 

Table 2. Amount of additional cache/memory. 

Method Cache/memory needs 

Integer product Space for partial sums 

Mini lookup table Space for partial sums 

Per chromosome No extra needs for AVX512 

Hamming distance Each SNP needs 8 bits 

instead of 2 
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Table 3. Rough speed of the algorithm; the speed 

depends on the hardware and the specific coding. 

Method Speed 

Integer product Highly hardware dependent; 

fast on AVX512 & GPU 

Mini lookup table Intermediate 

Per chromosome High on AVX512 

Hamming distance High on AVX512 

Table 4. Generality of the algorithm with respect to the 

hardware. Note that AVX512 has a lot more commands 

available and that the available set of commands differs 

between CPU and GPU. 

Method Hardware generality 

Integer product Any; currently, hardware is 

being developed in favour of 

this algorithm 

Mini lookup table All SIMD variants 

Per chromosome Well adapted to GPU & 

AVX512; modifications work 

for all SIMD variants 

Hamming distance All SIMD variants 

Table 5. Number of registers needed for the 

calculations. 

Method Register need 

Integer product Several 

Mini lookup table Many 

Per chromosome Few 

Hamming distance Few 

Table 6. Generality of the algorithm with respect to the 

coding of a SNP. If the algorithm is not general, much 

more memory is needed as a preceding re-coding is 

necessary. 

Method SNP coding generality 

Integer product Standard binary coding needed; 

re-coding on the fly possible 

Mini lookup table Principle suits any 2-bit coding; 

adaptions necessary 

Per chromosome Inherent coding; ideal for 

information per chromosome 

Hamming distance Inherent coding 

SNP-double scalar products 

In contrast to the bunch of algorithms for SNP-

SNP scalar products, the spectrum of possible 

approaches to perform SNP-double scalar 

products is narrower and the algorithms simpler. 

SNP-double scalar products can be performed 

by preceding conversion to double, essentially in 

the same way as for the integer product, except 

that the obtained, intermediate integer value is 

transformed into a double-precision value before 

being multiplied. 

Since a SNP can take only the three values 0, 

1 and 2, the implementation by addition is 

another, ensnaring approach.  There are at least 

two variants of this idea. First, GPUs and AVX512 

allow a conditional addition by indirect or direct 

masking, e.g., _mm512_mask_add_pd in 

AVX512, without loss of speed in comparison to a 

simple add command. Second, the if-condition is 

a moderately expensive command provided it does 

not lead to a far jump. Hence, the multiplication 

can be implemented by two nested if-conditions. 

The last approach given here is more intriguing 

and mathematically more complex. It is called 

5codes (Freudenberg et al., 2023b). For 

convenience, we repeat the algorithm here.  Let 

𝑌 = 𝑍⊤𝑉 and start with the well-known fact, that

for fixed, real-valued values 𝑉𝑗 ∈ 𝑅, the product

𝑍𝑖,𝑗
⊤ 𝑉𝑗 takes only 3 different values for arbitrary

𝑍𝑖,𝑗
⊤ ∈ {0,1,2}. Hence, a partial scalar product

𝑍𝑖,𝑗
⊤ 𝑉𝑗 + ⋯ + 𝑍𝑖,𝑗+𝑘−1

⊤ 𝑉𝑗+𝑘−1 can take at most

3𝑘 different values. So, by creating a lookup table

𝐻𝑗,𝑘, we can replace

   for (j=0; j<nrow(Z); j+=k) 

  Y[i] += Z[ j,i]*V[j]+…+Z[ j+k-1,i]*V[j+k-1] 

by 

for (j=0; j<nrow(Z); j+=k) 

       Y[i] += Hj,k(Z[ j,i], … Z[ j + k - 1,i]) . 

Since 35 = 243, we can use 𝑘 = 5 SNP values

to index 𝐻 by a single byte. Hence, a lookup table 

of doubles has less than 2000 Bytes. Now, 𝑚 

tables may fit into the L1 cache, so that the final 

pseudo-code reads 

  for (j=0; j<nrow(Z); j += m * k) 

     Y[i] += Hj,k(Z[ j,i], …, Z[ j + k - 1,i]) + … + 

  Hj+(m-1)k,k(Z[j + (m-1) k, i], …, Z[j + m k-1, I]) 
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Overview over SNP-double algorithms 

Tables 7-11 give a comparative overview of the 

properties of the different approaches. 

Table 7. Amount of additional cache/memory. 

Method Cache/mem need 

Conversion to double Space for converted values 

Conditional adding (mask) None 

Conditional adding (if) None 

5-codes Lookup table in L1 

Table 8. Rough speed of the algorithm; the speed 

depends on the hardware and the specific coding. 

Method Speed 

Conversion to double Intermediate 

Conditional adding (mask) Very high 

Conditional adding (if) Very dependent on the 

implementation 

5-code High 

Table 9. Generality of the algorithm with respect to the 

hardware. Note that AVX512 has a lot more commands 

available and that the available set of commands differs 

between CPU and GPU. 

Method Hardware generality 

Conversion to double Any 

Conditional adding (mask) AVX512 & GPU 

Conditional adding (if) Any 

5-codes Any 

Table 10. Number of registers needed for the 

calculation. 

Method Register need 

Conversion to double Few extra registers 

Conditional adding (mask) Few extra registers 

Conditional adding (if) Extra ALU registers 

5-codes Extra ALU registers 

Table 11. Generality of the algorithm with respect to 

the coding of a SNP. If the algorithm is not general, 

much more memory is needed as a preceding re-coding 

is necessary. 

Method SNP coding generality 

Conversion to double General; adaptions necessary 

Cond. adding (mask) Adaptions necessary 

Conditional adding (if) General; adaptions necessary 

5-codes Inherent coding 

Centring, missing values and precision 

The above sections have considered the scalar 

product for the non-centred GRM, only. There, it 

has also been assumed that no missing values are 

present. In this section, we extend the above 

results to centred GRM and allow for missing 

values. We assume, however, that the portion of 

missing values is small. 

A typical situation in genetics is that the 

phenotype 𝑉 is non-negative. Hence, all products 

in 𝑍⊤𝑉 are non-negative, so that the calculation of

the scalar product cannot profit from 

cancellations. A simple measure for an increased 

precision is to centre 𝑉 and/or 𝑍 before 

calculation. Of course, further action to increase 

precision can be taken, e.g., using higher precision 

formats such as long double. 

Below, we choose an approach that includes 

considerations for calculating both GRM and LD, 

in a rather general set-up. 

Centred GRM 

Schlather (2020) has shown that centred and 

normalized GRM (VanRaden, 2008; Wals and 

Lynch, 2018) can be calculated without loss of 

performance. Indeed, first the non-centred GRM 

can be calculated as above. Afterwards, the result 

can be corrected at low costs. To this end, let 𝐼𝑘 be

the vector of length 𝑘 whose components are all 

equal to 1. The centred and normalized GRM 𝐺 is 

defined as 

𝐺 = (𝑍 − 𝑄) (𝑍 − 𝑄)⊤ 𝜎2⁄

where 

𝑄 = 2𝐼𝑛𝑝𝑠
⊤

𝜎2 = 2 ∑ 𝑝𝑠,𝑖
𝑠
𝑖=1 (1 − 𝑝𝑠,𝑖)

and the 𝑝𝑠,𝑖 are the allele frequencies. Then,

𝜎2𝐺 = 𝑍𝑍⊤ − 𝐼𝑛(2𝑍𝑝𝑠)⊤ −

(2𝑍𝑝𝑠)𝐼𝑛
⊤+4𝐼𝑛(𝑝𝑠

𝑇𝑝𝑠)𝐼𝑛
⊤

.

Obviously, the matrix 𝜎2𝐺 can be calculated from

𝑍𝑍⊤ at low computational costs of order 𝑛[𝑠 +

𝑛]. As the calculation of 𝜎2 has costs of order 𝑠,

the total computational costs for retroactive 

centring are some magnitudes smaller than the 

costs for calculating the cross-product 𝑍𝑍⊤.

If there are no missing values and 𝑝𝑠 equals the

empirical allele frequency 𝑛−1𝑍⊤ 𝐼𝑛 2⁄ , the value

2𝑛2𝜎2 and the matrix 𝑛2𝜎2𝐺 are integer-valued

and hence can be calculated exactly, so that the 

numerical errors in 𝐺 can be reduced to a 

minimum. The costs for calculating 2𝑛2𝜎2 and
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𝑛2𝜎2𝐺 from 𝑍𝑍⊤ are also of order 𝑛[𝑠 + 𝑛], see

Schlather (2020) for details. Note that the 

components of 𝑍𝑍⊤ are unsigned 32-bit integers

in standard applications, whereas 2𝑛2𝜎2 and

𝑛2𝜎2𝐺 need a 64-bit integer representation.

Allele frequencies in presence of missing values 

Let 𝑁 ∈ 𝑅𝑠×𝑠 and 𝑆 ∈ 𝑅𝑛×𝑛 be the diagonal

matrices whose diagonal elements equal to 𝑛 

(respectively 𝑠) minus the number of missing 

values in the respective row (column) of 𝑍⊤.

Then, the vector of empirical allele frequencies 

might be defined as 

𝑓𝑠: =
1

2
𝑁−1𝑍⊤𝐼𝑛

Let 

𝑔𝑛: =
1

2
𝑆−1𝑍𝐼𝑠

be the analogue mean taken in the direction of the 

SNPs, which appears in LD calculations. 

Numerical centring 

While the centring of GRM should always be 

performed retroactively, a preceding centring of 𝑍 

and/or 𝑉 in 𝑍⊤𝑉𝑛 or 𝑍𝑉𝑠 increases the precision of

the result. A retroactive correction of this 

numerical centring is of low cost. Let 

𝐵 = 𝑍 − 2𝑐𝐼𝑛𝑝𝑠
⊤,

where 𝑝𝑠 ∈ 𝑅𝑠 is any arbitrary vector. It is close

to 𝑓𝑠 in standard practical applications. For an

advantageous centring of 𝑉𝑛, we aim to minimize 

∥ 𝐵(𝑉𝑛 − 𝜇𝑛𝑒𝑛) ∥= min
𝜇𝑛

!, 𝑉𝑛 ∈ 𝑅𝑛

for some fixed vectors 𝑒𝑛 ∈ 𝑅𝑛, which may

depend on 𝑍.  The minimization problem has the 

solution 

𝜇𝑛 =
𝑒𝑛

⊤𝐵⊤𝐵

𝑒𝑛
⊤𝐵⊤𝐵𝑒𝑛

𝑉𝑛,

where 

𝑒𝑛
⊤𝐵⊤𝐵=

𝑒𝑛
⊤𝑍𝑍⊤ − 2𝑚𝑛𝑐𝑞𝑛

⊤ [[𝑐 −
𝑒𝑛

⊤𝑍𝐼𝑠

𝑚𝑛
] 𝐼𝑛×𝑛 −

𝑆

𝑠
] 

with 𝐼𝑛×𝑛 the identity matrix and 𝑚𝑛 = 2𝑠𝑒𝑛
⊤𝑞𝑛.

If there are only a few missing values, i.e. 𝑆 𝑠⁄ ≈

𝐼𝑛×𝑛, we have

𝑒𝑛
⊤𝐵⊤𝐵 ≈ 𝑒𝑛

⊤𝑍𝑍⊤ − 2𝑚𝑛𝑐(𝑐 − 2)𝑔𝑛
⊤.

If we further choose  𝑒𝑛 = 𝐼𝑛, then

𝐼𝑛
⊤𝐵⊤𝐵 ≈ 2𝑛𝑓𝑠

⊤𝑍⊤ + 2𝑚𝑛𝑐(𝑐 − 2)𝑔𝑛
⊤

and 

𝐼𝑛
⊤𝐵⊤𝐵𝐼𝑛 ≈ 𝐼𝑛

⊤𝑍𝑍⊤𝐼𝑛 + 𝑐(𝑐 − 2)
𝑚2

𝑠
where 𝑚 = 𝐼𝑛

⊤𝑍𝐼𝑠. Analogous formulae hold for

an advantageous centring of  𝑉𝑠.

Genetic centring  

In genetics, the centred matrices 

𝑍 − 2𝐼𝑛𝑝𝑠
⊤  and  𝑍⊤ − 2𝑝𝑠𝐼𝑛

⊤, 𝑧 ∈ {0,1}.

are of interest, where 𝑝𝑠 is the or any given allele

frequency. Here, we combine these centred 

matrices with the numerical centring above in a 

rather general way. To this end, let 𝑧 ∈ {0,1} 

denote whether genetically motivated centring is 

of interest, i.e., we consider 

𝑍 − 2𝑧𝐼𝑛𝑝𝑠
⊤ or 𝑍⊤ − 2𝑧𝑝𝑠𝐼𝑛

⊤, 𝑧 ∈ {0,1}.

Let 𝑐, 𝜈 ∈ {0,1} denote whether numerical 

centring of 𝑍 and 𝑉, respectively should be 

performed. Then we get for arbitrary 𝜇𝑛, 𝜇𝑠 ∈ 𝑅,

𝑝𝑠 ∈ 𝑅𝑠, and 𝑞𝑛 ∈ 𝑅𝑛, that

(𝑍⊤ − 2𝑧𝑝𝑠𝐼𝑛
⊤)𝑉𝑛 =

(𝑍𝑇 − 2𝑐𝐼𝑠𝑞𝑛
⊤)(𝑉𝑛 − 𝜈𝐼𝑛𝜇𝑛)

− 2𝑧(𝐼𝑛
⊤𝑉𝑛)𝑝𝑠+2𝑐(𝑞𝑛

⊤𝑉𝑛)𝐼𝑠+𝜈𝜇𝑛𝑍⊤𝐼𝑛

− 𝑐𝜈𝜇𝑛(𝑞𝑛
⊤𝐼𝑛)𝐼𝑠

and 

(𝑍 − 2𝑧𝐼𝑛𝑝𝑠
⊤)𝑉𝑠 =

(𝑍 − 2𝑐𝐼𝑛𝑝𝑠
⊤)(𝑉𝑠 − 𝜈𝐼𝑠𝜇𝑠)+𝜈𝜇𝑠𝑍𝐼𝑠+

2(𝑐 − 𝑧)(𝑝𝑠
⊤𝑉𝑠)𝐼𝑛 − 𝑐𝜈𝜇𝑠(𝑝𝑠

⊤𝐼𝑠)𝐼𝑛

so that the first term on each right side is critical 

concerning computational costs, and the 

remaining summands can be considered as 

correction terms. Note that 𝑍⊤𝐼𝑛 needs to be

calculated only once in for every genotype matrix 
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𝑍. More generally, let 𝜁 ∈ {0,1} indicate the 

centring in SNP direction. Then formulae for  

(𝑍⊤ − 2𝑧𝑝𝑠𝐼𝑛
⊤ − 2𝜁𝐼𝑠𝑞𝑛

⊤)𝑉𝑛

and 

(𝑍 − 2𝑧𝐼𝑛𝑝𝑠
⊤ − 2𝜁𝑞𝑛𝐼𝑠

⊤)𝑉𝑠

can easily be derived from the above equations. 

Note that all the above formulae hold independent 

of the values of 𝑝𝑠 and 𝑞𝑛. We have only assumed

that the numerical centring of the matrices 𝑍 and 

𝑍⊤ uses the same vectors.

Missing values 

Assume we aim to calculate 

𝑥 = (𝑍⊤ − 2𝑧𝑝𝑠𝐼𝑛
⊤ − 2𝜁𝐼𝑠𝑞𝑛

⊤)𝑉𝑛

or 

𝑦 = (𝑍 − 2𝑧𝐼𝑛𝑝𝑠
⊤ − 2𝜁𝑞𝑛𝐼𝑠

⊤)𝑉𝑠

for arbitrary vectors 𝑝𝑠 ∈ 𝑅𝑠 and 𝑞𝑛 ∈ 𝑅𝑛 with a

missing value in the position (𝑗𝑘, 𝑖𝑘) of the matrix

𝑍 for  𝑘 = 1, … , ℓ. We define 𝑍𝑗𝑘,𝑖𝑘
: = 0 for all

𝑘 and let 𝐼 be the set of coordinates of all ℓ  

positions. Then, we have for 𝑧, 𝑐, 𝜈 ∈ {0,1} and 

arbitrary 𝜇𝑛, 𝜇𝑠 ∈ 𝑅, 𝑝𝑠 ∈ 𝑅𝑠, and 𝑞𝑛 ∈ 𝑅𝑛, that

𝑥𝛼 = ∑ (𝑍⊤ − 2𝑧𝑝𝑠𝐼𝑛
⊤

𝛽,(𝛼,𝛽)∉𝐼

− 2𝜁𝐼𝑠𝑞𝑛
⊤)𝛼𝛽 (𝑉𝑛)𝛽

= ((𝑍⊤ − 2𝑧𝑝𝑠𝐼𝑛
⊤ − 2𝜁𝐼𝑠𝑞𝑛

⊤)𝑉𝑛)
𝛼

+

2 ∑ (

𝛽,(𝛼,𝛽)∈𝐼

𝑧(𝑝𝑠)𝛼 + 𝜁(𝑞𝑛)𝛽)(𝑉𝑛)𝛽

𝑦𝛼 = ((𝑍 − 2𝑧𝐼𝑛𝑝𝑠
⊤ − 2𝜁𝑞𝑛𝐼𝑠

⊤)𝑉𝑠)
𝛼

+

2 ∑ (

𝛽,(𝛽,𝛼)∈𝐼

𝜁(𝑞𝑛)𝛼 + 𝑧(𝑝𝑠)𝛽)(𝑉𝑠)𝛽.

This shows that matrix multiplications can be 

corrected for missing values retroactively even in 

very general set-ups. The corrections terms, i.e., 

the second summands in the above two equations, 

cause total computational costs proportional to the 

number of missing values in 𝑍. The 

proportionality constant is large, however, 

because of cache misses, the outage of SIMD 

commands and the outage of tiling, at least in 

simple implementations. 

Implementation of the numerical centring 

While the centring of 𝑉𝑛 and 𝑉𝑠 is simple, the

centring of 𝑍 and 𝑍⊤ comes with extra

computational costs for the conditional adding 

algorithms. Both the conversion to doubles and the 

5-code algorithm do not lose speed and the 

implementation of the numerical centring is 

simple. 

Conclusion 

Algorithms for compressed SNP data can differ 

largely from simple approaches, such as 

decompression. Fast algorithms are hardware 

dependent and so change over time. Centring and 

missing values do not need to be considered in fast 

algorithms provided the number of missing values 

is small. Some increase in precision is possible 

without loss of speed, but with additional 

programming effort and use of special coding, 

e.g., 5-codes.
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Abstract 

Single Nucleotide Polymorphism (SNP) genotype datasets used in empirical research are steadily 

growing in size which has introduced challenges in the calculation of population statistics that are based 

on large parts of the genome. In other fields, similar computational challenges have been tackled with 

the help of Graphics Processing Units (GPUs). We have developed a range of algorithms for the 

calculation of SNP genotype matrix operations widely used in empirical studies, which take advantage 

of modern NVIDIA GPUs. We provide an implementation in the C library miraculix and exemplary 

interfaces in Julia and Fortran. To ease adaptation, we also supply functions to calculate a number of 

derivatives, such as the genomic relationship matrix (GRM), linkage disequilibrium (LD) statistics, the 

genomic BLUP, and principal components analysis. Source code is released under the Apache 2.0 

license and is freely available at GitHub. The library is developed in C, C++ and CUDA. 

Key words: Genomic prediction, single-step models, high-performance computing, GPU 

Introduction 

 Due to the emergence of high-throughput 

sequencing technology, the recent decades have 

seen the collection of massive genomic 

datasets, furthering the research in various 

fields in genetics such as human medicine or 

animal breeding and plant breeding. The 

consideration of large amounts of data helps to 

increase the accuracy of predictive models 

(Canela-Xandri et al., 2016; Zhao et al.,2021; 

Singh and Prasad, 2021) and some authors show 

that big data can contribute towards the closing 

of the missing heritability gap (Kim et al., 2017; 

Pallares, 2019). For breeding purposes, the use 

of genomic information leads to more accurate 

breeding values at earlier life stages, thus 

allowing for earlier selection to both reduce 

housing cost and increase genetic gain 

(Schaeffer, 2006). However, the computational 

analysis of these datasets places a significant 

burden on researchers and practitioners.   

A genomic relationship matrix (GRM) 

describes the proportion of the genome that is 

shared between individuals in a population 

(Mrode, 2014) and is used in various selection 

methods such as genomic BLUP (VanRaden, 

2008), single-step genomic BLUP (Misztal et 

al., 2009), extended genomic BLUP for 

modeling epistatic effects (Jiang and Reif, 

2015) or (selective) epistatic random regression 

BLUP (Vojgani et al., 2021). Similarly, linkage 

disequilibrium (LD) measures the statistical 

similarity of pairs of SNPs in a population. For 

instance, LD quantities are used in human 

genetic studies to infer information on disease 

causes or population history (Pritchard and 

Przeworski, 2001; Gazal et al., 2017). Due to 

the large dimensions of modern genomic data 

sets, a naive calculation of the GRM, LD and 

their derivatives would inflict extraordinarily 

high computational demands, both in terms of 

memory requirements and calculation times. 

Since the SNP genotype of an individual is 

coded as 0 for one homozygous genotype, 1 for 

the heterozygous genotype, or 2 for the alternate 

homozygous genotype, each SNP value can be 

stored in 2 bits of memory. An example of this 

compressed storage format is the PLINK 1 

binary format (Chang et al., 2015). While many 

statistical quantities in genomics can be 

calculated using highly optimized BLAS 

libraries, similar utilities are not available for 

these compressed storage formats. There exist 

two main approaches to mitigate this problem. 

The first one decompresses SNP genotype data 
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before further processing. For instance, the R 

packages AGHmatrix (Amadeu et al., 2016), 

qgg (Rohde et al., 2019), rrBLUP (Endelman, 

2011) and snpReady (Granato et al., 2018) use 

custom floating-point matrix operations for the 

calculation of the GRM or rely on BLAS 

libraries. The R package SNPRelate (Zheng et 

al., 2012) benefits from explicit SIMD 

instructions in the calculation of LD and the 

GRM. Standalone solutions for the calculation 

of LD include HaploView and LDkit (Barrett et 

al., 2004; Yao, 2020). The calculation of the 

GRM and LD statistics is also implemented in 

the software packages PLINK and GCTA 

(Yang et al., 2011; Chang et al., 2015) which 

have popularized the second approach for 

processing compressed genotype data. They 

both utilize bit-compressed algorithms for an 

efficient calculation of the dot product of SNP 

vectors. Motivated by the remarkable speed 

improvements of these implementations, a 

number of tailored algorithms for the dot 

product have been developed for different 

instruction set architectures which are up to 48 

times faster than a naïve BLAS-based 

implementation (Schlather, 2023).  

Additionally, some software solutions have 

studied the benefit of offloading genotype 

matrix operations to the GPU. PLINK 2.0 

provides a BLAS-based calculation of the GRM 

on GPUs. However, according to the 

documentation, this functionality is just 

provided as a proof-of-concept. The Julia 

package SnpArrays.jl (Zhou et al., 2020) offers 

a pure-Julia solution for accelerating the 

multiplication of SNP matrices by a floating-

point vector on GPUs.  

Over the past few years, there has been a 

rising interest in low-precision arithmetics in 

the field of deep learning (Hubara et al., 2017), 

which has led to hardware improvements. For 

example, recent NVIDIA® architectures have 

introduced a number of new assembler 

instructions for this purpose. In deep learning, 

the method of quantization reduces the 

cardinality of possible values of a parameter by 

using low-precision integers and has been used 

in neural networks to increase the number of 

parameters (Gholami et al., 2022; Dettmers et 

al., 2022; Kim et al., 2022). This progress has 

opened new paths to explore for acceleration in 

genomic calculations.  

We present the library miraculix which 

implements functions for the GPU-based 

multiplication of compressed SNP matrices by 

itself or floating-point matrices, which helps to 

accelerate the calculation of the GRM, LD and 

other essential quantities in genomics. In 

contrast to some of the aforementioned software 

packages such as PLINK, the package 

miraculix offers only a narrow, highly fine-

tuned functionality and is designed to allow a 

neat integration into genomic analysis 

pipelines. Furthermore, it differentiates itself 

from other GPU software solutions by 

leveraging low-precision instructions available 

on NVIDIA® GPUs to operate on compressed 

SNP data. This technique reduces device 

memory requirements and is substantially faster 

than solutions in floating-point format. We 

provide interfaces which can be used by 

existing libraries for genomic analysis or in 

higher-level programming languages such as 

Julia (Bezanson et al., 2017). 

Materials and Methods 

For a diploid species, the SNP genotype 

matrix Z describes the genomic information of 

a set of genetic markers in the population. That 

is, 𝐙 ∈ {0,1,2}𝑛 ×𝑘 , where 𝑛 is the number of

individuals in the population and 𝑘 is the 

number of SNPs. Due to the dramatic decrease 

in sequencing costs over the last decades, it is 

now possible to genotype millions of SNPs in 

vast populations or, alternatively, impute 

incompletely genotyped individuals. Therefore, 

researchers regularly deal with extraordinarily 

large data sets. For instance, the UK Biobank 

comprises broad genetic data of hundreds of 

thousands of human individuals (Bycroft et al., 

2018). The SNP genotype matrix is used for a 

wide range of genomic analyses. For instance, 

the SNP genotype matrix is used for computing 

the VanRaden 1 GRM 𝐆, which is defined by  
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𝐆 =  
𝐏𝐙(𝐏𝐙)′

2𝐩′  ·  (1k  −  𝐩)

with 1𝑘 = (1, . . . , 1)′ denoting a vector of

length k consisting only of 1s, 𝐩 denoting the 

vector of allele frequencies and the matrix 𝐏 =

𝐈 − 2 ⋅ 1𝑛𝐩′ for the identity matrix I. Here, the

matrix 𝐏 scales 𝐙 to have zero-centered allele 

counts (VanRaden, 2008). In genome-wide 

analysis studies (GWAS), the SNP genotype 

matrix 𝐙 is used to calculate regression 

coefficients of traits on one or multiple SNPs 

(Jiang et al., 2019). In the analysis of LD, the 

SNP genotype matrix is used to approximate the 

correlation statistic 𝑟2 through the computation

of the correlation between allele counts in Z. 

Due to the intrinsic properties of a SNP matrix, 

the efficient computation of 𝐙𝐙′ or 𝐙′𝐙 is in fact

the problem of a {0,1,2}-matrix multiplication 

(Chang et al., 2015; Schlather, 2023). Memory-

efficient storage formats for Z, such as the 

PLINK 1 binary format, only use 2 bits per 

entry and the conceptual arrangement of these 

bits yields different multiplication approaches. 

A number of highly efficient SIMD-based 

algorithms for Central Processing Units (CPUs) 

have been suggested (Schlather, 2023; Chang et 

al., 2015). Here, we rely on an allele-count 

encoding for our GPU implementation 

MMAGPU, which stores counts in unsigned 2-

bit integer format. This allows us to target the 

4-bit matrix multiplication assembler 

instructions on modern NVIDIA® GPUs of 

compute capability 7.5 and higher. Through bit-

masking and shift operations, we obtain a 

straightforward matrix multiplication 

microkernel. For fast data movement from 

global memory to shared memory to the cores 

and back, our library extends the CUTLASS 

library (NVIDIA, 2023) with 2-bit 

specializations, utilizing the available fast tile 

iterators. Since the resulting multiplication 

function is mainly bound by data transfers 

between the GPU and main memory, we divide 

the multiplication into blocks of rows and 

parallelize the multiplication of these rows into 

different threads and streams respectively. 

Deviating from the above computations ZZ’ 

and 𝐙′𝐙, an efficient multiplication of the SNP 

genotype matrix by a floating-point matrix is 

required for other essential operations in 

genomics, e.g., in GWAS. Recently, we have 

presented functionality in miraculix for 

offloading this type of computation to GPUs 

and how this functionality can be used for 

accelerating single-step evaluations 

(Freudenberg et al., 2023). 

To our knowledge, miraculix is the first 

software library which offers a GPU-based 

implementation of optimized matrix 

multiplications on compressed genotype data. 

The R packages MoBPS (Pook et al., 2020) and 

EpiGP (Vojgani et al., 2023), as well as the 

proprietary software MiXBLUP (ten Napel et 

al., 2021), have integrated miraculix. 

Results & Discussion 

Since multiplications of the SNP genotype 

matrix are an essential operation in a number of 

computational tasks in genomics, miraculix can 

be used as the backend for various calculations. 

In this section, we describe four possible 

applications of our high-performance GPU 

implementation and demonstrate how it enables 

the processing and analysis of datasets in 

previously unattainable computing times. 

Genomic Relationship Matrix 

For large dimensions of Z, a straightforward 

calculation of G becomes computationally 

prohibitive and a careful treatment of the 

involved operations is required. The 

decomposition 

𝑐𝐆 =  𝐌 − 1𝑛𝐩′𝐌 − 𝐌1n𝐩 + 𝐌1n𝐩′𝐩1n𝐌

with 𝐌 = 𝐙𝐙′ and 𝑐 = 2𝐩′(1k − 𝐩), reveals

that the matrix G can be obtained from M at 

relatively low computational costs of order 

𝑛2 + 𝑛𝑘, whereas M requires 𝑂(𝑘𝑛2)

(Schlather, 2023). In Figure 1, we compare the 

computation time of our GPU implementation 

with the CPU-targeted solution in PLINK. As 

these evaluations are performed on different 
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hardware, we also benchmark a naive GPU 

implementation, which involves unpacking 

compressed genotype data into unsigned 

integers and uses the NVIDIA® cuBLAS 

library for multiplication. This approach 

resembles the proof-of-concept GPU solution 

implemented in PLINK, though we opted to 

store the input data in integers of 8 bits to save 

memory, while PLINK uses single-precision 

floating-point values. We simulated three 

different sets of genotype markers for a 

population of 22 000 individuals with the 

simulation utility in PLINK: A low-density 

array with 50 241 markers (“Low”), a medium-

density array with 250 000 markers 

(“Medium”) and a high-density one with 

1 000 000 markers (“High”). For reference, the 

UK Biobank currently comprises about 

850 000 directly measured variants. We tested 

the GPU functions on an NVIDIA GPU A100 

with 80GB of device memory, while running 

PLINK on a dual-socket AMD® EPYC 7513 

(2.6 GHz) with 32 dedicated cores each using 

the PLINK options --make-rel square cov. The 

results displayed are the median of 5 

evaluations. Though direct conclusions on the 

efficiency of each solution are hard to draw due 

to the different hardware involved in the 

benchmarks, it can be observed that wall clock 

times in miraculix are smaller by a factor of at 

least 18 across the three test sets compared to 

PLINK. On the large dataset, the computation 

time was reduced from approximately 20 

minutes to 56 seconds. Juxtaposing our solution 

to the simple cuBLAS-based solution, we see 

that significant speed gains can still be achieved 

by using our stack of microkernels for sub-byte 

integers and efficient memory management. 

Yet, the significantly higher price tag of the 

A100 GPU has to be considered when 

evaluating these results: It is available at about 

15 000 USD with a thermal power design 

(TDP) of 300W, while each of the two AMD® 

EPYC 7513 (2.6 GHz) CPUs has a 

recommended price of 2 840 USD with a TDP 

of 200W. Considering the power consumption 

of the evaluated methods, it is reasonable to 

assume that the GPU approaches are 

significantly more efficient than PLINK. 

Making a rough estimate based on the involved 

TDPs and computing times, a reduction in the 

magnitude of 20 in terms of power consumption 

can be presumed. 

The gBLUP model 

The genomic BLUP (gBLUP) model is 

widely used in population analysis to capture 

additive genetic effects (Misztal and Legarra, 

2017) and is the basis for various extensions 

such as the extended gBLUP model, the single-

step gBLUP model or the epistatic random 

regression BLUP model (Misztal et al., 2009; 

Jiang and Reif, 2015; Vojgani et al., 2021). In 

the gBLUP model, a quantitative trait 𝐲 is 

assumed to be in a linear relationship with the 

genetic markers and environmental influences, 

captured in a matrix 𝐗 ∈ ℝ𝑛×𝑝. The effects of

SNPs are traditionally assumed to be random, 

resulting in the model 

𝒚 = 𝑿𝒃 + 𝑷𝒁𝒖 + 𝒆, 

where 𝐛 is a vector of fixed effects, 𝐮 ∼

𝑁(0, 𝜎𝑢
2𝐈) is a vector of random effects and 𝐞 ∼

𝑁(0, 𝜎𝑒
2𝐈) is an error term independent of u.

Alternatively, the term 𝐠 = 𝐏𝐙𝐮 can be used to 

denote the breeding values. Then, g is normally 

distributed with mean 0 and covariance matrix 

σg
2𝐆 for 𝜎𝑔

2 > 0. Furthermore, denoting V =

𝜎𝑒
2

σg
2 𝐈 + 𝐆, the best linear unbiased estimator 

(BLUE) for b is given by 

𝒃̂ = (𝑿′𝑽−𝟏𝑿)
−𝟏

𝑿′𝑽−𝟏𝒚,

and the best linear unbiased predictor (BLUP) 

for 𝐠 is given by 

𝒈̂ = 𝑮𝑽−𝟏(𝒚 − 𝑿 𝒃̂).

In practice, the variance components 𝜎𝑔
2 and 𝜎𝑒

2

are either derived from previous estimates on 

the heritability of the trait 𝐲 (e.g., by comparing 

offspring phenotypes with parental phenotypes) 

or estimated through Restricted Maximum 

Likelihood (REML), for instance, using the 

software package ASReml (Butler et al., 2017). 

Considering the above identities, the quantities 

𝐠̂ and 𝐛̂ can be derived from the GRM G and 

estimates for 𝜎𝑔
2  and 𝜎𝑒

2  through a Cholesky
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decomposition. To this end, we utilized the 

cuSOLVER library to offload this computation 

to the GPU. In a recent empirical study, the full 

gBLUP calculation with miraculix showed an 

acceleration of up to 100 times compared to 

traditional software in the case where the 

heritability is known (Pook et al., 2021). 

Additionally, two recent studies 

investigating the effects of epistasis utilized the 

efficiency of optimized CPU functions in 

miraculix (Vojgani et al., 2021, 2023). 

However, it should be noted that the memory 

requirements for setting up the GRM increase 

quadratically with the number of individuals 

which puts a limit to potential problem sizes.  

Figure 1.  Wall clock times for the calculation of the 

GRM on three simulated sets of SNP genotypes.  

Figure 2.  Wall clock times for the calculation of the 

LD on three simulated sets of SNP genotypes.  

Linkage Disequilibrium 

LD is a way of describing the dependence 

structure between pairs of alleles in a set of 

markers and there exist different statistics to 

capture this information in a population 

(Pritchard and Przeworski, 2001). The software 

PLINK implements the LD statistics 𝑟2, 𝐷 and

D′, which can be thought of as correlation 

measures between alleles. Though the true 

linkage value is based on haplotypes, it is 

sometimes approximated by the allele count 

correlations (e.g., in PLINK). That is, the 

squared correlation between the columns i and j 

of Z is used as value for 𝑟2. Since the

correlation matrix R can be written as 

𝑹 = 𝑫−1/2 𝑴̃𝑫−1/2 

for 𝐌̃ = 𝐙′𝐙 − 4𝑛 ⋅ 𝒑𝒑′ and 𝐃 = diag(𝐌̃), the

matrix of pairwise 𝑟2 values can be computed

from 𝐌̃ at low cost. While the computation of 

R for a small block of SNPs with a limited 

number of individuals is straight-forward, a 

simple algorithm for the detection of LD 

between distant SNPs (so-called long-range 

LD) or the calculation of the average LD decay 

in a large part of the chromosome becomes 

cumbersome. 

In our experiments, we calculated the matrix 

R of 50 241 markers across three simulated 

populations: A small population of 102 000  

individuals (“Small”), a medium-sized one 

comprising 751 000 individuals (“Medium”) 

and a large population of 3 101 000 individuals 

(“Large”). As inflating the large population to 

single-precision floating-point values would 

require approximately 580GB of memory, this 

approach is impractical for LD calculation. 

Since miraculix processes SNP data in 

compressed format and subdivides the 

computation of the SNP matrix multiplication 

into blocks, only about 6 GB of device memory 

was required. Using the same hardware set-up 

as above, we compare our solution with the 

implementation in PLINK on 64 cores and a 

simple GPU solution in cuBLAS. However, due 

to its inherently higher device memory 

requirements, the latter could only be evaluated 

on the small dataset. Results are displayed in 

Figure 2 and are the median of 5 evaluations for 

the GPU functions. PLINK calculations were 

only performed once as wall clock times on 

these test sets made further evaluations 

unreasonable. For LD calculation, the PLINK 

options --r square were used. We observe that 

compute times in PLINK were more than 400 

times higher on the large dataset. 
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Principal component analysis 

For a column-wise standardized matrix 𝐗 ∈

ℝ𝑛×𝑝 the first m principal components (PCs)

are defined by 𝐗𝐯1, … , 𝐗𝐯𝑚, where 𝐯1, … , 𝐯𝑚

solve the maximization problems 

max
𝐯1∈ℝp,‖𝐯1‖=𝟏 

‖𝐗𝐯1‖

and 

max
𝐯i∈ℝp,‖𝐯i‖=𝟏,𝐯1

′𝐯i=𝟎,…,𝐯i−1
′ 𝐯i=𝟎 

‖𝐗𝐯i‖

for 𝑖 = 2, … , 𝑚. Even though the transfer of the 

principal component analysis (PCA) to non-

continuous data is not straightforward and a 

topic of ongoing research (see, e.g., Schlather 

and Reinbott (2021) for an approach to non-

Euclidean data), PCA is still regularly used as 

an auxiliary tool in statistical genomics. Since 

PCA is a dimension-reducing method aimed at 

capturing large parts of variation in the dataset, 

PCs of the GRM are used in empirical studies 

in genetics to investigate population structure 

(e.g., by Steyn et al. (2022)) or as an auxiliary 

tool in the REML-based estimation of variance 

components (Thompson and Shaw, 1990; Lee 

and van der Werf, 2016). Principal components 

of the SNPs are regularly used to control for 

population stratification in GWAS studies or in 

breeding value estimation to reduce 

computational costs (Price et al., 2006). Popular 

software solutions include Eigensoft and 

PLINK (Price et al., 2006; Chang et al., 2015). 

Since PCA requires the multiplication of an 

orthonormal matrix of eigenvectors of 𝐗′𝐗 by

𝐗, miraculix can help to accelerate the PCs of a 

population by a fast computation of the GRM. 

Similarly, the PCs of SNPs can be derived from 

the 𝐙′𝐙 matrix. However, if the dataset contains

a lot of markers, constructing this matrix is 

challenging. The functionality of miraculix to 

multiply a SNP matrix by a floating-point 

matrix helps to alleviate this burden since there 

exists randomized algorithms for the singular 

value decomposition that do not require an 

explicit construction and calculate the first 𝑚 

eigenvalues and their corresponding 

eigenvectors with high accuracy (Halko et al., 

2011). We provide an exemplary 

implementation in Julia. 

gBLUP computing times 

To evaluate the performance of miraculix in 

a practical setting, we simulated a population of 

50 000  animals with 727 605 SNP variants 

based on the Illumina BovineHD BeadChip 

(Cunningham et al., 2021). Our supplementary 

Julia functions are linked to the interface of the 

library and perform low-cost post-processing 

operations on its return values. Emulating 

typical computational tasks in practice, we first 

load and process our data, which is stored in 

PLINK binary format on the disk, then calculate 

the GRM of the population and the SNP-wide 

PCs for later usage in inferring the parameters 

of the gBLUP model. PCs were modeled as 

fixed effects. Data processing operations were 

performed on an AMD® EPYC 7513 (2.6 

GHz), while SNP matrix operations were 

offloaded to an NVIDIA® GPU A100. Since 

the CPU was mainly used for data 

preprocessing, we only used 8 dedicated cores. 

Due to the memory efficiency of our 

implementation, we were able to use the version 

of the A100 GPU with only 40GB of device 

memory. Computation of the GRM involved 

calculating the SNP matrix cross-product of 

dimensions 50 000 times 50 000 while 

retrieving the first 10 principal components 

required the multiplication of the SNP matrix by 

a floating-point matrix to obtain the 

approximate eigenvectors of SNP-wide 

covariance matrix. To estimate the vectors 𝐛̂ 

and 𝐠̂ of the gBLUP model, the Cholesky 

decomposition of the stretched GRM needed to 

be computed to solve the involved equation 

systems. Since heritability was assumed to be 

known, the ratio of variance components did not 

need to be estimated on the data. 

Results are displayed in Table 1. We note 

that data processing now constitutes a 

significant portion of the total compute resource 

requirements both in terms of memory and 

computing times, as it requires a 2-bit format 
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conversion and reordering of the bit-level 

values. The construction of the GRM was 

performed in just approx. 30 seconds, whereas 

the PCA calculation and the Cholesky 

decomposition needed 18 seconds and 13 

seconds respectively. In total, approx. 36 

gigabytes of main memory and 19 gigabytes of 

device memory were used. 

Table 1.  Computing times for various steps in a 

gBLUP calculation.  

Computations were performed on a single 

NVIDIA® GPU A100-40GB using the Julia 

interface of miraculix. Total wall clock time includes 

additional system start-up time. 

Conclusions 

We have presented the capability of 

miraculix to offload essential operations on 

genomic data to the GPU. We illustrated its 

benefits in four applications. The approach 

outperforms existing CPU-based software 

solutions significantly and thereby enables 

much faster processing of genomic datasets of 

substantial size. Furthermore, it works on 

compressed data and therefore allows the 

processing of huge datasets. Overall, our 

experiments showed that a full gBLUP on a 

population of 50 000 individuals could be 

performed in little more than 1.5 minutes. 

Considering that a similar task was assumed to 

be computationally infeasible by VanRaden 

(2008) at the time, we find the performance 

improvements to be promising and encourage 

the use of GPUs to accelerate the processing of 

large datasets in genomics. While there is a suite 

of established methods to deal with 

extraordinary dimensions, e.g., Algorithm for 

Proven and Young (APY) (Misztal et al., 2014) 

or the use of iterative solvers (Strand én and 

Lidauer, 1999), these approaches can similarly 

benefit from the techniques introduced in this 

article. To allow miraculix to handle further 

increases in dataset sizes, future software 

versions might include distributed calculations 

for high-performance clusters via a Message 

Passing Interface (MPI), which would extend 

its applicability to datasets that still cannot be 

fully stored in device memory. Furthermore, 

since the variance component estimation 

through REML is another computational 

bottleneck in genomic analyses, it would be 

interesting to offload this procedure to the GPU 

as well. Extensions of miraculix to AMD® or 

Intel® GPUs would be useful to allow 

researchers to take full advantage of existing 

computer hardware. 
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Abstract 

Most validation studies of genomic evaluation observe inflation, i.e. regression coefficients of the later 

phenotypes on early predictions smaller than one. This pattern does not reflect a bias in the evaluation 

model, it rather reflects long distance associations between markers and quantitative trait loci (QTLs). 

Due to linkage disequilibrium (LD), SNP effects estimated from a reference data capture non-zero 

contributions from distant QTLs located not only in the same, but also in the other chromosomes, and 

we show that some across-chromosome LD does exist in different French dairy cattle breeds. This LD 

results from limited effective population size and, more importantly, from the relationship within the 

reference population. Long distance associations are partly broken and rebuilt at random at each 

generation. Therefore, corresponding SNP effects are partly lost in the next generations and we shall 

refer to this effect loss as erosion. This erosion can be predicted by different methods based on the 

following equations applied to simulated QTLs. If the breeding values are Pq with P the QTL genotypes 

and q their effects, the expected contribution of QTL j to the estimated SNP effect i is ci M’ Pj qj, where 

M is the matrix of SNP genotypes and ci is line i (corresponding to SNP i) of C = (M’M +  I)-1. Two 

methods based on simulations are proposed to estimate the erosion factor . In Method 1, the direct 

genomic value (DGV) of the progeny based on SNP effects estimated in this new simulated generation 

are regressed on the DGV of the same progeny based on SNP effects estimated in the reference 

population. In Method 2 all the QTL contributions to SNP effects are regressed based on SNP-QTL 

recombination rates and summed to predict the breeding value at the next generation. The regression 

coefficient of the DGV based on eroded contributions on the raw DGV is also an estimate of erosion. 

An illustration is given with the French Normande female reference population in 2021. Method 1 is 

simpler to implement on a routine basis, and yields good estimates of erosion over one generation. 

Erosion is also dependent on the distance between the young candidates and their reference population 

and formulae are proposed to apply erosion. We recommend accounting for erosion in genetic 

evaluations to provide unbiased predictions for the young candidates. Accordingly, erosion has been 

accounted for in the French Single Step bovine evaluation since March 2022. 

Key words: Genomic evaluation, inflation, erosion of genomic values, validation methods 

Introduction 

In genomic evaluation, single nucleotide 

polymorphism (SNP) effects are estimated in a 

reference population and applied to selection 

candidates. This method is extensively used to 

select candidates at an early stage of their life or 

not yet with phenotypic information. The 

standard interpretation is that SNPs are in close 

LD with causal mutations (or QTL) and 

therefore, good proxies for these QTL. 

Implicitly, this assumes that estimated SNP 

effects reflect those of the neighbouring causal 

mutations. Under this assumption, SNP effects 

observed in the reference sample should be very 

similar in the next generation as short-distance 

LD erodes slowly due to recombination. It is, 

however, well known that genomic evaluation 
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efficiency is highly dependent on the close 

relationship of the candidates to the reference 

sample (Habier et al, 2007, 2013; Legarra et al, 

2008; Pszczola et al, 2012). Many studies have 

shown the limited gain in accuracy in multi-

breed evaluation (Erbe et al, 2012; Hozé et al, 

2014), illustrating that distant reference data are 

not informative. Other studies have shown a 

decrease in accuracy over generations when the 

reference population is not updated (Soneson et 

al, 2009; Solberg et al, 2009). Moreover, it has 

been observed that the absence of parents in the 

reference population directly influences the 

prediction accuracy of the selection candidates. 

All these results suggest that SNP effects erode 

as the distance between candidates and 

reference sample increases.  

Validation studies of genomic evaluations 

are generally based on the regression of later 

performances on the early predictions. These 

studies frequently observe an inflation pattern, 

i.e., the regression coefficient is systematically

lower than 1, meaning that later performances

of the best candidates are below those initially

predicted (and later performances of the worst

candidates, if any, are above those initially

predicted).

One plausible interpretation is the existence 

of long-range LD, even across different 

chromosomes. Consequently, many markers 

may capture partial effects of supposedly 

unlinked QTL. Although long-distance LD is 

notably lower than short-distance LD, the 

number of long-distant variants is considerably 

higher and their combined effects can account 

for a substantial proportion of the genetic 

variance in a genomic prediction.  

In the first part of this study, we demonstrate 

that markers do capture part of the effects of 

distant QTL due to the long-distance LD. 

Because this long-range LD gradually decays 

over generations, it is imperative to account for 

the erosion of marker effects to predict the 

genomic values for the candidates. In the 

second part, we propose two methods to 

estimate the specific erosion factor of a 

reference population and suggest how to use it 

in practice to adjust DGV. 

Materials & Methods 

Evidence for linkage disequilibrium across 

chromosomes 

LD across chromosomes was assessed using 

data from the 2021 female reference 

populations of six French dairy cattle breeds 

(Holstein, Montbéliarde, Normande, 

Abondance, Tarentaise, Vosgienne). The 

reference populations exhibited varying sizes, 

ranging from 2617 to 362,363 animals. It is 

worth noting that Vosgienne, Tarentaise, and 

Abondance are local mountain breeds, whereas 

Montbéliarde and Normande are national 

populations, comprising 18% and 7% of the 

French dairy herd, respectively. On the other 

hand, the international Holstein breed accounts 

for 70% of the French dairy cattle population. 

In our analysis, we selected one every 20 SNP 

of the Illumina EuroGMD BeadChip on the 29 

autosomes, resulting in a sample of ~3 million 

r2 values for each breed (vs ~1.2 billion in total 

for all SNPs). 

Table 1 presents various LD statistics across 

chromosomes in the female reference 

populations of six French dairy cattle breeds. 

While the average r2 values appear to be small, 

suggesting limited across-chromosome 

disequilibrium, it is important to note that the 

focus here is on the parameter r, as the impact 

of a QTL on a SNP effect is directly 

proportional to the correlation between them.  

These correlation values decreased when the 

size of the breed (reference population, number 

of females in the breed, or effective size) 

increased. The proportion of SNP pairs with |r| 

exceeding 5% fluctuated notably, ranging from 

1.5% to 33%, depending on the breed. Notably, 

as the reference population size increased, this 

proportion also tended to decrease. 

Nevertheless, it is worth highlighting that even 

with a small percentage, we still observe non-

null correlations between 600 to several 

thousand SNP with a QTL located on a different 

chromosome (assuming that these r 

distributions between SNP and QTL are the 

same as between SNP). 
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Table 1. Statistics of |r| and r2 values across the 29 

chromosomes in female reference populations of six 

French dairy cattle breeds (selection of one every 20 

SNP within chromosome).  

Breeds # cows  Mean 

(|r|) * 

% 

|r| > 

0.05 

Mean(r2) 

Vosgienne 2617 0.0420 33 0.0029 

Tarentaise 3788 0.0225 18 0.0015 

Abon- 

dance 

7115 0.0268 15 0.0012 

Normande 69,220 0.0206 7 0.00073 

Montbe- 

liarde 

185,053 0.0173 4 0.00053 

Holstein 362,363 0.0148 1.5 0.00038 

*statistics based on 2,812,741 to 3,231,800 SNP 

pairs per breed 

 

Impact of long distance LD on genomic 

predictions 

To investigate the impact of long-distance 

LD on SNP effects, we focused on the 

Normande population, which consisted of 

69,220 cows (N) with genotypes and 

phenotypes. In this study, we considered the 

first five chromosomes comprising 13,608 

SNP. Two hundred additive causal mutations 

(nq=200) were randomly sampled among SNPs 

with a minor allele frequency (MAF) higher 

than 0.02. The additive effects of these 

mutations were independently drawn from a 

normal distribution, assuming a heritability of 

0.3. Two scenarios were tested: (1) the SNP-

BLUP model accounted for the ns=13,408 

SNPs excluding the QTL; (2) in addition to 

these SNPs, the SNP-BLUP model also 

accounted for an additional residual polygenic 

effect explaining 20% of the genetic variance. 

Note that in a previous study (Boichard et al., 

2022), we have shown with a similar approach 

that erosion was minimal when the causal 

variants were included in the analysis, and this 

scenario is not replicated here. This also agrees 

with de los Campos et al (2015) who showed 

that missing heritability does not exist when 

causal variants are in the model. 

The strategy used to compute erosion relied 

on the determination of the contribution of each 

QTL to each SNP, as follows. Omitting fixed 

effects, the SNP-BLUP equations can be 

written as  

[ M’M +  I ] 𝒔̂ = M’ y 

with M the (N x ns) matrix of cantered and 

scaled genotypes, s the vector of SNP effects, y 

the vector of phenotypes adjusted for the fixed 

effects, and  = e
2 / s

2 with e
2 and s

2 the 

residual and the SNP variances, respectively. 

According to the simulation, the phenotype can 

be written as y = Pq + e, i.e., the sum of nq QTL 

effects and an error term, with P the (N x nq) 

matrix of genotypes at the QTL level and q the 

vector of true QTL effects. Therefore, the 

equations can be rewritten as 

𝒔̂ = [ M’M +  I ]-1   M’(Pq + e) [1] 

Let us denote C = [ M’M +  I ]-1 the inverse 

of the coefficients matrix. If ci is line i 

(corresponding to SNP i) of C, the contribution 

of QTL j to SNP effect i is  

fij = ci M’ Pj qj.  [2] 

There were nq x ns = 200 x 13,408 = 

2,681,600 such contributions, distributed in the 

4 following categories based on the distance (d) 

between the QTL and the SNP: (1) d < 5 Mb; 

(2) 5 < d < 20 Mb; (3) d > 20 Mb with both the 

QTL and the SNP located on the same 

chromosome; (4) the QTL and the SNP are 

located on different chromosomes. Within each 

of these categories, we computed a partial DGV 

for each cow within the reference population. 

Summary statistics were then calculated over 30 

replicates quantifying their relative 

contributions to the total DGV and their 

correlations. 

The same strategy can also be applied in a 

model including a residual polygenic effect, 

denoted as u. The equations corresponding to s 

and u are as follows: 

 
[ 𝒁′𝒁 + 𝜅𝑨−𝟏 𝒁′𝑴

𝑴′𝒁 𝑴′𝑴 +  𝜆 𝑰 
] [

𝒖̂
𝒔̂

] =  [
𝒁′𝒚

𝑴′𝒚
]    [3] 
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with Z being the incidence matrix linking the 

records of y to u and  = e
2 / u

2 the 

corresponding variance ratio. 

The u equations can be absorbed into s 

equations, resulting in the following formula:  

 

Let us denote C* the inverse of the 

coefficient matrix after absorption 

𝐂∗ =   

[ 𝐌′ (𝐈 − 𝐙(𝐙′𝐙 + κ𝐀−𝟏)
−𝟏

𝐙′) 𝐌 + λ 𝐈 ]
−1

 

and M* the adjusted genotype matrix after 

absorption 

𝑴∗′ = 𝑴′ (𝑰 − 𝒁(𝒁′𝒁 + 𝜅𝑨−𝟏)
−𝟏

𝒁′)   

Then the contribution of QTL j to each SNP 

effect i is:   

fij = c*i  M*’  Pj  qj  [4] 

where c*i is line i of C* 

 

Table 2 presents the relative contribution of 

the 4 categories based on QTL-SNP distance to 

the total DGV variance. 

 

Results and Discussion 

In the model without a polygenic effect 

(scenario 1), the partial DGV derived from 

contributions of the QTL close to markers 

explained approximatively three-quarters of the 

DGV variance. Notably, more distant markers 

(d>20 Mb) and markers located on other 

chromosomes together accounted for ~13% of 

the total DGV variance. Markers located on 

other chromosomes explained more variance 

than markers at more than 20 Mb on the same 

chromosome. This result can be attributed to the 

larger number of marker-QTL pairs when 

markers are located on different chromosomes. 

The likely underlying reason of this pattern lies 

in the strong shrinkage of the effects of markers 

situated close to the QTL due to the influence of 

the prior information. Indeed, all markers 

receive the same prior variance, and the 

parameter  had a relatively high value 

compared to the diagonal elements of the matrix 

M’M. Consequently, the estimated effects of 

markers in proximity to the QTL experience 

substantial shrinkage and are much smaller, 

even altogether, than the true QTL effect. As a 

result, the unexplained part of the true QTL 

effect becomes available for distant markers, 

potentially leading to their contribution to total 

DGV. This effect would be probably 

maximized when the number of true QTL is 

much lower than the number of SNPs (q
2 >> 

s
2), and when the reference population is 

relatively small (diagonal (M’M) does not 

dominate ). It is important to note that when 

the size of the reference population is very 

large, the influence of prior information 

decreases, and this observed pattern is likely to 

gradually decrease. 

 

Table 2. – Relative contributions (%) of each of the 

4 classes of QTL-SNP pairs defined according to 

their distance (d). The contribution of a class is the 

percentage of DGV variance explained by each 

partial DGV in the reference population, over 30 

replicates.  

Classes of partial 

DGV defined 

according to QTL-

SNP distance (d) 

Scenario 1 

Model without  

polygenic 

effect 

Scenario 2 

Model with  

polygenic 

effect 

1: d < 5 Mb 73.5 68.9 

2: 5 Mb < d < 20 Mb 13.7 14.3 

3: d > 20 Mb 4.9 5.2 

4: QTL and SNP 

located on different 

chromosomes 

8.0 11.5 

 

The inclusion of a polygenic effect in the 

model (scenario 2) resulted in a higher 

proportion of variance being explained by 

distant markers and by markers located on 

different chromosomes. At first glance this 

result may seem counterintuitive as one could 

[𝑴′ (𝑰 − 𝒁(𝒁′𝒁 + 𝜅𝑨−𝟏)
−𝟏

𝒁′) 𝑴 + 𝜆 𝑰]  𝒔̂

=   

𝐌′ (𝐈 − 𝐙(𝐙′𝐙 + κ𝐀−𝟏)
−𝟏

𝐙′)  (𝐏𝐪 + 𝐞)    
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expect that the polygenic effect would help 

account for these long-distance effects since it 

captures the genetic relationships between 

individuals. Distant markers and markers on 

another chromosome altogether explained 

around 17% of the DGV variance whereas the 

share due to close markers (d<5Mb) decreased 

to 69%. As in scenario 1, a possible 

interpretation is the shrinkage of estimated SNP 

effects. Indeed, in the presence of a polygenic 

effect with variance u
2, the total variance due 

to SNPs is reduced to g
2 -  u

2 and results in an 

increased variance ratio  (e
2 / s

2). It can then 

be concluded that inclusion of a polygenic 

effect into the model should primarily be 

motivated by the need to account for the genetic 

variance not captured by the SNPs, rather than 

as a means to reduce inflation. 

 

Table 3a. Average correlations between partial 

DGV in Scenario 1, without polygenic effect. 

Results over 30 replicates 

Partial DGV 

class 
<5 Mb 5-20 Mb >20 Mb 

5-20 Mb 0.30   

>20 Mb 0.17 0.15  

Other 

Chromosomes 
0.11 0.05 0.12 

 

Table 3b. Average correlations between partial 

DGV in Scenario 2, with polygenic effect. Results 

over 30 replicates 

Partial DGV 

class 
<5 Mb 5-20 Mb >20 Mb 

5-20 Mb 0.54   

>20 Mb 0.26 0.29  

Other 

Chromosomes 
0.25 0.22 0.27 

 

Tables 3a and 3b present the correlations 

between the partial DGVs derived from 

different categories of QTL-SNP distances in 

scenarios 1 and 2, respectively. Both scenarios 

presented low to moderate positive correlations, 

illustrating that distant QTL contribute to the 

effects of many markers. Inclusion of a 

polygenic effect in the model (scenario 2, table 

3b) increases these correlations showing that 

long distance effects are reinforced. 

 

Methods to estimate erosion factor of SNP 

effects 

The concept of erosion of the genomic 

breeding values has two distinct components: 

(a) a component that is characteristic of the 

reference population itself, and (b) a component 

that is specific to each candidate and its genetic 

distance from the reference population. 

The extent of long-distance LD in the reference 

population is influenced by the effective 

population size (Ne). Notably, when Ne is 

small, a non-zero LD baseline persists. More 

importantly, the level of long-distance LD is 

also strongly dependent on the genetic 

relatedness within the reference population, 

which can be different from the relatedness in 

the overall population. A higher average 

relationship between individuals within the 

reference population results in more long-

distance LD. It can be argued that, on average, 

the long-distance LD appears relatively stable 

across generations, but this stability does not 

hold for individual pair of markers. At a given 

generation, existing LD is halved in the 

subsequent generation due to recombination, 

but new LD can emerge from different marker 

pairs as a consequence of the random processes 

associated with the sampling of parents and 

genetic drift, making average LD stable. 

The theoretical derivation of the erosion 

factor  requires additional investigation. 

Nevertheless, practical and efficient solutions 

can be obtained through simulation. In this 

paper, we present two simulation-based 

approaches which offer practical and effective 

means to address the erosion phenomenon and 

to estimate . 
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Method 1: by simulating a new generation 

 

The real reference population Gr of the breed 

for a given trait is considered with its SNP 

genotypes M. As previously, nq QTL are 

simulated in this reference population by 

sampling SNP which are thereafter excluded 

from the analysis. Expectations of SNP effects 

are estimated by 𝐬𝐫̂ = (𝐌′M + 𝐈)−𝟏 𝐌′ 𝐏 𝐪, 

assuming the same previous notations. 

A new generation, Gn, is then simulated, by 

sampling parents (at random or following a 

predefined design) in the reference population 

and performing matings. The expected DGV of 

this new generation is obtained from the 

genotypes Mn and from the SNP effects 

estimated in the reference population:  DGVr = 

Mn 𝐬𝐫̂ 

Assuming phenotypes are known in this new 

generation, new SNP effect estimates can be 

obtained from generation n only 𝐬𝐧̂ =

(𝐌𝐧
′  𝐌𝐧 + 𝐈)−𝟏  𝐌𝐧

′ 𝐏𝐧𝐪, and a new set of 

DGV is obtained from these new SNP estimates 

DGVn =  Mn 𝐬𝐧̂ 

These new SNP effects are different from 

the previous ones if the covariances between 

markers and QTL 𝐌′𝐏 and 𝐌𝐧
′  𝐏𝐧 differ. A 

large change in the covariances between 

markers 𝐌′𝐌 and 𝐌𝐧
′  𝐌𝐧 (i.e., in LD between 

SNP) may also affect the results but probably to 

a lesser extent. 

From these two sets of DGV, an estimate of 

the erosion  between the two generations is 

obtained through a regression analysis, where:    

DGVn = 1µ +  DGVr + e  [5] 

 

Method 2: by regressing contributions of QTL 

to marker effects. 

As above, the real reference population Gr of 

the breed for a given trait is considered with its 

genotypes M and nq QTL are simulated in this 

reference population. All contributions fij of 

the QTL j to the effect of SNP i are computed 

as shown in equation [2]:      

fij =  ci M’ pj qj. 

DGVr in the reference population is the sum 

of all contributions:   

DGVr = M f 1q 

with 1q being a vector of 1 of size q. 

Note that the DGV can also be obtained as 

DGVr = M 𝐬𝐫̂, as in Method 1. 

Then, all fij are regressed according to the 

genetic map, with coefficients (1-rij) varying 

from 1 to 0.5, rij being the recombination rate 

between the loci i and j:  

hij = rij fij.   [6] 

New eroded DGV (DGVe) are the sum of all 

regressed contributions  

DGVe = M h 1q 

An estimate of √𝜌 is obtained through a 

regression analysis, where:    

DGVe = 1µ + √𝜌  DGVr + e  [7] 

 

Comparison of both methods 

Both methods are based on QTL simulation, 

and their results are influenced by assumptions, 

particularly regarding the number of QTLs. 

However, as far as the number of QTLs is 

smaller than the number of markers and long-

distance LD is present, we can anticipate that 

erosion exists. 

Method 1 is relatively straightforward to 

implement, as it involves simulating one 

additional generation and estimating expected 

SNP effects in both the reference population 

and in the new generation using standard 

software. In contrast, Method 2 requires a 

specific program to compute all the 

contributions and erode them. Nevertheless, it 

provides an explicit biological basis to 

understand and interpret erosion across 

generations. 

Method 1 generates progeny from pairs of 

parents, leading to erosion on both sire-progeny 

and dam-progeny pathways. Method 2, on the 
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other hand, simulates erosion through 

recombination at only one meiosis, resulting in 

the erosion factor estimated by method 2 being 

the square root of that estimated by method 1. 

This scale difference should be considered 

when interpreting results. 

Additionally, method 2 considers the whole 

reference population whereas method 1 

generates a new generation based on 

assumptions about the number and the choice of 

parents sampled. Therefore, results between the 

two methods can exhibit slight variations. 

Numerical example 

In our numerical example, we applied both 

method 1 and method 2 to the same 2021 

Normande female reference population. As 

before, we focused on only 5 chromosomes and 

simulated 200 QTLs. In method 1, a new 

generation was created by sampling 1,000 sires 

and 50,000 dams. Each sire had 50 progeny, 

while each dam had one progeny, resulting in a 

new generation of 50,000 animals. The results 

obtained with both methods are presented in 

Table 4. Recombination rates were based on 

ARS-UCD1.2 bovine genome assembly, 

assuming 1 cM for 1 Mb. 

 

Table 4. Estimation of erosion factors by 

Method 1 and Method 2 (30 replicates) 

 𝜌̂ SD(𝜌̂) 

Method 1 0.87 0.015 

Method 2 0.84 0.010 

 

The number of replicates was set to 30. 

Variability across replicates was small (at least 

with such a large reference population) and this 

number of replicates was sufficient to obtain 

reliable estimates of . 

Discussion on how to apply erosion in practice  

Here, we consider that, by definition, 

individuals in the reference population are 

assumed to possess non-eroded SNP effects. It 

is worth noting that this assumption may 

warrant discussion due to potential 

heterogeneity within the reference population. 

The estimated SNP effect represents an 

expectation and may not align with individual 

situations. However, this point goes beyond the 

scope of this initial study. 

Erosion primarily concerns selection 

candidates, i.e. genotyped individuals without 

phenotype data and, therefore, out of the 

reference population. When their parents, 

referred to as s and d, are part of the reference 

population, we assume that the parent’s average  

(PA) DGV, denoted as  

PA = 0.5 (DGVs + DGVd), 

remains unaffected. Indeed, their DGVs are 

based on performances; and this is especially 

the case for sires with progeny evaluation, and 

therefore with very reliable DGVs. Erosion 

influences the deviation from PA, i.e., the 

predicted Mendelian sampling term. We 

propose applying the following formula:  

DGVeroded = PA +  (DGV-PA)          [8] 

When the parents of a candidate are not in 

the reference population, erosion applies at each 

generation between the reference population 

and the candidate. Following a similar approach 

as described by Dekkers et al (2021), the 

number of generations between the candidate 

and its closest relatives within the reference 

population is determined on both the sire and 

dam pathways and k is their sum. Erosion is 

applied following equation [9]:  

DGVeroded = PA + k/2 (DGV-PA)          [9] 

When the parents themselves are candidates, 

i.e., genotyped and not in the reference 

population, erosion also applies to them. This 

erosion affects the PA of their progeny in the 

following way: 

DGVeroded = PAeroded + k/2 (DGV-PA) 

This formula should be applied recursively, 

processing parents before progeny. This 

recursive approach highlights that the DGV of 

candidates born from very young parents 

experience significant erosion, which aligns 
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well with practical observations. Therefore, 

breeding schemes with accelerated generations 

without updating reference data tend to 

accumulate more erosion than initially 

anticipated. These schemes may be less 

appealing due to the rapid erosion effect on 

genomic values.  

Furthermore, as shown by Dekkers et al 

(2021), erosion also affects reliability, but with 

a coefficient equal to 2 instead of . The loss 

in genomic accuracy is therefore very fast. 

Theoretical accuracies calculated based on the 

inverse of the coefficient matrix tend to 

overestimate the reliabilities for candidates and 

must be adjusted accordingly. In the French 

evaluation system, reliabilities are computed by 

combining effective record contributions (ERC) 

associated to polygenic information and 

genomic information, the latter (and the latter 

only) being eroded in candidates. 

   

Conclusions 

The practical implications of erosion in 

genetic evaluations and breeding programs are 

important. When considering the overall 

prediction of selection candidates, contributions 

from short-distance LD tend to remain 

relatively stable because they are only mildly 

eroded by recombination (Dekkers et al, 2021). 

However, contributions from long-distance LD 

are halved at each generation. The extent of 

erosion varies with the relative weight of short 

and long-distance LD, but it should never be 

disregarded.  

Further investigations are needed to 

theoretically determine the erosion factor . 

Nonetheless it is clear this factor depends on 

baseline LD in the population, i.e., effective 

population size (Ne) and genome length (L), as 

well as on the structure of the reference 

population. Additionally, it is likely influenced 

by the genetic architecture of the traits (such as 

the number of QTL and magnitude of their QTL 

effects) and the model used (SNP-

BLUP/GBLUP vs Bayesian models, the latter 

being likely less affected by erosion).  

It is also relevant to explore the impact of the 

structure of the reference population, such as its 

heterogeneity in terms of time span, selection, 

and relationship. For instance, the impact on 

erosion of old generation data in the reference 

population would be worth investigating. While 

the proposed erosion methods consider the 

smallest distance between the candidate and the 

reference population, alternative approaches 

using the barycentre of the reference population 

warrant investigation. 

However, one can anticipate that:  

(1) Inflation factors, frequently observed 

between 0.8 and 0.9, give the magnitude of the 

erosion phenomenon;  

(2) Models including causal variants tend to be 

more persistent and less subject to erosion, as 

demonstrated by Boichard et al (2022); 

(3) Models that incorporate a residual polygenic 

component may appear to have less inflated 

predictions for candidates because they 

combine two estimates of the MS term: the 

genomic estimate, which is inflated, and a 

polygenic estimate, which is equal to zero (i.e., 

100% deflated). However, the polygenic effect 

does not capture long-distance LD effects and, 

therefore, does not improve predictions in terms 

of persistence. We believe that accounting for 

erosion is a more rigorous and accurate 

approach, even if it requires post-processing.  

This methodology has been implemented in 

the French Single Step bovine evaluation since 

March 2022. 
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Abstract 

Today mating decisions are mostly based on pedigree information. However, genomic information 

could be used to minimize inbreeding or increase heterozygosity in mating decisions, because it 

contributes with more information on the expected heterozygosity (He) than pedigree information. The 

underlying hypothesis is that the more heterozygous the offspring of a mating is, the larger the 

dominance effect and less inbreeding depression in purebred offspring. The purpose of this study was 

to estimate the size of He using single nucleotide polymorphism (SNP) marker information and further 

the effect of increased heterozygosity on milk, fat and protein yield in Holstein (HOL), Red Dairy 

Cattle (RDC) and Jersey (JER) cows. He was calculated SNP by SNP for all couples of genotyped 

parents. Genome-wide He was calculated as the mean heterozygosity over all the SNPs. Data from 

5,423 HOL, 2,245 RDC and 5,975 JER genotyped cows born between 2015 and 2017, which all had 

parents with GEBV were analyzed. The mean He levels were 0.328 for HOL, 0.336 for RDC and 

0.308 for JER with standard deviations between 0.007 and 0.008. Results showed a significant effect 

of He on milk, fat and protein for all breeds. For HOL, a 1%-point increase in He corresponds to an 

increase in 305 days yield of 122 kg milk, 3.7 kg fat and 3.7 kg protein. For RDC the effect was 99 kg 

milk, 2.9 kg fat and 2.9 kg protein per heterozygosity percentage point. For JER the effect was 42 kg 

milk, 3.2 kg fat and 1.8 kg protein per heterozygosity percentage point. This indicates that it could be 

beneficial to include He in the mating plan decisions. 

Key words: Dairy Cattle, mating decisions, inbreeding, heterozygosity, production traits 

Introduction 

Today mating decisions are primarily based 

on pedigree information. However, genomic 

information could be used to minimize 

inbreeding or increase heterozygosity in 

mating decision, because it contributes with 

more information on the expected 

heterozygosity (He) than pedigree information. 

Inbreeding depression has been shown to 

affect many traits affecting the profitability of 

dairy cows such as milk, fat and protein yield 

(Rokouei et al. 2010, Cassell 2009), but also 

mastitis (Sørensen et al. 2006) and some 

fertility traits (Rokouei et al., 2010). 

Accounting for genomic information increases 

the estimation accuracy of inbreeding 

coefficients because it captures realized 

autozygosity. As a result, it also allows for 

more accurate estimation of inbreeding 

depression effects than pedigree information. 

For example, Pryce et al. (2014) found that a 

1% increase in pedigree inbreeding results in a 

decrease in milk yield of 21 L for Holstein 

dairy cows whereas the same 1% increase in 

genomic inbreeding leads to a decrease in milk 

yield of 27.8L and the effect of increased 

homozygosity was -63 L. Bjelland et al. (2013) 

also found a decrease in yield traits with an 

increase of genomic inbreeding. 

The expected genome-wide heterozygosity 

for a progeny from a prospective mating can 

be computed from the parents’ genotypes. The 

expected heterozygosity is assumed to reflect 

part of inbreeding depression effect that would 

be expected for an “average” progeny of a 

specific mating. When the effect of increased 

expected heterozygosity on traits is known, it 

42



INTERBULL BULLETIN NO. 59.  26-27 August 2023, Lyon, France 
 

 

 

is possible to implement it in the mating plan. 

This will make it possible for the farmer to 

select the sire for the specific cows, that will 

give the highest profit considering both 

breeding values and heterozygosity.  

In this study we calculated the expected 

heterozygosity of purebred animals, using SNP 

information and further the effect of increased 

heterozygosity on milk, fat and protein yield in 

Holstein (HOL), Red Dairy Cattle (RDC) and 

Jersey (JER) cows. The underlying hypothesis 

is that the more heterozygous the offspring of a 

mating is, the larger the dominance effect and 

less inbreeding depression in purebred 

offspring. 

 

Material and Methods 

Data 

Data from 5423 Holstein (4833 dams and 

517 sires), 2245 RDC (1978 dams and 212 

sires) and 5975 Jersey cows (5148 dams and 

214 sires) born in Denmark in 2015, 2016 and 

2017 were included in the analyse. All cows 

were genotyped and had deregressed proofs. 

The parents of the cows were also genotyped 

and had GEBVs.  For HOL 46,342 SNPs were 

used to calculate He, 41,897 SNPs were used 

to calculate He for RDC and 46,914 SNPs 

were used to calculate He for JER. 

 

Methods 

Expected heterozygosity was calculated 

SNP by SNP for the genotyped parents. If both 

parents were opposite homozygotes for the 

SNP, the He was set to 1. If both parents were 

homozygous for the same SNP, the expected 

heterozygosity was set to 0. If one or both 

parents were heterozygous for the SNP, He 

was set to 0.5. The genome-wide He was then 

calculated as the sum of all He over all the 

SNPs divided by the total number of SNPs. 

Effect of He on each trait was estimated 

using a linear regression model with software 

SAS (version 9.4; SAS Institute Inc.). 

 DRP =  𝜇1 +  αHe +β
GEBVs +GEBVd

2
+ 𝑒 

 where: 

µ1 is the intercept, He is the expected 

heterozygosity fitted as covariate, and 

 is the mean parental GEBV for 

the traits milk yield, fat yield and protein yield. 

DRP is the deregressed proof (Stránden and 

Mäntysaari, 2010) expressed in index units.  

The phenotypic effect of He for each trait in 

trait units was calculated by scaling He 

according to the value of 1 index unit (see 

Table 1). 

 

Table 1.  Value of + 1 index unit (NAV 2023) 

 

Results & Discussion 

The mean He at SNP markers for HOL was 

0.328 with a standard deviation of 0.007. RDC 

had, as expected the highest He of 0.336 with a 

standard deviation of 0.008, and JER the 

lowest He with a mean on 0.308 with a 

standard deviation of 0.008.  

The effect of expected heterozygosity on 

milk, fat and protein yield is shown in Table 2 

for HOL, in Table 3 for RDC and in Table 4 

for JER. The estimates for regression 

coefficients represent the increased value, 

expressed in index units, when going from an 

He of 0 to 1 or 100%. All regression 

coefficients were significant, irrespective of 

the breeds and traits. They were consistently 

higher for HOL. The effect of an 1%-point 

increase in He was 1.85 index units for milk, 

equivalent to 122 kg milk. For fat yield the 

effect of 1%-point increase in He increases fat 

yield by 3.7 kg corresponding to 1.54 index 

units of fat. The effect of increased He is the 

same for protein yield as for fat yield, where 

1%-point increase of He resulted in 3.7 kg 

(1.87 index units).  

 

 HOL RDC JER 

Milk (305-d, kg) 66.0 72.5 57.3 

Fat (305-d, kg) 2.4 2.5 2.1 

Protein (305-d, kg) 2.0 2.0 1.7 

 

43



INTERBULL BULLETIN NO. 59.  26-27 August 2023, Lyon, France 
 

 

 

Table 2. Regression coefficient estimated for 

deregressed proofs on expected heterozyosity for 

Holstein 

He = estimated heterozygosity 
 

For milk regression coefficients were lower 

for RDC and JER than for HOL: the effect of 

1%-point increase in He was 1.37 index units 

in RDC (equivalent to 99 kg of milk) and 0.74 

index units for JER (equivalent to 42 kg of 

milk). The effect of heterozygosity on fat yield 

of JER (1.51 index units per 1%-increase in 

He, i.e. 2.9 kg fat yield) was as high as the 

HOL estimate and higher than the RDC 

estimate.  

 

Table 3. Regression coefficient estimates for 

deregressed proofs on expected heterozygosity for 

RDC 
 Estimate Standard error 

He milk 137  50 

He fat 115  49 

He protein 187  47 

He = estimated heterozygosity 

 

 In contrast, the regression coefficient of 

protein yield DRP on He was lower in JER  

(1.03 index units per 1% increase in He, i.e. 

1.8kg protein yield) than in HOL and RDC. 

 

Table 4. Regression coefficient estimated for 

deregressed proofs on expected heterozygosity for 

Jersey 

He = estimated heterozygosity 
 

Pryce et al. (2014) and Bjelland et al. 

(2013) focused on increase in homozygosity 

instead of heterozygosity but because 1% 

increase in heterozygosity is the same as 1% 

decrease in heterozygosity these results are 

comparable, even though there are difference 

in the models used, where Pryce et al. (2014) 

used phenotypic data instead of deregressed 

proof. Pryce et al. (2014) found a decrease in 

milk yield of 63 L for Holstein and 71 L for 

Jersey, with a mean of 7286 L milk for 

Holstein and 5197 L milk for Jersey in the 

population, corresponding to a decrease of 

0.9% and 1.4% in milk. Bjelland et al. (2013) 

found a decrease in milk yield of 53 kg with 

one percentage increase in homozygosity, this 

is for 205 days yield with a mean of 8453 kg 

which corresponds to a decrease on 0.6%. The 

mean milk, protein and fat yield (305 days) for 

Danish Holstein, RDC and Jersey cows are 

shown in Table 5. Converted to percentage of 

total milk yield the effect of 1%-point increase 

in estimated heterozygosity are between 0.6% 

increase in milk yield (Jersey) and 1.1% 

increase in milk yield (Holstein), which are 

similar to the results found by Pryce et al. 

(2014) and Bjelland et al. (2013). Bjelland et 

al. (2013) did not find a significant effect of 

increased homozygosity on fat- and protein 

percentages. Pryce et al. (2014) found a 

decrease in fat yield of 3 kg for Holstein and 

3.9 kg for Jersey corresponding to 1.1% and 

1.5% which is higher than our estimates, that, 

converted to increase in percentage of fat yield 

is between 0.7% (RDC and Jersey) and 0.8% 

(Holstein). The increase in fat yield with 

increased heterozygosity was between 0.6% 

(Jersey) and 0.9% (Holstein) which for 

Holstein is comparable to results by Pryce et 

al. (2013) with a decrease in protein yield of 

0.8% for Holstein with increase in 

homozygosity, but lower for Jersey where 

Pryce et al. (2014) found a decrease in protein 

yield of 1.4%. 

 

Table 5. Mean 305 days yield in Denmark 

2021/2022 (Viking Danmark 2022) 

 

 

 

 

 Estimate Standard error 

He milk 185  52 

He fat 154  54 

He protein 187  47 

 

 Milk Fat Protein 

Holstein 11,271 462 396 

RDC 9,735 428 360 

Jersey 7,598 453 326 

 

 Estimate Standard error 

He milk 74  33 

He fat 151  33 

He protein 103  30 
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Conclusions 

 

There is a significant effect of He on milk, 

protein and fat yield across all three breeds and 

traits. Including this information in the mating 

plan is straightforward. It is expected to 

increase the average genome-wide 

heterozygosity of offspring compared to 

random mating and thereby their phenotypic 

performance. Before being implemented in the 

mating plan with full added value, there is a 

need to estimate the effect of He for all other 

traits in the breeding goal and for the total 

merit. 
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Abstract 

Since April 2023, CRV uses AMS (Automatic Milking System) data to estimate breeding values for 

udder conformation traits in the Netherlands and Flanders in addition to data from herd classification. 

AMS data is used to derive traits for udder depth, distance between the front teats, distance between 

the rear teats and udder balance. Three teat coordinates are determined and stored by the AMS each 

milking, all given in millimetres: x (measure of the width), y (measure of the length), and z (measure 

of the depth). Based on these three teat coordinates, the four udder traits can be derived. Traits are 

derived for first three parities. The heritability for respectively udder depth, distance between the front 

teats, distance between the rear teats and udder balance in parity 1 is 0.56, 0.60, 0.45 and 0.45. Based 

on herd classification, heritabilities for udder depth, front teat placement and rear teat placement are 

respectively 0.39, 0.31 and 0.29. The genetic correlations between these three traits and corresponding 

heifer traits based on AMS data are respectively 0.98, 0.98 and 0.99. Traits for later parities show 

comparable heritabilities and genetic correlations. The repeated records lead to an increase of the 

heritability and reliability compared to udder depth, front teat placement and rear teat placement based 

on herd classification. Furthermore, the AMS gives more objective results compared to scores given 

by herd classifiers. The udder conformation traits based on herd classification are still the traits that 

are published, while udder balance is introduced as new trait. Due to the usage of AMS data, an 

increase of reliability for bulls breeding values was found ranging between 0.4 and 3.0%. Adding 

AMS data to the breeding value estimation of udder conformation traits leads to better estimates of the 

breeding values for existing udder conformation traits by using more information as well as having a 

breeding value for the new trait udder balance. 

Key words: udder conformation, herd classification, AMS data, udder balance 

Introduction 

In April 2023, 4 805 dairy farms in the 

Netherlands were milking their cows with an 

AMS. This is 33% of the total number of dairy 

farms in the Netherlands. These farms had 

9 825 AMS boxes in total, resulting in on 

average 2 boxes per farm (Stichting KOM, 

s.d.).

To attach the milkcup to the teats, the AMS

should know the position of the teats. The teat 

positions make it possible to derive udder 

conformation traits based on information from 

data stored by the AMS. 

By using AMS data, more information on 

the conformation of the animal is available in  

addition to herd classification data. As there 

are also animals in the AMS data without 

information from herd classification, more 

animals can be included in the breeding value 

estimation for udder conformation.  

The data collection is automatic and 

therefore less time costly compared to herd 

classification. Dairy farmers can easily 

indicate via JoinData (JoinData u.a., 

Wageningen, the Netherlands) if they are 

willing to share their AMS data with CRV for 

the breeding value estimation. With their 

permission, CRV can upload all milkings on a 

daily basis. The automatic data collection 

makes the data also available faster compared 

to classification scores.  
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Materials and Methods 

Data for breeding value estimation 

 

AMS data from more than 1 400 Dutch 

dairy farms are available for the genetic 

evaluation. Those farms are all milking their 

cows with an AMS from Lely (Lely group, 

Maassluis, the Netherlands). 

Each day, almost 400 000 milkings from 

the previous day are uploaded and added to the 

database. There is more data from recent years 

compared to the first year with data, 2014, 

because the number of farms milking with an 

AMS keeps growing. 

From each milking, the x, y, and z-

coordinates are known. The three teat 

coordinates are all given in millimetres and are 

illustrated in Figure 1. Based on those 

coordinates, four udder traits can be derived: 

udder depth, distance between the front teats, 

distance between the rear teats and udder 

balance. Udder depth is the average z-

coordinate of the four teats. Distance between 

the front teats is the difference in x-coordinates 

of the front teats. Distance between the rear 

teats is the difference in x-coordinates between 

the rear teats. Udder balance is the difference 

in the average z-coordinates of the rear teats 

and the average z-coordinates of the front 

teats. 

A positive udder balance means a higher 

rear udder compared to front udder. The 

opposite is the case if we speak about a 

negative udder balance.  

Higher breeding values indicate a more 

positive udder balance. A too positive udder 

balance is not desired, because this can give 

problems for the AMS when attaching the 

milkcup to the rear teats. This makes udder 

balance an optimum trait. 

For each cow, the first and every twentieth 

milking is used for the breeding value 

estimation to reduce the data size. The first 

milking is taken to ensure that each cow in the 

data is also in the breeding value estimation. 

33% of the animals in the AMS data has no 

information on udder conformation traits from 

herd classification. 

Data from parity 1 to 3, is used. In the April 

2023 breeding value estimation, the number of 

milking was 5 499 248. 

 

 
Figure 1. Illustration of teat coordinates. 
 

Parameters 

Parameter estimation was based on 868 396 

milkings from 89 456 cows with 311 661 

milkings belonging to parity 1, 279 191 

milking to parity 2 and 277 544 milking to 

parity 3. All cows were at least 87,5% 

Holstein. Parameters were estimated using an 

animal model. 

Model 

The statistical model used for udder 

conformation based on AMS data is: 

 

Y1ijklmnopqrs = HYSi + DILj + AFCk + HYl + 

HETm + RECn + INBo + HGTp + TLEt + Aq + 

PMEr + Rests 
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In which: 

Y observation on udder conformation on 

heifers (parity 1), young cows (parity 2) 

and cows (parity 3); 

HYS herd x year x season x box of milking; 

DIL lactation stadium; 

AFC age of first calving; 

HY   herd x year of first calving; 

HET heterosis effect; 

REC recombination effect; 

INB inbreeding effect; 

HGT EBV stature; 

TLE EBV teat length; 

A  additive genetic effect; 

PME permanent environmental effect; 

Rest  residual term of that which is not 

explained by the model of Y. 

 

The effects A, PME and Rest are random, 

the effects HET, REC, INB, HGT and TLE are  

covariables, the other effects are fixed. Effect 

AFC is only added to the model for parity 1 

and parity 2. 

The covariables HGT and TLE are only 

added to the model for udder depth. Udder 

depth is based on the z-coordinate, which is 

measured as the distance from the teat tip to 

the floor. Stature and teat length of the cow 

influence this distance, so correction in the 

model is needed to make udder depth 

independent form stature and teat length.  

 

Results & Discussion 

 

Udder balance 

 

Udder balance is the average difference in 

udder depth between rear udder and front 

udder. The genetic correlations of udder 

balance with udder conformation traits based 

on herd type classification are shown in table 1 

and are all moderate and positive. This 

explained the positive trend in phenotype for 

udder balance over the period 2014 – 2023 as 

shown in Figure 2. Over this period, udder 

balance has increased with 5 millimetres for all 

three parities. 

Table 1. Genetic correlation of udder balance 

parity 1 with udder conformation traits based on 

herd classification. 

 

Table 1 shows that udder balance has the 

highest genetic correlation (0.54) with rear 

udder. Because all correlations are moderate, 

the udder traits based on herd classification 

cannot give a good prediction of the udder 

balance of a cow. 

 

 
Figure 2.  Phenotypic trend in udder balance for 

black and white Holstein cows in parity 1, parity 2 

and parity 3 from 2014 to 2023. 

 

Next to the upward phenotypic trend in 

udder balance, figure 2 shows that udder 

balance is most positive in parity 1 and 

declines over the parities. The decline from 

parity 1 to parity 2 is about 2 millimetres, from 

parity 2 to parity 3 the decline is about 3 

millimetres. 

 

Genetic parameters 

 

Table 2 shows the heritabilities of the udder 

conformation traits based on AMS data. Table 

3 shows the genetic correlations between 

similar traits based on herd classification and 

AMS data for the three different parities.      

Udder depth from herd classification is 

trait  genetic correlation 

front udder attachment  0.25 

front teat placement  0.29 

teat length  0.25 

udder depth  0.24 

rear udder height  0.53 

udder support  0.34 

rear teat placement  0.36 
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compared to udder depth based on AMS data, 

and front- and rear teat placement from herd 

classification are compared to distance 

between the front- and rear teats based on 

AMS data. Table 4 shows the genetic 

correlations between the different parities for 

the traits based on AMS data.  

 

Table 2. Heritabilities of the traits in parity 1 (p.1), 

parity 2 (p.2) and parity 3 (p.3).  

The heritabilities in table 2 are higher 

compared to the heritabilities for similar traits 

based on herd classification. Udder depth has a 

heritability of 0.39, front teat placement has a 

heritability of 0.31 and rear teat placement has 

a heritability of 0.29. The increase in 

heritability by the traits based on AMS data is 

caused by repeated records of high-quality 

data. 

 

Table 3. Genetic correlations between similar traits 

based on herd classification and AMS data for 

parity 1 (p.1), parity 2 (p.2) and parity 3 (p.3).  

 

The genetic correlations between the traits 

in table 3 are, independent from parity, close to 

1.0, ranging from 0.96 to 0.99. This means that 

the herd classifiers and AMS measure actually 

the same trait. 

The heritabilities of the udder conformation 

traits based on AMS data and the genetic 

correlations with the linear traits from herd 

classification are comparable with results 

found in Scandinavia (Rius-Vilarrasa et al., 

2016). 

Table 4. Genetic correlations for udder traits based 

on AMS data between parity 1 and 2 (p.1-2), parity 

2 and 3 (p.2-3) and parity 1 and 3 (p.1-3). 

           genetic correlations 

trait  p.1-2 p.2-3 p.1-3 

udder depth  0.97 0.99 0.93 

distance front teats  0.99 0.99 0.94 

distance rear teats  0.97 0.98 0.90 

udder balance  0.96 0.98 0.85 

 

 

The genetic correlations in table 4 between 

the different parities are all above 0.90, only 

udder balance has a lower genetic correlation 

of 0.85 between parity 1 and 3 which is still 

considered a high correlation. The different 

parities give all the same information, 

therefore parity 1 is used as published trait for 

udder balance since parity 1 contains the most 

cows. 

 

Reliabilities 

 

Udder balance in parity 1 is the published 

trait, the other udder conformation traits based 

on AMS data are indicator traits. The udder 

conformation traits based on herd classification 

profit from the indicator traits using the genetic 

correlations between the traits because 

information of extra cows is added, resulting in 

more reliable breeding values. The increase in 

reliabilities is shown in table 5. 

 

Table 5. Reliability for udder conformation traits 

without (old rel.) and with (new rel.) using udder 

conformation traits based on AMS data as indicator 

traits and the correlation (corr.) of the bull breeding 

values between both systems for Holstein bulls 

born since 2010. 

 

 heritability 

trait  p.1 p.2 p.3 

udder depth  0.56 0.56 0.52 

distance front teats  0.60 0.53 0.45 

distance rear teats  0.45 0.38 0.33 

udder balance  0.45 0.42 0.43 

  

           genetic correlations 

trait  p.1 p.2 p.3 

udder depth  0.98 0.97 0.97 

distance front teats  0.98 0.98 0.97 

distance rear teats  0.99 0.99 0.96 

  

trait  old rel. new rel. corr. 

front udder attachment  78.1 81.7 0.98 

front teat placement  78.7 82.7 0.97 

teat length  81.3 81.7 0.99 

udder depth  81.4 83.9 0.98 

rear udder height  77.1 78.6 0.99 

udder support  75.3 79.2 0.97 

rear teat placement  77.8 81.8 0.97 
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The increase in reliability ranges from 0.4 

to 4.0%, depending on the covariance structure 

with the indicator traits. Front udder 

placement, udder depth and rear teat placement 

have a relative large increase of respectively 

4.0, 2.5 and 4.0%. As shown in table 3, the 

genetic correlations with the corresponding 

traits based on AMS data are high, so a 

relatively large increase in reliability compared 

to the other traits was also expected. 

Conclusions 

Teat coordinates from AMS data can be 

used to derive udder conformation traits. In the 

Netherlands and Flanders, four udder 

conformation traits are derived based on AMS 

data: udder depth, distance between the front 

teats, distance between the rear teats and udder 

balance. 

Udder balance is a new trait, because it is 

not scored during the herd classification. 

Udder balance has a heritability of respectively 

0.45, 0.42 and 0.43 for parity 1, parity 2 and 

parity 3. The genetic correlations with the 

other udder conformation traits are all 

moderate positive what causes the upwards 

trend of 5 millimetres in udder balance over 

the past ten years. 

Repeated records are used for the breeding 

value estimation, which lead to an increase in 

heritability and reliability. The heritabilities in 

parity 1 are 0.56, 0.60 and 0.45 for 

respectively udder depth, distance between the 

front teats and distance between the rear teats 

based on AMS data, while based on herd 

classification the heritabilities are 0.39, 0.31 

and 0.29. Genetic correlations between the 

traits based on herd classification and AMS 

data are close to 1.0, ranging from 0.96 to 

0.99. Genetic correlations between the 

different parities for the traits based on AMS 

data are also close to 1.0, ranging from 0.85 to 

0.99. 

The use of AMS data in the breeding value 

estimation for udder conformation lead to an 

increase of the reliability of the published 

udder conformation traits. The increase in 

reliabilities ranges from 0.4 to 4.0%. 

Using AMS data leads to better estimates of 

the breeding values for udder conformation 

traits by using more information. 
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Abstract 

Genomic selection is driven by genotyping arrays designed for uniform coverage of the genome 

because most quantitative trait loci (QTLs) underlying the heritability of the trait are unknown. 

Laboratories have improved the arrays since 2014 with custom content by adding selected QTLs 

discovered from whole-genome sequencing (WGS) and high-effect markers from higher-density 

arrays. Breed differences, missing data rates, and error rates were investigated for  eight QTL gene 

tests currently imputed for all genotyped animals of 5 breeds plus crossbreds. Gene content for each 

gene test was predicted for non-genotyped relatives using mixed model methods like those used in 

single-step genomic evaluations, allowing potential direct selection across all animals. For the 8 QTL 

studied, Mendel error rates were low except for polled in Jerseys and DGAT1 in most breeds. Allele 

effects for DGAT1 were smaller than two nearby flanking single nucleotide polymorphism (SNPs) 

because DGAT1 was genotype quality was poor on several arrays. For yield traits, 79K predictions 

including selected markers and QTLs had 1-2% higher reliability than 45K or 35K predictions 

excluding those SNPs. 

Key words: Gene tests, imputation, marker selection, dairy cattle 

Introduction 

Genotyping laboratories began adding QTL 

gene tests in 2014 following the US Supreme 

Court decision that natural genetic variants 

should not be patented. Accuracy of imputing 

QTL genotypes for other animals can be 

affected by which arrays include the QTLs. 

Each year, new QTLs may be discovered and 

included. The SNP list used in US evaluations 

was updated frequently to include selected 

markers and QTLs from more breeds and 

higher density chips or from sequence (Al-

Khudhair et al., 2021; Olson et al., 2012; 

VanRaden et al., 2009, 2017; Wiggans et al., 

2016), with gains in reliability across traits 

expected to total about 3% (Table 1). 

Some QTLs have effects larger than 

markers on traits we select or should select for. 

Goals of the project were to examine the most 

important QTLs currently used, summarize 

quality and breed differences of raw and 

imputed genotypes, estimate gene content for 

non-genotyped animals, and estimate gains in 

reliability of prediction from including or 

excluding the selected markers and gene tests. 

Materials and Methods 

Genotypes were examined from December 

2022 official evaluations of the Council on 

Dairy Cattle Breeding (CDCB) for 5,669,157 

Holstein, 663,366 Jersey, 65,172 Brown Swiss, 

15,110 Ayrshire, and 7,620 Guernsey to 

summarize allele frequencies by breed (Table 

2), Mendelian conflicts (Table 3) for eight 

important QTLs, and missing rates before and 

after imputation with DGAT1 as an example 

(Table 4). Gene content was estimated for all 

non-genotyped relatives by predicting their 

genotypes from relatives using Gengler (2007) 

method. To potentially include such QTLs in a 

selection index, non-genotyped candidates for 

selection also need estimates of their unknown 

QTLs. 

 For the QTLs studied (Table 5), some have 

economic merit not yet included in national 

selection indexes such as 1) polled mutations 

near 1:2578598 (chromosome: position on 

ARS-UCD1 map) that suppress horn growth, 

improve animal welfare, and reduce farm 

labor, 2) β-casein allele (a2) at 6:84451299 in a 

milk protein gene that may improve 
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digestibility, and 3) two -casein alleles near 

6:84451299 that affect cheese yield. The three 

casein QTLs are in a 200kb gene duplication 

region. Other QTLs mainly affect traits already 

in selection such as 4) diacylglycerol O-

acyltransferase 1 (DGAT1) at 14:611019 

affecting fatty acid metabolism, percentages, 

and yields of fat and protein, 5) Bovine growth 

hormone receptor (BGHR) at 20:31888449 

affecting protein percentage, 6) β-lactoglobulin 

(BLG) at 11:103259232 with large effects on 

yield especially in Brown Swiss, and 7) ATP 

binding cassette subfamily G member 2  

(ABCG2) at 6:36599640 with the largest effect 

for milk, fat %, protein %, and net merit in 

Holsteins, but the favorable allele is now 

nearly fixed at 2.5%, while fixed in other 

breeds (Table 2). Many other QTLs have 

recessive lethal effects and carrier status is 

reported, but those were not part of this study. 

Genomic predictions using three SNP 

densities from 2019 yield trait data for 6,899 

young Holstein bulls now proven allowed 

estimating the value of including selected 

markers and QTLs. The current 79K official 

list was compared to the 35K subset of only 

markers from the original 50K array and two 

45K chips constructed by augmenting the 35K 

chip with independent sets of ¼ of the high 

density (HD) SNPs, respectively.  

Results & Discussion 

A true QTL is expected to have a better 

genetic signal (effect size or genetic SD) 

compared to nearby markers on the chip and 

that was true for most QTLs. For Holsteins, the 

ABCG2 gene test had the best signal and the 

top ranked locus for milk, fat %, protein % and 

net merit. The BGHR gene test had the best 

signal and the second ranked locus for protein 

%. But the DGAT1 gene test had a smaller 

effect than two nearby markers, and so 

attention was focused on DGAT1. 

A locus from the 50K chip (ARS-BFGL-

NGS-4939) on chromosome 14 at 609,870 bp 

had the largest genetic standard deviation (SD) 

genome-wide for the five  Holstein yield traits: 

milk, fat, protein, fat % and protein %. That 

locus is 1,149 bp away from DGAT1, and 

another locus from the high-density chip 

(BovineHD1400000216) also had larger 

effects than DGAT1. Poor imputation quality 

was ruled out by comparing SNP regressions 

using only cows with direct calls for DGAT1 

and the 50K SNP. Genotypes from nine of the 

52 chips and 1,377,604 Holsteins had both 

loci, 46,051 (6%) had discordant calls (gene 

test vs. marker), of which 6,830 had 

phenotypes. Six GeneSeek chips accounted for 

most of the data and had varying discordant 

rates (Table 6). The GeneSeek Genomic 

Profiler (GGP) 9K had the most genotyped 

animals (452,687), highest discordant rate 

(8.27%), and 92% (6281) of the phenotyped 

animals. GGP 9K regression effect sizes were 

greater and p-values smaller for the 50K SNP 

(Table 7).  Genotype quality of GGP 9K was 

then assessed using SNP heritability (Gengler 

2007) for 25,000 animals with discordant calls 

on that chip. The 50K SNP had heritability 

0.98 and DGAT1 only 0.16, indicating poor 

genotype quality as the likely source. 

Discordant calls for DGAT1 on other chips 

also had low heritability although sample size 

was much smaller. 

Because some valuable gene tests are sold 

by laboratories rather than delivered with array 

genotypes, freely imputed QTLs could benefit 

breeders and progress. Decreasing costs of 

whole genome sequence data will increase 

power of QTL discovery, and more QTL 

genotypes should increase imputation 

accuracy, prediction accuracy, and economic 

gain. Regressions averaged 1.07 and were 

nearly equal across the 3 densities. Reliabilities 

of yield traits for 79K averaged 1.2% higher 

than 45K and 2.0% higher than 35K, worth 

potentially > $10 million every year nationally. 

Eventually, more QTLs should be included to 

further improve predictions. 
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Conclusions 

 

Gene tests were already imputed for all 

genotyped animals of all five breeds. 

Mendelian error rates were low for QTLs 

except for Polled in Jerseys and DGAT1 in 

most breeds. Imputed DGAT1 tests were 

statistically less significant for all yield traits 

compared to two nearby chip SNPs (one HD 

and one 50K), direct DGAT1 gene tests also 

had smaller effects than the best markers, and 

SNP heritability indicated that DGAT1 

genotyping quality was the cause of later 

imputation errors, though the GGP 7K and 

linkage disequilibrium (LD) V4 had low 

discordance rates. Further investigation of 

problematic chips is warranted. Gene content 

was imputed for all non-genotyped animals by 

extracting QTLs from the imputed genotypes 

and using those as data to predict related 

animals. Accumulated gains in reliability for 

yield from adding selected markers and QTLs 

were 1-2%, a little less than previous studies 

indicated. Most gains were from larger 

reference populations. 
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Table 1. History of US SNP list revisions and reported gains in reliability of Holstein predictions 

Year Reference Breeds Added information Markers (1000s) HOL Reliability 

    

 

  Added Total Gain (%) Total 

<2008   All Parent average 

 

0 

 

27 

2009 VanRaden HO Chip genotypes (50K) 38 38 23 50 

2012 Olson 3 More breeds (JE, BS) 5 43 0 50 

2013 Wiggans HO Add HD markers (GHD) 18 61 0.5 67 

2016 Wiggans HO Add HD markers (GH2) 16 77 1.5 68 

2019 VanRaden HO Add sequence SNPs 2 79 1.2 69 

2020 Al-Khudhair 5 Add HD, other breeds +5, -5 79 0 69 

 

Table 2. Final allele frequencies for the eight QTLs including gene content for all animals of each breed 

Breed Polled ABCG2 β-casein -casein1 -casein2 β-Lact DGAT1 BGHR 

RDC 0.6 99.9 52.0 84.8 65.3 33.2 8.6 22.1 

BSW 3.5 100.0 22.2 30.1 100.0 33.0 6.8 11.4 

GUE 1.1 99.7 7.2 65.1 99.7 16.0 60.6 17.9 

JER 2.2 99.9 27.6 9.2 99.4 54.2 52.1 26.1 

HOL 1.0 97.4 39.1 72.5 89.8 51.6 30.1 19.7 

 

 

Table 3. Mendelian error rates by breed for imputed genotypes of eight QTLs 

Breed Polled ABCG2 β-casein κ-casein1 κ-casein2 β-Lact DGAT1 BGHR 

RDC 0.01 0 0.17 0.00 0.01 0.05 0.80 0.11 

BSW 0.18 0 0.10 0.12 0.00 0.12 0.51 0.03 

GUE 0.00 0 0.00 0.04 0.00 0.14 0.00 0.07 

JER 0.50 0 0.17 0.13 0.00 0.03 0.09 0.08 

HOL 0.05 0 0.08 0.01 <0.01 0.02 0.67 0.10 

 

 

Table 4. DGAT1 imputed allele and genotype frequencies and genotypes missing in input 

  Frequency (%) 

Breed Tests (N) Allele Imputed genotype codes Genotypes  

    A AA AB AB A? B? Missing Missing 

RDC 15,110 8.6 88.11 8.84 0.07 2.85 0.06 0.07 71.6 

BSW 65,172 6.8 78.14 9.27 0.45 10.38 0.86 0.90 91.0 

GUE 7,620 60.6 14.00 43.24 33.23 3.49 5.66 0.38 89.0 

JER 663,366 52.1 21.34 49.43 27.63 0.74 0.85 0.01 74.2 

HOL 5,669,157 30.1 46.10 42.70 9.60 1.12 0.48 0.00 85.7 
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Table 5. Locations and effects of eight QTLs examined 

Gene test Chr:Location Gene function Effects in cows or in humans 

Polled 1:2578598 Grow horns Animal welfare, farm labor 

ABCG2 6:36599640 Membrane transport Yield and NM$ (biggest effect) 

β-casein (a2) 6:84451299 Milk protein More digestible? (JE protein%) 

K-casein (1) 6:85656772 Milk protein Increased cheese yield 

K-casein (2) 6:85656792 Milk protein Increased cheese yield 

β-Lactoglobulin 11:103259232 Milk fat Human allergies (BS yield & %) 

DGAT1 14:611019 Fat and protein % Fatty acid metabolism, obesity 

BGHR 20:31888449 Growth hormone Protein% (2nd biggest effect) 

Table 6. Descriptive statistics for six GeneSeek chips tested for DGAT1 calling 

Chip info Animal info 

Name Markers Genotyped Discordant (N) Discordant (%) 

GGP 7K 7083 34480 239 0.69 

GGP 9K 8984 452687 37417 8.27 

GGP LD V4 30113 112135 327 0.29 

GGP 65K 65320 95327 5578 5.85 

GGP 100K 94121 30606 1676 5.48 

GGP 150K 139914 36406 813 2.23 

Table 7. Regression results for GGP 9K chip for DGAT1 vs. 

nearby 50K SNP using 6,281 genotyped animals 

Marker P-value Abs (marker effect) 

50K DGAT1 50K DGAT1 

Milk 8.9E-45 2.6E-02 70.932 11.887 

Fat 1.4E-19 3.1E-02 2.062 0.546 

Protein 4.9E-13 9.8E-01 0.967 0.004 

Fat % 2.2E-94 3.8E-04 0.016 0.003 

Protein % 4.1E-42 1.2E-04 0.003 0.001 
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Changes in the genome architecture of two groups of dairy bulls 

with marked differences in their direct genomic breeding values 

for production traits in the UK 
R. Mrode1,3, D. Pitt2, M. Winters2 and Mike Coffey1

1Scotland Rural College, Edinburgh, UK      
2Agriculture and Horticulture Development Board, Coventry, UK           

3International Livestock Research Institute, Nairobi, Kenya 

Abstract 

Genomic selection has resulted in a rapid rate of genetic progress in dairy cattle in the last decade which 

could partly be attributed to a marked reduction in generation interval. For instance, in the UK the 

average age of a bull when their 100th daughter was born has decreased from over 6 years prior to the 

introduction of genomics to under 4 years in 2022. It is however not clearly understood if this rapid rate 

of genetic progress has also been accompanied by changes in the genome architecture in terms of 

degrees of heterozygosity, allele frequencies and linkage disequilibrium (LD) structure. This study 

examines changes in these parameters in 9,202 bulls born between 2009 and 2014 in the reference 

population for production traits and 94,204 young bulls with no daughters born between 2019 and 2023. 

The mean difference in direct genomic breeding values (DGV) between these reference and young bulls 

(YG) were 357.7, 24.5 and 16.1 kg for milk, fat and protein yields respectively. The SNP panel used in 

the UK evaluations consists of 79,051 SNPs and the proportion of SNPs with 0 to 1, 2 to 5, 6 to 10, 11 

to 15 and greater than 15 percent change in their allele frequencies between both the reference and 

young bull groups were 15, 32, 29, 15 and 9% respectively. The SNPs with at least 15% change in allele 

frequencies accounted for 34, 43 and 39 percent of the mean difference in DGV between reference and 

young bulls for kg milk, fat and protein respectively, while the corresponding values for SNPs with 0 

to 1 % change in allele frequencies were less than one percent for all three traits. In absolute terms the 

correlation between differences in mean DGV between reference and young bulls and changes in allele 

frequencies at the chromosome level was about 0.65 for the three traits. Thus, the rapid rate of genetic 

progress due to genomic selection is significantly changing allele frequencies. The rate of LD decay 

was similar for both groups of bulls, but tended to be higher for YG, suggesting stronger selective 

pressures and/or lower effective population size. The increased rate of inbreeding in shorter ROH but 

slower increase in longer ROH in YG seem to imply that recent inbreeding is being better controlled 

than very ancient inbreeding.  

Keywords: genomic selection, allele frequency changes, runs of homozygosity, linkage disequilibrium 

Introduction 

The application of genomic selection has 

resulted in rapid rates of genetic gain, 

especially in dairy cattle, due to reduced 

generation intervals, higher selection intensity 

and higher accuracies for young genomic bulls 

for production and fitness traits. For an 

example, the annual rates of genetic gain for 

production traits in the USA has doubled with a 

Net Merit$ of $40.33 per year from 2005 to 

2010 to $79.20 per year from 2016 to 2020. 

Consequently, in 2021 young genomic sires 

with no milking progeny accounted for 71% of 

A.I. breeding in U.S. dairy herds (CDCB 2023).

The equivalent UK statistics are even higher in

magnitude, where the Herdbook registered

Holstein females saw an average yearly gain in

£PLI (Profitable Lifetime Index) of £17.9

between 2005 to 2010, which tripled to £58.2

between 2016 and 2020. Similar to the US, over

72% of matings in 2022 were by genomic

young sires. The genetic gains are bolstered by

the high usage of sexed dairy semen, with 82%

of all Holstein semen sold during 2022 sexed.

It is however not clearly understood if this rapid

rate of genetic progress has also been

accompanied by changes in the genome
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architecture in terms of allele frequencies, 

linkage disequilibrium (LD) structure and 

inbreeding rates. This study examines changes 

in allele frequencies, LD structure and 

inbreeding in two groups of bulls with large 

differences in their mean direct genomic 

breeding values which were in the reference 

and selection populations. 

 

Materials and methods 

 

Two groups of bulls used in this study: 9,202 

bulls born between 2009 and 2014 which were 

in the reference (REF) population of the UK 

genomic prediction model for April 2023 for 

production traits and 94,204 young (YG) bulls 

with no daughters born between 2019 and 2023, 

which were selection candidates. The means 

(and standard deviations) for the direct genomic 

breeding values (DGV) for 9,202 in the 

reference population were 192.5kg (81.3),7.9kg 

(3.80) and 7.0kg (3.56) for milk, fat and protein 

yield respectively. Corresponding means and 

SDs for the young bulls were 550.2kg (68.08), 

32.4kg (5.78) and 23.1kg (3.23) respectively. 

This implies that the mean difference in DGV 

between these reference and young bulls were 

357.7, 24.5 and 16.1 kg for milk, fat and protein 

yields respectively. 

The SNP panel used in the UK evaluations 

consists of 79,051 SNPs and allele frequencies 

were computed within each of the two groups 

of bulls. Using the SNP effects from the UK 

genomic prediction in April 2023 and the file of 

genotypes, the relative contribution by each 

SNP to the DGV, with polygenic contributions 

ignored, were computed and used to examine 

the relationship between changes in allele 

frequencies and contribution of each SNP to the 

difference between the DGVs for REF and YG 

bulls at chromosome and SNP levels. 

 

Linkage disequilibrium 

Linkage disequilibrium was estimated using 

PLINK 1.9 (Chang et al. 2015). The pairwise 

R-squared values were calculated between 

SNPs along the same chromosome and were 

categorised into 1 kb bins based on physical 

distance. 

 

Runs of homozygosity 

Runs of homozygosity (ROH) were detected 

with PLINK 1.9 (Chang et al. 2015). Note that 

for the ROH analysis, 186 REF and 1,109 YG 

bulls with substantial Friesian breed 

contribution were removed from the dataset. 

For this analysis, a scanning window of 10 

SNPs was used, with a maximum of one 

heterozygote call per window. ROH were 

further restricted, using the following 

parameters: a minimum SNP count of 10; at 

least one SNP per 100 kb; a maximum of one 

heterozygous SNP per ROH; and a minimum 

physical length of 1 Mb. The remaining 

parameters were left as default.  

ROH were split into six classes using 

physical length: 1-2 Mb; >2≤4 Mb; >4≤8 Mb; 

>8≤16 Mb; >16<32 Mb; and >32 Mb. Longer 

ROH are expected to represent regions of 

autozygosity from more recent inbreeding, 

contrastingly, shorter runs are expected to 

represent more ancient inbreeding due to the 

cumulative chance that recombination events 

have occurred within the ROH. The expected 

generational source of different ROH length 

classes was estimated as in Doekes et al. 

(2019). Briefly, common ancestors that 

occurred G generations ago gives rise to ROH 

of various length that follows an exponential 

distribution with mean 1/2G Morgan. A 

uniform recombination rate was assumed at 1 

Morgan per 100 Mb. 

Inbreeding coefficients (F) were calculated 

from ROH (FROH) using the percentage of the 

autosome covered by ROH in each length class 

for a given individual. Density distributions for 

each length class were compared between the 

REF and YG bull groups. The goodness of fit 

between each pair of distributions were tested 

using the Kolmogorov-Smirnov test. The 

modes and 95% confidence intervals, 

calculated from the 0.025th and 0.975th 

quantiles, were also qualitatively compared.  

The data were further split by year of birth and 

linear regressions were calculated within and 
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across the REF and YG bull groups to estimate 

the rate of increase in inbreeding for each ROH 

length class. For the trends calculated by year 

of birth, bulls belonging to the 2015 and 2023 

cohorts were removed due to small sample size 

(Table 1); bulls from 2023 were retained for 

visualization only. 

 

Table 1. Distribution of bulls by year of birth for 

reference (REF) and young (YG) bulls 

Reference bulls Yong bulls 

Year Count Year Count 

2009 1341 2019 23319 

2010 1436 2020 20341 

2011 1466 2021 25244 

2012 1667 2022 24001 

2013 1532 2023 190 

2014 1562   

2015 2   

 

Results and Discussion 

 

The distribution by chromosome of SNPs with 

more than 5% changes in their allele 

frequencies between REF and YG bulls is 

presented in Figure 1. Of the total 75,091 

SNPS, the percentage of those with 0-1, 2-5, 6-

10, 11-15 and > 15 percent changes in their 

allele frequencies between REF and YG were 

15, 32, 29, 15 and 9% respectively. The top 5 

chromosomes with the highest number of SNPs 

with changes in their allele frequencies were 

BTA1, BTA3, BTA9, BTA14 and BTA30. 

Figure 2 presents the distribution by 

chromosome of SNPs with more than 15% 

changes in their allele frequencies between 

REF and YG bulls. Again, the chromosomes 

with the highest number of SNPs showing these 

changes were similar to those in Figure 1 and 

these were BTA1, BTA9, BTA13, BTA14 and 

BTA30. No previous studies were found that 

examined changes in allele frequencies but with 

about 10% out of 75,091 SNPs with more than 

15% changes in allele frequencies, it would 

appear, substantial changes in allele frequencies 

have been observed in this study.   

The relative contribution of individual SNPs 

to the overall DGV, indicates that the SNPs with 

more than 15% changes in their allele 

frequencies accounted for 34, 43 and 39 percent 

of the mean difference in DGV between 

reference and young bulls for kg milk, fat and 

protein respectively. The corresponding values 

for SNPs with 0 to 1 % change in allele 

frequencies were less than one percent for all 

three traits. The percentage contribution to the 

difference in DGVs between REF and YG bulls 

by chromosome is shown in Figure 3. The 

results show that chromosome BTA14 

accounted for about 15% of the positive 

difference between REF and YG bulls for fat 

yield with a corresponding similar negative 

percentage difference between both groups of 

bulls for milk. This could be attributed to the 

presence DGAT1 on this chromosome and 

similar results have been reported by Sun et al, 

(2009). The chromosome BTA1 contributed the 

largest positive difference between both REF 

and YG bulls for milk and protein yields. In 

absolute terms the correlation between 

differences in mean DGV between reference 

and young bulls and changes in allele 

frequencies at the chromosome level was about 

0.65 for the three traits. Thus, the rapid rate of 

genetic progress due to genomic selection has 

significantly changed allele frequencies.  

 

Table 2. Summary statistics of FROH distributions across ROH length classes. 

 Reference bulls Young bulls 

Bin Mean SD Mode Q2.5 Q97.5 Mean SD Mode Q2.5 Q97.5 

1-2 Mb 2.31% 0.38% 2.27% 1.62% 3.09% 2.73% 0.52% 02.66% 1.91% 3.79% 

2-4 Mb 2.32% 0.57% 2.23% 1.31% 3.51% 3.31% 0.79% 3.09% 1.98% 5.01% 

4-8 Mb 3.18% 0.96% 2.97% 1.50% 5.28% 5.10% 1.26% 4.85% 2.74% 7.70% 

8-16 Mb 3.42% 1.39% 2.87% 0.98% 6.42% 5.55% 1.80% 5.42% 2.18% 9.24% 

16-37 Mb 2.29% 1.60% 1.72% 0.00% 6.04% 3.54% 2.00% 2.57% 0.00% 8.01% 

>32 Mb 0.82% 1.32% 0.00% 0.00% 4.36% 1.18% 1.66% 0.00% 0.00% 5.39% 
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Table 3. Linear regression slope coefficients of inbreeding (FROH) change in bulls by year of birth, calculated 

for each ROH length class. 

 Birth years 1-2 Mb 2-4 Mb 4-8 Mb 4-8 Mb 16-37 Mb >32 Mb 

All bulls 2009-2014, 2019-2022 0.044% 0.109% 0.211% 0.228% 0.135% 0.038% 

REF bulls 2009-2014 0.025% 0.082% 0.159% 0.204% 0.181% 0.096% 

YG bulls 2019-2022 0.032% 0.107% 0.204% 0.178% 0.101% 0.011% 

 

Figure 1: The distribution of SNPs with at least 5% changes in allele frequencies in young bulls relative to the 

reference bulls by chromosome 

 

 

Linkage disequilibrium 

The decay of LD follows similar curves for 

both the REF and YG bull groups, with a 

maximum R2 at the shortest physical distance 

which subsequently decays by 48% to a 

relatively static minimum within approximately 

13 kb (Figure 4). While the rate of decay was 

similar between groups, the magnitude differed. 

At the shortest physical distance between 0-1 

kb, LD was greater in YG bull (R2 = 0.87) than 

REF bulls (R2 = 0.79), lowering to R2 of 0.45 

and 0.41, respectively at 13 kb. LD decay 

beyond this distance was at a slower rate, 

however, binned median R2 values were 

consistently greater in YG bulls compared to 

REF bulls up to the maximum distance of 200 

kb analysed. 

 

Figure 2: The distribution of SNPs with more than 125% changes in allele frequencies in young bulls relative to 

the reference bulls by chromosome 
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Figure 3. The percentage contribution to the difference in DGVs between reference and young bulls by 

chromosome 

Runs of Homozygosity and Inbreeding 

For each ROH size class, the Kolmogorov–

Smirnov test was used to test for significant 

differences in the density distributions between 

REF and YG bull groups; each comparison was 

significantly different (P <0.001). For all ROH 

size classes except >32 Mb, YG had greater 

inbreeding with a mode at least 17% greater 

than the reference bulls. The largest 

proportional difference between modes was for 

the 5-8 Mb and 9-16 Mb classes, with a 63% 

and 89% increase, respectively (Table 2). While 

YG inbreeding has increased across all size 

classes, the additional increase seen between 4-

16 Mb indicates a substantial increase of 

matings with shared ancestry in the past 10 

generations (Figure 5), with 31% of ROH 

between 9-16 Mb likely originating from the 

past 2-5 generations. These increases were 

repeated in the upper and lower bounds of the 

95% confidence intervals, with a minimum 

increase of 17% and the greatest increase 

observed for 5-8Mb and 9-16Mb (lower 

confidence intervals for both groups for 17-

32Mb and >32Mb remained at zero, therefore 

no increase was observed). This further 

validates the overall shift of increased 

inbreeding between the two groups. Due to  

Figure 4. Linkage disequilibrium decay over physical distance in REF and YG bulls 
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Figure 5. Expected age of ROH by length classes, based on exponential distribution with mean 1/2G Morgan 

and a uniform recombination rate of 1 Morgan per 100 Mb. Adapted from Doekes et al. (2019). 

 

most individuals having zero ROH exceeding 

32 Mb, the density distributions for >32 Mb 

formed a multimodal curve with a major mode 

of 0, therefore, differences between the 

populations were difficult to compare for this 

size class. The average inbreeding for >32 Mb 

was 50% greater in YG compared to REF 

populations which may indicate further 

inbreeding in the past 2-5 generations for YG, 

however, mean calculations for this size class 

are particularly susceptible to skewing from 

rare outliers due to no upper limit on maximum 

ROH length. 

ROH class bins were further divided by year 

of birth to characterise trends over time – due to 

the small sample sizes, 2015 (n = 2) and 2023 

(n = 190) cohorts were removed from trend 

calculations. A linear regression was calculated 

between year of birth and median inbreeding 

values, the slope coefficient therefore 

representing the change in genomic inbreeding 

per year. Inbreeding across all ROH classes is 

increasing over time, except for >32 Mb, where 

all years have a median of zero. Linear 

regressions were also calculated for data within 

the both reference and YG groups; for the 

shorter ROH length classes (1-2, 3-4, and 5-8 

Mb) the rate of inbreeding is accelerating, with 

YG experiencing ~27-30% increase in the rate 

of increased inbreeding per year, compared to 

the reference group. Contrastingly, for longer 

ROH length classes (9-16, 17-32, and >32 Mb), 

more likely to arise from recent shared common 

ancestry (Figure 5), the yearly rate of increase 

is less for YG compared to that observed in the 

reference group (Table 3). This is potentially 

capturing the paradigm shift between the 

breeding schemes of the two groups; with the 

selection of more recent bulls, there is greater 

selection pressure on improving GEBVs while 

less consideration is given for ancient 

inbreeding allowing the relative rate of 

inbreeding of shorter ROH to increase.  

The linear regression slope coefficient, for 

17-32 Mb and >32 Mb, calculated across all 

bulls (all birth years) falls within the magnitude 

of the coefficients calculated for the REF and 

YG groups. This suggests that during the period 

that is unrepresented in our data (2015-2018, 

inclusive) the rate of inbreeding increase is 

approximately in line with the average that is 

observed across the two groups, and that a 

gradual change in reducing more recent 

inbreeding has occurred over time. In contrast, 

ROH length classes representing relatively 

more ancient inbreeding (1-2, 3-4, and 5-8 Mb) 
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the slope coefficient exceeded that of either of 

the two groups (Table 3). It seems that breeding 

decisions between 2015 and 2018, resulted in a 

high rate of increase between these years. 

Conclusion 

The marked increase in DGV of young bulls 

due to genomic selection has been accompanied 

with substantial changes in allele frequency. 

The SNPs with at least 15% changes in allele 

frequencies accounted for 34 to 43 percent of 

the mean difference in DGV between reference 

and young bulls for production traits. The 

percentage contribution at the chromosome 

level reveals the high impact of DGAT in 

chromosome BTA14 for fat and Milk yield. The 

rate of LD decay was similar for both groups of 

bulls, but LD tended to be higher for YG, 

suggesting stronger selective pressures and/or 

lower effective population size. Increased rate 

of inbreeding in shorter ROH but slower 

increase in longer ROH in YG seem to imply 

that recent inbreeding is being better controlled 

than very ancient inbreeding. It should be noted 

however that this study only considered DGV 

for production, but that the overall breeding 

goal (PLI) includes many more traits (34% of 

current PLI is production), which will 

contribute to the changes observed. 
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Abstract 

Identical animals cause more complex relationships to model in genetic evaluations. The USA 

evaluation currently includes 4,762 pairs of natural identical twins, 1,776 split embryos, and 530 

nuclear transfer clones from cells of other embryos, calves, or adults, plus seven million other 

genotyped animals. Genetic effects for the 7,068 animals reported to be a clone or copy of another 

animal were linked to the source animal, and their own effects were removed from the relationship 

matrix. The model retained separate permanent environmental effects for each cow. For progeny of 

clones, the source animals are substituted as their sires and dams. After completing the evaluation, the 

reverse process restored the actual sires and dams and duplicated the evaluations of source animals to 

their clones for publication. Pedigree inbreeding coefficients increased slightly for animals with a 

paternal ancestor and a maternal ancestor that were clones of each other. Genomic predictions 

improved by estimating just one polygenic effect instead of modelling the copies as full sibs. Milk 

production of adult clones was not significantly affected, but their fertility and health traits were below 

expected. Several AI companies now market cloned bulls. The revised model better evaluates identical 

twins, cloned animals, and their progeny. 

Key words: Clones, nuclear transfer, relationship matrix, genomic selection 

Introduction 

Many elite animals have been cloned in 

recent years. Examples include a cow named 

Apple that sold for $1 million in 2008, was a 

Grand Champion at the World Dairy Expo in 

2011 but was Reserve Grand at that show in 

2013 when one of her nine clones (Apple-3) 

beat her to become Grand Champion 

(Malcolm, 2019). A heifer named Liz was 

Junior All-American Winter Yearling in 2001 

and her clone Liz-2 was Junior Champion at 

World Dairy Expo in 2004 (Nauman, 2011; 

Figure 1). More recently, very young calves 

with the highest genomic predictions are being 

cloned. 

In past generations, artificial insemination 

(AI) bulls were mature when selected and were 

mated to thousands of cows per year. With 

genomic selection, elite bulls are discovered at 

very young ages, well before they reach 

puberty, and new animals quickly replace even 

the most elite animals. In recent generations, a 

top young bull plus several clones born nine 

months later may have less direct impact than 

many famous bulls had in the past. In 

Canadian evaluations, data for identical bulls 

was merged since 2011 to solve for just one 

genetic effect as recommended by Kennedy 

and Schaeffer (1989) but those procedures 

were not implemented for identical cows. 

In U.S. evaluations, identical bulls were 

given identical predicted transmitting ability 

(PTAs) and daughter counts since 2008 

(VanRaden and Fok, 2008) following research 

by Norman et al. (2004) to verify their 

identical inheritance. Those methods were also 

not extended to cows or to monthly or weekly 

genomic evaluations. Clones that are 

genotyped get combined but not identical 

PTAs in current genomic evaluations. Their 

genotypes can be from different chips that are 

merged before the evaluation to ensure that all 

use the same genomic information, but the 
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marker effects in the model only account for 

90% of the genetic variance. The other 10% is 

modelled by polygenic effects using pedigree 

relationships as if the clones are full sibs for 

that 10% portion. Those slightly different 

PTAs are used in parent averages for their 

progeny before the final published PTAs of 

bulls are forced to be identical. 

 

Figure 1. Example cow Liz and her clone Liz-2. 

 
 

Many identical twins have been discovered 

or confirmed by genomic testing, and elite 

bulls and cows might have 1 or several clones 

available for use in breeding. For daughter- 

proven Holstein bulls actively marketed in 

April 2023, the top five for lifetime net merit 

included two clones, and the top 20 included 

another clone of a different bull. The top 50 

marketed young bulls also included a clone. 

Thus, updated methods were examined to 

properly model these more complex 

relationships. 

Identical animals have been reported using 

pedigree format one (CDCB, 2023a) for 

decades. Bytes 54-70 can report either a 

second ID for the same animal or the ID of an 

identical animal. The pedigree record type in 

byte 88 indicates whether the second ID is a 

cross-reference (X) or clonal record (C). The 

multiple birth code (CDCB, 2023b) in byte 91 

can report how the identical animal was 

created (embryo splitting or nuclear transfer) 

and can report embryo transfer, twin births, or 

pedigrees for genotyped embryos not born yet 

(Table 1). 

 

 

Table 1.  Multiple birth codes used for reporting 

twin or clone status at birth or as embryo.  

Code Description 

1 Single 

2 Multiple birth (not from embryo transfer) 

3 Birth from embryo transfer 

4 Split embryo (artificially) 

5 Clone from nuclear transfer 

6 Embryo pedigree (implantation date 

stored as birth date) 

 

Cloning had a limited impact on livestock 

breeding until recently, because some 

reproductive technologies can result in large 

offspring syndrome (Center for Veterinary 

Medicine, 2008), and cloning remains 

expensive. Vegetative cloning is much simpler 

and is used in some plant breeding programs, 

where genomic prediction methods were tested 

for simulated cloned trees but without 

inbreeding in the model (Stejskal et al., 2022). 

Goals of the present study were to examine 

clone reporting methods, develop more precise 

modelling for clones, and apply revised 

programs to the national genetic evaluation of 

dairy cattle.  

 

Materials and Methods 

The National Cooperator Database used for 

April 2023 official evaluations of CDCB 

included 7,068 animals reported to be a clone 

or copy of another animal. Those include 4,762 

natural identical twins, 1,776 split embryos, 

and 530 nuclear transfers of cells from other 

embryos, calves, or adults. Number of source 

animals was 6,625 including 5,871 females 

and 754 males. Copies per source animal 

ranged from one to 11 but averaged only 1.07. 

For identical twins, usually the first one in the 

database is considered the source animal and 

the other is counted as a copy. Animal names 

were reported for 4,416 copies and for 4,442 

source animals. For nuclear transfer clones, the 

clone names often indicate their status by 

repeating the source animal’s name plus a 

clone count suffix.  

The pedigree file included 94,499,373 

animals of many dairy breeds and crossbreds. 
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Among all animals, 88,793 were sired by 

copies and those sire IDs were replaced by the 

source animal’s ID. Similarly, 7,956 reported 

dams were copies and were replaced by the 

source ID. The reduced pedigree file had 

94,492,305 (94,499,373 minus 7,068) animals 

after also removing the IDs of copies. 

Producers can report identical twins without 

genotyping, but nearly all are discovered by 

genotyping and then confirmed by the 

producer. Nearly all nuclear transfer clones 

were genotyped. 

Edits for cloning attempted to separate real 

identical animals from other cases of duplicate 

IDs that should instead be cross-references for 

the same animal. The latter cases were often 

caused by multiple forms of ID, typos, or 

reidentification of calves after export to 

another country. Some mistakes were easy to 

identify, such as those from large batches of 

nearly consecutive IDs with multiple birth 

code reported as 2 (twins) instead of 3, 4, or 5 

(embryo transfer), but were not marked as 

twins in the name. About 80-90% of the 7,068 

animals initially reported as identical twins or 

clones appeared to be valid. 

Examples of two genotypes for the same 

animal but with different IDs included: many 

animals reported with both a USA and 840, 

982, or metal ear tag number that should 

probably be cross-references instead of clones; 

calves with nearly sequential ID numbers that 

had two different country codes (such as CHN 

and USA) sent by two different companies; 

animals whose ID numbers were the same but 

with inconsistent ID format; and a few obvious 

typos. Some identified mistakes were changed 

from clones to cross-references, but not all as 

the owner must first agree to such changes.  

Modeling for clones was improved by 

removing clone copies from pedigree files and 

by using different IDs for genetic vs. 

permanent environmental effects. The clone 

copies were removed from both the full 

pedigree file used in phenotypic modelling, 

and reduced pedigree files used in weekly or 

monthly predictions from subsets of genotyped 

animals. For progeny of clones, the source 

animals are substituted as their sires and dams. 

After completing the evaluation, the reverse 

process is then used to restore the actual sires 

and dams and duplicate the evaluations of 

source animals to their clones.  

For females with records in each 

phenotypic trait group, the new code now links 

genetic effects of each clone to the source 

animal and links each permanent environment 

effect to the cow's own ID, recognizing that 

clones are different animals with different 

environmental effects. A previous program had 

merged genotypes from the source animal and 

its clones because they might be genotyped 

with different chips or have different missing 

loci within each genotype. The revised 

program now outputs only one row for the 

source animal instead of duplicating the 

merged genotype to its clones so that the 

model can solve for just 1 genetic effect.  

All trait groups and breeds were tested to 

ensure a working system and measure impact. 

New code was developed to copy female PTAs 

and to do the final reporting of clone PTAs in 

weeklies or monthlies. The new system could 

be implemented for the December 2023 

evaluation. To estimate if nuclear transfer 

clones perform as expected from their identical 

genotype, a regression was added to the clone 

model with coefficient of one for each embryo 

nuclear transfer (ETN) cloned cow and zero 

for all other cows. 

 

Results & Discussion 

 

Pedigree inbreeding coefficients increased 

slightly for some animals after removing the 

clone copies and listing the source animal 

instead as the sire or dam. The cases examined 

had a paternal ancestor and a maternal ancestor 

that were clones of each other, which increased 

descendant inbreeding, versus if the clones 

were treated as full sibs. Examples were 1) an 

increase from 7.0% to 7.7% for an animal 

whose paternal granddam and maternal 2nd-

great granddam were identical, and 2) an 

increase from 9.8% to 10.6% for an animal 
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whose maternal great grandsire (MAN-O-

MAN2) was a clone of his paternal 2nd-great 

grandsire (MAN-O-MAN). 

Genetic evaluations from the pedigree 

model differed most for cloned animals and for 

bulls with daughter records if their clones also 

had daughter records. Reliabilities increased 

for those animals, as expected. Evaluations for 

all other animals had almost no change, and 

estimated genetic trends were nearly identical. 

Of the 6,625 source animals in the model, 

3,241 had no change to their evaluation for 

milk and 4,725 had no change to their 

reliability, presumably because the copies had 

no phenotypes or descendants.  

For source animals that did change, average 

difference in milk estimated breeding value 

(EBV) was -3.9 pounds, average absolute 

change in milk EBV (test - official) was 79.4 

pounds, and average gain in percent reliability 

was +2.6. The maximum difference in EBV 

milk was -3052 pounds for a USA Jersey cow 

born in 1991 that had 11 clones. Maximum 

reliability difference was +50, increasing from 

47% to 97% for a Holstein bull who had only 1 

daughter but whose split embryo twin had 520 

total progeny. For bulls, the public will not see 

those EBV and reliability changes because 

such evaluations were already superseded by 

data from the clone member with highest 

reliability. 

Evaluations from the genomic model had 

much smaller differences because only the 

polygenic effects had used the full sib instead 

of clonal relationships, and because bull PTAs 

had been forced to be identical.  

Ancestor discovery (Nani et al., 2020) 

previously did not detect and add a cloned bull 

or the original bull because the 1st choice was 

no better than the 2nd choice. The new model 

with revised pedigree discovered about 20,000 

ancestors that were members of a clone group. 

The ID of the source maternal grand sire 

(MGS) or maternal grand grand sire (MGGS) 

can be automatically added to the pedigree if 

missing, but to make pedigrees more precise, 

owners can replace the discovered source 

ancestor with the clone ancestor if it was used 

in that mating. 

Genomic relationships of 1.0 and singular 

genomic relationship matrices can cause 

problems in genomic BLUP algorithms. Those 

issues can be avoided by solving for marker 

effects directly (SNP-BLUP), but in both 

strategies the polygenic effects would remain 

incorrect for identical animals. Updated 

models and pedigree inputs to multi-step 

software will provide further benefits for use in 

single-step models. 

Direct effects of nuclear transfer cloning on 

phenotypic performance were very small for 

yield traits but effects were larger and 

unfavorable for several other traits (Table 2). 

The estimated phenotypic losses were mostly 

in the range of one to two genetic SD which 

are well within normal biologic ranges but too 

large to justify creating whole herds of cloned 

cows. Compared to trait means, the 

unfavorable effects ranged from 27% increase 

in somatic cell count to 2% increase in age at 

first calving. However, the 0.34 effect on SCS 

was only 1.2 genetic standard deviation (SD) 

whereas the 17 days later calving date was 8.1 

genetic SD. Most cloned heifers are used as 

embryo donors and their phenotypes should 

probably be edited from the age at first calving 

dataset. 

 Many countries are adopting the Cartagena 

Protocol on Biosafety as recommended by the 

United Nations. Clones and gene-edited 

animals are not considered “genetically 

modified”. Guidelines limiting cloning were 

proposed to the EU parliament but were not 

adopted. Private companies sometimes enforce 

cloning rules that do not exist. For example, 

importers may demand “clone-free” pedigrees 

before export. Breed associations such as 

Holstein USA then must provide such reports 

and inspect all previous generations to 

discover any clone. Today about 0.3% of US 

Holsteins have a clone in their pedigree, but 

>3% may in 5 generations and >50% in 10 

generations (about 20 years). International 

exchange of breeding stock should not become 

limited by artificial barriers. 
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Conclusions 

 

Clone modelling was improved in the 

national evaluation. About 67% of the 7,068 

copies in the clone file were natural identical 

twins, 25% were split embryos, and 7% were 

nuclear transfer clones. The model changes 

were not complex but required slight revisions 

to many programs, which led to small positive 

effects for many downstream analyses. 

Benefits of the new model were more exact 

pedigree inbreeding coefficients for 

descendants of clones, more precise genetic 

evaluations for clones, identical genomic 

evaluations for female clones, identical 

evaluations for bulls in additional trait groups 

such as type and calving, combined progeny 

counts for cloned bulls instead of reporting 

only the daughter count of the clone with the 

most, and improved ancestor discovery. The 

new or revised programs better account for 

cloned animals and identical twins. Milk 

production of cows obtained by nuclear 

transfer cloning was as expected, but the 

clones had poorer performance than the source 

animals for some other traits. Many AI 

companies now market cloned bulls, and many 

dairy cattle may soon have clones in their 

pedigrees. 

 

Acknowledgments 

 

The authors thank CDCB staff and industry 

cooperators for data, Tad Sonstegard 

(Recombinetics) for manuscript suggestions, 

Pete Sullivan (Lactanet) for information on the 

Canadian evaluation, and Frank Robinson 

(Lodi, CA, USA) for permission to use the 

photograph.  

 

 

 

 

References 

 

Center for Veterinary Medicine. 2008. Animal 

cloning: a risk assessment. U. S. Food and 

Drug Administration. 

https://public4.pagefreezer.com/browse/FD

A/06-04-

2023T20:24/https://www.fda.gov/media/75

280/download 

Council on Dairy Cattle Breeding. 2023a. 

Format 1. 

https://redmine.uscdcb.com/projects/cdcb-

customer-service/wiki/Format_1 

Council on Dairy Cattle Breeding. 2023b. 

Reference Note 24. 

https://redmine.uscdcb.com/projects/cdcb-

customer-

service/wiki/REFERENCES#Ref24 

Kennedy, B.W. and Schaeffer, L.R. 1989. 

Genetic evaluation under an animal model 

when identical genotypes are represented in 

the population. J. Anim. Sci. 67:1946-1955. 

Malcolm, D. 2019. KHW Regiment Apple-

Red-ET – Everything and more. The 

Bullvine. 

Nani, J.P., Bacheller, L.R., Cole, J.B., and 

VanRaden, P.M. 2020. Discovering 

ancestors and connecting relatives in large 

genomic databases. J. Dairy Sci. 

103(2):1729–1734. 

Nauman, D. 2011. Commitment got Nelsons 

Pronto Liz across. 

http://www.dairyagendatoday.com/News.as

px?nid=5557 

Norman, H.D., Lawlor, T.J., Wright, J.R., and 

Powell, R.L. 2004. Performance of Holstein 

clones in the United States. J. Dairy Sci. 

87(3):729–738.  

Stejskal, J., J. Klápště, J. Čepl, Y. A. El-

Kassaby and Lstibůrek, M. 2022. Effect of 

clonal testing on the efficiency of genomic 

evaluation in forest tree breeding. Scientific 

Reports 12:3033. 

VanRaden, P. and Fok, G. 2008. Genetic 

evaluations for clones. August 2008 

evaluation changes. USDA. 

 

 

 

 

 

 

 

67

https://public4.pagefreezer.com/browse/FDA/06-04-2023T20:24/https:/www.fda.gov/media/75280/download
https://public4.pagefreezer.com/browse/FDA/06-04-2023T20:24/https:/www.fda.gov/media/75280/download
https://public4.pagefreezer.com/browse/FDA/06-04-2023T20:24/https:/www.fda.gov/media/75280/download
https://public4.pagefreezer.com/browse/FDA/06-04-2023T20:24/https:/www.fda.gov/media/75280/download
https://redmine.uscdcb.com/projects/cdcb-customer-service/wiki/Format_1
https://redmine.uscdcb.com/projects/cdcb-customer-service/wiki/Format_1
https://redmine.uscdcb.com/projects/cdcb-customer-service/wiki/REFERENCES#Ref24
https://redmine.uscdcb.com/projects/cdcb-customer-service/wiki/REFERENCES#Ref24
https://redmine.uscdcb.com/projects/cdcb-customer-service/wiki/REFERENCES#Ref24
https://academic.oup.com/jas/article/67/8/1946/4697093
https://academic.oup.com/jas/article/67/8/1946/4697093
https://academic.oup.com/jas/article/67/8/1946/4697093
https://www.thebullvine.com/donor-profile/khw-regiment-apple-red-et-everything-and-more/
https://www.thebullvine.com/donor-profile/khw-regiment-apple-red-et-everything-and-more/
https://aipl.arsusda.gov/publish/jds/2020/JDS_103_1729-1734_NaniEtAl.pdf
https://aipl.arsusda.gov/publish/jds/2020/JDS_103_1729-1734_NaniEtAl.pdf
https://aipl.arsusda.gov/publish/jds/2020/JDS_103_1729-1734_NaniEtAl.pdf
http://www.dairyagendatoday.com/News.aspx?nid=5557
http://www.dairyagendatoday.com/News.aspx?nid=5557
https://aipl.arsusda.gov/publish/jds/2004/87_729.pdf
https://aipl.arsusda.gov/publish/jds/2004/87_729.pdf
https://www.nature.com/articles/s41598-022-06952-8
https://www.nature.com/articles/s41598-022-06952-8
https://www.nature.com/articles/s41598-022-06952-8
https://aipl.arsusda.gov/reference/changes/eval0808.html
https://aipl.arsusda.gov/reference/changes/eval0808.html


INTERBULL BULLETIN NO. 59.  26-27 August 2023, Lyon, France 

Table 2 – Performance of nuclear transfer clones for 10 traits. 

Trait Units Mean Genetic SD Clones Effect Effect/SD Effect/Mean 

Milk Pounds 28,071 1134 472 +18 0.0 +0%

Fat Pounds 1,077 50 467 -8 -0.2 -1%

Protein Pounds 871 30 467 +7 0.2 +1%

SCS (or SCC)1 200k 0.28 460 +0.34 1.2 +27%

Productive life months 25 3.4 119 -3.3 -1.0 -13%

Dtr. pregnancy rate % 27 2.8 354 -5.0 -1.8 -19%

Heifer conception rate % 45 2.6 37 -5.5 -2.1 -12%

Cow conception rate % 41 3.2 123 -8.3 -2.6 -20%

Age at first calving months 831 2.1 115 +17.0 8.1 +2%

Cow livability % 97 3.2 423 -7.3 -2.3 -8%
1 SCS (somatic cell score) evaluations are on log base 2 scale but were converted and compared to the SCC 

mean in cells / ml. 
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Abstract 

The aim of this study was to estimate heritability of methane (CH4) emissions for young Norwegian Red 

bulls. Measures of CH4 from a GreenFeed (GF) unit at Geno’s test station for young bull was available. 

Bull calves arrive the test station 3-4 months old and are grouped in pens with on average 10 calves. 

Methane is measured the last 1-2 months before they leave the test station, at 11-12 months age. On 

average each bull had 40 days with CH4 data. We used data recorded from September 2020 to April 

2023 and the final dataset had records from a total of 76 094 GF visits from 212 bulls. The mean 

(standard deviation) was 218 (50) gram CH4 per bull per day. The traits analyzed were gram CH4 per 

day, measured per GF visit or computed as the average of the bull’s individual visits each day. A linear 

animal repeatability model with fixed effects of age and group test-day, and random effects of animal 

and permanent environment were used to estimate variance components. The estimated heritability 

(standard error) was 0.24 (0.10) for CH4 per visit and 0.56 (0.20) for CH4 mean per day, with 

repeatability of 0.32 and 0.71, respectively. The predicted breeding values for bulls with phenotype 

varied from -37 to +60, with standard errors ranging from 12 to 15. Results so far are promising, the 

genetic variation for CH4 in the Norwegian Red breed indicates that breeding for lower methane 

emission is feasible.  

Key words: breeding values, methane, genetic evaluation, young stock, bulls 

Introduction 

One way of reducing environmental 

footprint from dairy production is by breeding. 

Selection for lower methane (CH4) emission is 

possible (Lassen and Difford, 2020). Most of 

the research on CH4 emissions in dairy cattle 

has been on lactating cows, and so far few 

genetic studies of CH4 emissions in young stock 

and bulls are published. Geno, the breeding 

organization for Norwegian Red, has installed a 

GreenFeed (GF) unit at their test station for 

young bulls. Measures of CH4 from this test 

station is now available and the aim of this study 

was to estimate heritability of CH4 emissions 

for young Norwegian Red bulls. 

Materials and Methods 

Measures of CH4 from the GF unit at Geno’s 

test station for young bull was available. Each 

year the best 8 000 bull calves in the Norwegian 

Red population are genotyped, among these 

around 150 are selected and brought to the test 

station, and 50-60 of them will be recruited to 

be AI bulls. Bull calves arrive the test station 3-

4 months old and are grouped in pens with on 

average 10 calves. Methane is measured the last 

1-2 months before they leave the test station, at 

11-12 months age. On average each bull had 40 

days with CH4 data. We used data recorded 

from September 2020 to April 2023. The 

number of GF visits per bull varied from 1 to 

798, with an average of 356, and the number of 

recorded GF visits per test-day varied from 1 to 

155, with mean 77. For the genetic analyses we 

kept records from test-day with at least 10 

records, and bulls with at least 10 GF visits. The 

final dataset had records from a total of 76 094 

GF visits from 212 bulls. The traits analyzed 

were gram CH4 per day, measured per GF visit 
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or computed as the average of the bull’s 

individual visits each day. 

Model 

Variance components were estimated with 

DMUAI (Madsen and Jensen, 2013) using a 

linear animal repeatability model with fixed 

effects of age and group-test-day, and random 

effects of animal and permanent environment. 

Age was the bulls age in weeks at the day of 

phenotyping, grouped in 23 classes where <40 

weeks is the first and >60 weeks is the last class. 

Group test-day had 964 levels. The pedigree of 

the bulls was traced back 4 generations and the 

pedigree file included 4 233 animals.   

Correlations between breeding values 

To give an indication of strength and 

direction of genetic correlations between CH4 

and other traits, correlations between predicted 

breeding values were calculated for the 212 

bulls with a CH4 phenotype. Correlations 

between the bulls EBV for CH4 and their 

indexes for all other traits included in the 

routine genetic evaluations of Norwegian Red 

were calculated. Indexes for all traits from June 

2023 were provided by Geno.   

Results & Discussion 

The distribution of CH4 measures are given 

in Figure 1. The mean (standard deviation (SD)) 

of CH4 production was 218 (50) gram per bull 

per day. In comparison, the average for 

Norwegian Red dairy cows in lactations was 

420 gram per day (Wethal et al., 2022). The 

phenotypic level of CH4 for our young bulls was 

very similar to reports by Callegaro et al. (2022) 

who analyzed methane data from GF on 111 

young Italian Holstein bulls. The average (SD) 

in their study was 220 (41) gram CH4 per day. 

Figure 1. Distribution of phenotypic records of 

methane (CH4) emissions for young Norwegian Red 

bulls, measured as gram per day from GreenFeed 

Figure 2 shows the solutions for fixed effect 

of age and indicate an almost linear increase in 

CH4 with increasing age. Solutions for fixed 

effect of group test-day in Figure 3 illustrates 

variation over time, seasonal variations, and 

group effects. The bulls stay in the pen with the 

GF the last 1-2 months before they leave the 

station. There may therefore be a large shift in 

mean CH4 level from one test-day to the next, 

when one group leaves the station, and a new 

group of younger bulls start recording in the GF 

pen. 

Figure 2. Fixed effect solutions for effect of age on 

methane emission in young bulls 
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Figure 3. Fixed effect solutions for effect of group-

test-day on methane emission in young bulls 

 

Estimated variance components are given in 

Table 1. The corresponding heritability 

(standard error (se)) was 0.24 (0.10) for CH4 per 

visit and 0.56 (0.20) for CH4 mean per day, with 

repeatability of 0.32 and 0.71, respectively. 

 

Table 1. Estimated permanent environment (2
pe), 

animal (2
a), and residual (2

e) variance with 

standard error (se), and the corresponding 

heritability and repeatability for methane (CH4), 

gram per day, for young Norwegian Red bulls 

measured per visit or computed as the average of the 

bull’s individual visits each day. 

 CH4 per visit CH4 mean per 

day 

 Estimate se Estimate se 

2
pe 153 194 141 188 

2
a 532 216 538 211 

2
e 1479 8 278 5 

heritability 0.24 0.10 0.56 0.20 

repeatability 0.32 0.02 0.71 0.02 

 

The results for CH4 per visit agree well with 

Wøyen Hamfjord (2022) who did the first 

genetic analyses on a subset of these data. Our 

heritability estimates correspond well with 

other published results, although they are not 

directly comparable due to differences in 

phenotyping equipment as well as breed. 

Donoghue et al. (2016) estimated heritability of 

CH4 based on large scale methane measures 

from respiration chambers. Their study 

included data on 1 048 young bulls and heifers 

of Angus cattle in Australia. Methane 

production rate was measured in respiration 

chambers for 48 hours. Estimated heritability 

(se) was 0.27 (0.07). Johansen et al. (2022) 

estimated heritability (se) of methane 

concentration for beef x dairy crossbred 

(Belgian Blue and Holstein) slaughter calves of 

0.44 (0.08) and 0.33 (0.06). They measured 

methane in feed boxes using an infrared gas 

sensor. 

Figure 4 shows the distribution of EBVs for 

CH4 emission for bulls with own phenotype. 

The EBV for CH4 varied from - 37 to + 60, with 

SE ranging from 12 to 15. Here the EBVs were 

not standardized, the unit is gram CH4 per day. 

Although the SE were relatively large this 

illustrates that there are significant genetic 

differences between bulls and potential for 

selection for reduced CH4 emissions.  

 

 

Figure 4. Distribution of predicted breeding values 

(EBVs) for methane for 212 young Norwegian Red 

bulls with phenotype. The unit of EBV is gram 

methane per day 

 

Currently we do not have enough data for 

estimation of genetic correlations between CH4 

emissions in young bulls and other traits. 

Correlation between EBVs were therefore used 

to give an indication of strength and direction of 

genetic correlations between traits. The 

correlations between EBV for CH4 and the 

bull’s official indexes for all traits in routine 

genetic evaluation varied between -0.36 and 

0.34. Many of the correlations, including the 

correlation to the total merit index, were close 

to zero. The traits with the strongest correlations 

to EBV (not standardized) for CH4 are given in 

Table 2. The highest positive correlations were 

found to traits related to body size, while high 

71



INTERBULL BULLETIN NO. 59.  26-27 August 2023, Lyon, France 

 

genetic merit for direct calving traits were 

associated with lower EBV for CH4.  

 

Table 2. Correlations between predicted breeding 

values for methane (CH4) and indexes for other traits 

from the routine genetic evaluations of Norwegian 

Red. The traits with the strongest positive and 

negative correlations with CH4, respectively, are 

shown.  

  Correlation to 

CH4 

Strongest 

positive 

Carcass weight 0.34 

Angularity1 0.29 

Body depth1 0.27 

Body total score1 0.26 

 Stature1 0.25 

   

Strongest 

negative 

Calf size, direct2 -0.36 

Calving ease, direct -0.34 

Stillbirth, direct -0.25 

 Hock quality1 -0.23 

 Bone structure1,3 -0.22 
1 Trait not included in the total merit index 
2 Calf size: High score is small calf 
3 Bone structure: High score is very fine and thin 

bones low score for coarse bones (broad and thick) 

 

The correlation between EBV for CH4 and 

the total merit index was not significantly 

different from zero, suggesting that no 

correlated selection response should be 

expected. No indication of indirect selection 

for, or against, CH4 emission in young bulls 

with the current breeding goal is further 

illustrated in Figure 5 where the bulls EBV for 

CH4 was sorted from lowest to highest and those 

selected as AI bulls marked with red color.  

Figure 5. Predicted breeding values for methane for 

212 young Norwegian Red bulls with methane 

phenotype, sorted from lowest to highest. Color 

indicates selected (red) or not (blue) as AI bull 

 

This initial analysis of CH4 emission in 

young Norwegian Red bulls shows that there is 

substantial genetic potential for reducing CH4 

emissions by breeding, also in young stock. It 

should be noted that estimates are based on few 

animals, standard errors of variance 

components are therefore large, and results 

should be interpreted with caution. 

We need more knowledge on associations 

between CH4 emissions and other important 

traits. In future research we will also examine 

whether CH4 emission is the same trait 

genetically in young bulls and in lactating dairy 

cows.  
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Abstract 

Methane (CH4) is a potent greenhouse gas (GHG) that warms the atmosphere at a rate 25 to 27 times more 

than that of carbon dioxide. The average first parity Holstein cow produces nearly 500 g of CH4 per day or 

180 kg per year, mainly due to enteric fermentation. A 30% difference above or below average can also be 

seen between cows, meaning two cows in the same herd can differ in their CH4 emissions by up to 110 kg 

per year. As such, using genetics to select for cows with reduced CH4 emissions is a strategy that can combat 

global warming and improve the efficiency of the dairy industry. In April 2023, Lactanet launched genomic 

evaluations for Methane Efficiency using milk mid-infrared (MIR) spectroscopy data. Previous research 

using artificial neural network methods determined that a cow’s milk MIR spectral data can be used as a 

good predictor of its CH4 emissions. Lactanet developed CH4 predictions using CH4 data collected from 

research herds in Canada through two research projects, the Efficient Dairy Genome Project and the 

Resilient Dairy Genome Project, and milk spectral data collected via Canadian milk recording services. 

Predicted CH4 (g/d) has a genetic correlation with collected CH4 of 0.92 and a heritability of 0.23 (0.01). 

Lactanet’s genomic evaluation for Methane Efficiency was developed for the Holstein breed using a 4-trait 

Single-Step linear animal model including predicted CH4 and milk, fat and protein yields as correlated 

traits. Methane Efficiency is defined as genetic Residual Methane Production in 120-185 DIM of first 

lactation and is genetically independent of production yields via a linear regression approach. The first 

genomic evaluation for Methane Efficiency included first lactation records on over 500 000 cows in 

Canadian milk recorded herds, of which more than 60 000 were genotyped. The average reliability of 

Methane Efficiency for genotyped young bulls and heifers exceeds 70%. Methane Efficiency is expressed 

as a Relative Breeding Value (RBV) averaging 100 and ranging from 85 to 115. For every 5-point increase 

in a sire’s RBV for Methane Efficiency, daughters are expected to produce approximately 3 kilograms less 

CH4 per year. This equates to a 1.5% reduction in CH4 emissions per cow per year and a herd can achieve 

a 20% to 30% reduction by 2050 through genetic selection. Methane Efficiency does not have a significant 

undesirable correlation with any other trait, including LPI, Pro$, production yields and Feed Efficiency. 

Key words: Methane efficiency, mid-infrared spectroscopy, single-step, genomic evaluation 

Introduction 

Concerns about the effects of climate change 

on environmental sustainability are growing. 

Numerous global dairy industry stakeholders, 

including Dairy Farmers of Canada, have made 

commitments to achieve net-zero greenhouse gas 

(GHG) emissions by 2050. Methane (CH4), a 

potent GHG, which remains in the atmosphere for 

about 12 years and makes up 14% of Canada’s 

GHG emissions, has been under the spotlight as 

it is responsible for nearly half the net global 
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temperature change due to human activities in the 

last decade (Environment and Climate Change 

Canada, 2022).  

 To help dairy farmers in Canada contribute to 

achieving the industry’s Dairy Net Zero 2050 

goal, Lactanet has established a toolbox of 

genetic tools that includes Feed Efficiency 

(Lactanet, 2021) and Body Maintenance 

Requirements (Lactanet, 2023b) to reduce feed 

costs, as well as Methane Efficiency (Lactanet, 

2023a). The focus of this paper is to describe the 

development and implementation of the routine 

genomic evaluation system for Methane 

Efficiency (ME), launched officially in Canada in 

April 2023 for the Holstein breed. 

 

Materials and Methods 

 

Data 

 

Storage of mid-infrared (MIR) spectral data in 

Canada began in 2012 on a limited scale, and by 

2018 was expanded to include all machines and 

laboratories. Therefore, only MIR-predicted CH4 

from milk samples analyzed since 2018 are used 

in the routine genomic evaluation. There have 

been over 18 million MIR spectra stored in the 

Lactanet database since the beginning of 2018. 

The routine editing, standardization and 

pretreatment of MIR spectra is the same as 

described in Oliveira et al. (2023). The MIR 

prediction model from Oliveira et al. (2023) was 

used to calculate MIR-predicted daily CH4 

emissions in g/d (CH4MIR). The multilayer 

perceptron artificial neural network based on 

Bayesian regularization MIR prediction model 

was constructed subsequent to the findings and 

proof of concept of Shadpour et al. (2022). The 

model is applied to spectra recorded from first 

lactation Holstein cows between 120 and 185 

days in milk (DIM) for inclusion in the genomic 

evaluation. The CH4MIR record is combined with 

the corresponding test day milk (MY), fat (FY), 

and protein (PY) yields. Animals are required to 

have a record for all four traits and no missing 

records are permitted. The April 2023 data for 

official genomic evaluations included 773 743 

CH4MIR, MY, FY, and PY records from 541 565 

first lactation Holstein cows from 6 128 herds. 

Descriptive statistics are shown in Table 1 for the 

full April 2023 dataset.  

Variance components were estimated using 

data from the August 2022 extract and after data 

editing contained 659 701 records from 462 120 

cows in 5 804 herds. Because of computational 

demands, genetic parameter estimation was 

performed using five different subsets each 

representing 10% of the herds in the dataset. On 

average, the subsets contained 64 803 records 

from 45 137 cows.  

 

Table 1. Descriptive statistics for MIR-predicted CH4 

production (CH4MIR), and test day milk (MY), fat 

(FY), and protein (PY) yields in the complete dataset 

(N = 773 743 records from 541 565 cows). 

Trait Mean SD Min Max 

CH4MIR, g/d 491.7 43.8 335.8 644.5 

MY, kg/d 32.5 6.2 2.0 55.6 

FY, kg/d 1.3 0.3 0.08 2.2 

PY, kg/d 1.1 0.2 0.06 1.8 

 

Model 

 

The model is a four-trait linear animal model 

for CH4MIR, MY, FY, and PY. The same model is 

used for all traits, considering the fixed effects of 

age at calving (nine classes), DIM, and year-

season of calving, and random effects of HTD, 

animal additive genetic, permanent 

environmental (PE), and residual. In matrix 

notation, the model can be written as: 

 

y = Xb + Z1htd + Z2a + Z3p + e 

 

where y is a vector of observations, b is a vector 

of all fixed effects, htd is a vector of is a vector of 

random herd-test-date effects (HTD), a is a 

vector of animal additive genetic effects, p is a 

vector of PE effects, e is a vector of residuals, and 
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X, Z1, Z2, and Z3 are the respective incidence 

matrices.  

Assumptions are that: v(htd) = I ⊗ HTD, I is 

an identity matrix and HTD is the covariance 

(4x4) matrix for HY effects; v(a) = H ⊗ G, H is 

a combined pedigree-genotype relationship 

matrix, G is the additive genetic covariance 

matrix; v(p)= I ⊗ P, P is the covariance (4x4) 

matrix for the PE effects; v(e) = I ⊗ R, R is the 

residual covariance (4 × 4) matrix. 

Variance components were estimated in 

AIREMLF90 using the AI-REML method 

(Misztal et al., 2014) with each of the subsets. The 

same model as described for genetic evaluation 

purposes above was used, but the combined 

pedigree-genomic relationship matrix H was 

replaced by an additive relationship matrix A. 

 

Derivation of Methane Efficiency 

 

The overall aim of ME evaluations is to select 

cows that produce less CH4 at the same level of 

production. Methane efficiency is defined as 

genetic residual CH4 production (RCH4), or CH4 

genetically independent of MY, FY, and PY, and 

derived using a recursive model operational tool 

(Jamrozik et al., 2017, 2021). 

Let a = [a1, a2, a3, a4]’ represent the EBV for 

MY, FY, PY, and CH4MIR. A linear re-

parameterization of these EBV is defined as: 

a* = Λa, 

with 

𝚲 = [

1 0 0 0
0 1 0 0
0 0 1 0

−𝐿41 −𝐿42 −𝐿43 1

], 

such that v(a*) = G* = ΛGΛ’, with a4
* being 

uncorrelated with a1
*, a2

*, and a3
*. Non-zero 

elements of Λ, L41, L42, and L43 are the partial 

(genetic) regression coefficients of CH4MIR on 

MY, FY, and PY. The EBV of MY, FY, and PY 

remain unchanged, and EBV for CH4MIR is 

transformed into 

a4
* = a4 - L41a1 - L42a2 - L43a3, 

which is uncorrelated with EBV for MY, FY, and 

PY. Co-variance components involving ME can 

be obtained as: 

G* = ΛGΛ’, 

P* = ΛPΛ’, 

R* = ΛRΛ’. 

The re-parameterization described above can 

be derived using a recursive model approach 

(Jamrozik et al., 2017). Let Y1, Y2, Y3, and Y4 

refer to phenotypes for MY, FY, PY, and CH4MIR, 

respectively, and recursive equations for the 

CH4MIR model be: 

Y1 = fixed1 + random1 + e1 

Y2 = fixed2 + random2 + e2 

Y3 = fixed3 + random3 + e3 

Y4 = L41*Y1 + L42*Y2 + L43*Y3 + fixed4 + 

random4 + e4, 

with Lij denoting a recursive coefficient 

parameter (effect of change in trait i caused by the 

phenotype of trait j). Imposing restrictions on 

genetic co-variances, i.e. setting g14
*=g24

*=g34
*=0 

of the genetic covariance matrix G* of the 

recursive model, will lead to the same form of Λ 

and expressions of co-variance components and 

EBVs on a recursive scale (RCH4), as presented 

earlier using a simple re-parameterization of 

EBVs. 

 

Genomic Evaluation 

 

A four-trait Single-Step genomic evaluation 

was implemented at Lactanet Canada using 

MiX99 and related software (MiX99 

Development Team, 2017). The April 2023 data 

included 134 963 genotyped animals, with 68 138 

genotyped cows with records and 7 921 

genotyped sires. Animals were genotyped either 

with 50K SNP panel or a low-density panel and 

imputed to 50K using FImpute (Sargolzaei al., 

2014). The genomic relationship matrix (G) is 

constructed by VanRaden Method I. (VanRaden, 

2008), and G is blended with the additive 

relationship matrix (A) assuming that 80% of the 

total genetic variance was explained by SNP 
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effects. Scaling of G and A is performed using the 

Christensen (2014) method. The APY algorithm 

for Proven and Young (Misztal et al., 2014) is 

applied for inversion of G, with the core 

population of 25 000 (the oldest genotyped 

animals in the Lactanet database). Groups for 

unknown parents are not included in the model. 

The SNP effects, to be used for calculating 

Genomic Estimated Breeding Values (GEBV) 

for genotyped animals not included in the single-

step core analysis, are estimated from the GEBV 

of reference animals (as in Lourenco et al., 2015). 

Reliability of GEBV is approximated by a 

weighted (80:20) average of Direct Genomic 

Value (DGV) and animal model reliabilities 

(Sullivan et al., 2005). The DGV reliabilities are 

calculated using SNP prediction error co-

variances with the SNP-BLUP-REL software 

(Zaabza et al., 2020). Animal model reliabilities 

are calculated based on Effective Daughter 

Contributions (EDC). The EDC and reliability 

software of Sullivan (2023) is used. 

The GEBV of CH4MIR are re-parameterized, 

giving a measure of residual CH4 production 

(RCH4) that is genetically independent of Milk, 

Fat, and Protein, using the formula: 

RCH4 = CH4MIR - 1.36*Milk - 156.13*Fat 

+204.43*Protein 

The re-parameterized GEBV of CH4MIR are 

GEBV of RCH4. Reliabilities of GEBV for 

RCH4, being a linear function of four traits, are 

approximated by a selection index method 

(Sullivan et al., 2005.) 

 

Relative Breeding Values 

 

The signs of RCH4 GEBV are reversed to 

form the ME evaluation, such that a higher value 

represents a better (more desirable) methane 

efficiency of an animal. The ME evaluation is 

expressed as Relative Breeding Values (RBV) 

with a mean of 100 and SD of 5 for base bulls that 

for April 2023 are those born 2008-2017 and with 

an ‘official’ status. Sire evaluations are defined as 

‘official’ for bulls with at least 20 daughters from 

5 herds with CH4MIR records and a minimum 

reliability of 70%.  

 

Genetic Correlation Between Collected and 

MIR-Predicted Methane 

 

A further genetic analysis was performed to 

estimate the genetic correlation between the 

collected average CH4 production and CH4MIR. 

The collected average CH4 production records for 

the cows used by Oliveira et al. (2023) for the 

development of the MIR prediction model were 

combined with the CH4MIR predicted for the same 

test day. Methane production was measured at the 

Ontario Dairy Research Station (Ontario, 

Canada) and the Dairy Research and Technology 

Centre (Alberta, Canada) using the GreenFeed 

system (C-Lock Inc., Rapid City, SD, USA). Data 

was recorded within the Efficient Dairy Genome 

Project (EDGP, https://genomedairy.ualberta.ca/) 

and the Resilient Dairy Genome Project (RDGP, 

http://www.resilientdairy.ca/) as described by 

Kamalanathan et al. (2023) and Liu et al. (2022). 

Only records between 120 and 185 DIM were 

considered for the genetic analysis and as a result 

the final dataset consisted of 442 cows after edits 

from the two herds with one record per cow. 

Descriptive statistics for these animals are shown 

in Table 2. Variance components for collected 

CH4 production and CH4MIR were estimated in the 

DMU package (Madsen and Jensen, 2008) using 

AI-REML procedure for bivariate linear animal 

model, with the following 2-trait model: 

 

y = X b + Z1 htd + Z2 a + e, 

 

where y is a vector of observations for collected 

CH4 and CH4MIR, b is a vector of all fixed effects 

(age at calving, DIM, and year-season of 

calving), htd is a vector of random HTD effects, 

a is a vector of random animal additive genetic 

effects, e is a vector of random residuals, and X, 

Z1, and Z2 are the respective incidence matrices. 
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It was assumed that the random effects were 

normally distributed with means equal to zero. 

Model assumptions were that: v(htd) = I ⊗ 

HTD, I is an identity matrix and HTD is the 

covariance (2x2) matrix between traits for HTD 

effects, v(a) = A ⊗ G, A is the additive genetic 

relationship matrix, G is the genetic covariance 

(2x2) matrix between traits for animal additive 

genetic effects, v(e) = I ⊗ R, R is the residual 

(2x2) matrix between traits. 
 

Table 2. Descriptive statistics for the 441 cows used 

for the genetic correlation between collected and 

predicted methane emissions.  

  Mean SD 

CH4 production, g/d 494.7 78.0 

CH4MIR g/d 493.7 49.7 

Milk yield, kg/d 33.3 5.0 

Fat yield, kg/d 1.3 0.2 

Protein yield, kg/d 1.1 0.2 

DIM, d 140.8 12.8 

Age at Calving, mo 23.8 1.4 

 

Results and Discussion 

 

Genetic Parameters 

 

The average genetic parameter estimates from 

the multi-trait analyses are given in Table 3. The 

heritability for CH4MIR was 0.23, which is similar 

to heritability estimates reported previously for 

milk MIR-predicted methane (Kandel et al., 

2017) and other CH4 traits (Lassen and 

Løvendahl, 2016; van Breukelen et al., 2023; 

Kamalanathan et al., 2023). The average 

heritability estimates for MY, FY, and PY were 

0.38, 0.37, and 0.28, respectively. These 

estimates are similar to the heritabilities for the 

official genetic evaluation of these traits in 

Canada.  

The genetic correlation between CH4MIR and 

FY was positive and moderate at 0.38. Kandel et 

al. (2017) observed positive genetic correlations 

between their MIR CH4 emission trait and fat 

yield after 90 DIM in first lactation.  Pszczola et 

al. (2019) also reported a positive genetic 

correlation of 0.21 between FY and CH4 

production. Genetic correlations between CH4MIR 

and MY and PY were slightly negative at -0.13 

and -0.11, respectively. Negative genetic 

correlations were also reported by Kandel et al. 

(2017) between MY and PY with MIR predicted 

daily CH4 emission. 

The genetic parameter estimates after re-

parametrization for RCH4 (equal to ME before 

the scale is reversed) are also included in Table 3. 

The heritability of RCH4 and therefore ME is 

0.13. Genetic correlations with MY, FY, and PY 

are all zero. The genetic correlation between 

RCH4 and CH4MIR is 0.73 demonstrating that 

genetic selection to reduce RCH4 will result in 

lower CH4MIR. 

 

Table 3. Heritability (diagonal)1, genetic correlations 

(above diagonal)1 and phenotypic correlations (below 

diagonal) for MIR predicted methane production 

(CH4MIR), test day milk (MY), fat (FY), and protein 

(PY) yields, and residual methane production (RCH4) 
Trait CH4MIR MY FY PY RCH4 

CH4MIR 0.23 -0.13 0.38 -0.11 0.73 

MY -0.06 0.38 0.48 0.83 0 

FY -0.18 0.66 0.27 0.71 0 

PY 0.01 0.90 0.74 0.28 0 

RCH4 0.80 -0.05 -0.18 0.01 0.13 

1Approximated SE <0.03 

 

Genomic Evaluations 

 

In April 2023 there were 2 142 Holstein sires 

with an official evaluation for ME. The ME for 

this group ranged from 82 to 117 and averaged 

100. Average reliability of official sires was 

95.9% and ranged from 72% to 99%. The average 

reliability was 77.2% for genotyped, young bulls 

born in 2020 with no daughters with records. 

Cows with records had an average reliability of 

56.3% if not genotyped and 86.7% if genotyped. 

No genetic trend for ME was observed thus far, 

which is unsurprising given it has not been 

selected for and is uncorrelated with other traits 

including production. 
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Proof correlations were estimated between 

ME and other traits routinely evaluated using 

1 763 Holstein bulls official for both ME and LPI. 

There were no strong relationships noted with any 

other trait. The greatest positive correlations were 

between ME and Metabolic Disease Resistance 

and Daughter Fertility at 0.22 and 0.15, 

respectively. All other proof correlations with 

other main traits were less than ±0.15 and are 

therefore deemed non-significant. Notably, the 

proof correlation for ME with LPI and Pro$ were 

0.02 and 0.03, respectively, meaning currently 

selection based on either national index will not 

result in improved ME. Proof correlations 

between ME and Feed Efficiency was -0.13 and 

therefore selection for Feed Efficiency, another 

trait that is expressed independently of 

production yields, will not result in indirect 

improvement in ME. 

 

Relationship with Collected and Predicted 

Methane Emissions 

 

The genetic correlation between the collected 

average daily CH4 using the GreenFeed system 

and CH4MIR was also performed to assess the 

utility of the MIR prediction. A genetic 

correlation of 0.92 (SE=0.22) between the two 

traits was found. This suggests that CH4MIR is a 

good indicator trait for collected CH4 for use in 

genetic selection. While the prediction can still be 

improved, it is in its present state an efficient and 

cost-effective solution to begin genetic selection 

for reduced CH4 emissions in Canada. 

The association between collected CH4 and 

cow ME evaluations were demonstrated by 

Oliveira et al. (2023) who showed differences in 

collected average daily CH4 emissions between 

cows with low, average, and high ME RBV. 

Cows in the high RBV group had both lower 

collected and MIR-predicted CH4 phenotypes.  

 

 

 

Expression and Expected Response 

 

The average daughter CH4MIR of 3 656 sires 

with at least 10 daughters with records were 

examined by sire RBV for ME. A regression of 

average daughter CH4MIR on sire RBV was 

performed to determine the relationship between 

the predicted daughter phenotype and sire RBV. 

The average daughter CH4MIR and regression is 

shown in Figure 1. Bulls with a higher ME 

evaluation have daughters with lower CH4MIR 

compared to bulls with low ME RBVs. From the 

linear regression, for each 5-point RBV increase 

for ME (1 SD), on average CH4MIR in their 

daughters will decrease by 7.55 g/d or 3 kg per 

year. This is approximately a 1.5% reduction in 

CH4 emissions per cow per year.  

 

Figure 1: Daughter average CH4MIR averaged by sire 

RBV for ME 

 

Figure 2 shows the expected response in CH4 

reduction depending on three different scenarios 

of selection. If top 50% ME bulls are selected we 

can expect a reduction of over 10% for CH4 

production by 2050. If bulls over 1 SD for ME are 

selected we can expect a reduction of over 20% 

for CH4 production, and if bulls over 2 SD are 

selected we can expect a reduction of over 30% 

for CH4 production by 2050. 
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Conclusions 

 

The prediction of average daily CH4 

production using milk MIR spectral data is a key 

and rapid alternative to direct CH4 measurements, 

which has permitted the development of routine 

genomic evaluations for ME for the Holstein 

breed in Canada. The genetic evaluations allow 

selection for reduced CH4 emissions without 

affecting milk, fat, and protein production levels. 

The MIR prediction model will be refined in the 

future as the reference group of animals with 

collected CH4 continues to grow and will expand 

into additional herds. The prediction accuracy is 

sufficient to begin genetic selection and help 

reduce the dairy industry's environmental 

footprint and contribute to the goal of reaching 

net zero GHG emissions by 2050 without 

impacting milk production.   

 

References 

 

Christensen, O.F. 2014. Compatibility of 

pedigree-based and marker-based relationship 

matrices for single-step evaluation. Gen. Sel. 

Evol. 44: 37-46. https://doi.org/10.1186/1297-

9686-44-37. 

Jamrozik, J., J. Johnston, P.G. Sullivan, and F. 

Miglior. 2017. Recursive model approach to 

traits defined as ratios: genetic parameters and 

breeding values.  J.  Dairy Sci.  100: 3767-

3772. https://doi.org/10.3168/jds.2016-12177 

Jamrozik, J., G.J. Kistemaker, P.G. Sullivan, B.J. 

Van Doormaal, T.C.S. Chud, C.F Baes, F.S. 

Schenkel, F. Miglior. 2021. Genomic 

evaluation for feed efficiency in Canadian 

Holsteins. Interbull Bulletin, 56, 153-161. 

Kamalanathan, S., K. Houlahan, F. Miglior, 

T.C.S. Chud, D.J. Seymour, D. Hailemariam, 

G. Plastow, H.R. de Oliveira, C.F. Baes, and 

F.S Schenkel. 2023. Genetic Analysis of 

Methane Emission Traits in Holstein Dairy 

Cattle. Animals. 13:1308. 

https://doi.org/10.3390/ani13081308   

Kandel, P.B., M.-L. Vanrobays, A. Vanlierde, F. 

Dehareng, E. Froidmont, N. Gengler, H. 

Soyeurt. 2017. Genetic parameters of mid-

infrared methane predictions and their 

Figure 2: Expected selection response for three different scenarios: a) grey if top 50% bulls are selected; b) yellow if bulls over 1 

SD for ME are selected; and c) blue if bulls over 2 SD are selected 

80



INTERBULL BULLETIN NO. 59.  26-27 August 2023, Lyon, France 
 

relationships with milk production traits in 

Holstein cattle. J. Dairy. Sci. 100:5578-5591. 

https://doi.org/10.3168/jds.2016-11954 

Lactanet. 2021. Introducing Feed Efficiency. 

https://lactanet.ca/en/introducing-feed-

efficiency/ 

Lactanet. 2023a. Introducing Methane 

Efficiency. https://lactanet.ca/en/introducing-

methane-efficiency/ 

Lactanet. 2023b. Genetic Evaluations for Body 

Maintenance Requirements. 

https://lactanet.ca/en/genetic-body-

maintenance-requirements/ 

Lassen, J., and P. Løvendahl. 2016. Heritability 

estimates for enteric methane emissions from 

Holstein cattle measured using noninvasive 

methods. J. Dairy Sci. 99:1959-1967. 

https://doi.org/10.3168/jds.2015-10012 

Liu, R., D. Hailemariam, T. Yang., F. Miglior, F. 

Schenkel, Z. Wang., P. Stothard, S. Zhang, 

and G. Plastow. 2022. Predicting enteric 

methane emission in lactating Holsteins based 

on reference methane data collected by the 

GreenFeed system. Animal. 16:100469. 

https://doi.org/10.1016/j.animal.2022.100469 

Lourenco, D.A.L., Tsuruta, S., Fragomeni, B.O., 

Masuda, Y., Aguilar, I., Legarra, A., Bertrand, 

J.K., Amen, T.S., Wang, L., Moser, D.W., and 

Misztal, I. 2015. Genetic evaluation using 

single-step genomic best linear unbiased 

predictor in American Angus. J. Anim. Sci. 93: 

2653-2662. https://doi.org/10.2527/jas.2014-

8836. 

Madsen, P., and J. Jensen. 2008. A User’s Guide 

to DMU: A Package for Analyzing 

Multivariate Mixed Models. Version 6, 

release 4.7. Danish Institute of Agricultural 

Sciences, Tjele, Denmark. 

Misztal, I., S. Tsuruta, D.A.L. Lourenco, Y. 

Masuda, I. Aguilar, A. Legarra, and Z. 

Vitezica. 2014. Manual for BLUPF90 family 

of programs. University of Georgia, Athens, 

USA. 

http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?

media=blupf90_all4.pdf 

MiX99 Development Team. 2017. MiX99: A 

software package for solving large mixed 

model equations. Release XI/2017. Natural 

Resources Institute Finland (Luke). Jokioinen, 

Finland. URL: http:///www/luke.fi/mix99. 

Oliveira, H.R., et al. 2023. Symposium Review: 

Development of genomic evaluation for 

methane efficiency in Canadian Holsteins. 

JDS Communications (under review) 

Perez Rodriguez, P. and Gianola, D. 2022. brnn: 

Bayesian Regularization for Feed-Forward 

Neural Networks. R package version 0.9.2. 

https://CRAN.R-project.org/package=brnn  

Pszczola, M., M.P.L. Calus, and T. Strabel. 2019. 

Short communication: Genetic correlations 

between methane and milk production, 

conformation, and functional traits. J. Dairy. 

Sci. 102:5342-5346. 

https://doi.org/10.3168/jds.2018-16066 

Sargolzaei, M., Chesnais, J.P. and Schenkel, F.S. 

2014. A new approach for efficient genotype 

imputation using information from relatives. 

BMC Genomics. 15:478. 

https://doi.org/10.1186/1471-2164-15-478 

Shadpour, S., T.C. Chud, D. Hailemariam, G. 

Plastow, H.R. Oliveira, P. Stothard, J. Lassen, 

F. Miglior, C.F. Baes, D. Tulpan, and F.S. 

Schenkel. 2022. Predicting methane emission 

in Canadian Holstein dairy cattle using milk 

mid-infrared reflectance spectroscopy and 

other commonly available predictors via 

artificial neural networks. J. Dairy Sci. 

105:8272-8285. 

https://doi.org/10.3168/jds.2021-21176 

Sullivan, P.G. 2023. MTEDC user manual, 

version 6a: Generalized Multiple-trait 

Software for EDC of sires and Reliabilities of 

Animals. 

https://www.cdn.ca/software/mtedc.html 

Sullivan, P.G, Miglior, F., and Kistemaker, G.J. 

2005. Approximate reliability of an index of 

estimated breed values. Interbull Technical 

81

http://www/luke.fi/mix99


INTERBULL BULLETIN NO. 59.  26-27 August 2023, Lyon, France 

Committee Report. Uppsala, Sweden, June 

2015. 

van Breukelen, A.E., M.N. Aldridge, R.F. 

Veerkamp, L. Koning, L.B. Sebek, and Y. de 

Haas. 2023. Heritability and genetic 

correlations between enteric methane 

production and concentration recorded by 

GreenFeed and sniffers on dairy cows. J. 

Dairy. Sci. 106:4121-4132. 

https://doi.org/10.3168/jds.2022-22735 

VanRaden, P.M. 2008. Efficient methods to 

compute genomic predictions. J. Dairy Sci., 

91: 4414-4423. 

https://doi.org/10.3168/jds.2007-0980 

Zaabza, H.B., E.A. Mäntysaari, and I. Strandén. 

2020. Snp_blup_rel: software for calculating 

individual animal SNP-BLUP model 

reliabilities. Agric. Food Sci. 29:297-306. 

https://doi.org/10.23986/afsci.95617 

82



INTERBULL BULLETIN NO. 59.  26-27 August 2023, Lyon, France 

The EnviroCow index and its impact  

on the UK dairy industry’s carbon footprint 
M.Winters1 and M.Coffey2

1 Agriculture and Horticulture Development Board (AHDB), Middlemarch Business Park, Siskin Parkway East, 

Coventry, CV3 4PE, United Kingdom 
2 SRUC(EGENES), Easter Bush, Roslin Institute Building, EH25 9RG, United Kingdom 

Abstract 

Since 2021, the UK has published the EnviroCow index, derived from genetic evaluations for production 

traits, calf survival, cow longevity, fertility, and Feed Advantage. The goal of the index is to reduce 

carbon emissions per kg of product produced, and importantly reflect the lifetime environmental 

efficiency by incorporating survival traits. The index uses carbon emission equivalents, estimated for 

the traits in the index based on their feed requirements for a unit change of the trait. Feed intake in turn 

has been shown to affect enteric methane production. A recent analysis of lifetime efficiency was 

conducted on approximately 475K females by comparing their EnviroCow genetic index to their 

phenotypic performance for milk, fat and protein over their lifetimes, age at first calving, number of 

lactations, mature weight (derived from proxies as liveweight itself is not routinely recorded) and stature 

(where available). The data showed that each point increase in EnviroCow, on average gave animals 

that produced 10% less methane per kg milk, through enteric emissions, consumed 10% less feed, while 

producing 33% higher weight of fat and protein in their lifetime. Genetic trend data estimates that the 

carbon footprint per kg milk in the UK is predicted to reduce by around 1% each year due to genetic 

gains achieved in the population. 

Key words: DMI, GHG emissions, genetic index, EnviroCow 

Introduction 

Recent global political events and concomitant 

increases in energy costs have pulled efficiency 

of dairy production into very sharp focus, 

accelerating further a previously increasing 

trend of increased efficiency through dilution of 

maintenance and improved health and 

longevity. Rising global temperatures and a 

focus on mitigation strategies has drawn 

attention to greenhouse gas (GHG) emissions 

from farmed ruminants. This has rapidly led to 

a shift in priorities in dairy farming towards 

reduced environmental impact whilst 

maintaining profitability, a strategy that could 

be described as creating sustainability. This 

shift is not driven by dairy farmers but by 

retailers, government and societal pressures. 

Whilst dairy farmers are not currently rewarded 

for reduced GHG emissions, the general 

expectation is that either social pressure, retailer 

intervention or government legislation will 

demand a reduction in GHG emissions and will 

require a tool do that and to monitor resultant 

changes. 

Selection for reduced methane emissions has 

been proposed for some time (e.g. Jones et al. 

2008, Wall et al, 2010) and reviewed by 

Pickering et al (2015), de Haas et al (2021) who 

describe how genetic selection can contribute to 

a reduction of methane emissions through 

appropriate phenotype collection and 

genotyping. Direct selection requires large 

numbers of methane measurements on 25,000 

genotyped cattle from over 100 farms for at 

least 2 years (de Haas et al, 2021).  

Most industrialised dairying nations have a 

range of genetically evaluated traits and most 
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combine a subset of the economically most 

important of these traits into an overall index 

either as an economic index, a desired gains 

index or a combination of both (Miglior et al, 

2005). In the UK this index is called Profitable 

Lifetime Index (£PLI) expressed in monetary 

units as £PLI. It incorporates many traits, 

broadly covering production traits, survival 

(calf, cow), fertility, udder health, leg health, 

calving ability, maintenance, and feed 

efficiency, all weighted by their economic value 

per unit change in that trait. Available bull lists 

are ranked on this index with individual traits 

printed alongside allowing users to select bulls 

that have specifically good values for traits they 

are interested in out of the top bulls ranked for 

overall economic merit. 

Wall et al. (2010) showed that selection 

using existing traits will reduce GHG emissions 

indirectly through improvements in these traits 

but they also pointed out that selection is also 

useful in breeding animals that are resilient to 

the inevitable changes that will occur to weather 

patterns such that GHG emissions from cattle 

are reduced and not subsequently increased by 

environmental changes. 

To create a tool that farmers could use to 

explicitly reduce their GHG emissions intensity 

and to have a strategy that is welcomed by 

retailers, milk buyers and society, a new index 

was developed and derived from the existing 

£PLI that could serve most interest groups 

purposes, including farmers. This does not rely 

on direct measures of methane but uses proxy 

traits to demonstrate the predicted contribution 

of each trait to methane emissions expressed as 

Carbon Dioxide equivalents (CO2e). This work 

is aimed at providing an index that UK farmers 

can use to begin their journey to select for 

reduced methane emissions which capitalises 

on their historic recording activities and allows 

them to start selection now until direct measures 

of methane can be incorporated into the index 

in future. 

Materials and Methods 

Since August 2021 AHDB has published the 

EnviroCow genetic index to enable dairy 

animals to be selected for improved carbon 

emissions per kg product. The methodology for 

assigning relative carbon weights to traits was 

described by Amer et al. (2017) and Zhang et al. 

(2019) and is based on predicted feed intake 

requirements associated with individual trait 

changes. These feed intake requirements, which 

have shown to affect enteric methane 

production, can subsequently be converted to 

CO2 equivalents using a simple conversion 

factor. Gross emissions are finally converted to 

methane intensity values by calculating the 

change in product for each unit change in the 

traits included in the index. Similar to Amer et 

al. (2017) the product was determined as £ value 

for each trait unit compared to the value of 

protein. 

The Predicted Transmitting Abilities (PTA) 

for the following traits are included in the 

EnviroCow index; Milk (kg), Fat (kg), Protein 

(kg), Lifespan (days), Calf survival (%), Non-

Return rate (%), Calving Interval (days), Body 

Condition Score (point), and Feed Advantage 

(kg Dry matter). 

Feed Advantage is the UK’s genetic index 

for improving feed efficiency and is based on a 

combination of maintenance feed cost based on 

cow size, combined with genomic predictions 

for feed efficiency. The evaluations were 

described in more detail by Li et al. (2021).  

The EnviroCow index is published as a 

carbon intensity index and standardised to a 

standard deviation of 1.0. 

For this analysis, genetic evaluations from 

the April 2023 release were available along with 

lifetime performance data. Performance 

recording data was available from the milk 

recording organisations providing data to the 

UK’s dairy cattle genetic evaluations (National 

Milk Records (NMR), Cattle Information 

Services (CIS), DaleFarm and Quality Milk 

Management Services (QMMS). Linear type 
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data were available for animals classified by 

Holstein UK.  

The Holstein cows in the study had to have 

a death date recorded in order that their 

completed lifespan and lifetime yields can 

calculated. Therefore, cows born between 2008 

and 2011 were used in the study. These years 

were chosen for being both the most 

representative of today’s herd and having a 

recorded death date for the majority of the year 

cohort. Any remaining alive within this cohort 

– because of their long lifespans – are not 

included in the dataset, creating a likely small 

downward bias.  

For each animal the following performance 

metrics were calculated; Age at first calving 

(months), total lifetime milk (kg), fat (kg), 

protein (kg), fat (%), protein (%), Number of 

calvings (lactation), age at death (days), daily 

lifetime yields ([kg fat + protein] / age at death 

(days)), Stature score (linear 1-9), estimated 

liveweight (kg). 

Cows which had lifetime performance 

available were then matched up with their 

genetic index for EnviroCow from the official 

April 2023 release in order to compare their 

genetic index to their lifetime phenotypic 

performance. 

For the given performance metrics, 

estimates for lifetime dry matter requirements 

were calculated, and these were used to 

determine CO2 equivalents (CO2e), based on 

the assumption that a linear relationship exists 

between methane emissions from enteric 

emissions and dry matter intake (DMI). The 

value of 583 grams of CO2e per kg of DMI was 

used, following Amer et al. (2017). The lifetime 

estimates for a cow in the study included both 

her rearing and productive life but excluded the 

impact of any offspring. Carbon dioxide 

intensity was estimated as the total CO2e 

divided by the total Fat and Protein corrected 

Milk. These were calculated as (Milk(kg) x 

[0.337 + 0.116 x fat% + 0.06 x protein%]). 

To enable us to establish the impact of 

genetic selection over time, the genetic trends 

for Holstein females were calculated. 

Results & Discussion 

 

A total of 475,060 Holstein cows were 

included in the analysis, which had their 

completed lifetime performance available and 

had an EnviroCow index evaluated. 

The results shown in table 1 groups cows by 

their genetic index for EnviroCow and then 

averages their recorded phenotypic 

performance for a range of traits. It also shows 

their projected CO2e intensity based on their 

expected enteric methane production. Note that 

enteric emissions represent around 46% of the 

total carbon footprint of a typical litre of milk in 

the UK, which therefore implies that the total 

carbon footprint estimated in this study is on 

average 534 grams / 0.46 = 1180 grams CO2e 

per litre. This total is close to those reported by 

Arla (1130 grams CO2) based on a more 

recently born group of cows (Arla, 2021).   

The table shows clearly how well 

EnviroCow is working as the top 10% cows 

with the best [highest] score for EnviroCow 

estimated to produce the least methane for each 

kg of fat and protein corrected milk (FPCM). 

The reason they have a low environmental 

footprint per litre is because these higher 

EnviroCow index cows have, on average, 

higher lifetime yields of FPCM, a younger age 

at first calving (AFC), more lactations and 

longer lifespans, and so offer an excellent 

combination of traits required for efficient dairy 

production. 

The fact that these cows were also of a smaller 

stature and lower predicted liveweight is 

expected, as the bigger animals would have a 

higher maintenance feed cost. 

The bottom row in the table, showing cows 

with the worst 10% EnviroCow scores, is a stark 

demonstration of just how inefficient and 

polluting these are compared to the best 

genetics. This group has on average the tallest, 

heaviest cows with a late AFC and a shorter 

lifespan. These animals lasted just 2.57 

lactations on average and are projected to 

produce 12% more methane than average per kg 
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Table 1. Relationship between EnviroCow (deviated from mean) and the lifetime performance of Age at first 

calving (AFC), total lifetime milk (kg), fat (%), protein (%), Number of calvings (lact.), age at death (AaD), daily 

lifetime yields (DLY), Stature score (ST)), estimated liveweight (LW), CO2e Intensity (CO2eI) and the deviations 

of Methane from the average (%). (Each row in the table represents the average of the decile group) 

 

EnviroCow 

(PTA) 

AFC 

(month) 

Milk 

(kg) 

Fat 

(%) 

Prot 

(%) 

Lact. AaD 

(days) 

DLY 

(kg/d) 
ST LW 

(kg) 

CO2eI 

(gram) 

Methane 

(%) 

0.9 27.5 42 688 4.08 3.28 4.05 2 377 1.32 4.7 665 487 -9% 

0.6 27.7 39 695 4.02 3.24 3.85 2 317 1.24 5.0 670 500 -6% 

0.4 27.8 37 704 3.99 3.23 3.71 2 266 1.20 5.1 674 508 -5% 

0.2 27.9 35 584 3.96 3.22 3.56 2 209 1.16 5.2 676 518 -3% 

0.1 27.9 33 612 3.95 3.21 3.41 2 150 1.12 5.3 678 526 -2% 

-0.1 28.0 31 583 3.93 3.20 3.25 2 090 1.08 5.4 680 536 0% 

-0.2 28.1 30 046 3.92 3.19 3.12 2 040 1.05 5.4 682 544 2% 

-0.4 28.1 28 255 3.89 3.18 3.00 1 988 1.01 5.5 685 555 4% 

-0.6 28.2 26 148 3.87 3.17 2.83 1 920 0.96 5.7 688 569 7% 

-1.0 28.3 22 742 3.83 3.15 2.57 1 817 0.87 5.9 694 599 12% 

 

 

FPCM. Since animals which were still alive and 

cohorts of the analysed birth years were 

excluded from the data, it is highly likely that 

the positive links between EnviroCow and 

actual emissions which have been demonstrated 

here, are likely to be even stronger. 

 

Genetic trends 

The average yearly genetic gain for Holstein 

cows over the past 10 years (2012-2022) was 

0.22 points EnviroCow index PTA. Over the 

last five years, this was slightly higher at 0.26 

points. The UK dairy cattle population is 

achieving a favorable positive trend due to the 

fact that there is a strong positive correlation 

between the main profit index (£PLI) and 

EnviroCow. However, not all traits in the index 

show a favourable trend. Cows are increasing in 

size which limits the benefits from selection for 

other traits in the index, something which the 

UK and many other countries have begun to 

address. 

Regressing the CO2e Intensity on the 

average EnviroCow gives a slope of 57 grams 

CO2e per point EnviroCow. This means that the 

0.22 points gain per year is equivalent to (0.22 

x 57 = 12.5gram CO2e reduction per year. 

Given that the average cow in our study had an 

estimated CO2e intensity of 534 grams, means 

that the percentage gain per year could be as 

high as 12.5/534 = 2.3%. It has to be noted 

however, that the relationship between 

EnviroCow and CO2eI in this summary review 

was non-linear, and this estimate is therefore a 

likely over-estimate.  

Never-the-less, previous model estimates of 

the impact of genetics on the reduction of CO2e 

for milk were estimated at around 1% per year 

(Winters, 2022), providing a resemblance to 

these newly estimated effects of this study. 

With the knowledge that genetic improvements 

are both permanent and cumulative, the impact 

of genetics over time will be substantial, 

whichever estimate is used.  

 

Conclusions 

 

The analysis clearly demonstrated a strong 

association between improved genetics 

(EnviroCow), and lifetime enteric emissions 

(methane). Although enteric emissions of 

methane are the largest contributor of 

greenhouse gases in dairy farming – accounting 

for around 46% of total farm emissions – they 

are only part of the picture. And it is not 

unreasonable to assume that cows which eat less 

are also indirectly affecting a farm’s total 

carbon footprint through a variety of other 
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factors. This includes the smaller amount of 

feed bought or grown which carries its own 

carbon footprint, whether through fertiliser, fuel 

or other factors, and the smaller amount of 

manure and its associated emissions from these 

higher EnviroCow rated animals. 

Although many of the traits included in 

EnviroCow are already improving favourably 

over time, noticeably cows are still getting 

bigger which is unfavourable. The maintenance 

feed index was introduced in 2016 to attempt to 

halt this trend and is included in £PLI. Since 

2021 a renewed focus on Feed Advantage (inc. 

Maintenance) might be more effective in 

achieving a reduction in cow size. The UK 

continues to explore how to select for reduced 

cow size in an effort to save more feed and 

reduce GHG emissions from dairy herds. 

However, with now close to 80% of Holstein 

cows being inseminated with dairy sexed semen 

(AHDB, 2023), there is a rapid growth in beef 

from the dairy herd. In order to manage the beef 

from dairy sustainably, the discussion of dairy 

cow size is gaining renewed interest. The 

current EnviroCow index ignores progeny 

impact, but this may be considered in future 

updates. A number of proxy traits are being 

developed since very few farmers weigh mature 

cows.  

Although the EnviroCow index used in this 

analysis does not include a direct methane 

genetic index, there is substantial benefit to be 

had by breeding for existing traits already. In 

time, direct methane measured PTAs may 

become available, which could help to further 

fine-tune the EnviroCow index. 

Despite the fact that there is not yet a 

standard agreement on how CO2e on farm is 

calculated and expressed, the technology to 

routinely record CO2e on farm is not well 

developed, this study provides a reassuring 

picture of environmental outcomes from 

existing practices, using existing selection traits 

but it is not surprising as that is exactly what the 

EnviroCow index was designed to deliver. 

However, the fact that this analysis clearly 

shows the extent of the benefits in practice will 

hopefully encourage producers and the wider 

industry to make sure that genetic 

improvements are considered as part of the 

process to reach Net Zero for the dairy sector. 
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Abstract 

The current study aimed to estimate genetic parameters of feed intake in Norwegian Red (NR) dairy 

cows. Data from eight commercial herds with equipment for monitoring individual roughage intake was 

available. Our aim was also to predict breeding values (EBVs) for feed intake in lactating cows and 

calculate index correlations to other traits in the Total Merit index (TMI) for NR. Data on daily feed 

intake from roughage and concentrates together with results from weekly feed analyses were used to 

compute daily dry matter intake (dDMI) kg. A total of 557 NR cows with 61 321 records on feed intake 

from January to October 2022 were analyzed. The mean dDMI was 20.37 kg. A linear animal 

repeatability model was used to estimate variance components. The estimated heritability (standard 

error) of dDMI was 0.18 (0.04). The EBV’s for dDMI varied from -3.32 to 3.65 (±1.2), with significant 

differences between individuals. Index correlations between cows EBV’s for dDMI with other traits in 

the breeding goal of NR were calculated.  The index correlations were in general low, ranging from -

0.21 to 0.34, the strongest correlation was between 305-day protein yield and EBV for dDMI. Milk yield 

and body exterior traits had positive index correlations to dDMI. On the contrary, indexes for health and 

fertility were negatively correlated with EBV for dDMI.  Although index correlations between dDMI 

and other traits for NR cows were not strong, our results indicate that dry matter intake are correlated 

with production, body exterior, fertility and health traits. We need more knowledge on the effects of 

selecting for novel feed intake traits, and how we best can define feed efficiency in Norwegian Red 

needs to be addressed. Our results so far show individual variation of feed intake capacity amongst 

Norwegian Red dairy cows. More phenotypes on more cows are needed to estimate genetic correlations, 

as well as increased knowledge on how to balance feed efficiency with production, health and fertility 

in the current breeding goal of Norwegian Red. 

Key words: Feed intake, heritability, dairy cows, index correlations 

Introduction 

Feed efficiency of dairy cows is one of the 

most complex traits to work with in breeding 

programs and have gained a lot of focus for 

decades (Berry et al. 2007, Veerkamp 1998). 

The complexity lies both in the physiological 

processes behind utilization of gras in the 

rumen, as well as the fact that it is time 

consuming and costly to monitor individual 

feed intake in dairy cows. Direct measures on 

feed intake are necessary for establishing basic 

knowledge on the nature of this relative new 

trait in breeding context. Although challenging 

to measure, equipment for recording of 

individual feed intake exists. Data on feed 

intake have mainly been collected from research 

herds (Pryce et al. 2014), but in more recent 

years breeding organizations have also started 

collecting data from commercial herds routinely 

for genetic evaluation of feed efficiency (de 

Jong et al. 2019, Negussie et al. 2019). 

Equipment for monitoring actual individual 

feed intake in dairy cows may constitute of large 

mangers or feed bins where the amount of 

roughage or gras each cow eats during a visit are 

recorded, and the system provides data on kg of 

roughage eaten per visit in the manger. This can 

provide phenotypic data on feed intake 

throughout the lactation. Although some extra 

maintenance and calibration of the system are 

required, time consumption are manageable as 
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part of a daily routine for farmers. Alternative 

methods to predict roughage intake are also 

available e.g., 3D cameras, although they are 

less disturbing for animals in their daily routine 

and offers an opportunity to phenotype a large 

number of cows at lower costs (Lassen et al. 

2023), it might be a less accurate alternative.  

In order to establish a reference population 

of cows with direct and actual individual feed 

intake measures, Geno the breeding 

organization of Norwegian Red, have installed 

equipment to monitor intake of roughage and 

concentrates in commercial herds. Feed 

mangers to record daily and accurate feed intake 

throughout the lactation under commercial 

settings are now in place in fourteen herds. The 

feed efficiency project aims to collect 

phenotype and genotype data on 1000 

Norwegian Red dairy cows yearly and enables 

Geno to implement future selection for feed 

efficiency in our breeding goal. This study 

aimed to perform the first genetic analysis of 

feed intake in Norwegian Red as a novel trait by 

using data from the first commercial dairy farms 

with equipment for monitoring daily roughage 

intake. As a secondary aim, the relationship 

between feed intake and traits in routine genetic 

evaluations was investigated.  

 

Materials and Methods 

Data           

The data used in this study was extracted 

from the feed efficiency database and included 

records from eight herds with data from January 

to October 2022. Daily roughage intake 

registered in the BioControl software (CRFI) 

were merged with daily intake of concentrates 

collected from automatic milking systems (Lely 

or DeLaval). Feed samples on roughage were 

sampled by farmers every week, and we used 

information on dry matter content from the feed 

analyses. The analyzed trait was daily dry 

matter intake in kg (dDMI), as a sum of dry 

matter from roughage and concentrates eaten at 

a specific test-day. For the genetic analyses only 

Norwegian Red dairy cows with a known sire 

(Norwegian Red) were included. The final 

dataset included 557 cows, and 61 321 daily 

records on kg dDMI in total. 

 

Edits of data 

 

Restrictions on logical feed intake values 

were set between seven and 36 kg dDMI per 

test-day. Test-days with records out of this 

range were excluded. Records from 6 to 350 

days in milk were included. Cows had to have a 

minimum of eight days with feed intake data 

and information on both roughage and 

concentrates in order to be included in the 

genetic analysis. Pedigree information were 

collected from the Norwegian dairy herd 

recording system, and sire and dams were traced 

eight generations back.   

 

Statistical model 

 

A mixed linear repeatability animal model 

was used to estimate variance components and 

breeding values (EBVs). Variance components 

were estimated with DMUAI (Madsen and 

Jensen, 2013).  The model included fixed effects 

of herd, days in milk and age-parity, and random 

effects of animal, herd-test-day and permanent 

environment. Days in milk ranged from 6 to 

350, and herd had eight classes. First parity 

cows were grouped in six groups according to 

their age in months at calving: ≤ 22, 23, 24, 25, 

26 and ≥ 27, while second parity and third or 

later parities were in two separate groups (age-

parity had eight classes). The random effect of 

herd-test-day had 1 203 levels in total. The 

pedigree contained 12 291 animals. The 

relationship matrix (A) was constructed 

assuming no inbreeding between animals and 

without genetic groups for animals with 

unknown parents.  

 

Correlations between breeding values 

 

 Correlations between EBV for dDMI and 

other traits were calculated to give an indication 

of strength and direction of possible genetic 

correlations between traits. For the 557 
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Norwegian Red cows with phenotypes on feed 

intake, correlations between their EBV for 

dDMI and indexes for all other traits included in 

routine genetic evaluations of Norwegian Red 

were calculated. Indexes from the routine 

evaluation performed in June 2023 are provided 

by Geno. 

Results & Discussion 

The phenotypic mean dDMI was 20.37 kg 

per day with a standard deviation of 4.35 kg. 

Daily dry matter intake displayed an 

approximately normal distribution and large 

phenotypic variation amongst cows and test-

days (Figure 1). These are the first results on 

feed intake of Norwegian Red based on data 

from commercial herds but are in line with what 

previous studies from research-facilities have 

reported (Salte et al. 2020, Wallén et al. 2018). 

Li et al. (2016) presented feed intake in Nordic 

Red to be close to 20 kg dry matter intake/day 

24 weeks after calving in primiparous cows. 

 

 
Figure 1. Phenotypic distribution of daily dry matter 

intake in kg for 557 Norwegian Red cows in 

commercial herds. 

Variance components estimation 

 

Estimated variance components for dDMI 

were significant different from zero (Table 1) 

with heritability 0.18 (0.04) and repeatability 

0.34 (0.02). Our results were in the same range 

as a study on feed intake in Nordic Red cattle by 

Liinamo et al. (2012) who reported heritabilities 

ranging from 0.18 to -0.33 for DMI in 

primiparous Nordic Red cows based on data 

from one research herd. Li et al. (2016) 

analyzed DMI from 872 Nordic Red cows from 

four herds and estimated heritability ranged 

from 0.25 to 0.41 for six different periods of the 

first 24 lactation weeks for primiparous cows. 

These authors showed that heritability of DMI 

varies throughout the lactation, and that it 

should be accounted for in genetic evaluation of 

feed efficiency. Our results confirms that 

significant genetic variation in feed intake 

exists, despite a relatively small dataset with 

few animals, the standard error on our 

heritability estimate was low. This is promising 

for the further work. 

Table 1. Estimated variance components for daily 

dry matter intake (kg) and the corresponding 

heritability and repeatability. 

 Estimate Standard 

error 

Herd-test-day (σ2
htd ) 4.28 0.18 

Additive genetic (σ2
a ) 2.65 0.69 

Permanent environment 

(σ2
pe ) 

2.40 0.57 

Residual (σ2
e ) 5.62 0.03 

Repeatability* (r) 0.34 0.02 

Heritability** (h2) 0.18 0.04 

   

*  r  = (σ2
a + σ2

pe ) /(σ2
a + σ2

pe + σ2
htd +σ2

e) 
** h2 = σ2

a / (σ2
a + σ2

pe + σ2
htd +σ2

e) 

 Breeding values estimation 

 

The EBVs for dDMI ranged from -3.32 to 

3.65 with standard errors of 1.2. In figure 2, 

EBVs for the 557 Norwegian Red cows are 

sorted from lowest to highest, and this illustrates 

that there were significant differences between 

the animals in the tails of the distribution. 

Breeding values for dDMI were not 

standardized but given as kg/d. Our result 

indicates that genetic variation for feed intake 

capacity exists and genetic selection for feed 

efficiency in Norwegian Red is possible, as 

dDMI are the main component trait in various 

definitions of feed efficiency. 
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Figure 2. Breeding values (EBV) for daily dry 

matter intake in kg for 557 Norwegian Red cows. 

Standards error (SE) illustrated with blue bars. EBVs 

are sorted from lowest to highest rank (x-axis) and 

illustrated with EBV +/- SE (y-axis). 

Index correlations 

 

Correlations between indexes for all traits 

from routine genetic evaluations of Norwegian 

Red and EBVs for dDMI ranged from -0.21 to 

0.34. Many correlations were low and not 

significantly different from zero. Only the 

strongest correlations are presented here. In 

Table 2 positive correlations are presented. 

Production and body exterior traits had the 

strongest positive index correlations with 

dDMI, ranging from 0.15 to 0.34, and the 

strongest was to 305-days protein yield. A 

positive index correlation means that high EBV 

for dDMI is associated with high index for other 

traits. The correlations are logical indicating a 

high stature, milking type cow with high milk 

yield will have a larger intake capacity of the 

rumen.  

 

 

 

 

 

 

 

Table 2. Index correlations to daily dry matter intake 

(dDMI) in kg. 

Trait Correlation to EBV 

for dDMI 

Kg protein 305-days 0.34 

Kg milk 305-days 0.30 

Angularity* 0.26 

Kg fat 305 days 0.24 

Stature body* 0.21 

Rump width* 0.18 

Body depth* 0.15 

Foot angle* 0.15 

*Trait not included in the Norwegian total merit 

index 

The traits with the strongest negative index 

correlations to EBV for dDMI are given in Table 

3.  Here we find health and fertility traits with 

correlations ranging from -0.12 to -0.21. 

Number of inseminations and interval from 

calving to first insemination had the strongest 

negative correlations (Table 3). Clinical mastitis 

in different lactations had an index correlation 

to dDMI ranging from -0.12 to -0.15. Although 

the correlations were not strong, they were 

significantly different from zero. Top line with 

correlation of -0.14 indicates a weaker top line 

associated with higher EBV for dDMI. The 

correlation to calf size (direct), indicates that 

higher EBV for dDMI may increase calf size, 

and small calf size are preferable in the current 

index. Although these correlations are relatively 

weak, they are interesting and indicates the 

direction of the genetic correlations to dDMI.  
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Table 3. Index correlations to daily dry matter intake 

(dDMI) in kg. 

Trait Correlation to 

EBV for 

dDMI 

No. of inseminations 

(1-4 parity) 

-0.21 

Interval calving to 1st ins. 

(1-4 parity) 

-0.16 

Top line
1,*

 
-0.14 

Calf size, direct 
2

 

(Parity 1) 

-0.14 

Bone structure 
3,*

 
-0.13 

No. of inseminations, heifers -0.13 

Clinical mastitis 

(1-3 parity) 

-0.12 to -0.15 

Silent heat 

(3-5 parity) 

-0.12 to -0.14 

*Trait not included in the Norwegian total merit 

index  

1 Top line: Scored from 1 to 9. 1 = weak, 9 = upward 

2  Calf size, direct: High score is small calf 

3 Bone structure: High score is very fine and thin 

bones, low score for coarse bones (broad and thick) 

This study shows that genetic variation in feed 

intake in Norwegian Red exists and that dDMI 

is moderately heritable. These results are 

promising for the further work of defining feed 

efficiency as a novel trait. There are still many 

unanswered questions that must be addressed 

before selection for feed efficiency can be 

implemented. We need more knowledge on 

genetic correlations to other important traits in 

our breeding goal. Feed intake can be measured 

as energy or protein intake and seen in the 

context of energy mobilization (body condition 

or body weight) to capture the energy sinks in 

the cow. This will be part of our further work on 

feed efficiency in Norwegian Red dairy cattle.   

Conclusions 

Genetic variation of feed intake in Norwegian 

Red dairy cattle exists, and results from this 

study shows that feed intake data from 

commercial dairy farms can be used for genetic 

evaluation.  
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Abstract 

In the context of climate change, livestock production systems face the challenge of ensuring that, 

although more and more exposed to heat-stress conditions, animals will be able to remain healthy while 

maintaining satisfactory production, responding to consumer’s demand. As part of the European project 

RUMIGEN, France (INRAE, Idele), Spain (INIA, IRIAF), and the Netherlands (WUR) studied the 

response of different dairy traits to heat-stress conditions for Holstein cattle breed. Production (milk, fat 

and protein yields) and udder health (somatic cell score) traits were investigated under different 

meteorological conditions, represented by the temperature humidity index (THI) averaged over three days 

on the day of recording and the two days before. A THI=50 was considered as neutral condition (i.e. no 

heat/cold-stress) and used as reference for level comparisons. Specific rates of changes in 

production/health traits at a given THI were measured as the slopes (first derivative) of the estimated 

reaction-norm curves for each trait. Genetic evaluations were performed by each country using test-day 

records of cows in their first lactation between 2010 and 2020, to estimate both levels and slopes for each 

trait. Estimated breeding values (EBVs) and reliabilities were obtained for sires with at least 20 daughters 

with test-day records. A meta-analysis was performed to estimate the genetic correlations between the 

three countries, using the Multiple Across Country Evaluation approach. For each country, de-regressed 

proofs (DRPs) and effective record contributions (ERCs) were computed using a single trait model from 

the EBVs, reliabilities, and variance components estimated at a national level for specific THI values. The 

estimated genetic correlations obtained with slopes were weak and not credible, which could be explained 

by the low heritability of the slopes and by the small proportion of performances recorded under heat-

stress conditions. The DRPs on slopes, as they were calculated, were not able to capture the genetic 

(co)variability associated to these traits. Conversely, estimated genetic correlations for all level traits were 

high (between 0.81 and 0.97) even if they were slightly lower than under thermo-neutral conditions. This 

shows a very good consistency of the three national genetic evaluations under heat-stress conditions. In 

conclusion, valuable predictions under heat-stress conditions could be obtained through international 

evaluations, that would result in Northern countries benefiting from the information that already exists in 

the Southern countries. However, the approach for low heritable traits such as slopes should be improved 

if there are not enough data at high THI.  

Key words: heat tolerance, dairy cattle, reaction norm model, meta-analysis 

Introduction 

In the context of climate change, cattle will 

be exposed to more frequent and more intense 

heat waves, inducing acute and chronic heat-

stress. Their welfare, health and production will 

be negatively affected by this stress (West, 

2003, Becker at al., 2020). Genetic selection 

could be a useful tool to improve heat tolerance 

and help dairy cattle facing future weather 

conditions (Carabaño et al., 2019). 

As part of the European Horizon 2020 

project RUMIGEN, the impact of heat-stress 

conditions on performances and the genetic 
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variability for heat tolerance in dairy cattle were 

studied at the national level in France, Spain and 

the Netherlands. 

The aim of the meta-analysis was to estimate 

genetic correlations between countries for the 

Holstein breed for different traits related to heat 

tolerance. These correlations will be helpful to 

determine the potential interest of international 

genetic evaluations for heat tolerance, in a 

context where phenotypic data recorded under 

heat-stress conditions are more widely 

accessible in some countries. 

 

Material and methods 

Phenotypes 

Test-day records for milk yield (MY), fat 

yield (FY), protein yield (PY), and somatic cell 

score (SCS; defined as SCS = 3 + 

log2(SCC/100,000), with SCC being somatic 

cell counts in cells/ml) of 5,753,268 French, 

1,016,403 Spanish and 474,273 Dutch Holstein 

cows in their first lactation between 2010 and 

2020, were extracted from the respective 

national genetic evaluation databases (BDNZ, 

France; CONAFE, Spain; and CRV, the 

Netherlands).  

For each trait, different traits indicators of 

heat tolerance were defined as levels of 

production at 150 days-in-milk (DIM) under 

thermo-neutral and heat-stress conditions, and 

slopes of production decline under heat-stress 

conditions. In accordance with the results of 

previous analyses performed at the population 

level (Mattalia et al., 2022), thermo-neutral 

conditions were defined as being equal to a THI 

of 50 for the three countries, while heat-stress 

conditions were defined specifically for each 

country (THI equal to 65, 68, and 77, for 

France, the Netherlands, and Spain 

respectively). The slopes were defined as the 

response curve to increasing heat loads of each 

trait at the heat-stress THIs.  

 

Weather data 

Weather data were provided by the national 

meteorological agencies (Météo-France for 

France, the National Meteorological Agency 

(AEMET) for Spain, and the Koninklijk 

Nederlands Meteorologisch Instituut (KNMI) 

website for the Netherlands. Meteorological 

records were available from 1,993 Spanish and 

34 Dutch weather stations distributed 

throughout each national territory. In France, 

grid weather data included various 

meteorological variables for each of the 9,892 8 

x 8 km squares covering the whole country 

(Safran database). Each herd was associated to 

the closest weather station or square through its 

ZIP code. 

Daily temperature-humidity indices were 

computed using the formula proposed by the 

National Research Council (1971):  

 

THI = (1.8*T+32) - (0.55-0.0055*RH) * 

(1.8*T-26)  

 

where T is the average daily temperature (in 

degrees Celsius) and RH is the average daily 

relative humidity (in percent). 

The heat load measure was defined as the 

THI averaged over three days, including two 

days before test day and the test day. 

 

Model 

A genetic evaluation was performed to 

estimate breeding values (EBVs) and associated 

reliabilities at the national level using the 

following random regression model: 

 

y=Xb+Za+Wp+e 

 

 where b is fixed effects, a and p contain 

additive genetic and permanent environmental 

random regression coefficients on THI and 

DIM for each animal in the pedigree and each 

cow with records, respectively. Z and W are 

matrices containing the Legendre polynomial 

covariates appropriate for each THI and DIM 

corresponding to a record. Cubic and quadratic 

Legendre polynomials were fit for THI and 

DIM, respectively, providing five EBVs for 

each animal in the pedigree. The fixed effects 

were as follows:  
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- France: herd-test-day of record, DIM, 

gestation stage and age at calving;  

- Spain: THI, herd-year-season of record, age at 

calving, and DIM.  

- The Netherlands: herd-test-day, DIM, 

gestation stage, age at calving-year of calving-

season of calving, age at calving-year of 

calving-season of calving-lactation stage;  

Then, the DRPs and ERCs were derived 

from the national EBVs and reliabilities, using 

a deregression approach (VanRaden et al., 

2014) implemented in an INRAE program. This 

approach assumes that EBVs were obtained 

with a single-trait model. For the levels, the 

heritabilities used for the deregression were 

estimated using the afore mentioned random 

regression model. For the slopes, which are 

obtained from the estimated random regression 

coefficients, no proper estimates of heritability 

can be obtained and therefore, heritabilities 

were assumed to be equal to 0.10 for MY, FY 

and PY, and 0.03 for SCS in order to obtain 

DRPs and ERCs, assuming a heritability similar 

to that of functional traits relative to heat 

tolerance (e.g. heritability of rectal 

temperatures).  

For each country and for each trait, the 

analyses included DRPs and ERCs of all 

Holstein bulls with at least 20 daughters with 

performances and a reliability of at least 0.25. 

However, no selection was performed regarding 

the number of daughters with performances in 

heat-stress conditions. For milk production 

levels, 7,932 French sires, 3,624 Spanish sires 

and 2,281 Dutch sires met these criteria, with a 

total of 328 common sires to the three countries. 

For SCS levels, 7,932 French sires, 3,607 

Spanish sires and 2,257 Dutch sires met the 

requirements, with a total of 325 common sires. 

The pedigree of each bull was traced back for 3 

generations. 

Genetic correlations between countries were 

estimated using the Multiple Across Country 

Evaluation (MACE) approach (Schaeffer, 

1994). In this study, it consisted in a pedigree-

based animal model, considering each country 

as a separate trait. The following multiple trait 

model was implemented:  

y = Xc + Za + e 

 

where y is the vector of DRPs from each 

country, c is the vector of country of evaluation 

fixed effects, a is the vector of random additive 

genetic effects in all participating countries, and 

e is the vector of residual effects. It is assumed 

that Var(a) = Go ⊗ A and Var(e) = Ro⊗D, 

where Go and Ro are the genetic and residual 

matrices of (co)variances between countries, A 

is the pedigree-based relationship matrix and D 

is a diagonal matrix with diagonal elements 

corresponding to the inverse of ERCs. The 

matrices X and Z are incidence matrices that 

relate phenotypes to the corresponding effects. 

Variance components and solutions for a 

random regression model were estimated using 

the software WOMBAT (Meyer, 2007) for 

French data and using the BLUPF90 software 

suite (Misztal et al., 2014) for the Dutch and the 

Spanish ones. Reliabilities for levels and slopes 

were obtained with MiXBLUP (ten Napel et al., 

2021) in all countries. The meta-analysis was 

performed with the software BLUPF90. 

 

Results & Discussion 

For all level traits, both in thermo-neutral 

and under heat-stress conditions, heritabilities 

were mostly consistent with national estimates, 

although lower for Spain and the Netherlands. 

The heritability of SCS for France was 

surprisingly high (0.34). In thermo-neutral 

conditions, the genetic correlations between the 

three countries were high for all level traits, 

with values ranging from 0.89 and 0.97 (Table 

1). These estimates for level traits were 

consistent with those estimated by Interbull in 

the MACE evaluations for Holstein breed 

(April 2023 MACE evaluation, 

www.interbull.org/ib/maceev_archive. Under 

heat-stress conditions, a slight decrease in 

estimated genetic correlations was observed, 

although they remained high with values 

between 0.81 and 0.97, and in agreement with 

the estimates in thermo-neutral conditions 

(Table 2). Therefore, we consider the approach 

used in this meta-analysis as a valid approach 
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for international genetic evaluations for heat 

tolerance traits. 

For all milk production and SCS level traits, 

the genetic correlations estimated between the 

three countries were nonetheless high (above 

0.8). These results suggest that countries with 

limited data under heat-stress conditions could 

benefit from the information available in 

Southern countries through international 

evaluations. 

 

Table 1. Heritabilities (diagonal) and genetic 

correlations (off-diagonal) between countries for 

level traits under thermo-neutral conditions for milk 

production and SCS. Standard deviations are within 

brackets. 

 
MY: milk yield; FY: fat yield; PY: protein yield; 

SCS: somatic cell score. 

FRA: France; SPA: Spain; NLD: the Netherlands 

 

Several hypotheses can be drawn regarding 

the drop of the estimated genetic correlations 

from thermo-neutral conditions to heat-stress 

conditions. First, from a physiological point of 

view, a hypothesis to explain this drop is that the 

impact of heat-stress on gene expression differ 

according to the environment. The differences 

between farming conditions in the three 

countries involved in this study support this 

hypothesis. A second hypothesis is that this drop 

is due to the lower accuracy of the national 

EBVs estimated under heat-stress conditions. A 

large part of the performances used in the 

estimation of variance components and EBVs 

were recorded under thermo-neutral conditions, 

leading to lower accuracies for the EBVs under 

heat-stress conditions. These two hypotheses 

are non-exclusive. However, the latter seems 

the most likely since the genetic correlations 

within country were close to 1 for all level traits. 

 

Table 2. Heritabilities (diagonal) and genetic 

correlations (off-diagonal) between countries for 

level traits under heat-stress conditions for milk 

production and SCS. Standard deviations are within 

brackets. 

 
MY: milk yield; FY: fat yield; PY: protein yield; 

SCS: somatic cell score. 

FRA: France; SPA: Spain; NLD: the Netherlands 

 

For slopes, genetic parameters and genetic 

correlations between countries could not be 

estimated accurately. The estimation of 

heritabilities for milk production and SCS 

slopes resulted in unreliable results, with values 

ranging from 0.04 for PY in the Netherlands to 

0.93 for FY in France, and for SCS from 0.003 

in the Netherlands to 0.90 in Spain. The 

estimated genetic correlations between 

countries were much lower than expected and, 

in some cases, even negative, with values 

between 0.04 and 0.53 for MY, -0.17 and 0.09 

for FY, 0.03 and 0.30 for PY, and between -0.87 

and 0.24 for SCS.  

Additional analyses were performed to 

evaluate the impact of the THI chosen on the 

genetic parameters. Large variations were found 

in estimated variances at different THI within 

countries. For example, residual variance for 

MY expressed in (kg/THI)² increased from 0.9  

at THI 60 to 6.9 at THI 70 with French data, and 

in the Netherlands from 4.9 at THI 68 to 8.6 at 

THI 70.   

Trait Country FRA SPA NLD

MY FRA 0.18 (<0.01) 0.96 (0.01) 0.94 (0.02)

SPA 0.19 (<0.01) 0.92 (0.02)

NLD 0.25 (0.02)

FY FRA 0.25 (<0.01) 0.97 (0.01) 0.90 (0.02)

SPA 0.13 (<0.01) 0.89 (0.02)

NLD 0.21 (0.01)

PY FRA 0.15 (<0.01) 0.96 (0.01) 0.89 (0.02)

SPA 0.12 (<0.01) 0.90 (0.02)

NLD 0.20 (0.01)

SCS FRA 0.34 (0.01) 0.95 (0.02) 0.88 (0.02)

SPA 0.08 (<0.01) 0.89 (0.03)

NLD 0.15 (<0.01)

Trait Country FRA SPA NLD

MY FRA 0.18 (<0.01) 0.92 (0.01) 0.89 (0.02)

SPA 0.25 (0.01) 0.86 (0.02)

NLD 0.25 (0.02)

FY FRA 0.25 (<0.01) 0.97 (0.02) 0.87 (0.03)

SPA 0.13 (<0.01) 0.85 (0.04)

NLD 0.20 (0.02)

PY FRA 0.17 (<0.01) 0.89 (0.01) 0.81 (0.02)

SPA 0.17 (<0.01) 0.83 (0.02)

NLD 0.21 (0.01)

SCS FRA 0.30 (<0.01) 0.96 (0.02) 0.88 (0.02)

SPA 0.09 (<0.01) 0.88 (0.03)

NLD 0.16 (<0.01)
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Several reasons could explain these 

difficulties in properly estimating the genetic 

variability of slope traits. The slopes were 

defined as the derivative of the Legendre 

polynomial curve at a given THI. Therefore, 

they might be sensitive to errors in the 

estimation of the rate of decline under heat-

stress conditions. In addition, the heritabilities 

of the slopes could not be estimated. Their 

values were guessed but could be different from 

the true values. Furthermore, two main issues 

for the deregression may have ensued from the 

structure of our datasets.  First, the hypothesis 

of a single-trait model could not be satisfied. 

Few sires had many daughters with at least one 

record measured under heat-stress conditions 

because of the low frequency of days above 

heat-stress and because of the infrequent 

(monthly) milk recording. Therefore, the 

estimations of the slopes relied on phenotypes 

recorded at lower THI and the EBVs of most 

sires were indirectly predicted from the levels at 

lower THI. Second, EBVs for slopes were 

associated with low accuracies, which may have 

adversely affected the quality of the 

deregression. All bulls included in the meta-

analysis were required to have a minimum 

reliability of 25% and at least 20 daughters with 

performances, but these performances were not 

necessarily recorded under heat-stress, but these 

requirements were probably not sufficient for 

the slopes. Bohmanova et al., (2008) 

encountered similar difficulties in their 

comparison of heat-stress EBVs of sires 

evaluated in the North-East and South-East of 

the USA. EBVs were similar in both regions 

only for sires having many phenotyped 

daughters, with correlations between EBVs 

increasing from 0.58 for sires with at least 100 

daughters to 0.81 for sires with at least 700 

daughters. 

 

Conclusion 

In conclusion, high genetic correlations were 

obtained for the traits based on levels, and thus 

even at high THI. These results show the 

interest in developing international 

collaborations to evaluate heat tolerance in 

Holstein. Countries of Northern part of Europe, 

where few performances have been recorded 

under heat-stress conditions so far, could benefit 

from the information available in Southern 

countries and have access to reliable predictions 

under heat-stress conditions through 

international genetic evaluations. 

However, the meta-analysis showed some 

limits for the slopes of decay. We were not able 

to capture the genetic (co)variability associated 

to these traits with our approach. Other 

approaches should be investigated to better 

measure the decline in performances due to 

heat-stress. 
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Abstract 

Analyses of single nucleotide polymorphism (SNP) data of Holstein genotypes present at Anafibj has 

been done to verify trends in genetic variation over time. Results show a linear decline of SNP 

heterozygosity in the pre-genomics era from 1990-2010, and a 5-fold larger linear decline in the 

genomics era from 2010-2023. This is a clear signal that the increased annual genetic progress from 

genomic selection goes together with a strong decrease in genetic variation. Pedigree based inbreeding 

rates show Italy, USA and Canada having the highest annual inbreeding rates for Holsteins among 

countries. Strong market competition for artificial insemination (AI) centers results in the intense 

selection of a smaller number of elite animals. Emphasis on short-term genetic gain might be harmful 

for maintaining the long-term health and diversity of the breed. In Italy, research is underway to 

attempt to counter the harmful effects of decrease in genetic variation as well as genetic disorders. 

Key words: Inbreeding, Holstein, effective population size, genetic diversity, SNP, Runs-Of-

Homozygosity, genomic selection 

Introduction 

A closed population is a population in 

which there is no gene flow from other 

populations. This means that the only source of 

new genetic variation in the population are 

mutations. Breeding in any closed population 

will therefore gradually increase inbreeding 

and hence reduce genetic variation, unless 

sufficient mutations occur. Selecting a small 

number of sires and selecting candidates that 

are genetically very similar will strongly 

increase the rate of inbreeding. Inbreeding can 

lead to a number of problems, including 

reduced fertility and fitness, increased 

susceptibility to disease, and decreased genetic 

diversity. Since the advent of genomic 

selection, genetic variation is declining at a 

strongly increased rate, due to a stronger 

selection intensity and shorter generation 

intervals. When genetic variation is reduced, 

populations are less likely to be able to adapt 

to change and may become more vulnerable to 

extinction. 

The Holstein breed worldwide is the 

leading dairy breed, but the genetic base is not 

as large as might seem from the number of 

animals. Less than 10.000 animals were 

imported from Europe in North-America 

before 1890. And few lines became the leading 

sire lines in the <1900 period (Neptune H and 

Hulleman), 1920-1940 (Rag Apple and Burke), 

1960-1970 (Chief and Elevation). The latter 4 

foundation sires all descent from the first 2. 

So, in reality there are just two male lines 

remaining (Yue et al., 2015). And effectively 

there have been multiple genetic bottlenecks. 

Materials and Methods 

The Anafibj genomic databank was used 

for analysing annual trends in genetic variation 

of Holstein SNP genotypes. After imputation, 

annual average SNP heterozygosity of 88068 
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SNPs from animals born from 1990-2023 was 

computed. Animals without pedigree were 

excluded as well as non-genotyped animals. 

The year 2010 was considered as the transition 

point between pre-genomic and genomic 

selection. 

The average inbreeding coefficient within a 

year was computed as (homozygosity this 

year-homozygosity first year) / (1-

homozygosity first year). Average generation 

intervals were computed per year for males 

and females separately and then averaged 

between sexes. The relative year since 1990 

was divided by the annual generation interval 

to estimate how many generations would be 

passed since 1990 at the current generation 

interval. Using a linear fit on SNP 

heterozygosity, the inbreeding coefficient F 

was computed per year. The effective 

population size (Ne) was estimated as Ne = 

1/(2-2*((1-F)^(1/(number of generations)))) 

(Frankham, Bradshaw and Brook, 2014). 

Inbreeding depression was calculated for 

305d milk yield including in a linear mixed 

model with milk yield as response variable and 

the inbreeding calculated based either on 

Pedigree data or on Runs-Of-Homozygosity 

(ROH) as regressor. 

Results & Discussion 

Results (Table 1) from the pedigree-based 

annual inbreeding rates, from word Holstein 

Frisian federation (WHFF) show that Italy 

(0.26), USA (0.26) and Canada (0.23) have the 

highest inbreeding rates, since genomic 

selection. This probably results from the strong 

competition between AI centers within the 

Intercontinental Consortium. 

Results of the analysis of SNP 

heterozygosity by birth year are shown in 

Figure 1. Both the pre-genomic as well as the 

genomic era showed a decrease in annual 

average SNP heterozygosity. The 1990 SNP 

heterozygosity was 0.3561 after which the 

annual decline was -0.0004. The linear 

regression in the pre-genomics era shown in 

Figure 1 has an R2 of 0.82. From 2010 

onwards SNP heterozygosity was 0.3480 and 

the annual decline was -0.0020. The R2 of the 

linear regression in this period was 0.97. So, 

results show a 5-fold increase in the decline of 

SNP heterozygosity. If the SNP heterozygosity 

is 0.32 and the (linear) annual decline is 

0.0020, then after 0.32 / 0.0020 = 160 years we 

will be at a heterozygosity of 0.00. 

Table 1. Countries with highest pedigree-based 

inbreeding rates per year as shown by WHFF 
Country 2010-2019 

ITA 0.26 

USA 0.26 

CAN 0.23 

FIN 0.20 

POL 0.20 

ESP 0.20 

CHE 0.19 

SLO 0.18 

NLD 0.16 

FRA 0.15 

DEU 0.15 

IRL 0.15 

 In Figure 2, the average inbreeding 

coefficient, annual inbreeding rate and 

inbreeding rate per generation are shown per 

birth year. The change in 2010 is evident. 

Genomic selection had an enormous impact on 

all 3 variables. 

Figure 3 illustrates the decline in the 

effective population size of the Holstein breed. 

Since genomic selection started the decline has 

been from nearly 90 to 60. Note that FAO 

considers an Ne value of 50 to be a critical 

threshold for the long-term survival of a breed. 

(FAO, 1988). 
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Figure 2. Inbreeding coefficient (F), annual 

inbreeding rate (ΔF/y) and inbreeding rate per 

generation (ΔF/gen) by birth year 

Figure 3. Decline of effective population size (Ne) 

during the most recent 16 birth years 

In our ongoing study in Italian Holsteins, 

inbreeding depression resulted in declines of 

44 kg and 61 kg of milk yield per % increase 

in pedigree and ROH inbreeding coefficients, 

respectively. Over the last 5 years, with a 

+2.35% change in inbreeding coefficient (ΔF)

(Ablondi et al., 2021), this results in an 
inbreeding depression of 103 kg based on 
pedigree and 143 kg based on ROH. 
Considering realized genetic progress of 415 
kg during this period, including the impact of 
inbreeding, progress without inbreeding might 
have been 518 kg (+103 kg based on pedigree) 
and 558 kg (+143 kg based on ROH). Hence 
103 kg which means 20% was lost if estimated 
with pedigree, whereas 143 kg meaning 26%

was lost based on ROH. In conclusion, the 
impact of inbreeding is substantial.

The decline of within breed genetic 

diversity, should trigger adjustments in the 

breeding programs to mediate harmful results. 

Breeders can take steps to maintain genetic 

diversity, such as using a wider range of bulls 

from different sires and dams and countries, 

and breeding for a variety of traits. This can 

help to prevent the over-use of a few elite 

bulls. However, this will require a change in 

mindsets, as breeders may need to sacrifice 

some short-term genetic gain in order to 

maintain the long-term health and diversity of 

the breed. 

At Anafibj, research is underway to 

estimate genomic expected future inbreeding. 

Aim is to provide a premium to animals which 

have a lower relatedness to the expected future 

population, and a penalty to more related 

animals. Current focus is on ROH, which 

enables to focus on more recent inbreeding, 

which is considered more harmful. We aim to 

compute genomic expected future inbreeding 

coefficients, which is the probability in an 

autosomal segment that the haplotype 

transmitted from a random mate (of a reference 

population reflecting the future population) is 

identical to the transmitted haplotype of this 

individual, i.e. a ROH. In practice identical by 

state is used as if identical by descent. The 

importance is to lower the future inbreeding 

caused by the bulls rather than the own 

inbreeding of the bulls themselves, because 

own inbreeding does not pass to the 

descendants, given only half the chromosomes 

transmit to the offspring. 

Conclusions 

Analyses of SNP heterozygosity over time 

show a clear linear decline in the pre-genomics 

and genomics periods. A 5-fold increase in the 

decline of SNP-heterozygosity was found in 

the genomics era. It shows that the increased 

annual genetic progress comes at a cost of 

more rapid decline of genetic variation. Care 

has to be taken to avoid damage from the loss 

of genetic variation for future generations or 
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due to homozygosity for recessive genetic 

disorders. 
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Abstract 

The exact single step Genomic Best Linear Unbiased Prediction (ssGBLUP) method has been used for 

breeding value estimation in the Geno breeding program since 2016. The number of animals with 

genotype information included in ssGBLUP has increased to over 210,000, making the exact inversion 

of the genomic relationship matrix computationally demanding. To address this, we tested two 

alternative approaches on ninety traits used for breeding value evaluation in the Norwegian Red cattle 

breed. The single step Algorithm for the Proven and Young Genomic Best Linear Unbiased Prediction 

(ssAPYGBLUP) approach consisted of a core dataset with 16,480 progeny-proven sires and sires of 

foreign origin, considering a 10% residual polygenic effect. The single step Singular Value 

Decomposition Genomic Best Linear Unbiased Prediction (ssSVDGBLUP) approach utilized 

genotypes from 5,186 progeny-proven sires, explaining 90% of genetic variation through 

chromosome-specific singular values. We compared estimates from these approximate methods to 

those from ssGBLUP for animals in the pedigree, and young genotyped animals for all the ninety 

traits. Correlations between ssGBLUP and ssAPYGBLUP estimates ranged from 0.976 to 1.000 for all 

the individuals in pedigree and from 0.940 to 0.995 for young genotyped individuals. For the 

ssSVDGBLUP and ssGBLUP approaches, correlations were between 0.971 and 1.000 for animals in 

the pedigree, and between 0.977 and 0.995 for young genotyped animals. When regressing ssGBLUP 

estimates to ssAPYGBLUP estimates, the linear regression coefficients were between 0.993 and 1.027 

for all animals in the pedigree and between 1.005 and 1.061 for young genotyped animals. For the 

regression of ssGBLUP estimates to ssSVDGBLUP estimates, the linear regression coefficients were 

between 0.953 and 1.055 for all animals in the pedigree and between 0.866 and 0.949 for young 

genotyped animals. This means that predictions for young genotyped animals when using 

ssSVDGBLUP showed overestimation while predictions from ssAPYGBLUP were slightly 

underestimated. 

Key words: single step genomic prediction, singular value decomposition, algorithm for proven and 

young, Norwegian Red cattle 

Introduction 

Single step genomic predictions (ssGBLUP) 

were implemented in routine evaluation for the 

estimation of genomic breeding values for 

Norwegian Red cattle in 2016 (Nordbø et al., 

2019). In the beginning, there were about 

18,000 genotypes used in the evaluation of 

genomic breeding values. With genotyping 

around 35,000 animals annually more than 

210,000 genotypes were present in the middle 

of 2023. 

The inverse of the combined pedigree and 

genomic relationship matrix is calculated prior 

to the estimation of breeding values and 

demands a lot of computer memory where the 

information is stored temporarily. The increase 

in the number of genotyped animals is 

increasing computer memory requirements 

quadratically. This becomes unsustainable in 

the long term and other solutions must be 
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applied. One possible solution is to remove 

genotype information. These could be either 

genotypes from animals without phenotypic 

information or genotypes from older animals. 

Increasing computer memory would be another 

possible solution but due to a quadratic 

increase in memory requirements with every 

genotype added this cannot be a long-term 

solution. 

Application of approximate ssGBLUP 

methods eg. Algorithm for Proven and Young 

(ssAPYGBLUP) proposed by Misztal et al. 

(2014) or Singular Value Decomposition 

(ssSVDGBLUP) approach proposed by 

Ødegård et al. (2018) could represent a long-

term solution when using single step genomic 

predictions approach on a large number of 

genotyped individuals. These approaches 

decrease computational requirements with 

approximations which explain only the most 

important part of genetic variation in the 

population. The difference between the 

ssAPYGBLUP and ssSVDGBLUP approaches 

is that the ssAPYGBLUP algorithm assumes 

that all genetic variation is explained by the 

additive genetic effects of the core individuals, 

while the ssSVDGBLUP approach assumes it 

is explained by haplotype blocks that segregate 

among core individuals (Ødegård et al., 2018). 

The objective of the current study was to 

test the ssAPYGBLUP and ssSVDGBLUP 

approaches for the routine evaluation of 

breeding values for the Norwegian Red cattle 

and to compare them to the currently applied 

ssGBLUP method. 

 

Materials and Methods 

 

We used phenotypes, genotypes, and pedigree 

information from April 13, 2023, Geno routine 

evaluation. We estimated breeding values for 

ninety traits included in the twenty-nine single- 

or multi-trait mixed model equations. Genomic 

relationships were estimated with 206,496 

genotypes imputed to the in-silico array with 

121,740 SNPs and combined with the pedigree 

information into a single step genomic 

relationship. 

 

The exact single step approach 

The mixed model equations in the ssGBLUP 

approach combine pedigree and genomic 

relationship information stored in the matrix H 

(Christensen and Lund, 2010): 

 

 
 

where X and W are incidence matrices for 

the fixed and random effects, λ is a ratio 

between the error and additive genetic 

variances, vectors b and a are estimates for the 

fixed and random effects, and y is a vector of 

phenotypes. The inverse of the H relationship 

matrix calculated as: 

 

 
 

where A is a pedigree relationship matrix, 

Gw combines the genomic and pedigree 

information for genotyped animals with 10% 

of information coming from genotypes and 

90% from pedigree, and A22 is the pedigree-

based relationship matrix of the genotyped 

individuals. A fraction of A22 is added to G 

because the G matrix derived using the 

VanRaden 1 method is often singular while 

also explaining additive breeding values that 

cannot be described by the available markers 

(VanRaden, 2008). 

 

Algorithm for Proven and Young 

In the ssAPYGBLUP approach, animals are 

partitioned into proven (core) and young (non-

core) individuals and only the inverse of 

genomic relationships between the animals in 

the core is inverted while the estimates from 

the non-core individuals are calculated 

recursively. After preliminary analysis where 

different core assemblies were compared the 

core used on all the traits contained 16,480 

genotyped animals from sires with a 
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Norwegian herd book number, animals from 

foreign populations, and animals with sire 

from foreign populations. 

 

Singular Value Decomposition based models 

In the ssSVDGBLUP approach, core animals 

were used to approximate correlations between 

markers using the chromosome-specific 

singular values explaining 90% of genetic 

variation in the core individuals. Here the core 

was assembled of 5,186 genotyped sires with a 

Norwegian herd book number. This core 

definition was based on a preliminary analysis 

which showed that differences between various 

cores and the proportion of genetic variance 

explained were small when looking at the 

prediction accuracy and bias while achieving a 

significant decrease in computational time and 

memory requirements with a smaller core size 

and genetic variance explained. 

 

Standardization of breeding values 

The obtained estimated breeding values (EBV) 

from all the tree approaches were standardized 

(EBVs) using the following equation: 

 

EBVs = 100 + k * (EBV-EBVc)/sd(EBVb)) 

 

where EBVc is the mean EBV of all cows born 

between April 13, 2015, and April 13, 2020, 

and sd(EBVb) is the standard deviation of the 

EBV from the progeny of proven bulls that 

were born between January 1, 2006, and 

December 31, 2013. 

 

Results & Discussion 

 

The correlations between the ssGBLUP and 

ssAPYGBLUP estimates ranged from 0.976 to 

1.000 for all the individuals in the pedigree and 

from 0.940 to 0.995 for the young genotyped 

individuals. For the ssGBLUP and 

ssSVDGBLUP approaches, correlations were 

between 0.971 and 1.000 for animals in the 

pedigree, and between 0.977 and 0.995 for the 

young genotyped animals (Table 1). 

 

Table 1: Mean, standard deviation (sd), minimum 

(min) and maximum (max) correlation between 

predictions from ssGBLUP and predictions from 

ssAPYGBLUP (APY) or ssSVDGBLUP (SVD) 

across ninety traits 

 mean sd min max 

Individuals in the pedigree 

APY 0.998 0.003 0.976 1.000 

SVD 0.997 0.003 0.971 1.000 

Young genotyped individuals 

APY 0.983 0.013 0.940 0.995 

SVD 0.990 0.004 0.977 0.995 

 

The linear regression coefficients when 

regressing ssGBLUP estimates to the estimates 

from ssAPYGBLUP ranged from 0.993 to 

1.027 for the individuals in the pedigree and 

from 1.005 to 1.061 for the young genotyped 

individuals. Linear regression coefficients 

when regressing ssGBLUP estimates to the 

estimates from ssSVDGBLUP ranged from 

0.953 to 1.055 for the individuals in the 

pedigree and from 0.866 to 0.949 for the 

young genotyped individuals. 

 

Table 2: Mean, standard deviation (sd), minimum 

(min) and maximum (max) linear regression 

coefficient when regressing predictions from 

ssGBLUP to predictions from ssAPYGBLUP 

(APY) or ssSVDGBLUP (SVD) across ninety traits 

 mean sd min max 

Individuals in the pedigree 

APY 1.006 0.006 0.993 1.027 

SVD 1.004 0.013 0.953 1.055 

Young genotyped individuals 

APY 1.029 0.011 1.005 1.061 

SVD 0.912 0.022 0.866 0.949 

 

The intercept ranged from -2.929 to 0.928 

for the individuals in the pedigree and from  

-5.848 to -0.397 for young genotyped 

individuals when regressing ssGBLUP 

estimates to the estimates from ssAPYGBLUP. 

When regressing ssGBLUP estimates to the 

estimates from ssSVDGBLUP, the linear 

regression coefficient ranged from -5.803 to 

4.943 for the individuals in the pedigree and 

from 4.514 to 13.796 for the young genotyped 

individuals. 
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Table 3: Mean, standard deviation (sd), minimum 

(min) and maximum (max) intercept when 

regressing predictions from ssGBLUP to 

predictions from ssAPYGBLUP (APY) or 

ssSVDGBLUP (SVD) across ninety traits 

 mean sd min max 

Individuals in the pedigree 

APY -0.613 0.686 -2.929 0.928 

SVD -0.411 2.030 -5.803 4.943 

Young genotyped individuals 

APY -2.865 1.160 -5.848 -0.397 

SVD 8.847 2.378 4.514 13.796 

 

In comparison to the estimates from the 

ssAPYGBLUP approach, the estimates from 

the ssSVDGBLUP approach showed on 

average slightly higher correlation to the 

estimates from the ssGBLUP approach. This 

was the case when taking into account animals 

in the pedigree and even more when looking 

only at the young genotyped animals. The 

estimates for the young genotyped animals 

from the ssSVDGBLUP approach were 

overestimated in comparison to the estimates 

from the ssGBLUP approach for all the traits. 

Just the opposite, but to a smaller extent, was 

the case with the estimates from the 

ssAPYGBLUP approach.  

The main reason for higher correlations, 

linear regression coefficients closer to 1 and 

intercept closer to 0 when analysing all the 

individuals in the pedigree vs. when analysing 

only the young genotyped animals is in the 

historical genetic progress. When analysing all 

individuals in the pedigree, genetic progress is 

taken into account into a much larger extent 

than when considering only the young 

genotyped animals. As selection candidates are 

the young genotyped individuals, it is more 

informative to consider only these animals 

when comparing different methods. 

The computational time and memory 

requirements for the creation of G-1 were 24h 

14min and 670GB, respectively, when using 

the ssGBLUP approach and 4h 21min and 

111GB, respectively, when using the 

ssAPYGBLUP approach. The Tc matrix in the 

ssSVDGBLUP contained 43,917 components 

spread across 29 chromosomes and 

approximated the genotype matrix of the core 

individuals. Computation of Tc took 2h 3min 

and 82GB of memory.  

Solving the mixed model equations across 

29 single or multitrait models using the 

preconditioned conjugate gradient method took 

on average 21h 45min with the ssGBLUP 

approach, 2h 31min with the ssAPYGBLUP 

approach and 35h 6min with the 

ssSVDGBLUP approach. The computer 

memory requirements were low for all three 

approaches as the relationship matrices were 

not read into the computer memory during the 

iteration process. 

Overall, this means that the ssAPYGBLUP 

approach was the fastest and used slightly 

more computer memory than the 

ssSVDGBLUP approach. On the other hand, 

the ssSVDGBLUP approach was slightly faster 

in comparison to the ssGBLUP approach and 

used around eight times less memory for the 

preprocessing of the relationship matrices than 

the ssGBLUP approach. 

 

Conclusions 

 

The two analysed approximate single step 

genomic prediction methods showed to be 

good alternatives to the exact single step 

genomic prediction method currently used in 

the Geno breeding program. Further validation 

studies are required to analyse if the bias 

observed in the young genotyped individuals is 

confirmed after animals are phenotyped. 

However, there are also other approximate 

single step genomic prediction approaches that 

need to be tested. 
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Abstract 

The integration of multiple across country evaluation (MACE) proofs in single-step genomic analysis 

is important to provide the dairy industry with the best estimated breeding values (EBVs), especially in 

countries that import a major part of their genetics. The method developed earlier that uses Deregressed 

Proofs (DRP) that account for correlations between traits, but not relationships among MACE bulls was 

largely successful, but as we show here leads to large overestimations if MACE bulls are related. We 

developed an alternative approach that uses DRPs which take into account relationships among bulls, 

but still uses the old weights based on the assumption of no relationship. This proofed to be a better 

predictor of performance in Australia for bulls that had both a genotype and MACE proof partially based 

on their Australian daughters. An additional adjustment to account for that daughter information sent to 

Interbull proved ineffective, with the regression coefficient 0.82 in both cases. Bulls that were not 

expected to be affected by the singe-step procedure as they had no Australian daughters and no genotype, 

did in fact show large changes (regression coefficient 0.66), showing that the weights need to be in-line 

with the DRP estimation procedure. 

Keywords: MACE, genomics, single-step 

Introduction 

DataGene delivers a single-step genomic 

evaluation for milk, fat and protein yield and 

Somatic Cell Count (SCC) for Red breeds, as 

described in Boerner et al (2022). This 

procedure uses deregressed MACE proofs as 

input data alongside test day observations for 

cows. The deregression method takes into 

account that MACE milk, fat and protein proofs 

are correlated and come from a multi-trait 

analysis in Australia and other countries. It 

assumes that MACE bulls are unrelated. 

We observed an overestimation of breeding 

values for MACE bulls, especially for protein 

yield, and attributed this to the assumption of 

unrelatedness among them. This was initially 

resolved by setting parents of MACE bulls to 

missing, although this could not be done for 

bulls that had both local and overseas 

daughters. This approach no longer worked 

when we obtained genotypes on many MACE 

bulls – confirming relationships among them. 

This paper describes how we have 

succeeded in replacing the deregression  

procedure with an alternative that takes into 

account relations among MACE bulls, though 

not correlations among different traits. It shows 

how this markedly improves EBVs for some 

animals but not for others. 

Materials and Methods 

Current Method 

Our current method described by Boerner et 

al (2022) includes the following steps to create 

pseudo records and adjust the pedigree 

1. Calculation of within animal residual

variance

2. Adjustment of residual variance for bulls

who had their EBV included in MACE

(this will be referred to as ‘sent’)

3. Deregression of MACE proofs

4. Pedigree adjustment

5. MiX99 run

In the calculation of within animal residual

variance a data point specific residual variance 

is modelled such that a within-animal multi-
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trait mixed model equation system would yield 

reliabilities equal to those derived from 

Interbull reliabilities. 

The pedigree adjustment consisted of 

replacing the sire and dam for a bull that had a 

MACE proof but no Australian daughters with 

a phantom group. Different phantom groups 

were used for sires and dams. 

 

Alternative Method 

 

A suit of programs tailored to the 

deregression of MACE proofs based on the 

deregression method of Jairath et al (1998) was 

kindly provided by Zenting Liu (VIT 

Germany). In here, deregress.f90 is the main 

program. It estimates deregressed proofs for all 

bulls with daughters in a MACE proof file using 

iteration on data and full sire-dam pedigree. A 

Gauss-Seidel algorithm is used to solve the 

equation system with pre-defined convergence 

criteria. 

Deregressed proofs from this calculation 

were used to replace the DRPs calculated in 

step 3 above. Step 4. Pedigree adjustment was 

omitted. 

The new DRP calculation gives one DRP 

per trait per animal, unlike the current 

procedure which calculates a DRP for each of 

the first 3 lactations, although they tended to be 

similar. We therefore tested two scenarios; one 

where a MACE bull only had an observation for 

the first lactations (the observation being the 

new DRP), or where it had the same 

observation for all three lactations. 

Note that in this approach we do not make 

an adjustment of DRPs for bulls who had their 

EBV based on Australian daughters sent to 

Interbull (equivalent of step 2). As an 

alternative, we therefore further adjusted the 

new DRPs calculated above, by weighing them 

and DRPs calculated from the sent EBVs 

according to their Effective Daughter 

Contribution (EDC) as described by Pitkanen 

(2021). 

 

 

Data 

 

The impact of the alternative deregression 

method was investigated using the December 

2022 Red Dairy Cattle (RDC) MACE proofs 

for milk, fat and protein yield. The EBVs that 

Australia contributed to this MACE run were 

based on data from the 25 October 2022, but 

from a special Australia-only conventional 

analysis (i.e. excluding MACE proofs and 

genomics). Breeding values from the ‘current’ 

method are those published on 6 December 

2022. 

The production file for RDC in December 

2022 consists of 17081 bulls, of which 16721 

are of breed RDC or Milking Shorthorn (MSH). 

Of these 836 had an Australian EBV included. 

We identified 57 bulls with genomics and at 

least 100 test day observations per trait on their 

daughters and whose EBV was sent to Interbull. 

These 57 serve as the main validation group, 

and in various scenarios we remove their 

daughter observations, their MACE proofs or 

both from the data to ascertain how well the 

analysis predicts the Australian performance. 

A second validation set consisted of the 15 

556 bulls that had neither Australian daughters 

nor a genotype in Australia. The expectation 

was that a correct procedure would return EBVs 

and reliabilities from the single-step genomic 

analysis that are essentially the same as their 

MACE proofs and reliabilities. 

 

Results & Discussion 

 

As the original issue mainly showed for 

protein yield, most results presented below are 

for protein. Results for milk and fat yield are in 

line with these. 

Figure 1, shows how various datasets predict 

the Australian-only conventional breeding 

value for 57 validation bulls for protein using 

the current procedure for deregression, but with 

full pedigree. Datasets with only genotypes but 

no MACE and with both genotypes and MACE 

perform reasonably well with slopes of 0.75 and 
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0.64 respectively. A dataset that includes 

MACE proofs but no genotypes however has a 

slope of only 0.35, indicating a large 

overestimation of true performance in 

Australia. Note the inverse relationship 

between slope and R2. 

 

 
Figure 1. Australian-only Protein EBV predicted for validation bulls using the current procedure for 

deregression, but with full pedigree (Boerner et al. 2022), comparing predictions based on genomics only 

(PROT_GEN), MACE only (PROT_MACEonly) and the combination (PROT_G&M). 

 

Figure 2 compares the Genomics & MACE 

from Figure 1 with the alternatives using the 

same data but with the new DRP calculation 

(referred to as ZT) and the additional 

adjustment for sent EBVs (referred to as ST). 

The ZT version is the one with the same DRP 

for each of 3 lactations, rather than the one with 

only a DRP for lactation 1, which performed 

slightly less. The ST version is based on 3 

lactations as well. Note that ZT is not visible as 

ZT and ST are virtually identical for this group 

of bulls. 

The alternative DRP calculations clearly 

give superior results, both in terms of slope 

(0.82) and R2. 

The effect of the new deregression method 

on the prediction bias in bulls with MACE 

proofs was analysed by comparing the MACE 

proof with the single-step breeding values for 

the 836 bulls that were sent to Interbull. 

The adjustment for ‘sent’ EBV was 

specially meant for this group of bulls but it had 

minimal effect, with slopes being the same with 

and without the adjustment (0.93) and still 

showing some bias. R2 was 0.981 for both 

DRPs. This may be because the adjustment is 

designed for a single-trait analysis, not a multi-

trait. 

The second validation set which had no 

Australian daughters and no genotype included 

in the analysis, showed large overestimations of 

protein EBVs for both the ZT and ST method 

when the single-step genomic EBV was 

regressed on the MACE proof; regression 

coefficients of 0.66 for EBV and 0.77 for 

reliability. The reason for this is most likely that 

while the MACE deregression accounted for 

relationships, the error variance did not and 

thereby put too much weight on the DRPs. 
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Figure 2. Australian-only Protein EBV predicted for validation bulls using different methods for deregression. 

a) Boerner et al 2022 (Prot_G&M); b) Zengting Liu’s method (Prot_ZT), c) Deregressed using Zengting Liu’s 

method followed by an adjustment using Pitkanen (2021, Prot_ST). Note that the last two overlap completely in 

the figure. 

 

Conclusions 

 

We have taken a pragmatic approach to try 

and remove a bias from single-step genomic 

breeding values that include MACE. We 

replaced the DRPs from a procedure that 

ignores relationships among MACE bulls with 

one that does, but in the process ignored 

lactation specific DRPs and maintained the 

weightings as calculated for the old procedure. 

The bias in prediction of breeding values 

was considerably reduced, with the regression 

coefficient increasing from 0.64 to 0.82 

An adjustment was made to the DRPs for 

animals who had their EBVs included in 

MACE. This proved to have minimal if any 

effect on breeding values from the genomic 

analysis and no effects on reliabilities at all. It 

appears the ‘old’ weights took care of this. For 

bulls that had no Australian daughters and no 

genotype included in the analysis, EBVs from 

the single-step genomic analysis grossly 

overestimated MACE proofs, while they were 

expected to be similar.  
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Abstract 

 

To improve the accuracy of estimated breeding values (EBV), correct parentage assignment remains a 

cornerstone of BLUP. Genomic evaluations can alleviate constraints experienced during the assessment 

of young animals in large populations, especially for animals with limited pedigree depth and for traits 

of low heritability. South African (SA) Beefmaster (BMA) breeders mostly are prone to using multiple 

sires in their herd, with a low parentage verification rate resulting in a larger proportion of young animals 

with at least one unknown parent. Upgrading of first acceptance cows with blank pedigrees, was 

common in the establishment of the SA BMA breed. The completeness of a 451,009 animal pedigree, 

consisting of 187,448 males and 263,561 females dating back to 1937 was assessed. Records for birth 

weight (BW) and adjusted weights at 205, 365 and 540 days of age (WW, YW, M18W) were collated 

for the growth multi-trait model, while the fertility multi-trait model included records for adjusted 

weight at 205 days of age (WW), heifer fertility (HF) and the first three inter-calving periods (ICP). 

Breeding values and trait reliabilities for registered animals, were either estimated traditionally (BLUP) 

or with the inclusion of genomic information (ssGBLUP). Genomic profiles of 1,397 recorded animals, 

genotyped across five commercial single nucleotide polymorphism (SNP) arrays of varying densities, 

were imputed to a reference genotype of ~132,000 SNPs. Animals with varying proportions of known 

ancestry allowed for a comparison of genotyped animals across the herd book status of upgrading. The 

assessment of pedigree completeness indicated a substantial decay in pedigree depth, higher in females 

compared to males, after the grand-parent generational equivalent. The ssGBLUP accuracies were 

higher across all traits (0.01 – 0.89), with equal increases observed for animals with limited pedigree 

depth (only 1 or 2 generations) as to young animals with minimal to no measured phenotypes. The 

change between conventional and genomic breeding values decreased as the depth of pedigree increased. 

The results obtained indicate the knowledge of genetic relationships through ssGBLUP allow for 

increased reliability of predictions for foundation animals with limited or unknown pedigree structure. 

 

Key Words: pedigree completeness, genetic evaluation, single-step GBLUP, multiple sires 

 

Introduction 

 

To improve the accuracy of estimated 

breeding values (EBV), correct parentage 

assignment remains a cornerstone of BLUP. 

Genomically enhanced breeding values 

(GEBVs) are increasingly being used to predict 

values for all animals in the pedigree using 

single step mixed model equations (MMEs) 

(Legarra et al. 2014). GEBVs are calculated 

using a genomic relationship matrix (GRM) in 

conjunction with MMEs (Taskinen et al. 2013). 

Genomic evaluations can alleviate constraints 

experienced during the assessment of young 

animals in large populations, especially for 

animals with limited pedigree depth (Clark et al. 

2012; Gowane et al. 2022) and for traits of low 

heritability (Hayes and Goddard 2010; Kluska 

et al. 2018). 

The South African (SA) Beefmaster (BMA) 

was established through the importing of live 

semen and live animals from Lasater’s herd and 

purebred herds associated with the Beefmaster 

Breeders United (BBU) (Beefmaster SA 
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Website). The SA BMA was ratified as an 

established breed in 1987 and is currently the 

second largest stud beef cattle breed being 

serviced by the SA Stud Book and Animal 

Improvement Association (SASB). SA BMA 

breeders are distributed throughout the country, 

utilise a mix of extensive farming in 

conjunction with available crop fodder or crop 

residues, with average herd sizes of around 450 

animals and commonly use multiple sires on 

their cow herds. The SA BMA has a low 

parentage verification rate, resulting in a larger 

proportion of young animals with at least one 

unknown parent. Breeders from a commercial 

background were prone to upgrading first 

acceptance (FA) and Section A cows with blank 

pedigrees alongside Stud Proper (SP) BMA 

bulls when establishing their SA BMA herd. 

These cows will also lack production and 

fertility related measurements themselves as 

they can come into the herd at any age. Progeny 

of Section A cows mated with SP, Section C or 

Section B bulls are allocated Section B herd 

book status. SP progeny can only arise from 

Section C or SP parents. The use of multiple 

sires introduces a high percentage of Section B 

calves that have an unknown sire pedigree 

coupled with the upgrading of cows with poor 

pedigree depth results in lower accuracies when 

predicting the genetic merit of these animals 

(Clark et al. 2012; Gowane et al. 2022). 

The objectives of this study were to firstly 

assess the level of pedigree completeness across 

the levels of upgrading in the SA BMA and to 

identify any changes in breeding value 

estimation and accuracy of measured growth 

and fertility traits when using genomic data on 

a breed with limited pedigree completeness. 

Materials and Methods 

Data 

The phenotypic data were acquired from the 

LOGIX Genetic Evaluation System (SA Stud 

Book / SA Stamboek). Records for birth weight 

(BW) and adjusted weights at 205, 365 and 540 

days of age (WW, YW, M18W) as well as 

fertility records for heifer fertility (HF) and the 

first three inter-calving periods (ICP1, 2 and 3), 

are summarised in Table 1. 

Table 1. Total number of weight and fertility records 

for birth weight (BW), weaning weight (WW), 

yearling weight (YW), weight at 18 months 

(M18W), heifer fertility (HF) and the first three 

inter-calving periods (ICPs). 

Trait Number of 

Male Records 

Number of 

Female Records 

Total Number 

of Records 

BW 146,501 143,522 290,023 

WW 132,022 135,323 267,345 

YW 41,750 77,299 119,049 

M18W 

HF 

ICP1 

ICP2 

ICP3 

29,804 

- 

- 

- 

- 

54,801 

68,089 

46,795 

33,078 

23,821 

84,605 

68,089 

46,795 

33,078 

23,821 

Pedigree information on 451,009 animals, 

consisting of 187,448 males and 263,561 

females dating back to 01 September 1937 

including the phenotypic data and herd book 

upgrading status, is reported in Table 2. 

Table 2. Pedigree information on the South African 

Beefmaster based on by herd book upgrading status. 

Herd Book 

Population 

Number of 

Males 

Number of 

Females 

Total 

Total 187,448 263,561 451,009 

Stud Proper 32,339 32,149 64,488 

Section C 38,728 38,316 77,044 

Section B 

Section A 

FA 

Pending 

NFR 

99,836 

3,281 

0 

1,718 

11,347 

108,575 

67,971 

9,511 

1,624 

5,140 

208,411 

71,252 

9,511 

3,342 

16,487 

FA: first acceptance; NFR: not for registration. 

Genomic profiles of 1,797 SA BMA 

animals, genotyped across five commercial 

single nucleotide polymorphism (SNP) arrays 

of varying densities, were used in this study. 

Much of the genomic population was initially 

genotyped on the GeneSeek Genomic Profiler 

(GGP) 150K or GGP 80K primarily through 

funding from the SA Beef Genomics Project 

(BGP). After the BGP ended in 2018, 

genotyping was done on commercial variants of 

the Illumina BovineSNP50 v.3; namely the 

ICBF IDB v.2, SASB 50K or the Versa 50K.  

Quality control of genomic SNP data, done 
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in PLINK v1.9 (Purcell et al. 2007), consisted 

of keeping only autosomal SNPs with a known 

base pair position, a call rate≥0.90, a MAF≥0.10 

and did not significantly deviate from Hardy-

Weinberg equilibrium (p>0.001). Animals 

required a call rate ≥90% while individuals with 

≥0.95 identical genotype were discarded. 

Population stratification of the post-QC 

genomic data allowed for the possible detection 

of outliers and returned a final set of 1,397 SA 

BMA genotypes. Genotypes were imputed 

alongside pedigree information with FImpute 

v3 (Sargolzaei et al. 2014) to a density of 

~130,000 SNPs. 

 

Models 

Using R version 4.2.3 (RStudio Team 2015), 

the optiSel R package (Wellmann, 2019) was 

utilized in conjunction with Poprep 

(Groeneveld et al. 2009), to assess the complete 

generation equivalent (CGE), pedigree 

completeness index (PCI) and FPED coefficients 

(Meuwissen and Luo 1992) of the total and 

genotyped BMA populations. The total pedigree 

consists of all 451,009 animals in the BMA 

pedigree, while the fully traced back genotyped 

pedigree contains 7,630 animals (1,974 males 

and 5,683 females) related to the core 1,397 

animals in the genomic population. Grouping 

for the calculation of the mean (standard error) 

of CGE, PCI and FPED occurred at a whole 

population level, sex level, genotyped pedigree 

level and herd book allocation in order to 

compare across levels of upgrading. 

In order to predict estimated breeding 

values, two multi-trait animal linear models 

were assessed.  The growth and fertility models 

were defined as follows: 

 

y = Xb + Zu + e, 

 

where y is the vector of phenotypes, b is a 

vector of fixed effects, u is a vector representing 

the direct additive-genetic effects, with u ~ 

N(0,A 𝜎𝑢
2), where A is the pedigree-based 

matrix and 𝜎𝑢
2 is the direct-genetic variance, e 

represents the residual, where e ~ N(0,I 𝜎𝑒
2), 

with  𝜎𝑒
2 representing the residual variance, I the 

identity matrix while X and Z are incidence 

matrices for b and u respectively. 

Fixed effects in b for the growth trait model 

were herd x year x season x treatment group x 

birth status, sex, age, dam parity (1 or >1) and 

linear (α) and quadratic (α2) regression 

coefficients for age of dam. Fixed effects in b 

for the fertility trait model were herd x year x 

season x treatment group x birth status for WW 

which was used as an anchor trait, herd x year x 

season for HF and herd x year x season x 

previous calving group for each ICP.  

Estimation of variance components for the 

two animal models stated above were calculated 

using restricted estimated maximised likelihood 

(REML) optimised with quasi-Newton 

procedure using analytical gradients in Variance 

Component Estimation (VCE) (Groeneveld, 

2010) software. MiX99 (MiX99 Development 

Team, 2017) was used to predict both traditional 

EBVs and GEBVs using the same models in the 

estimation of variance components. The 

ssGBLUP model utilises the inverse of the joint 

relationship matrix H-1 (Aguilar et al. 2010; 

Legarra et al. 2014). 

 

H-1 = A-1 + (
𝟎 𝟎
𝟎 𝑮−1 – 𝑨22

−1 
), 

 

where A-1 is the inverse of the pedigree-

based matrix, A22 is the overlapping part of A 

for the genotyped animals and G is the genomic 

relationship matrix (GRM). The GRM was 

constructed among all animals using the 

RelaX2 HGInv program (Strandén, 2014). 

Pedigree-based and genomic reliabilities 

were calculated utilising the program ApaX99 

(Lidauer et al. 2017) implementing the Misztal 

and Wiggans approach (Misztal and Wiggans 

1988), where the Misztal approximation 

method 1 (Misztal et al. 2013) accounts for full 

genomic information. These reliabilities were 

subsequently transformed into accuracies. 

 

Results and Discussion 

 

At a population level, 33.9% of SA BMA 

animals in the pedigree are demarcated as “Sire 
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Unknown”, with a further 16.7% of animals 

having “Both Parents Unknown”. The mean, 

interquartile range (IQR), and median years of 

birth for the whole BMA population was 2008, 

1994 to 2009 and 2011, respectively and 2001, 

1994 to 2009 and 2003 for the genotyped BMA 

population. A slightly higher pedigree depth of 

16 generations for the whole BMA population 

was noted against the genotyped BMA 

populations pedigree depth of 15 generations. 

Assessment of pedigree depth indicated a mean 

pedigree completeness index (PCI) and mean 

complete generational equivalent (CGE) of 

0.298 (SE = 0.347) and 1.975 (SE = 1.720) for 

the whole BMA population and 0.381 (SE = 

0.350) and 2.067 (SE = 1.753) for the genotyped 

BMA population. Table 3 indicates the mean 

pedigree completeness of the genotyped 

pedigree to be higher than that of the whole 

pedigree born. Females are observed to have a 

shallower pedigree completeness, as SA BMA 

breeding bulls must have known parentage in 

order to upgrade cows with limited pedigree 

completeness. 

Table 3. The mean six-generation deep pedigree 

completeness of the SA Beefmaster for A) the whole 

pedigree (451,009 animals) and B) the genotyped 

pedigree (7,630 animals) born within the period 

2011 to 2021 and split on a sex level 

Whole Genotyped 

GD Male Female Male Female 

1 1 1 1 1 

2 0.792 0.568 0.886 0.614 

3 0.518 0.366 0.677 0.423 

4 

5 

6 

0.365 

0.263 

0.184 

0.257 

0.183 

0.128 

0.491 

0.349 

0.239 

0.293 

0.192 

0.117 

GD: generation depth. 

The inbreeding coefficients (FPED) observed 

ranged from 0 to 0.2995 with a mean of 0.007 

for both the whole and genotyped BMA 

population. The CGE and PCI were seen to be 

lower in the whole BMA pedigree (1.975 and 

0.298) in comparison to the genotyped BMA  

pedigree (2.067 and 0.381). Genotyped Stud 

Proper animals had the highest FPED (0.021), 

CGE (4.466) and PCI (0.859), across all the 

levels of upgrading, with genotyped Section A 

animals having the lowest CGE (0.470) and PCI 

(0.056), respectively (Table 4). 

Table 4. Pedigree statistics including the birth year 

range, mean (µ) and standard error (SE) for various 

groupings of the South African Beefmaster 

population which include level of inbreeding (FPED), 

pedigree completeness index (PCI) and complete 

generational equivalents (CGE) 

Group Birth Year 

Range 

FPED PCI 

µ (SE) 

CGE 

µ (SE) 

WP 1937–2021 0.007 0.298 (0.35) 1.975 (1.72) 

GP 1956–2021 0.007 0.381 (0.35) 2.067 (1.75) 

GA 1985–2021 0.012 0.603 (0.32) 3.148 (1.58) 

GSP 

GSC 

GSB 

GSA 

1999–2021 

1994-2021 

1985-2021 

1997-2013 

0.021 

0.012 

0.001 

0.002 

0.859 (0.13) 

0.660 (0.17) 

0.241 (0.24) 

0.056 (0.20) 

4.466 (0.92) 

3.445 (0.95) 

2.095 (1.19) 

0.470 (1.16) 

WP: whole pedigree; GP: genotyped pedigree; GA: 

genotyped animals; GSP: genotyped stud proper 

animals; GSC: genotyped section C animals; GSB: 

genotyped section B animals; GSA: genotyped 

section A animals. 

The generated solutions of the genotyped 

animals were extracted and compared for the 

various traits in the growth and fertility models. 

Observed coefficients of determination (R2), 

between the EBVs or accuracies and their 

corresponding genomically enhanced solutions 

were lowest for Section A animals across all 

directly measured traits (Table 5). The biggest 

differences were observed for maternal traits, 

especially the WWMAT of the genotyped SP 

animals (R2 = 0.888), and the ICP1 (R2 = 0.843) 

and ICP3 (R2 = 0.861) of the total genotyped 

population. 

Trait reliabilities were transformed into 

accuracies and plotted against their genomically 

enhanced counterparts. Animals were identified 

according to the herd book level of upgrading 

and compared accordingly. Increases in 

accuracy (0.01 – 0.89) when using genomic 

information were seen across all growth traits 

(Figures 1-6). 
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Table 5. The coefficient of determination (R2) 

between estimated breeding values and genomically 

enhanced breeding values derived from the growth 

and fertility models for the South African 

Beefmaster population. 

Trait R2 

GA GSP GSC GSB GSA 

BWDIR 0.914 0.898 0.915 0.942 0.843 

BWMAT 0.869 0.858 0.843 0.904 0.849 

WWDIR 0.929 0.907 0.940 0.952 0.728 

WWMAT 

YW 

M18W 

HF 

ICP1 

ICP2 

ICP3 

0.907 

0.929 

0.928 

0.896 

0.843 

0.879 

0.861 

0.888 

0.917 

0.917 

0.882 

0.819 

0.842 

0.857 

0.907 

0.941 

0.940 

0.899 

0.852 

0.898 

0.849 

0.930 

0.946 

0.944 

0.917 

0.904 

0.929 

0.910 

0.928 

0.668 

0.672 

0.874 

0.734 

0.844 

0.699 

GA: genotyped animals; GSP: genotyped stud 

proper animals; GSC: genotyped section C animals; 

GSB: genotyped section B animals; GSA: genotyped 

section A animals. 

Figures 1-6: The direct estimated breeding value 

(EBV) plotted against the direct genomically 

enhanced breeding value (GEBV) accuracy for the 

traits included in the growth model. 

Higher average increases of 10% in accuracy 

were observed for traits included in the fertility 

model (Figures 7-10) in comparison to growth 

traits. The traits of low heritability ICP2 (0.13-

0.90) and ICP3 (0.09-0.90) having the highest 

observed increases in accuracy. 

Figures 7-10: The direct estimated breeding value 

(EBV) plotted against the direct genomically 

enhanced breeding value (GEBV) accuracy for the 

traits included in the fertility model. 

The SA BMA had an estimated pedigree 

CGE of 1.975, which is similar to the CGE that 

were observed in local indigenous beef breeds 

such as the Afrikaner (2.81; Pienaar et al. 2018) 

and the Bonsmara (2.19; Santana et al. 2012). 

(Gutiérrez et al. 2003) observed low CGEs, 

ranging from 0.81 to 2.97, in eight Spanish beef 

cattle breeds, while a low CGE of 1.79 was 

observed in Istrian cattle (Ivanković et al. 

2022). In comparison to pure and composite 

beef and dairy breeds with robust pedigree 

records such as the Lidia cattle (5.5; Cortés et 

al. 2019), Marchigiana cattle (4.52; Santana et 

al. 2012), Mexican Charolais cattle (7.86; Ríos-

Utrera et al. 2021), American Brangus (6.8; 

Paim et al. 2020) as well as the SA Ayrshire 

(9.74), SA Holstein (11.70), and the SA Jersey 

(10.05) populations studied by Visser et al. 

(2023), the SA BMA showed a substantially 

lower mean CGE. This can firstly be attributed 

to the prevalent use of multiple sires in herds 

with low parentage verification rate, increasing 

the number of Section B animals with at least 

one unknown parent. Secondly, the upgrading 

process introduces foundation cows (first 

acceptance and Section A) with limited to no 

pedigree information, further contributing to a 

shallow pedigree depth. Stud Proper and 

Section C animals were observed to have a 

higher average CGE and PCI in comparison to 

Section A and B animals, which is a 
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consequence of these animals requiring 

established pedigrees through known parentage.  

The low inbreeding estimates (FPED = 0.007) 

calculated in the SA BMA, in comparison to the 

SA Ayrshire (FPED=0.051), Holstein 

(FPED=0.064) and Jersey (FPED=0.062) 

populations (Visser et al. 2023) and Lidia cattle 

(FPED = 0.13; Cortés et al. 2019), indicate an 

inaccurate reflection of inbreeding at a 

population level, that can be attributed to the 

observed low pedigree completeness in the SA 

BMA (PCI = 0.298). Similar results in other 

smaller populations such as Afrikaner (FPED = 

0.0183; Pienaar et al. 2018) the Creole Blanco 

Orejinegro breed (FPED = 0.0132; Gallego et al. 

2020), Argentinian Brangus (FPED = 0.0240; 

Garrido et al. 2008), the SA Brangus (FPED = 

0.0139; Steyn et al. 2012), Bonsmara (FPED = 

0.0026) and Marchigiana (FPED = 0.0133) 

(Santana et al. 2012), and FPED of eight Spanish 

beef cattle breeds ranging from 0.0025 to 

0.0313 (Gutiérrez et al. 2003) have been 

previously reported. These breeds have either a 

small population size and/or poor pedigree 

depth due to the behaviour of pedigree 

recording on a breed level, which are the two 

primary contributing factors to lower estimates 

of inbreeding (Nielsen and Slatkin 2013). 

The observed changes in breeding values 

when including genomic information occurred 

at multiple levels. At a population level, the 

traits where genomics had the highest influence 

were BWMAT (R2 = 0.869) and WWMAT (R2 = 

0.907) for the growth model, and ICP1 (R2 = 

0.843) and ICP3 (R2 = 0.861) in the fertility 

model. Maternal traits are well-known to be 

lowly heritable (Olasege et al. 2021; Saatchi et 

al. 2012) and the accuracy of these traits 

traditionally increase as an animal’s progeny-

performance records increase. Fertility traits are 

sex-limited and measured later in animals’ life 

which contributes to the lower prediction 

accuracies and heritability’s estimated in these 

multi-trait models (Facy et al. 2023; Hayes et al. 

2019). Progeny-performance records coupled 

with pedigree linkages act as a feedback 

mechanism that enable a more accurate 

prediction of a bull’s or cow’s genetic potential. 

At a herd book level, Section A animals 

experienced the greatest observed changes in 

EBV, especially as Section A animals may have 

no growth or fertility performance records if 

they are foundation cows. Interestingly, the 

change in WWMAT for Section A animals (R2 = 

0.928) is an outlier of the previous statement 

and is a consequence of these foundation cow’s 

progeny calves and great-progeny calves being 

measured for WW. On an individual basis, 

animals that can be seen as a separate bubble in 

Figures 1 to 10, the greatest changes were 

observed in Section B, C and Stud Proper bulls 

that were used as multiple sires but were never 

allocated to progeny on a known parentage 

basis. This resulted in these bulls never being 

allocated progeny-performance records. 

Although these multiple sires may not be linked 

to the broader SA BMA population through the 

pedigree, they are well-represented on a genetic 

basis through the genomic population with 

other genotyped animals with numerous 

progeny-performance records. Young Section C 

and Stud Proper animals also experienced 

similar increases in prediction accuracy and was 

observed to be for traits that they had yet to be 

measured for, were sex-limited and lowly 

heritable. 

The assessment of pedigree completeness 

indicated a substantial decay in pedigree depth, 

higher in females compared to males, after the 

grand-parent generational equivalent. The 

ssGBLUP accuracies were higher across all 

traits, with equal increases observed for animals 

with limited pedigree depth as to young animals 

with minimal to no measured phenotypes. The 

change between conventional and genomic 

breeding values decreased as the depth of 

pedigree increased.  

 

Conclusions 

 

The results obtained indicate the knowledge 

of genetic relationships through ssGBLUP 

allow for increased reliability of predictions for 

foundation animals with limited or unknown 

pedigree structure. 
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Abstract 

Single-step genomic best linear unbiased prediction (ssGBLUP) has become a popular tool for genetic 

evaluations in dairy cattle populations. The use of the metafounder (MF) concept allows better 

consideration of relationships within and between founder populations and ensures correct matching of 

pedigree and genomic relationships. This study investigates the use of the MF concept in a simulated 

dairy cattle population where the base population consists of two related and inbred founder populations. 

The objectives are to compare genetic evaluations with and without MF and to investigate different 

methods of estimating MF parameters (𝛤).Results show that genetic evaluations using MF are less 

biased and less inflated compared to evaluations using unknown parent groups or not accounting for the 

different founder populations. However, testing different methods to estimate Γ revealed a tendency to 

overestimate the relationships within and between the founder populations, leading to an overestimation 

of pedigree relationships compared to the genomic relationships. In summary, the MF concept in 

ssGBLUP is superior in this simulated scenario with two founder populations, but care must be taken 

when estimating 𝛤 to ensure consistency between pedigree and genomic relationships. In general, these 

findings highlight the importance of considering relationships within and between founder populations 

in single-step genetic evaluations. 

Key words: ssGBLUP, metafounder, simulation, dairy cattle 

Introduction 

Single-step genomic best linear unbiased 

prediction (ssGBLUP) uses an integrated 

relationship matrix (H), which combines the 

pedigree based relationship matrix (A) and the 

genomic relationship matrix (G). For this 

purpose, both matrices are supposed to refer to 

the same base population (Christensen, 2012). 

Without dedicated measures, this is usually not 

the case in cattle populations. In practice, there 

are several methods to match G to A 

(Christensen, 2012; VanRaden, 2008; Vitezica 

et al., 2011). Legarra et al. (2015) published the 

concept of metafounders (MF), which follows 

the idea of adapting A to G. The basic ideas are 

to use allele frequencies equal to 0.5 for all 

SNPs in the calculation of G and to assign 

unknown parents in the pedigree to pseudo-

individuals (metafounder, MF). 

Thompson (1979) and Quaas (1988) 

introduced the concept of unknown parent 

groups (UPG), which account for genetic 

differences within subgroups in the base 

populations. Since then, UPG, also known as 

genetic groups or phantom parents, are widely 

used in animal breeding, because they allow 

incorporating animals with missing parents and 

diverse genetic background in the genetic 

evaluation. UPG may therefore have means 

different from zero, but are assumed to be non-

inbred and unrelated, just as the base 

population. MF may be seen as an extension to 

this concept by introducing relationships within 

and across UPG (Legarra et al., 2015). 

For the German-Austrian-Czech Fleckvieh 

population, the first genomic evaluation using 

the ssGBLUP approach was published in April 

2021 (Himmelbauer et al., 2021). To account 

for unknown parents, 15 UPG are presently 
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used for most of the fitness traits. MF is the 

current gold standard for ssGBLUP 

implementations as shown e.g. by Meyer et al. 

(2018) and will therefore likely be the next 

evolution step in the national genomic 

evaluation system. For reasons discussed 

above, the aim of this study is to test different 

methods for gamma estimation and to compare 

the difference between different genetic 

evaluations with and without MF for a very 

simple population structure with two base 

populations and without any unknown 

pedigrees. 

Materials and Methods 

Simulating metafounders 

The basic approach for simulating the 

population is the same as that used and 

described in detail in Himmelbauer et al. 

(2023). The main difference, however, is that 

for this study not only one but two related and 

inbred base populations (MF) are simulated. To 

achieve this, the founder population is split after 

2 500 generations of evolution. Both 

subpopulations are then selected for additional 

15 generations based on the true breeding value 

(TBV) for trait 1, with subpopulation A selected 

for high and subpopulation B selected for low 

values of trait 1. The two subpopulations are 

then merged again, and a second trait (trait 2) is 

created with a heritability of 0.3 and a genetic 

correlation to trait 1 between 0.3 and 0.5. This 

is followed by 30 years of selection by pedigree 

BLUP (PBLUP) and 8 years of selection by 

ssGBLUP (ignoring the two separated base 

populations) based on trait 2 as described in 

Himmelbauer et al. (2023) with small 

adaptions: To ensure that at the end of the 

selection process phenotypes and genotypes of 

both purebred populations (A and B) and the 

crossbred population (AB) are available, 

animals are selected separately by 

subpopulation. Mating is controlled such that 

females from subpopulations A, B, and AB are 

mated with males from purebred populations A 

and B in a way that each possible combination 

of male and female subpopulations occurs with 

the same frequency in each simulated year. The 

schematic overview of the simulation approach 

is shown in Figure 1. 

 

Dataset 

The data set from the last year of the 

simulation serves as input for all further test 

runs. Basically, all females with offspring have 

a phenotype in the simulation. In routine 

datasets, phenotypes are usually not available 

back to the pedigree base, therefore 90% of the 

phenotypes from animals of the first 15 

generations were randomly deleted. The final 

dataset consists of about 154 500 phenotypes, 

204 900 genotypes and in total of about 

1 105 500 animals in the pedigree. 

Estimating Gamma Matrix 

The true Gamma matrix (𝜞) was calculated 

using true allele frequencies in the base 

populations (𝒑𝑨 and 𝒑𝑩) in the following 

formula derived in Garcia-Baccino et al. (2017) 

𝜞 = 𝟖 ∙ 𝒄𝒐𝒗(𝒑𝑨, 𝒑𝑩).  

Additionally, 𝜞 was estimated using four 

different methods. Two methods are based on 

estimated base allele frequencies and equation 

(1). Base allele frequencies were estimated 

using the software Bpop (Strandén & 

Figure 1. Schematic overview of simulation. 
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Mäntysaari, 2020b), which makes use of a 

generalized least square (GLS) method. For the 

first method (BFQ_pure), only genotypes of 

purebred animals of the two subpopulations 

were used to estimate 𝜞. For the second method 

(BFQ_all), all genotypes of the final dataset, 

including all crossbred animals, were used. The 

third method (MM_pure) tested for estimating 

𝜞 corresponds to the method described in 

Legarra et al. (2015) as "Method of moments 

based on summary statistics for multiple pure 

populations” and again uses only genotypes 

from the purebred populations. The last method 

(MM_cross) is equivalent to the "Method of 

moments based on summary statistics for 

populations with crosses” and uses crossbred 

genotypes as described in Legarra et al. (2015). 

 

Genetic evaluations 

To evaluate the effect of inclusion of MF, 

several different genetic evaluations were tested 

with the same dataset. There are no unknown 

parents in the pedigree. Only the parents of the 

pedigree base are unknown and replaced with 

the true base populations. An exception is the 

evaluation without UPG, where the parents of 

the pedigree base are all set to zero. 

1) PBLUP with two UPG (PED): 

A simple pedigree BLUP, where the UPG 

were treated as random, was applied on the 

dataset. The evaluation was done using the 

commercial software package MiX99 (MiX99 

Development Team, 2019). 

2) ssGBLUP without UPG (no_UPG): 

Breeding values were estimated based on a 

ssGBLUP with no UPG in the pedigree. All 

animals in the pedigree were traced back to one 

single pedigree base population. The 

preparation of the genomic relationship matrix 

(G) for ssGBLUP was done with the program 

HGINV (Strandén & Mäntysaari, 2020a) based 

on VanRaden’s method 1 (VanRaden, 2008) 

with true base allele frequencies from the 

founder population and the approach for proven 

and young (Misztal et al., 2015). Details on the 

computation of the G-Matrix are the same as in 

Himmelbauer et al. (2023). 

3) ssGBLUP with two UPG (UPG_qp): 

This method is the same as no_UPG, 

described above, with the difference that here 

the true base populations were used as parents 

in the pedigree base. The two base populations 

were modeled as UPG and Quaas and Pollak 

(QP) transformed UPG were included in inverse 

G. 

4) ssGBLUP with two MF and true 𝜞 

(MF_true): 

The fourth evaluation is a ssGBLUP where 

the two base populations were modeled as MF. 

In this case the true 𝜞 was used to define the 

relationships between the MF. 

5) ssGBLUP with two MF and estimated 𝜞 

(MF_est): 

This evaluation is equivalent to MF_true, 

but here an estimated 𝜞 was used. The used 𝜞 

was estimated using strategy BFQ_all, 

described above. 

6) ssGBLUP with two MF, true 𝜞 and scaled 

variances (MF_sc): 

This evaluation is the same as MF_true, but in 

this case, scaled variance components as 

proposed by Legarra et al. (2015) were used. 

The additive genetic variance was scaled using 

the following equation (Legarra et al., 2015): 

𝝈𝒓𝒆𝒍𝒂𝒕𝒆𝒅
𝟐 ≈

𝝈𝒖𝒏𝒓𝒆𝒍𝒂𝒕𝒆𝒅
𝟐

𝟏 +  
𝒅𝒊𝒂𝒈(𝜞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝟐 − 𝜞̅

 
 

Analyzing results 

All comparisons are based on 10 repetitions 

of the simulation described above. To evaluate 

the performance of the different methods to 

estimate 𝛤, the diagonal and off-diagonal values 

of the estimated 𝛤 are compared to the 

corresponding values of the true 𝛤. 

The comparison of the different evaluations 

is done using three validation measures based 

on the youngest animals born in the last year of 

the simulation. Firstly, the correlation between 

estimated breeding values (EBVs) and true 

breeding values (TBVs) is calculated. 

Secondly, the bias is calculated using the 

following formula 

𝑏 = 𝐸𝐵𝑉̅̅ ̅̅ ̅̅ − 𝑇𝐵𝑉̅̅ ̅̅ ̅̅ . 
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Third, the regression coefficient of the 

following regression is used as a measurement 

of the dispersion: 

𝑇𝐵𝑉 = 𝑏0 + 𝑏1 ∙ 𝐸𝐵𝑉 + 𝑒. 

Additionally, the estimates for the group 

estimators of the UPG and the MF are compared 

to evaluate the differences between the five 

evaluation methods. Because the level of the 

base populations varies across replicates, the 

estimated difference between the two base 

populations is compared with the true 

difference rather than the absolute values. 

Results & Discussion 

Gamma-matrix 

The diagonal of 𝜞 is a measure for the 

inbreeding in the metafounder populations. The 

true mean diagonal value in this study was 

0.631, with values ranging between 0.622 and 

0.645. There are also no systematic differences 

between the two MF within a replicate because 

both MF populations are the same size and have 

the same history of evolution. 

Basically, all tested methods overestimate 

the inbreeding of MF, but the two methods 

based only on genotypes of purebred animals 

show a significantly higher overestimation 

(Figure 2, top). 

The off-diagonal of 𝛤 represents the 

relationship between the two MF. In this study, 

the true value is between 0.566 and 0.585 with 

an arithmetic mean over 10 repetitions of 0.575. 

Both methods based on base allele frequencies 

give a very good estimate of the true value, 

whereas the other two methods show a clear 

overestimation (Figure 2, bottom). 

In combination, this means that the method 

BFQ_all is the best at estimating the true 𝛤 in 

this study where two MF are simulated. This is 

in line with the results for one MF shown in 

Garcia-Baccino et al. (2017). An interesting 

conclusion from the comparison between 

BFQ_pure and BFQ_all is that genotypes from 

crossbred animals are very important in the 

estimation of base allele frequencies in this 

situation. 

Results for UPG/MF 

The mean true difference in the genetic level 

between the two base populations over all 

repetitions is 0.834 genetic standard deviations, 

but with a quite high variation between 0.604 

and 1.051 genetic standard deviations. All 

metafounder evaluations slightly underestimate 

the difference between the base populations by 

about 0.025 genetic standard deviations, but 

also with a relatively high error variance 

Figure 2. Comparison between true and estimated 𝛤 for diagonal value and off-diagonal value separately. The 

error bars in the plot show the range from minimum to maximum and the “X” show the means over 10 repetitions. 

The dashed black lines indicate the true values. 
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between -0.16 and +0.18 (Figure 3). On 

average, the estimates from PED and UPG_qp 

are less biased, and the error variance for 

UPG_qp is also significantly lower than for the 

other estimates. This result is somehow 

surprising that a model with UPG can estimate 

the level difference of the base populations 

better than the MF models, one even with the 

true Γ matrix. 

Correlation to true breeding value 

The correlation of estimated breeding values 

(EBV) to true breeding values (TBV) for the 

youngest animals is more or less the same for 

all different evaluations (Figure 4, top). Only 

for breeding values from PED the correlation is 

substantially lower, as to be expected. 

Interestingly, there are hardly any differences in 

the correlation between no_UPG, UPG_qp and 

MF_true. There are already other studies on the 

use of MF in simulated and routine datasets and 

many of them report only small differences 

between evaluations with and without MF in 

terms of correlations or R2 (Garcia-Baccino et 

al., 2017; Kudinov et al., 2022; Meyer, 2021). 

But unlike our findings, most studies report at 

least a slight improvement in correlation when 

using MF. This discrepancy may arise because 

our dataset uses MF exclusively at the pedigree 

base, without UPG or MF further along the 

pedigree. When MF are used in younger 

animals, the impact on correlation compared to 

UPG or not accounting for unknown parents in 

the final generation maybe becomes more 

pronounced than observed in our current study. 

Bias 

Regarding bias, the breeding values from 

PED show a significant downward bias of 0.627 

genetic standard deviations, whereas the EBV 

from no_UPG and UPG_qp are on average 

slightly biased upwards by 0.08 and 0.04 

genetic standard deviations, respectively 

(Figure 4, middle). The strong bias of EBV 

from PBLUP can be explained by the bias due 

to genomic preselection and was also observed 

in previous studies (Mäntysaari et al., 2018; 

Patry & Ducrocq, 2011). The EBV from 

MF_true and MF_est are mostly unbiased. Less 

biased results for evaluations with MF were also 

found in other publications (e.g. Garcia-

Baccino et al., 2017). It is interesting to note 

that the breeding values from the MF model 

with scaled variance components are also 

slightly biased upward by about 0.04 genetic 

standard deviations.  

Figure 3. Estimated minus true difference between the genetic levels of the two base populations for different 

genetic evaluations. Results are given in genetic standard deviations. The error bars in the plot show the range 

from minimum to maximum and the capital colored “X” show the arithmetic means over 10 repetitions. The small 

“x” indicate the results for each repetition. 

128



INTERBULL BULLETIN NO. 59.  26-27 August 2023, Lyon, France 

 

Dispersion 

Another effect of genomic preselection is the 

clear overdispersion of EBV from PBLUP, 

resulting in a regression coefficient of 0.82. 

Similar results have also been reported in 

several publications (Mäntysaari et al., 2018; 

Patry & Ducrocq, 2009, 2011). EBV from 

no_UPG and UPG_qp and also MF_sc show an 

overdispersion with a regression coefficient of 

around 0.95. There is no difference in the 

dispersion between EBV from MF_true and 

MF_est. Both evaluations lead to EBV with a 

regression coefficient of around 1.01, meaning 

that there is neither over-, nor a notable 

underdispersion. Other studies have also shown 

that the use of MF has a positive effect on 

dispersion and leads to less inflated breeding 

values (Garcia-Baccino et al., 2017; Kudinov et 

al., 2022; Macedo et al., 2021; Meyer, 2021). 

Further simulations and analyses (results not 

shown) have shown that the differences 

between the estimates depend strongly on the 

difference in genetic levels between the two 

base populations. In simulations where the level 

differences between the two base populations 

are smaller, the positive effects of the 

evaluations with MF on dispersion are not so 

clear. In that case UPG_qp or even no_UPG 

give comparable or even better results with 

respect to dispersion than models with MF. One 

explanation could be that in situations with 

minimal or no differences in the genetic level of 

the base groups, MF simulates a difference that 

is not present at the level of causative loci. 

Effects of estimated Gamma-Matrix 

As there are hardly any differences in the 

results for MF, correlation, bias and dispersion 

between MF_true and MF_est, it can be 

concluded that the small differences between 

true and estimated Γ have no notable effects on 

the validation statistics of the evaluation in this 

simulated dataset. However, in the present 

study there are only two MF, and these only 

used at the pedigree base without any younger 

unknown parents. In more complex data sets 

and especially in routine data sets with multiple 

and also younger MF, the differences between 

evaluations with estimated and true 𝛤 are likely 

to be larger. 

Effects of scaling variance components 

Applying the formula published in Legarra 

et al. (2015) on the true 𝛤 and scaling the true 

variance components, results in a higher h2. On 

average 

𝝈𝒓𝒆𝒍𝒂𝒕𝒆𝒅
𝟐 ≈

𝟎. 𝟑

𝟎. 𝟕𝟏𝟑
= 𝟎. 𝟒𝟐𝟏 

 

resulting in ℎ2 =
0.421

0.421+0.7
= 0.376 instead of 

0.3. Using the scaled variance components in 

Figure 4. Results for correlation (top), bias (middle) 

and dispersion (bottom) for the youngest animals for 

different genetic evaluations. Bias (estimated minus 

true) is given in genetic standard deviations. The 

error bars in the plots show the range from minimum 

to maximum and the capital colored “X” show the 

arithmetic means over 10 repetitions. 

129



INTERBULL BULLETIN NO. 59.  26-27 August 2023, Lyon, France 

 

the ssGBLUP there are no remarkable 

differences between MF_true and MF_sc on the 

estimation of MF and the correlation in the 

validation group (Figure 3 and Figure 4, top). 

But compared to MF_true, scaled variance 

components lead to more bias and 

overdispersion (Figure 4, middle and bottom). 

These results are unexpected because it is 

derived in Legarra et al. (2015) that MF 

relatedness requires variance components to be 

adjusted. But there are already other authors 

reporting no positive or even negative effects of 

scaling variance components (Kudinov et al., 

2022). Overall, the validation results (especially 

bias and dispersion) of the estimates with scaled 

variance components tend to show similar 

results to those found in other studies where the 

effect of an incorrect h2 (in this case too high h2) 

was investigated (Himmelbauer et al., 2023). 

This could be interpreted as suggesting that 

scaling the variance components in this case 

may lead to a too high h2. 

Conclusion 

In summary, this study could show that 

already in a very simple situation with two base 

populations and otherwise complete pedigree, 

ssGBLUP with MF have significant positive 

effects on bias and dispersion in the youngest 

animal group compared to UPG. Regarding the 

estimation of the 𝛤, the method based on base 

allele frequencies proved to be the best method, 

with genotypes of crossbred animals playing an 

important role in the estimation of base allele 

frequencies. It is also interesting to note that 

scaling the variance components in this study 

did not improve the validation results, but 

worsened them. 

But of course, it should be noted that this 

study uses very strong simplifications and 

rather optimal conditions compared to real 

applications. Therefore, further investigations 

with more MF and unknown pedigrees are 

necessary to be able to make statements that are 

more applicable to routine data. 
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Abstract 

Improving resource efficiency and meat quality as well as reducing the environmental impact from 

cattle industry, are important issues. Therefore, the aim of the FutureBeefCross (FBC) project is to 

show the genetic background of feed efficiency, methane emission and marbling score (MS) in young, 

crossbred calves. The aim is to implement breeding values for major beef breeds used to inseminate 

dairy cows. In this project, longitudinal daily dry mater intake (DDMI) and longitudinal body weight 

(BW) during 100 to 300 days of age were available for 4,400 crossbred animals with either Danish 

Blue, Charolais, or Angus sires and with Holstein dams. Feed intake is obtained by All feed system 

from Allflex. In addition, marbling score was obtained using image analysis. The basis was Q FOM™ 

images on 1,700 crossbred animals of Danish Blue sires and Holstein dams. Longitudinal daily dry 

matter intake and body weight were analyzed in a bivariate model with Legendre polynomials of days 

of age at the time of the test with first order for fixed, genetics, and permanent environment effects 

using Pedigree BLUP. Genetic parameters for marbling score were obtained from a univariate 

pedigree BLUP model. The genetic residual feed intake was measured as sum of daily dry matter 

intake minus the body weight gain and the mid body weight during the period of 200 to 280 days of 

age. The genetic residual feed intake has a moderate heritability of 0.21 and low genetic correlation of 

-0.12 with body weight gain and zero with mid body weight. The marbling score has low heritability

of 0.15 which could be because the measured animals are young (10-12 months at slaughter).

Breeding values for all traits will be implemented in 2023 and will act as a decision-making tool for

artificial insemination (AI) organizations in selecting beef bulls that can improve farm profitability

while meeting consumer demands.

Key words: beef on dairy, feed efficiency, genomics, heritability, meat quality 

Introduction 

There has been an increase in use of beef 

semen on dairy cattle in Denmark in the latest 

10 years. In 2013 less than 5% of calves born 

at 2nd or later calving had a beef bull sire, but 

that number has risen to 34% to 46% in 2023 

depending on dam breed. Since 2015 across 

breed estimated breeding values (EBVs) have 

been published for beef on dairy (BxD) bulls 

in Denmark. Later Nordic Cattle Genetic 

Evaluation (NAV) has developed a joint 

Nordic multibreed genetic evaluation of BxD 

bulls (Carlén et al., 2019).   

In 2019 the FBC project started, aiming to 

improve economy, reducing climate impact, 

and improving meat quality in the production 

of BxD calves by improving their genetic 

potential. The basis is to develop new methods 

to phenotype 12,000 Danish BxD calves from 

Holstein dams and Danish blue, Angus or 

Charolais sires for these three traits. The aim 

of this project is to estimate the genetic 

parameter for feed efficiency during fattening 

period and the marbling score (MS) at 

slaughter. Also, we will shortly present our 

thought on the outline of the evaluation of 
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methane emission, where data is not yet 

available.  

 

Materials and Methods 

 
Data for feed intake 

Daily dry mater intake (DDMI) and birth 

weight (BW) of 4266 crossbred animals during 

100 to 300 days of age were available. The 

crossbred animals were from Danish Blue, 

Angus, or Charolais sire breeds crossed with 

Holstein dams.  

 

Data for marbling score 

Marbling score MS of 1686 crossbred 

animal from 65 Danish Blue sires and Holstein 

dam that were slaughtered between 240 to 360 

days of age were available. Marbling score 

was calculated by Frontmatec by converting 

parameters obtained from picture of rib eye of 

between 5th and 6th ribs taken by a handheld 

camera device (Q FOM™).  

 

Statistical analysis 

 

Bivariate Random regression animal model 

with Legendre polynomial of the days of age 

on the test was used to model DDMI and BW. 

The model for DDMI contained fixed effects 

of slaughter herd by year by month of 

slaughter and by gender of animal interaction; 

sire breeds (Angus, Danish Blue, and 

Charolais); and start age of the test and its 

quadratic term. First order polynomial was 

fitted for fixed part of the model and the 

additive genetics of animal and the permanent 

environment effect. For BW, the fixed effects 

were slaughter herd by year interaction; 

gender; and sire breeds. The fixed effects were 

modeled with second order polynomials and 

the genetics and permanent environment with 

first order polynomials. For MS, a univariate 

animal model was used that included the fixed 

effects of slaughter herd by year by month 

interaction; gender; slaughter age; and carcass 

weight. The DMU software package (Madsen 

and Jensen, 2013) was used for genetic 

parameter estimation.  

 

Genetic Residual feed intake (RFI) 

calculationMethodology of Esfandyari and 

Jensen (2021) and Shirali et al. (2018) was 

used to make the derivations for genetic RFI 

and its component traits as well as the genetic 

regression coefficients. Genetic RFI was 

obtained as the sum of daily dry matter intake 

(TDMI) during 200 to 280 days of age minus 

body weight gain (Gain) and the mid BW 

(MBW) in that period. Where regression 

coefficients for body weight gain and mid BW 

were obtained from the genetic (co)variance 

matrix.  

 

Results & Discussion 

 

The heritabilities were moderate for TDMI 

(0.24), Genetic RFI (0.21), Gain (0.21), and 

MBW (0.35).  The genetic correlation between 

TDMI and RFI was substantially high at 0.82. 

In addition, RFI explained 72% of variation in 

TDMI obtained from genetic variance of RFI 

over the ones from TDMI (484/675). The 

genetic correlation between TDMI and Gain 

was favorable (0.43). Due to the modeling of 

RFI, the genetic correlation between RFI and 

its component traits of Gain (-0.12) and MBW 

(0.00) were very low and close to zero. 

Esfandyari and Jensen (2021) reported a 

heritability of 0.40 to 0.50 for feed intake and 

genetic RFI; and between 40% to 80% 

variance in daily feed intake to be explained by 

RFI. In literature, heritability of feed intake 

during growing period is reported to be 

moderate to high (0.25 to 0.44) (Schenkel et 

al., 2004; and Retallick et al., 2017). 

The heritability for MS was low (0.15). In 

literature, higher heritabilities for marbling 

score were reported for example Bedhane et al. 

(2019), Do et al. (2016), Davis and Simmen 

(2000), Ríos-Utrera et al. (2005), and Nephawe 

et al. (2004) (0.49±0.05, 0.28±0.02, 0.27±0.17, 

0.40±0.09, 0.46±0.06, respectively) reported 

moderate to high heritabilities. The genetic 

correlation between MS and Intramuscular fat 
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was 0.94 as both measurements are obtained 

from parameters in the pictures taken from rib 

eye captured by handheld devices.  

For the methane emission trait, we are 

planning to use the sole ratio between CO2 and 

CH4 directly, as also suggested as a possibility 

by Madsen et al. (2010). Alternatively, daily 

methane production could be calculated, from 

the estimated daily CO2 production and the 

ratio between CO2 and CH4, as also suggested 

by Madsen et al. (2010). However, using their 

method to estimate CO2, it would require 

accurate information on weight gain and feed 

intake. Uncertainty in these data would affect 

the accuracy of the estimated CO2 and thereby 

also the CH4 production.  

 

Conclusions 

 

The one-step method for calculation of 

genetic RFI as measure of feed efficiency can 

act as a good approach to improve modelling 

of feed efficiency. Moreover, the genetic RFI 

is suitable for selection of beef bulls and can 

improve farm efficiency. Marbling score can 

be utilized to improve the quality of carcass. 

These new breeding values can be used as 

additional tools for AI organizations to select 

beef bulls for use on dairy cattle. The result is 

that farm productivity increases while 

consumer satisfactions are met. Adding also a 

breeding value to reduce methane emission 

and thereby lower climate impact of these BxD 

calves, would also increase the acceptance of 

beef from these BxD calves from a consumer 

point of view. 
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Abstract 

Since 2018, Nordic Cattle Genetic Evaluation (NAV) routinely estimates across breed breeding values 

for beef sires based on data from their offspring when used on dairy cows and since 2019, the Nordic 

farmers have access to the Nordic Beef × Dairy overall economic Index (NBDI). To fulfill requests 

expressed by the industry, the NAV Beef × Dairy evaluation traits portfolio has recently been expanded 

to include two new trait groups, youngstock survival and gestation length. The aim of this paper is to 

describe the current Nordic routine evaluation for beef bulls used on dairy cows with focus on the recent 

developments. 

Key words: beef x dairy, genetic evaluation, multi-breed, youngstock survival, gestation length 

Introduction 

 The interest in utilizing beef bulls with 

dairy cows has grown significantly over time. 

The integration of beef semen into dairy herds, 

particularly when paired with sexed dairy 

semen, has proven to be highly beneficial for 

farmers in terms of economic advantages. By 

ensuring replacements from the genetically 

superior animals in the herd and generating 

value-added beef × dairy calves from the 

remaining females, this practice helps 

improving the profitability of the dairy farm. 

 The selection of the appropriate beef bulls 

to be used on the farm is an important factor to 

ensure the success of this practice. Considerable 

across but also within beef breed genetic 

differences have been reported for many traits 

(Davis et al., 2019) which emphasizes the need 

for a multi-breed genetic evaluation of the beef 

bulls used in dairy herds.  

To help farmers in their choice of the right 

beef sires to use, Nordic Cattle Genetic 

Evaluation (NAV) has developed a joint Nordic 

multibreed genetic evaluation of beef bulls used 

in dairy farms (Carlén et al., 2019).  

The aim of this paper is to briefly describe 

the current Nordic routine evaluation for beef 

bulls used on dairy cows with focus on the 

recent developments. 

The Joint Nordic Beef × Dairy Genetic 

Evaluation 

The joint Nordic Beef × Dairy evaluation 

includes data from Finland, Denmark, and 

Sweden and crossbred calves from purebred 

Holstein, Jersey and Red Dairy Cattle (RDC) 

cows. Up to eight individual breeding values 

may be made publicly available for each bull, 

subject to compliance with publication rules.  

Since its launch in 2018, the evaluation is 

publishing 4 breeding values for calving traits: 

calf survival and calving ease based on cows in 

1st and later lactations, respectively and 3 

combined breeding values for carcass traits: 

daily carcass gain, carcass conformation score 

and carcass fat score. 

 In 2019, the Nordic Beef x Dairy economic 

Index (NBDI) was implemented. This index 

assesses the economic value of beef bulls based 

on their genetic potential for producing 

crossbred beef × dairy offspring that benefit 

farmers economically. The NBDI currently 

consists of two sub-indices: one for birth traits, 

which includes calf survival and calving ease in 

later lactations and another for growth traits, 

including daily carcass gain, carcass 

conformation score, and carcass fat score. As 
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the rearing period's length and intensity affect 

the economic values of the growth traits, both 

the growth index and NBDI are available for 

short (below 550 days) and long (above 550 

days) rearing periods. 

Since the launch of the current evaluation, 

industry stakeholders have voiced their desire to 

introduce two additional traits into the 

evaluation framework: Youngstock survival 

(YSS) and gestation length (GL). The addition 

of YSS is particularly pertinent due to its far-

reaching implications for both economic 

viability and animal welfare, thus warranting its 

integration into the NBDI. GL also holds 

significant economic importance as it plays a 

crucial role in effective calving pattern 

management on dairy farms. This importance is 

amplified for dairy farmers participating in beef 

on dairy programs, as gestation length varies 

across different beef breeds (Norman et al. 

2009. This insight underscores the potential for 

managing this trait through careful selection of 

the beef bull used for breeding with the cow. 

However, many studies such as Hansen et al., 

2004 and Eaglen et al., 2013 did not support 

selection for shorter neither longer duration but 

rather opt for intermediate values which were 

found by many studies to be optimal for other 

traits like productive life and calving ease 

(Norman et al., 2011). Consequently, at this 

point, there is no plan to incorporate GL into the 

NBDI.To address the industry's requests, YSS 

was implemented in November 2022, followed 

by GL in May 2023.   

Materials and Methods 

Data 

For both YSS and GL, as with the other beef 

× dairy traits (Davis et al., 2019), the data used 

in the evaluation includes crossbred calves born 

in the three countries from the year 2000 

onward, provided they meet the following 

criteria: 

(i) Born to a purebred dairy dam of the

RDC, Holstein, or Jersey breed.

(ii) Sired by a purebred beef breed AI

sire with a minimum of 50 beef-on-

dairy crossbred offspring.

(iii) Born in a milk-producing herd.

Survival data from Swedish males born prior 

to 2008 and all Finnish data from before 2004 

were omitted from the evaluation due to 

concerns about the completeness of information 

gathered for animals born before respective 

years. For all countries, survival data were 

excluded for all calves born with malformation 

or from multiple births/embryo transfer, those 

that do not survive the first 24h after calving, 

those that are slaughtered or exported within the 

considered period for survival.  

Regarding GL, a similar data editing process 

was applied as that used for the calving traits 

(Fikse et al., 2019). After this editing process, 

data were subject to outlier removal. The 

Interquartile Range (IQR) statistical method 

(Smiti, 2020) was used to identify and discard 

outliers within each sire breed.  

For both YSS and GL, a very limited number 

of records were obtained from Jersey cows in 

Sweden and Finland, which may pose a 

limitation when attempting to account for 

variance heterogeneity within this breed (see 

the "Heterogenous variance adjustment" section 

later in this document). Furthermore, these 

calves born from Jersey cows did not hold 

significant interest in both countries. Therefore, 

records collected from Jersey cows in both 

countries were subsequently excluded from the 

evaluation.  

The final data set included data from 

871,524 records for YSS and 1,157,256 records 

for GL. The data distribution per dam breed and 

country for both trait groups, is shown in Table 

1. 
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Table 1.  Number of survival and gestation length 

records per dam breed and country. 

YSS 

 Denmark Finland Sweden 

Holstein  262335 152056 59905 

RDC 28356 248622 64485 

Jersey 55765   

GL 

Holstein  361974 183625 93955 

RDC 34184 305230 96969 

Jersey 81319   

Trait definitions 

Youngstock survival 

YSS is divided on rearing period to create 

two separate single traits: 

• Survival day 1-30 (YSS1): equal to 1 if the 

calf is alive at day 30, otherwise, it is set to 0 

• Survival day 31-200 (YSS2): equal to 1 if 

the calf is alive at day 200, otherwise, it is set to 

zero. 

In the context of beef production from dairy 

cattle, both male and female animals are 

typically raised under similar conditions and for 

the shared purpose of meat production. 

Consequently, it is reasonable to assess the YSS 

as one trait for both heifers and bull calves. This 

initial assumption was subsequently validated 

during the validation process, the detailed 

results of which are not presented here. 

Gestation length 

Gestation length is defined as the time 

interval, measured in days, from the moment of 

conception to the subsequent occurrence of 

parturition. Distinct traits are defined for heifers 

(GL1) and cows (GL2). 

Heterogeneous variance adjustment 

To account for the heterogeneity of variance 

of YSS across different countries, sexes, birth 

years and dam breeds, Snell scores were used 

(Snell, 1964). Groups used for the 

transformation are subclasses of country – sex – 

year - dam breed. Years with less than 1000 

records were regrouped.  Regarding gestation 

length, a simple correction for phenotypic 

variance was applied with respect to sex, 

addressing a noticeable systematic difference 

observed in the phenotypic standard deviation 

for both traits. 

Genetic evaluation model 

A multiple-trait linear sire model was used 

to evaluate YSS and GL in the Nordic beef × 

dairy evaluation. 

 

Fixed effects 

The fixed effects included in the model are 

described in Table 2. The sire beef breed effect 

is integrated into the model to account for 

systematic differences among sire breeds. 

However, it's important to note that this effect 

is subsequently added to the individual sire 

solutions to derive the final breeding value of a 

bull. Furthermore, it has to be noted that the 

estimated breeding values express the total 

genetic value meaning that they include both 

additive and non-additive genetic effects. The 

transfer effect in the model is defined as a 

binary variable equal to 1 if the calf was 

transferred during the first 100 days of its life 

and zero otherwise. The herd used to create the 

herd-year contemporary group effect for YSS2 

in this case is the herd to which the calf is first 

transferred otherwise it is the birth herd. 

Table 2. Fixed effects included in the model per 

trait. 

 YSS GL 

Sire breed x x 

Country – herd – year x x 

Country – year – month x x 

Country – year – sex x x 

Dam breed – year x x 

Country – parity x  

Country – transfer*  x  

Country – age of the dam  x 

* Only for YSS2 
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Genetic parameter estimation 

The genetic parameters were estimated 

using the DMU software package (Madsen and 

Jensen 2013) with a multiple-trait model 

including data from all countries and breeds. 

 

Genetic base  

The genetic base is defined as 2-5 years old 

crossbreds born after beef breeds which can be 

used in all 3 countries. 

Expression of breeding values 

Like for the other beef × dairy traits except 

the NBDI (Fikse et al., 2019), YSS breeding 

values are presented as relative values, with a 

standardized mean of 100 and a genetic 

standard deviation of 10. 

GL breeding values differ from the other 

traits within the NAV portfolio. They are 

expressed in days and as a deviation from a 

standard dairy gestation length average fixed at 

280 days. This makes it easier to interpret by the 

farmers since the primary use of the GL 

breeding values is to help management of the 

calving patterns. 

 

Results & Discussion 

Survival rates 

In line with what was observed in the Nordic 

purebred dairy YSS data (Carlén et al. 2016) 

and the Danish YSS beef on dairy data (Davis 

et al., 2020), females had a slightly higher 

average survival rate for both evaluation 

periods and survival rates for early period were 

slightly higher than those for later period (Table 

3). Calves born from Jersey cows had a lower 

survival rate than Holstein and RDC for both 

traits (Table 4). This finding aligns with the 

results reported for the Danish YSS beef × dairy 

data by Davis et al. (2020). 

 

 

 

Table 3. Average phenotypic survival rates per sex 

and trait. 

 Number of 

calves 

YSS1 YSS2 

Males 429974 0.96 0.95 

Females 441550 0.97 0.96 

 

 

Table 4.  Average phenotypic survival rates per dam 

breed and trait. 

 Number of 

calves 

YSS1 YSS2 

Holstein 474296 0.97 0.96 

RDC 55765   0.97 0.96 

Jersey 341463   0.95 0.94 

 

Gestation length data 

 

All data combined, GL was about two days 

shorter on average for heifers (282 days) 

compared to cows (284 days) and about one day 

on average shorter for females (283 days) 

compared to males (284 days). 

Phenotypic means of GL varied per sire 

breed with Angus and Belgian Blue having the 

shortest GL and Limousine and Blonde 

d’Aquitaine the longest (Table 5). 

 

Table 5. Number of records (N), Mean, SD and 

Median of gestation length per country and sire 

breed. 

Sire 

breed* 

 N Mean SD Median 

AAN  123012 280.5 5.2 280 

BAQ  236749 287.4 5.6 288 

BBL  289264 280.8 5.1 281 

CHA  98781 283.5 5.6 284 

HER  51168 281.6 5.3 282 

LIM  168572 287.1 5.8 287 

SIM  96720 284.5 5.6 285 

*AAN: Aberdeen Angus; BAQ: Blonde d'Aquitaine; 

BBL: Belgian Blue; CHA: Charolais; HER: 

Hereford; LIM: Limousine; SIM: Simmental 

 

Genetic parameters  

 

The estimated heritabilities for YSS traits 

were low (0.01 for YSS1 and 0.015 for YSS2), 
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and there was a moderate genetic correlation of 

0.3 between the two traits. These findings are 

consistent with what has been reported in other 

studies for YSS traits (Davis et al., 2020; Buch, 

2012). The low heritabilities are expected due 

to the nature of survival data, where only a 

small proportion of animals experience 

mortality and the environmental variation is 

quite high. 

In contrast, high heritabilities were 

estimated for GL (0.56 and 0.57 for GL1 and 

GL2 respectively) and a very high genetic 

correlation of 0.99 was estimated between both 

traits. These results are consistent with the 

literature on GL (Eaglen et al., 2013; Hansen et 

al., 2004; Haile-Mariam & Pryce, 2019; Amer 

et al 2016; Norman et al., 2009).  

 

Relative breeding values 

 

Figures 1 to 3 present a boxplot 

summarizing the breeding values per sire breed 

for YSS1, YSS2 and GL2 respectively. In each 

graph, the central box represents the 

interquartile range (IQR) of the data, with the 

horizontal line inside indicating the median 

breeding value. The lower and upper whiskers 

extend to the minimum and maximum values 

within 1.5 times the IQR, respectively. Data 

points outside this range are identified as 

outliers, representing sires with extreme 

breeding values compared to the rest of the 

population.  

The graphs provide an insightful overview 

of the distribution of breeding values across 

different sire breeds, highlighting both the 

genetic variation among breeds and the 

variability within each breed. The results 

underscore the importance of a multi-breed 

evaluation, highlighting that breed selection 

alone may not suffice. Instead, farmers should 

pay close attention to individual bulls to make 

their breeding decisions. 

 

 
Figure 1.  Box and Whisker Plot of YSS1 Relative 

Breeding Values by Sire Breed: AAN: Aberdeen 

Angus; BAQ: Blonde d'Aquitaine; BBL: Belgian 

Blue; CHA: Charolais; HER: Hereford; LIM: 

Limousine; SIM: Simmental 

 

 

 

 
Figure 2.  Box and Whisker Plot of YSS2 Relative 

Breeding Values by Sire Breed: AAN: Aberdeen 

Angus; BAQ: Blonde d'Aquitaine; BBL: Belgian 

Blue; CHA: Charolais; HER: Hereford; LIM: 

Limousine; SIM: Simmental 

 

Due to the high genetic correlation between 

GL1 and GL2, suggesting that they represent 

the same trait, a decision has been made to 

exclusively publish GL2. 

Both YSS1 and YSS2 breeding values, as 

well as a combined breeding value derived from 

both sources, are now made available for 

publication. Proper economic weights to be 

used for both the combined YSS index and 

inclusion in the NBDI are being calculated and 

are planned to be implemented by the end of 

2023. 
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Figure 3.  Box and Whisker Plot of GL2 Relative 

Breeding Values (expressed in days) by Sire Breed: 

Aberdeen Angus; BAQ: Blonde d'Aquitaine; BBL: 

Belgian Blue; CHA: Charolais; HER: Hereford; 

LIM: Limousine; SIM: Simmental 
 

Conclusions 

 

The study's findings reinforce the necessity 

of conducting multibreed evaluations when 

estimating breeding values for beef bulls used 

in dairy herds. Significant within-breed 

variation was observed for both YSS and GL 

traits, highlighting the importance of 

considering individual sire results rather than 

relying solely on specific breeds. 
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Deregressed genomic breeding values from single-step evaluations 

of test-day traits using all genotype data 
H. Alkhoder, Z. Liu, and R. Reents

IT Solutions for Animal Production (vit), D-27283 Verden / Aller, Germany 

Abstract 

Single-step model has become the Golden Standard for routine genetic evaluation in dairy cattle. For 

various statistical analyses or genomic validation, (daughter) yield deviations or deregressed genomic 

breeding values may be considered as pseudo-phenotype that are more independent from early genomic 

prediction. The aims of this study were to assess GEBV deregression methods for cows and bulls, and 

to validate the deregressed GEBV via a reversibility test. A total of 13.5 million animals with phenotypic 

records, evaluated with a single-step model using the German genotypic and phenotypic data from April 

2023, were considered in the cow GEBV deregression. Likewise, all bulls with daughters and all 

reference cows were included in the bull GEBV deregression. Both GEBV deregression processes used 

the same genotype data and pedigree file as the preceding single-step evaluation. Deregressed GEBV of 

the cows or the bulls were moderately or highly correlated with their GEB, respectively. For the four 

test-day traits, milk, fat and protein yields and somatic cell scores, the deregressed GEBV seemed to 

have a lower trend than their original GEBV. Equal GEBV were obtained in a special single-step 

evaluation using the deregressed GEBV as phenotypic data, in comparison to those GEBV from the 

original single-step evaluation. We obtained equal GEBV not only for the cows with test-day records 

and bulls with daughters but nearly equal also for young, genotyped candidates without own phenotypic 

records. The validation results confirmed that the GEBV deregression was a reversible process and the 

deregressed GEBV were proven to be correct.     

Key words: Deregression, genomic breeding values, single-step model, test-day traits 

Introduction 

The pedigree-based deregression of estimated 

breeding values (EBV) by Jairath et al. (1998), 

also known as the matrix deregression (Calus et 

al. 2016), has been widely used in dairy cattle 

evaluations, for example, for generating 

deregressed bull EBV as input data in Interbull 

MACE evaluation. The current multi-step 

genomic model needed ‘pseudo-phenotypic 

data’, such as the deregressed EBV or proofs 

(DRP), for genomic evaluation and SNP effect 

estimation. Calus et al. (2016) confirmed that 

the matrix deregression method by Jairath et al. 

(1998) was more accurate than the other 

deregression methods. In 2020, a reversibility 

test was conducted on DRP of bull MACE EBV 

on country scale DEU and on DRP of cow 

national EBV for all trait groups evaluated in 

Germany (Liu and Masuda, 2021). We could 

successfully validate the correctness of the DRP 

for all the bulls included in MACE evaluation 

on DEU scale and for all the domestic cows 

with own phenotypic records across all the 

evaluated trait groups.  

 Liu and Masuda (2021) and Masuda et al. 

(2021) developed GEBV deregression methods 

for the single-step SNP BLUP model and the 

single-step GBLUP model, respectively. The 

aims of this study were to 1) deregress genomic 

estimated breeding values (GEBV) of the 

single-step model for four test-day traits in 

German Holstein separately for bulls with 

daughters and for cows with own test-day 

records, and 2) validate the deregressed GEBV 

for the two groups of animals with phenotypic 
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data as well as for all genotyped animals 

including young candidates.  

 

Materials and Methods 

A single-step SNP BLUP model for GEBV 

deregression    

Prior to deregressing GEBV of cows or bulls, 

four test-day traits, milk yield (MKG), fat yield 

(FKG), protein yield (PKG), and somatic cell 

scores (SCS), were evaluated separately using a 

single-step SNP BLUP multi-lactation random 

regression test-day model (Alkhoder et al. 

2022). For a detailed description of the single-

step model, see the paper by Alkhoder et al. 

(2023). We applied here a special single-trait 

single-step model to deregress GEBV from the 

preceding single-step evaluation: 

   𝐲 = 𝜇𝟏 + 𝐮 + 𝐞         [1] 

where y is a vector of deregressed GEBV 

(dGEBV) of animals with own phenotype data, 

1 is a vector of 1s, µ is a general mean, u is a 

vector of GEBV for the animals with own 

phenotype data, and e is a vector of residuals. 

The dGEBV y are unknown and will be 

estimated in the deregression process. It is 

assumed that  

 [𝑣𝑎𝑟(𝐞)]−1 =  𝐃𝜎𝑒
−2 = 𝑑𝑖𝑎𝑔{𝜑𝑖}𝜎𝑒

−2  [2] 

where D is a diagonal matrix containing 

effective daughter contribution (EDC) of bulls 

with daughters or effective record contribution 

(ERC) of cows with own phenotype records on 

the animal-model basis, 𝜑𝑖 , for animal i, 𝑖 =

1, … , 𝑛, and n is the number of animals with 

phenotype data. 𝜎𝑒
2  is residual variance. For 

more details about the deregression model [1], 

see the paper by Liu and Masuda (2021).  

Phenotypic, genotypic and pedigree data 

were taken from the routine evaluation in April 

2023 for German dairy breeds Holstein, Red 

Dairy Cattle, and Jersey. Table 1 describes the 

data sets for the single-step evaluation as well 

as for the following step of GEBV deregression 

for all cows with phenotypic records of the three 

breeds. All the cows with own test-day records 

included in the original single-step evaluation 

were considered in the cow GEBV deregression 

process, too. A total of 1,318,780 genotyped 

Holstein animals were included in the 

deregression process as in the original single-

step evaluation. Consequently, the same 

pedigree file containing 21,850,276 animals 

was used in the cow GEBV deregression 

process as in the preceding single-step 

evaluation.  

 

Table 1. Description of the data sets for the single-

step evaluation and cow GEBV deregression   
Frequency Single-step 

evaluation 

Cow GEBV 

deregression 

Genotyped 

animals 
1,318,780 1,318,780 

Phenotyped 

animals 
13,528,444 13,528,444 

Phenotypic 

input data 

263,673,267 

test-day 

records 

13,528,444 

GEBV 

Genotyped or 

phenotyped 

animals 

14,402,662 14,402,662 

Animals in 

pedigree 
21,850,276 21,850,276 

 

 For deregressing GEBV of bulls with 

daughters, sires of the phenotyped cows were 

treated as animals with own phenotypic records. 

In addition, genotyped cows with own 

phenotypic data must be considered also as 

phenotyped animals, because the genotyped 

sires of the cows no longer represented the full 

genomic reference population when the 

genotyped cows were available. To guarantee 

the complete phenotypic and genotypic 

information content of the reference population 

to be utilized in the GEBV deregression process 

as the preceding single-step evaluation, all the 

genotyped cows with own test-day records were 

also added to the list of animals with phenotypic 

data for the deregression process of the bull 

GEBV. The total number of bulls with daughter 

phenotypic information and the genotyped 

cows with test-day records amounted to 

664,548. To avoid double counting the 

reference cows’ contribution to their sires, EDC 

of the sires was adjusted for the contribution by 
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their reference daughters. As in the 

deregression of cow GEBV process, all 

genotype data of 1,318,780 Holstein animals 

were also considered in the deregression 

process for GEBV of the bulls.  

 

A reversibility test for validating the GEBV 

deregression   

A validation study of the GEBV deregression 

was conducted to see if the deregression of 

GEBV was a reversible process or in other 

words if equal GEBV could be obtained from a 

special single-step evaluation with their 

dGEBV as input ‘phenotypic’ data. In case of 

the cow GEBV deregression, a single-trait 

single-step model [1] was applied to the 

dGEBV of all the cows with test-day records. 

The aim of this validation was to see if equal 

GEBV could be obtained from the special 

single-step evaluation as from the original 

single-step evaluation using the test-day records 

for all the cows.  

 To validate the GEBV deregression for the 

bulls with daughters, we used dGEBV of all the 

sires of the cows as input phenotypic data for 

the special single-step evaluation under Model 

[1]. In addition, dGEBV of the reference cows 

were used also in the validation process, 

because the genotyped bulls with daughters did 

not represent the complete reference population 

due to the high number of genotyped cows with 

test-day records. Like the validation of the cow 

GEBV, it was to be verified if equal GEBV of 

the bulls were obtained from the special single-

step validation evaluation as from the 

preceding, original single-step evaluation.  

 Genotyped, young candidates were included 

both in the special single-step evaluations for 

validating the GEBV deregression and in the 

preceding, original single-step evaluation based 

on the test-day data. Though these candidates 

did not have own phenotypic records, we would 

like to know if they received equal GEBV from 

the two single-step evaluations.  

 

 

 

Results & Discussion 

 

The deregression of the cow or bull GEBV from 

the original single-step evaluation was 

conducted using the software suite MiX99 

(Strandén and Mäntysaari, 2010). Two separate 

deregression processes were performed for the 

cows with test-day records and for the bulls 

with daughters. The original single-step 

evaluation for the four test-day traits was 

described already in the paper by Alkhoder et 

al. (2022). Overall, the GEBV deregression 

using the single-trait single-step model [1] 

required a little less computing time and less 

memory than the original single-step evaluation 

with test-day records.  

 

Deregressed GEBV of cows with test-day 

records  

For the cow GEBV deregression, a total of 11.8 

million Holstein cows with test-day records 

were considered in the multi-breed evaluation 

system in Germany. Figure 1 shows observed 

correlation between dGEBV and GEBV of milk 

yield for the Holstein cows in green line. The 

number of cows born each year was shown in 

grey bars on the secondary Y-axis. The 

correlation is about 0.84 from the oldest cow 

birth year 2000 to 2013 and decreases gradually 

afterwards. As a result of incomplete or missing 

lactations in the last three birth years, the 

correlation between dGEBV and GEBV drops 

markedly between the single-trait model with 

dGEBV as input data and the original multi-

lactation single-step model with test-day yields. 

Figure 2 shows average dGEBV and GEBV 

of the Holstein cows born between 2000 to 2020 

for trait milk yield. The trends in both dGEBV 

and GEBV are similar, with a little lower trend 

in dGEBV (the solid line in red) than GEBV 

(the dotted line in black). On average, the 

difference between dGEBV and GEBV changes 

from about 50kg in year 2000 to -50kg in birth 

year 2020, representing 15% genetic standard 

deviations over 20 years. The dGEBV of the 

cows have much larger (error) variance than 
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their GEBV, with an average within-year ratio, 

var(GEBV)/var(dGEBV), being 0.23.  

 For the 11.8 Holstein cows, similar results 

were obtained for the other 3 traits as for milk 

yield.  

 

 
Figure 1. Correlation between deregressed GEBV 

and GEBV of milk yield for Holstein cows with test-

day records  
 

Deregressed GEBV of bulls with daughters  

A total of 24,016 Holstein bulls that had 

daughters in 10 or more herds in Germany were 

selected for evaluating dGEBV of the bulls. 

Figure 3 shows the correlation between dGEBV 

and GEBV of the Holstein bulls born in 1998 

through 2018. With the introduction of genomic 

selection in Germany in 2009, the correlation 

decreases steadily from 0.97 to 0.90. Bulls born 

in the last 3 years, 2016 to 2018, have much 

lower correlation, because their daughters have 

missing or incomplete lactations.  

 

 
Figure 2. Averages of deregressed GEBV and 

GEBV of milk yield for Holstein cows with test-day 

records  

 

As far as the trends are concerned, dGEBV 

of the bulls are shown to have almost equal 

averages by birth year, except the last 3 birth 

years (Figure 4). For the youngest bulls born in 

the last 3 years having daughters with missing 

or incomplete lactations, dGEBV of these bulls 

deviate evidently from their GEBV.   

 

 
Figure 3. Correlation between deregressed GEBV 

and GEBV of protein yield for Holstein bulls with at 

least 10 herds in Germany   

 

 Deregressed GEBV of the bulls have higher 

(error) variance, with a ratio of standard 

deviation of GEBV over standard deviation of 

dGEBV being 0.91 for all birth years till 2016. 

Deregressed GEBV of the bulls born in last two 

years have significantly larger (error) variance 

than their GEBV.  

 

 
Figure 4. Averages of deregressed GEBV and 

GEBV of protein yield for the Holstein bulls by birth 

year    
 

Validation results on deregressed GEBV of 

cows with test-day records   

Due to different cow base populations for the 

Holstein breeds Black and White (B&W) and 

Red and White (R&W), 12.6 million B&W 

Holstein female animals were chosen to 

compare their single-step GEBV using dGEBV 

and test-day yields as ‘phenotypic data.’ The 

B&W female animals include all B&W cows 
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with test-day records, their female ancestors, 

and young genotyped female animals without 

own test-day data yet. 

It can be seen in Figure 5 that the two sets of 

GEBV of the B&W female animals, estimated 

using dGEBV as ‘phenotypic data’ and using 

original test-day milk yields, are above 0.99 for 

all birth years, except for the birth years 2021 

and later. Even the young, genotyped females 

without own test-day milk yields have a 

correlation of GEBV higher than 0.98.   

 

 
Figure 5. Correlation of single-step GEBV using 

deregressed GEBV and test-day yields of milk yield 

for all B&W Holstein females     
   

 Equal genetic trends were found in the 

single-step GEBV using dGEBV and test-day 

milk yields of the cows. In addition, the two sets 

of GEBV had equal variances for all birth years 

of the Holstein females, except that the female 

candidates born after 2020 had about 1% to 2% 

lower standard deviations of the GEBV using 

dGEBV as ‘phenotypic records’ than using test-

day milk yields.  

The validation results for the trait milk yield 

were seen also for the other remaining test-day 

traits. In summary, the special single-step 

evaluation with dGEBV of the cows as 

phenotypic records gave identical GEBV, as 

those obtained from the original single-step 

evaluation using test-day data, for all the 

Holstein females as well as for all other groups 

of animals in the single-step evaluation. The 

identical GEBV from the two single-step 

evaluations indicated the dGEBV of all the 

cows were accurately calculated.  

Validation results on deregressed GEBV of 

bulls with daughters   

As stated above, all the reference cows were 

considered in the bull GEBV deregression 

process to guarantee the complete genomic 

reference population being used in the 

deregression of GEBV of the bulls with 

daughters. To compare GEBV from the special 

single-step evaluation with dGEBV of the bulls 

and all the reference cows to those from the 

original single-step evaluation, we selected 

10,770 B&W German Holstein AI bulls born 

from 1998 through 2022, including young 

genomic AI bulls born in 2019 and after.  

 Figure 6 shows GEBV correlation of protein 

yield for 10,770 B&W German AI bulls 

between the special single-step evaluation with 

dGEBV as phenotypic records and the original 

single-step evaluation with test-day protein 

yields. It can be clearly seen that the GEBV 

correlation is unity for all the birth years of bulls 

with daughters. However, for the young AI 

bulls born in 2019 and later the GEBV 

correlation is decreased to 0.985. The slightly 

lower GEBV correlation for the young AI bulls 

suggests that the multi-lactation test-day single-

step model made a little different genomic 

prediction than the single-trait single-step 

model with one dGEBV as ‘phenotypic 

records’. As far as variance of the GEBV of the 

two single-step models are concerned, young 

genomic AI bulls have slightly higher GEBV 

variance with dGEBV as input data of the 

special single-step evaluation than the original 

single-step evaluation (Figure 7).  

From Figures 6 and 7 we can draw a 

conclusion that the deregression of GEBV for 

bulls with daughters seems to be correct. 

 

Conclusions 

 

Deregressed EBV or deregressed GEBV 

have appealing statistical properties for diverse 

applications. The current multi-step genomic 

model was relied on the deregressed 

conventional EBV as ‘pseudo-phenotypic’ data.  
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Figure 6. Correlation of single-step GEBV using 

deregressed GEBV and test-day yields for protein 

yield of all B&W German Holstein AI bulls      
 

 

 
Figure 7. Ratio of standard deviations of GEBV of 

the B&W German Holstein AI bulls from the single-

step evaluation with deregressed GEBV as input data 

over standard deviations of GEBV from the original 

single-step evaluation with test-day protein yields  
 

We extended the matrix deregression method to 

deregress GEBV of the single-step evaluation. 

The single-step GEBV deregression method 

was assessed successfully for the four test-day 

traits in German Holstein. For all cows with 

test-day records, deregressed GEBV were 

moderately correlated with their GEBV. For 

bulls with daughters, degression of their GEBV 

must include GEBV of all genotyped cows with 

phenotypic records, because the genotyped 

bulls no longer represented the complete 

reference population which must be guaranteed 

in the bull GEBV deregression process as in the 

original single-step evaluation. For both cows 

with test-day records and bulls with daughters, 

deregressed GEBV had lower genetic trends, 

especially for cows with lactation in progress or 

missing lactations and for bulls having 

daughters with lactation in progress or missing 

lactations. Deregressed GEBV had higher 

variance than GEBV for the cows or bulls, in 

particular the cows’ deregressed GEBV being 

much more variable than the bulls’. Equal 

GEBV were obtained from a special single-step 

evaluation with the deregressed GEBV as 

phenotypic data, compared to GEBV from the 

original single-step evaluation. This confirmed 

that the GEBV deregression was a reversible 

process. Not only the cows with test-day 

records and bulls with daughters received equal 

GEBV from the special single-step evaluations 

as from the original single-step evaluation, but 

also young, genotyped candidates obtained 

almost identical GEBV from the two single-step 

evaluations. In comparison to GEBV used as 

dependent variable in GEBV validation, the 

deregressed GEBV were more independent 

from the early GEBV of validation animals, 

therefore the deregressed GEBV may be more 

suited as the dependent variable of the GEBV 

test.  
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Application of the Interbull genomic reliability method for single-

step evaluations of test-day and conformation traits in German 

Holstein 
Z. Liu, H. Alkhoder, and R. Reents

IT Solutions for Animal Production (vit), D-27283 Verden / Aller, Germany 

Abstract 

National single-step genomic evaluation required accurate genomic reliabilities, particularly for young, 

genotyped animals. The Interbull genomic reliability method was tested for single-step evaluation of 

four test-day traits as well as for 25 conformation traits in German Holstein. Genotypic, phenotypic and 

pedigree data were taken from the official genomic evaluation in April 2023. More than 1.3 million 

genotyped animals were considered jointly with non-genotyped animals, and the genomic reference 

population exceeded half a million animals for the test-day traits. Selecting fewer SNP markers in 

reliability calculation for direct genomic values (DGV) was proven to be an efficient way of decreasing 

computing time or memory usage while retaining a reasonable accuracy when at least 15,000 equidistant 

SNP markers were chosen. Due to the extremely large reference population, the level of DGV 

reliabilities was very high, also for the young, genotyped candidates. Adjusting the theoretical DGV 

reliabilities based on the Interbull reliability method seemed to be unavoidable, especially for the large 

reference population. Variation in the DGV reliabilities was shown to be small among animals born in 

the same year, especially among the young, genotyped animals without own phenotypic records. 

Therefore, a constant genomic effective daughter contribution could result in reasonably accurate 

genomic reliability values and at the same time may provide a computationally much less demanding 

way for routine genomic reliability calculation with several million genotyped animals included. The 

single-step genomic reliability values were compared to conventional reliabilities as well as genomic 

reliabilities from the current multi-step genomic model for diverse groups of animals of German 

Holstein. The single-step genomic reliabilities of the test-day and conformation traits seemed to be 

consistent with the variance of genomic breeding values.  

Key words: Genomic reliability, genomic breeding values, single-step model, test-day traits 

Introduction 

Single-step evaluation required accurate 

reliability values for estimated genomic 

breeding values (GEBV). The Interbull 

genomic reliability method (Liu et al., 2017) 

was developed for the current multi-step 

genomic model (MSM) as well as the single-

step genomic model (SSM). The main goal of 

the Interbull genomic reliability method was to 

make national genomic reliabilities comparable 

across countries by applying the same reliability 

method in all the countries. Ideally, genomic 

reliability values should be consistent with the 

variances of GEBV. The main features of the 

Interbull genomic reliability method were 1) 

treating genotype data as an additional source of 

information contributing to animal’s total 

reliability, 2) calculating exact, theoretical 

reliabilities of direct genomic values (DGV) for 

all genotyped animals under a SNP BLUP 

model, and 3) adjusting genomic reliabilities 

based on GEBV variance changes of validation 

bulls (VanRaden and O’Connell, 2018).  

 The step of calculating exact reliabilities of 

DGV in the Interbull genomic reliability 

method may take considerable computing time 

for countries with extremely large reference 

populations, even with the highly efficient 

software snp_blup_rel (Ben Zaabza et al. 2020). 
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Reducing the number of SNP markers can 

decrease the computing time for the calculation 

of DGV reliabilities. The impact of skipping 

this step of DGV reliability calculation in 

routine evaluation needed to be investigated.    

 The aims of this study were 1) to apply the 

Interbull genomic reliability method to 

genotypic, phenotypic and pedigree data of the 

German Holstein single-step evaluations for 

test-day and conformation traits, 2) to compare 

the accuracy of DGV reliabilities between 

scenarios using all and fewer SNP markers, and 

3) to investigate the level and variation of the 

exact DGV reliabilities for young, genotyped 

candidates.  

 

Materials and Methods 

 

Data for single-step evaluation    

Phenotypic, genotypic and pedigree data were 

obtained from the April 2023 routine evaluation 

of German dairy cattle breeds. Two groups of 

traits were chosen for this study: 25 

conformation traits (Alkhoder et al. 2021) and 

four test-day traits (Alkhoder et al., 2023) 

including milk yield (MKG), fat yield (FKG), 

protein yield (PKG), and somatic cell scores 

(SCS). The conformation trait stature (STA) 

represented a linear type trait with a complete 

classification history, whereas the recording of 

locomotion (LOC) started several years later 

than STA. The national trait udder balance 

(EUB) was not included in Interbull MACE 

evaluation, and a new definition of angularity 

(ANG) was recently introduced in Germany in 

April 2023 with a much smaller phenotypic data 

set. Table 1 describes the data sets for the 

single-step evaluations of the test-day traits as 

well as the conformation traits for the German 

dairy breeds. The size of the bull and cow 

reference population for German Holstein breed 

is 524,187 for each of the four test-day traits or 

386,062 for the conformation traits.  

 To validate the calculated genomic 

reliabilities of the test-day traits, the same 

truncated phenotypic data for the GEBV 

validation were used as in Alkhoder et al. 

(2023). Test-day records in last 4 years from the 

evaluation April 2021 were truncated for 

simulating an early prediction back in April 

2017. In contrast to the data truncation of 4 

years for the test-day traits, conformation 

records in last two years were removed from the 

full evaluation of April 2023 for simulating an 

early evaluation in April 2021.  

 

Table 1. Description of the data sets for the single-

step evaluations of four test-day and 25 

conformation traits in April 2023    
Frequency Test-day 

traits 

Conformation 

25 traits 

Genotyped 

animals 

1,318,780 Holstein animals 

(1,138,039 females and 

180,741 males) 

Phenotyped 

animals  

13,528,444 3,144,366 

Phenotypic 

records 

263,673,267 

test-day 

yields 

3,144,366 

type records 

Genotyped or 

phenotyped 

animals 

14,402,662 4,131,336 

Animals in 

pedigree 

21,850,276 10,048,593 

Reference 

animals 

524,187 386,062 

 

 Table 2 shows the data sets used for 

validating genomic reliabilities, including both 

the full and truncated evaluations. For each test-

day trait, the number of reference animals 

decreased more than a half in the truncated 

evaluation, due to the rather short history of 

female animal genotyping in Germany. To 

make the genomic validation reflect more 

realistically a future prediction, only two years 

of phenotypic data were therefore deleted for 

the conformation traits. The number of 

reference animals for the conformation traits 

was reduced from 386,062 in the full evaluation 

in April 2023 to 263,252 in the truncated 

evaluation in April 2021. The genomic 

validation for the test-day traits was conducted 

using data from an older evaluation than the 

conformation traits.  
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Table 2. Description of the data sets for validating 

genomic reliabilities for the test-day and 

conformation traits     

Frequency Test-day 

4 traits 

Type 

25 traits 

Full evaluation April 2021 April 2023 

Truncated run April 2017 April 2021 

Genotyped 

Holstein animals 

949,636 1,318,780 

Phenotyped 

animals (full & 

truncated runs) 

12,571,710 

11,032,395 

3,144,366 

2,862,770 

Animals in 

pedigree 

20,461,400 10,048,593 

Reference animals 

(full & truncated 

evaluations) 

353,347 

156,970 

386,062 

263,252 

For computing the exact, theoretical 

reliability values of DGV for all genotyped 

animals, a genomic reference population 

comprising genotyped cows or bulls with own 

phenotypic data needed to be set up. Table 3 

describes the composition of genomic reference 

population for 5 selected traits: PKG 

representing the test-day traits, four 

conformation traits STA, LOC, ANG and EUB. 

In Table 3 it can be seen that the test-day milk 

production trait PKG has more than half a 

million reference animals as a result of the 

large-scale female animal genotyping in 

Germany. The 4 conformation traits have a 

smaller reference population than the test-day 

trait PKG, because not all cows in milk 

recording program were classified for 

conformation. The national trait EUB has only 

a little lower number of reference animals than 

the regular type traits STA and LOC. Due to the 

trait definition change that was introduced in 

April 2023, the conformation trait ANG has the 

lowest number of genotyped cows with 

classification record according to the new 

definition.  

 Between the data sets for April 2023 and 

April 2021 there was a difference in genotype 

editing for bulls. Due to un-intentional selective 

genotyping of bulls in early years of genomic 

selection, we decided to remove genotype 

records of bulls born before 2005 in the single-

step evaluations with the data set from April 

2023. However, this genotype data editing was 

not implemented in the single-step evaluations 

with the data set from April 2021.  

Table 3. Genomic reference populations of selected 

traits in April 2023 evaluation    

Trait 
Reference animals 

Cows Bulls Total 

Protein yield 478,588 45,591 524,179 

Stature 357,365 28,635 386,000 

Locomotion 349,083 27,696 376,779 

Angularity 198,170 27,748 225,918 

Udder balance 305,122 27,205 332,327 

Scenarios of reducing SNP markers for faster 

calculation of DGV reliabilities 

As a core component of the Interbull genomic 

reliability method (Liu et al. 2017), the 

calculation of DGV reliability values may be 

computationally demanding for extremely large 

reference populations like those in Table 3. 

Therefore, the impact of reducing SNP markers 

on the DGV reliabilities was investigated in a 

similar way by selecting equidistant SNP 

markers as by Sargolzaei et al. (2014) and 

Strandén and Mäntysaari (2015). Table 4 

describes the test scenarios of selecting the SNP 

markers for faster DGV reliability calculation. 

The base scenario of using all SNP markers, 

RELall, has 45,613 SNP markers included in 

the DGV reliability calculation as in the routine 

genomic evaluation for German Holstein. Five 

additional scenarios were simulated by 

selecting every 2 (RELevery2), every 3 

(RELevery3), every 4 (RELevery4), every 5 

(RELevery5) and every 10 (RELevery10) 

equidistant SNP markers. When every 10 SNP 

markers were selected in scenario RELevery10, 

the number of markers was reduced to 4,562. 

For this specific investigation, genotypic and 

phenotypic data from April 2021 were used (see 

Table 2) and the selected trait was PKG.  
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Table 4. Scenarios of selecting equidistant SNP 

markers for faster calculation of DGV reliabilities 

Scenario 

No. 

markers 

All SNP markers (RELall) 45,613 

Every 2 markers (RELevery2) 22,807 

Every 3 markers (RELevery3) 15,205 

Every 4 markers (RELevery4) 11,404 

Every 5 markers (RELevery5)   9,123 

Every 10 markers (RELevery10)   4,562 

 

 

Results & Discussion 

 

All computations were done on a Linux server 

equipped with 42 cores and 512Gb RAM.  

 

Impact of fewer markers on DGV reliabilities  

Reducing the number of SNP markers for the 

DGV reliability calculation leads to significant 

decreases in computing time and memory 

usage, which can be seen clearly in Table 5.  

For the base scenario of using all SNP 

markers, RELall, the computing time of the 

DGV reliability values depended mostly on the 

number of all genotyped animals and the 

number of animals in reference population. For 

weekly genomic evaluation by adding up to 

20,000 newly genotyped animals, the DGV 

reliability calculation required less than 4 

minutes.  

 

Table 5. Computational requirements for the 

scenarios of the calculation of DGV reliabilities 

Scenario 

Total 

time 

(min.) 

Peak 

RAM 

(Gb) 

All SNP markers (RELall) 215 88 

Every 2 markers (RELevery2) 96 42 

Every 3 markers (RELevery3) 71 28 

Every 4 markers (RELevery4) 60 21 

Every 5 markers (RELevery5) 55 18 

Every 10 markers 

(RELevery10) 

47 10 

 

Figure 1 shows average DGV reliabilities of 

all 949,636 genotyped Holstein animals in the 

April 2021 evaluation for trait PKG. The 

number of genotyped animals (in blue bar) 

increased drastically in recent years, due to the 

routine herd genotyping of female animals in 

Germany. Thanks to the higher number of 

reference animals, 353,347 (Table 2), DGV 

reliabilities for the genotyped animals have a 

rather high average, above 0.94 for candidates 

younger than 1 year old.  

 

 
Figure 1.  Average DGV reliabilities of protein yield 

for genotyped Holstein in April 2021 evaluation   
 

Figure 2 shows correlation of DGV 

reliabilities between a scenario and the base 

scenario for protein yield of all the genotyped 

animals. Across all the birth years, the within-

year correlation has an average of 0.997, 0.990, 

0.980, 0.968, and 0.903 for the scenarios 

RELevery2, RELevery3, RELevery4, 

RELevery5, and RELevery10, respectively.   

 

 
Figure 2.  Correlation of DGV reliabilities between 

different scenarios for protein yield of all genotyped 

Holstein animals 

 

Figure 3 shows average difference in DGV 

reliabilities of protein yield for all genotyped 

animals between a scenario and the base 

scenario. With fewer SNP markers selected, 

DGV reliabilities tend to be over-estimated by 
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comparing to the base scenario using all the 

SNP markers. The difference in DGV 

reliabilities seems to higher for the youngest or 

oldest genotyped animals than animals in 

between. It can be clearly seen that using fewer 

SNP markers leads to higher DGV reliability 

values.  

 

 
Figure 3.  Average differences of DGV reliabilities 

of protein yield of the scenarios with the base 

scenario using all markers for all genotyped animals         
 

For the youngest candidates born in 2020 

and later in the April 2021 evaluation, their 

DGV reliabilities of the base scenario were 

regressed on those from each of the scenarios. 

Figure 4 shows that selecting every 3 

equidistant markers of scenario RELevery3 

gives a reasonably high correlation of DGV 

reliabilities with the base scenario of using all 

SNP markers and at the same time requires only 

c.a. 1/3 RAM usage and computing time (Table 

5).   

 

 
Figure 4.  Regression of DGV reliabilities of 

youngest candidates born after 2020 from the base 

scenario on the other scenario for trait protein yield          
 

Average and variance of DGV reliabilities      

For 8,123 Holstein AI bulls owned by German 

AI studs, Figure 5 and Figure 6 show average 

DGV reliabilities by birth year for the test-day 

traits and for the four chosen conformation 

traits, respectively. Because of the extremely 

large reference populations (Table 3), the 

average of DGV reliabilities is very high for any 

of the 8 selected traits, particularly for the 

young genomic AI bulls born in 2020 to 2022. 

Trait ANG has the lowest DGV reliabilities, due 

to its smallest reference population. Another 

reason for the extremely high level of DGV 

reliabilities is that no residual polygenic effect 

be assumed in the SNP BLUP model for the 

DGV reliability calculation.  

 

 
Figure 5.  Average DGV reliabilities of German 

Holstein AI bulls for test-day traits  

 

 

 

 
Figure 6.  Average DGV reliabilities of German 

Holstein AI bulls for four conformation traits   

 

Standard deviation of DGV reliabilities of 

the AI bulls is shown in Figure 7 for the test-day 

traits and in Figure 8 for the four conformation 

traits, respectively. It can be seen in both figures 

that traits with larger or more informative 

reference population have lower variation in 

DGV reliabilities. Test-day trait MKG, having 

the highest heritability value and thus the 

highest reliability among the four test-day traits 

and all the 8 traits, has shown to be least 
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variable in DGV reliabilities. In contrast, 

conformation trait ANG has the largest variance 

in DGV reliabilities due to its smallest reference 

population. Across all the traits, the DGV 

reliabilities have rather small variation, 

especially for young genomic AI bulls born in 

2020 and later.  

 

 

 
Figure 7.  Standard deviations of DGV reliabilities 

of the German Holstein AI bulls for test-day traits   

 

 

 
Figure 8.  Standard deviations of DGV reliabilities 

of the German Holstein AI bulls for the four 

conformation traits   

 

 

 

 
Figure 9.  Genomic and conventional reliabilities of 

the German Holstein AI bulls for trait protein yield    

 

Genomic and conventional reliabilities      

For trait PKG, Figure 9 shows genomic and 

conventional reliability values of Holstein AI 

bulls owned by German AI studs. For bulls with 

complete daughter information born between 

1998 and 2015, genomic and conventional 

reliabilities are essentially equal. However, for 

bulls born in 2016 and later with incomplete or 

no daughter information yet, genomic 

reliabilities are a little or significantly higher 

than the conventional reliabilities, respectively. 

Figure 10 shows genomic and conventional 

reliabilities of trait ANG. Due to much less 

national cow data for this newly changed trait, 

bulls with or without daughters have always 

higher genomic reliabilities than conventional 

reliabilities.  

Like trait PKG, genomic and conventional 

reliabilities are nearly equal for bulls with 

daughters and higher for young AI bulls without 

daughters for all the other test-day or the 

conformation traits, except ANG.   

 

 
Figure 10.  Genomic and conventional reliabilities 

of the German Holstein AI bulls for trait angularity       

 

Single-step and multi-step genomic reliability 

values  

For trait PKG, both single-step and multi-step 

genomic reliabilities are shown in Figure 11 for 

the German Holstein AI bulls. As a result of the 

removal of genotype data of bulls born before 

2005, single-step reliabilities are a little bit 

lower than the multi-step ones for the daughter-

proven bulls born between 1998 and 2004. 

Overall, the two sets of genomic reliabilities are 

nearly equal for all the bulls with daughters. The 

single-step genomic reliabilities are evidently 
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higher than the multi-step ones for the young AI 

bulls born in 2020 and later, because the SSM 

uses more phenotypic and genotypic 

information than the MSM.  

 

 
Figure 11.  Single-step and multi-step genomic 

reliabilities of the German Holstein AI bulls for 

protein yield   

 

 

 For trait ANG with its definition changed 

recently, only two years of domestic cows had 

phenotypic records, besides the MACE data of 

foreign bulls. The SSM reliabilities are 

significantly higher than reliabilities of the 

MSM, as shown in Figure 12. The much lower 

SSM reliabilities for the AI bulls born before 

2005 can be explained by the truncation of 

genotype data of the bulls born in 2004 and 

earlier. For new traits like ANG with limited 

phenotypic information, SSM is shown to have 

clearly higher genomic reliabilities than the 

current MSM.  

 

 
Figure 12.  Single-step and multi-step genomic 

reliabilities of the German Holstein AI bulls for 

angularity         

 

 

 

Conclusions 

 

Interbull genomic reliability method was tested 

for the single-step genomic evaluation using 

phenotypic, genotypic and pedigree data of 

German dairy cattle from the April 2023 official 

evaluation. Calculation of exact, theoretical 

DGV reliability values for all genotyped 

animals was shown to be the most time-

consuming step of the Interbull genomic 

reliability method. Five scenarios of reducing 

the number of SNP markers were conducted to 

investigate the computational efficiency and 

DGV reliability accuracy. For the extremely 

large reference population of German Holstein, 

at least 15,000 equidistant SNP markers must be 

chosen to achieve a reasonably high accuracy of 

the DGV reliabilities while significantly 

reducing the computing time and memory 

usage. Based on the genotypic and phenotypic 

data of four test-day traits and 25 linear 

conformation traits, average and variances of 

the DGV reliabilities for various groups of 

animals were calculated. The average of the 

DGV reliabilities for young, genotyped animals 

was found to be rather high, possibly caused by 

the size of the extremely large reference 

population. The very high level of DGV 

reliabilities suggested that an adjustment of the 

theoretical DGV reliabilities be necessary to 

guarantee the proper level of genomic 

reliabilities for young candidates. Meanwhile it 

was shown that variation of the DGV 

reliabilities within birth year was small, which 

indicated that calculating individual DGV 

reliabilities be less crucial for a large reference 

population like German Holstein. By 

comparing to conventional reliabilities and the 

current MSM genomic reliabilities, the final 

genomic reliabilities of the single-step model 

were shown to be higher for young, genotyped 

candidates without own phenotypic data. Based 

on the application of the Interbull genomic 

reliability method to the German dairy cattle 

data, guidelines for a routine implementation in 

national single-step evaluation will be 

developed.  
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Abstract 

Interbull Centre has been closely working with several working groups on different topics spacing 

from the improvement of the MACE model to a revision of validation methods due to genomic pre-

selection to expansion of the MACE and Interbeef portfolio to new traits. The activity of such working 

groups has progressed so nicely that the outcome of their research has been either recently 

implemented or it is aimed for an implementation in the near future (within one year’s time). The 

present article aimed at providing the reader with an overall view of such activities and the related new 

services they have, or are going to, generate. 

Key words: International Evaluations, Interbull, Interbeef, Validation, Genomic pre-selection, New 

traits 

Introduction 

Interbull Centre is the operational unit of 

Interbull, a permanent sub-committee of 

ICAR, located in Uppsala (Sweden) and 

represented by a team of 10 people between 

geneticists and IT. In reality, though, and 

thanks to the world wide network available 

through the Interbull community, the Interbull 

Centre team can count on a much larger 

resource availability represented by the 

different technical working groups whose 

members are part of either the steering or 

technical committees. Interbull Centre staff 

works closely with such working groups 

providing assistance on matters like data and 

infrastructure availability, feedback and 

guidance, when needed, so to assure a 

smoother and timely transition of the different 

research areas into productions. 

The activity, deliverables and/or 

implementations’ plans for several Interbull 

activities as described in Fig. 1 has been 

reviewed in the present article.  

Evaluation – Plans for a “GPS-MACE” 

One of the main role for Interbull has been 

to provide international genetic (via MACE) 

and later on genomic (via GMACE, 

InterGenomics) evaluations to the different 

member countries so to facilitate the 

comparison of bulls’ performances across 

countries and, in doing so, providing farmers 

with an independent tool to use for identifying 

the bulls that best would perform in their own 

specific environmental conditions. Over the 

years, however, and especially with the onset  

Figure 1. Graphic representation of the main activities delivered by Interbull Centre and the areas therein where 

new developments have been introduced. 
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of genomic selection, MACE international 

evaluations have changed their usability 

moving from a “comparison” tool to a way for 

countries to include foreign bulls’ information 

in their national genomic evaluation. The onset 

of genomic selection, and its related 

methodologies refinements, especially single 

step type of evaluations, posed two main 

needs: 1) to assure that national input to 

MACE evaluations would have been kept free 

of genomic data, so to avoid problems with 

double counting of information and increased 

bias, 2) start investigating ways to enhance the 

current MACE model making it able to better 

account with the accumulation of genomic pre-

selection bias in the data. 

Before genomic selection it was reasonably 

correct to consider the within- family pre-

selection random in EBVs models. With the 

onset of genomic selection, though, this 

assumption could no longer be considered 

valid, as genomics made it possible to identify 

above average bulls, within a family, without 

any need for progeny testing. The 

accumulation of genomic pre-selection (GPS) 

directly associated with this behavior altered 

the distributions of breeding values for AI 

bulls (Sullivan et al. 2023).  

An Interbull working group was established 

back in 2018 with the double aim of 

understanding better the nature and source of 

genomic pre-selection and work towards the 

implementation of a “Future” MACE (GPS-

MACE) model. Several reports have been 

produced by the working group (Sullivan et al, 

2019; Sullivan et al., 2022) with the latest 

being the presentation, during the Interbull 

technical workshop, which was held in Rome 

on February 2023, of a new MACE model and 

its possible impacts on the countries data 

(Strandén and Mäntysaari, 2023; Jibrila et al., 

2023; Sullivan et al. 2023). Further refining of 

the new MACE model is planned during 2024 

with the aim of carrying out the first GPS-

MACE pilot run in the late fall of 2024. 

Evaluations – Expanding Interbull Portfolio 

The need for a clear procedure to follow for 

identifying new possible traits suitable to the 

MACE or other international evaluations, has 

been identified as an important strategic goal 

during the 2020-2023 Interbull Strategic 

meeting which was held in Uppsala in January 

2020. 

In 2021 a working group was appointed with 

the aim of defining a clear set of steps that 

could assure not only the identification of all 

the key decision’s factors for implementing of 

any new traits, but also could take into account 

the need for the required (new) infrastructure 

and methodology as well as the need for 

possible new business models, business plans 

and appropriate fee structure (Fig. 2). 

Pivotal point of the new procedure is the 

usage of the latest database developed at 

Interbull Centre: the Perfomance Recording 

Figure 2. Interbull procedure for identification and 

inclusion of new traits 
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Evaluations and Publication (PREP) database. 

PREP is equipped with ad hoc electronic forms 

that users can fill in to provide Interbull Centre 

with the information on which traits available 

at national level they would like to see 

included in an international evaluation. 

By reviewing the information since then 

collected (Fig. 3), the working group identified 

three initial traits which showed some 

potential: Retained placenta, Hypercalcaemia/ 

milk fever and Gestation length. 

The traits were further discussed at the 

Interbull technical workshop held in Rome on 

February 2023 where it came out how, while 

for the two fertility traits an international 

evaluation would have been considered useful 

the same was not entirely true for the trait 

gestation length which was by the majority of 

participants considered mostly a management 

tool rather than a selection trait (Haugaard et 

al, 2023). Figure 3 showed the amount of 

information collected in PREP for any new 

traits for which at least two countries had 

expressed a medium-to-high interest for an 

international evaluation. Two more trait groups 

stands out: feed efficiency and claw-health 

related traits. 

The working group will further review all 

the information collected and will provide a 

recommendation on how to proceed to the 

steering committee in line with the new trait 

procedure as described in figure 2.  

 

Evaluation - Expanding of Interbeef portfolio 

The Interbeef portfolio, currently made of 

adjusted weaning weight and calving traits 

(including calving ease, both direct and 

maternal, and birth weight) has been recently 

expanded with the inclusion of carcass traits 

(carcass conformation, fat and weight). The 

new trait group will be estimated for all the 

Interbeef breeds, currently Aberdeen-Angus, 

Limousin, Charolais, Simmental and Hereford. 

After few research and pilot runs, the 

results have been found satisfactory by both 

technical group and participating countries. 

The first official test run for carcass traits was 

performed in April 2023 and the first official 

routine evaluation has been performed in 

October 2023. (Macedo, 2023, Interbull 

2023a) 

 

 

 

Figure 3. Overview of information on possible new traits to be considered for an international evaluation. 

Source: August 2023, Interbull PREP database (https://prep.interbull.org/) 
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Validation – Enhanced GEBV test software 

Another Interbull core activity is 

represented by the validation of national 

statistical methods to assure that countries’ 

estimates, which would then become inputs to 

the international evaluations, would be as 

unbiased as possible. Five validation methods 

have been developed by Interbull over the 

years: four dealing with conventional genetic 

models (trend tests I, II, III and Mendelian 

Sampling Variance test) and one specific for 

genomic models (GEBV-test). National 

genetic centres are requested to provide 

validation results a) when major changes have 

been introduced in their genetic/genomic 

models, b) when providing data for the first 

time for a given breed/trait evaluation, or c) 

when it has been more than two years since the 

last validation. 

The fast development of genomic 

evaluations in many countries was the reason 

behind the creation of a validation working 

group whose aim is twofold: 1) revise the 

current version of the GEBV-test software as it 

was developed in the early stage of the 

genomic era when still very few countries had 

an evaluation for it and the amount of GPS 

bias was negligible, and 2) develop a new 

trend test III, looking at the random variation 

associated with new daughters’ information, 

that could better cope with the even less 

number of proven bulls available. 

The task of reviewing the current GEBV-

test was assessed by the working group as a 

more urgent matter, therefore lots of activities 

and developments were carried out towards 

this aim. A presentation of an initial revised 

version of the program was given during the 

Interbull technical workshop in Rome were 

also feedback from countries, who had the 

possibility to test the software, were discussed 

(Sullivan, 2023; Liu et al, 2023; Mota et al., 

2023; Jibrila and Eding, 2023). The version 

presented at the technical workshop was 

enhanced with several new features like: the 

possibility to make a base adjustment, so that 

the mean and variance of reduced-data 

evaluations would match the base of 

expression of full-data evaluations; possibility 

to use different validation targets than the 

official one (represented by de-regressed EBV) 

like for example EBV from full-data 

evaluation or GEBV from full-data evaluation. 

The availability of different validation targets 

could be useful at national level to perform 

further testing. 

In general, the enhanced software was well 

perceived by the people attending the 

workshop. Afterwards, the software was 

further enhanced providing information about 

the power of the test in case (like for small 

populations) the result would be inconclusive. 

The output of the software has also been 

improved by providing additional information 

that would be useful for the users should they 

wish to perform further testing on the data.  

The software is currently under its final 

revision and testing, and it is expected to be 

rolled out in production as the official Interbull 

GEBV-test in 2024. 

 

Validation – EU Reference Centre (EURC) 

Validation 

Since 1996, Interbull Centre has taken up 

the role of EU Reference Laboratory. Starting 

from 1 November 2018, Interbull Centre has 

taken up its duties as the EU Reference Centre 

for Zootechnics, to ensure continuity in this 

field (EU Animal Breeding Regulation, 2016). 

Under the umbrella of the EURC activities, 

Interbull Centre launched a new service in 

2022: the EURC validation, aiming at 

providing validation of conventional genetic 

models to all European breeding organisations 

and/or national genetic centres, regardless of 

their involvement with Interbull’s activities. 

The service covers all dairy breeds and will 

assist European countries in the process of 

harmonization of models applied while at the 

same time providing a “quality stamp” on 

conventional evaluation services as required by 

the current EU legislation for bulls advertised 

in the European market. 
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Exchange – Genetic Traits Data Exchange 

Since 2019, Interbull Centre has been 

involved in the collection of several genetic 

traits, including recessive traits, identified as 

important for the Holstein breed by the World 

Holstein Friesian Federation (WHFF). The 

service aims at facilitating the exchange of 

such information in a timely manner as well as 

improving the resolution of any possible 

conflicting information that might arise. The 

exchange of genetic traits data is made 

possible via a dedicated module of the 

Interbull Data Exchange Area database 

(IDEA).  

The information that can be shared is based 

on direct genetic test (direct genotyping) of a 

well-defined list of traits (Interbull, 2023b). 

The service provides several benefits to its 

users, such as:  

 One common platform to share 

information with other organizations 

taking part in the service  

 Sharing of important genetic information 

to make better breeding decisions, 

avoiding mating of carriers of recessive 

diseases or spreading of unwanted alleles 

in a population.  

 As the service is an extension of IDEA 

pedigree, the consistency of the unique 

international animal ID is maintained 

across countries.  

 Allowing access to a wider set of 

information and assuring a smoother and 

more timely exchange of genetic defects’ 

information among participating 

organisations  

 Drastically reduce the amount of 

conflicting information among countries  

 Cost reduction by avoiding multiple 

genetic tests on the same animal for the 

same traits  

The service, started for Holstein, has been 

recently expanded to share genetic traits data 

for the Brown Swiss breed as well.  

 

Conclusions 

 

Important improvements of the services 

offered by Interbull Centre have been either 

implemented or are planned to be implemented 

during the course of next year. 
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Abstract 

A genomic evaluation was developed for Body Maintenance Requirements (BMR) in Canadian Holsteins, 

with the first official publication in April 2023. The BMR index characterizes feed requirements for 

maintenance based on the metabolic body weight of the animal. Body weights of lactating cows recorded 

through feed advisory services in Quebec since 2002 are used in the genetic evaluation. Metabolic body 

weight (MBW), calculated as body weight0.75, in first, second, and third lactations are analyzed in a three-

trait linear animal model as separate but correlated traits with repeated records within a lactation. Genetic 

parameters were estimated by MC EM REML method using a subset of the data including 373 219 records 

from 195 198 cows. Heritabilities for MBW in first, second, and third lactation were 0.34, 0.43, and 0.47, 

respectively, and repeatabilities were 0.53, 0.61, and 0.64, respectively. Genetic correlations between 

different lactations were strong, ranging from 0.78 to 0.86. A Single-Step genomic evaluation was 

implemented using the MiX99 software. The April 2023 official evaluation run had records from 540 619 

cows of which 28 263 were genotyped and a total of 47 967 genotyped animals in the model. The BMR 

index combines genomic estimated breeding values (GEBVs) for MBW in the three lactations at equal 

weightings. This index is published as a relative breeding value, with a mean of 100 and standard deviation 

of 5 for base bulls, where the sign is reversed such that higher values represent a lower MBW and thus 

lower body maintenance requirements. The average reliability of BMR for young, genotyped bulls was 

approximately 68%. Observed phenotypic and genetic trends demonstrated that animal size has been 

steadily increasing over time. The BMR evaluations can be considered by producers looking to reduce or 

maintain cow body size in their herd as another way to reduce feed costs. 

Key words: Body maintenance requirements, metabolic body weight, single-step, genomic evaluation 

Introduction 

While genetic selection has historically 

focused on increasing performance and revenue, 

it also has great value in reducing inputs and 

expenses. Feed represents the greatest expense 

for dairy farms and as prices continue to rise, 

there is increasing interest and need to improve 

the efficiency of feed use on dairy farms through 

genetic selection. 

Feed efficiency can be defined in many ways, 

but broadly is used to describe how efficiently 

animals convert feed into product. Energy from 

the feed eaten by cows is used for milk production 

but also maintenance, growth, reproduction, and 

activity. Feed efficiency is a complex trait and 

there are many different expressions and 

indicators that can be targeted for genomic 

selection. Residual Feed Intake (RFI) is a popular 

measure of feed efficiency and can be estimated 

in dairy cattle by the linear regression of Dry 

Matter Intake (DMI) on factors representing 

various energy sinks, such as milk energy and 

body weight (Koch et al., 1963; Connor et al. 

2015). Genomic selection for RFI has been 

shown to be feasible to breed for cows that 
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convert feed gross energy to net energy more 

efficiently without impacting production. 

The other route to improve feed efficiency is 

to reduce maintenance requirements for a cow by 

decreasing body weight. Small cows will have 

lower maintenance requirements and require less 

feed to meet those needs, which is a financial 

benefit for producers. Breeding values for feed 

saved, proposed by Pryce et al. (2015), combine 

the reductions in feed eaten associated with RFI 

and the effect of body weight on feed intake as 

required for maintenance. Performing multi-trait 

selection for improved metabolic efficiency 

through RFI and reduced maintenance 

requirement can target cows that have the genetic 

ability to use a greater proportion of their feed 

intake for milk production. 

In April 2021, Canada released genomic 

evaluations for feed efficiency which is a genetic 

RFI derived by using a linear function of 

multiple-trait evaluations for DMI and the energy 

sinks of energy corrected milk and Metabolic 

Body Weight (MBW) (Jamrozik et al., 2021, 

2022). The overall aim of the Canadian feed 

efficiency evaluations is to enable selection of 

cows that use less feed at the same level of 

production and body size after the peak of 

lactation (metabolic feed efficiency).  

Not included in Canadian feed efficiency is 

the second component for selection for reduced 

feed requirements, i.e. maintenance 

requirements. The net energy needed for 

maintenance is a function of MBW and 

establishing genetic evaluations for MBW would 

allow for selection for less feed required for 

maintenance to be used alongside feed efficiency 

evaluations. The focus of this paper is to describe 

the implementation of a routine genomic 

evaluation for Body Maintenance Requirements 

(BMR), which was launched in Canada for the 

Holstein breed in April 2023.  

 

 

 

Materials and Methods 

 

Data 

 

Body weight (BW) data on lactating cows is 

collected voluntarily for feed advisory services 

offered by Lactanet for herds in the province of 

Québec. The BW measurements are estimated 

using a tape measuring heart girth circumference. 

Holstein data recorded since 2002 was considered 

for use in genomic evaluations. Herds determined 

to be consistently recording individual animal 

BW as a continuous measure were selected for 

inclusion. Body weights recorded between 0 and 

305 DIM in first, second, and third lactation were 

converted to MBW kg0.75. Multiple MBW 

measures in a lactation for an individual animal 

were kept if available. The average number of 

records per lactation per cow was 1.15. 

Approximately 7% of lactations in the April 2023 

genetic evaluation data had multiple records (up 

to 11 records per lactation) and records were on 

average 48 days apart. Most weights were 

recorded within the first 60 DIM. After all, 

editing data used in the April 2023 evaluation for 

BMR consisted of 387 037, 296 604, and 198 719 

records for first, second, and third lactation, 

respectively, from 540 619 cows. 

 

Model 

 

The model is a three-trait linear animal model 

for MBW in first, second, and third lactation with 

repeated records within each lactation. The same 

model is used for MBW in each lactation, 

considering the fixed effects of herd, age at 

calving in monthly classes, DIM class (daily DIM 

classes for first lactation up to 98 DIM and then 

weekly classes; weekly DIM classes for second 

and third lactation), and month of weighing (12 

classes), and random effects of herd-year of 

calving (HY), animal additive genetic, permanent 

environmental (PE), and residual. In matrix 

notation, the model can be written as: 
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y = Xb + Z1hy + Z2a + Z3p + e 

 

where y is a vector of observations (MBW in first, 

second, or third lactation), b is a vector of all 

fixed effects, h is a vector of HY effects, a is a 

vector of animal additive genetic effects, p is a 

vector of PE effects, e is a vector of residuals, and 

X, Z1, Z2, and Z3 are the respective incidence 

matrices. Random effects were assumed to be 

normally distributed, with means equal to zero. 

Model assumptions are that: v(h) = I ⊗ HY, I is 

an identity matrix and HY is the covariance (3x3) 

matrix for HY effects, v(a) = H ⊗ G, H is a 

combined pedigree-genotype relationship matrix, 

G is the additive genetic covariance matrix, v(p)= 

I ⊗ P, P is the covariance matrix for the PE 

effects, v(e) = E, E is a diagonal  matrix of 

residual effects. 

 

Genetic Parameters 

 

Co-variance components and genetic 

parameters were estimated by MC-EM-REML as 

implemented in MiX99 (MiX99 Development 

Team, 2017) using a subset of the data including 

373 219 records from 195 198 cows. This subset 

of the data only included herds still recording BW 

within the last five years and with multiple years 

of recorded BW. Cows with a record in second or 

third lactation were required to have a record in 

all preceding lactations. Summary statistics for 

the data used for genetic parameter estimation are 

presented in Table 1. The same model as 

described for genetic evaluation purposes above 

was used, but the combined pedigree-genomic 

relationship matrix H was replaced by an additive 

relationship matrix A.  

 

Genomic Evaluation 

 

A three-trait Single-Step genomic evaluation 

was implemented at Lactanet Canada using 

MiX99 and related software (MiX99 

Development Team, 2017). The April 2023 data 

included 47 967 genotyped animals, with 28 263 

genotyped cows with records and 8 635 

genotyped sires. Animals are genotyped either 

with 50K SNP panel or a low-density panel and 

imputed to 50K using F-Impute (Sargolzaei al., 

2014). The genomic relationship matrix (G) is 

constructed by VanRaden Method I. (VanRaden, 

2008), and G is blended with the additive 

relationship matrix (A) assuming that 80% of the 

total genetic variance was explained by SNP 

effects. Scaling of G and A is performed using the 

Christensen (2014) method. The APY algorithm 

for Proven and Young (Misztal et al., 2014) is 

applied for inversion of G, with the core 

population of 20 000 (the oldest genotyped 

animals in the Lactanet database). Groups for 

unknown parents are not included in the model. 

The SNP effects, to be used for calculating 

Genomic Estimated Breeding Values (GEBV) for 

genotyped animals not included in the single-step 

core analysis, are estimated from the GEBV of 

reference animals (as in Lourenco et al., 2015). 

Reliability of GEBV is approximated by a 

weighted (80:20) average of Direct Genomic 

Value (DGV) and animal model reliabilities 

(Sullivan et al., 2005). The DGV reliabilities are 

Table 1. Descriptive statistics of the dataset used for parameter estimation. 

Lactation Records Cows 
BW (kg) MBW (kg0.75) 

Ave. SD Ave. SD 

1 234 498 195 198 620.3 63.2 124.2 9.5 

2 97 661 73 253 674.1 67.4 132.2 9.9 

3 41 060 28 170 708.3 70.8 137.2 10.3 

BW = body weight, MBW = metabolic body weight 
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calculated using SNP prediction error co-

variances with the SNP-BLUP-REL software 

(Luke, Finland). Animal model reliabilities are 

calculated based on Effective Daughter 

Contributions (EDC). The EDC and reliability 

software of Sullivan (2023) is used. 

 

Relative Breeding Values 

 

Genetic evaluations for BMR combine the 

three individual MBW evaluations for first, 

second, and third lactation at equal weighting and 

it is the only value published. The sign of the 

combined BMR evaluation is reversed, such that 

the higher values represent the more desirable, 

lower body maintenance requirements (lower 

MBW). The BMR evaluation is expressed as 

Relative Breeding Values (RBV) with a mean of 

100 and SD of 5 for base bulls that for April 2023 

are those born 2008-2017 and with an ‘official’ 

status. Sire evaluations are defined as ‘official’ 

for bulls with at least 20 daughters from 5 herds 

with MBW data and a minimum reliability of 

70%. 

 

Results & Discussion 

 

Phenotypic Trends 

The average body weight of Holstein females 

in the dataset available have been increasing over 

time. Figure 1 shows the phenotypic trend for 

average BW (kg) by year of birth by lactation 

number, including only those weights occurring 

in the first seven weeks of lactations. The overall 

increasing trend was similar for each of the 

lactations. The average BW of third lactation 

cows has gone from roughly 671 kg for cows born 

in 2000 to 735 kg for 2017-born cows. Since 

2010, third lactation body weights have increased 

4.3 kg/year. At the same time, the age at calving 

for each lactation presented has been slowly 

decreasing. 

 

Genetic Parameters 

 

Heritability and genetic and phenotypic 

correlation estimates for MBW in first, second, 

and third lactation are shown in Table 2. 

Heritability estimates for MBW were moderately 

high and ranged from 0.34 for first lactation to 

0.47 for third lactation. These heritabilities were 

slightly lower than the 0.46, 0.51, and 0.60 found 

by Lidauer et al. (2019) for MBW in first, second, 

and third lactations, respectively, but showed the 

same trend of increased heritability with higher 

lactations. The within lactation repeatability 
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Figure 1. Phenotypic trend by year of birth for average body weight (kg) for cows in first, second and third 

lactation with weights recorded within the first seven weeks of the lactation. 
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estimates increased as parity number increased, 

going from 0.53 for MBW for first lactation, 0.61 

for second, and 0.63 for third.  

The genetic correlation between MBW in 

sequential lactations were similar at 0.86 for first 

and second and 0.85 for second and third, and a 

slightly lower genetic correlation of 0.78 was 

found between MBW in first and third lactations. 

The correlation between MBW in different 

lactations was strong but there was some 

variation which could be related to growth and 

maturity rate. 

 

Table 2. Heritabilities with standard error in 

parentheses, genetic correlations (above diagonal), 

and phenotypic correlations (below) diagonal for 

metabolic body weight in first (MBW-1st), second 

(MBW-2nd), and third (MBW-3rd) lactation.  

 MBW-1st MBW-2nd MBW-3rd 

MBW-1st  0.34 (0.02) 0.86 0.78 

MBW-2nd  0.57 0.43 (0.03) 0.85 

MBW-3rd  0.60 0.61 0.47 (0.04) 

 

Genomic Evaluations 

 

In April 2023 there were 3 728 Holstein sires 

with an official BMR evaluation. The RBV for 

the combined BMR evaluation ranged from 85 to 

121 for this group and averaged 104 as the 

average birth year of this group was older than the 

base bull group. The average reliability was 91% 

and ranged from 72 to 99% for official sires. The 

average reliability of genotyped Holstein bulls 

born in 2021 that were identified as being 

controlled by an AI organization (N=2 182) was 

68%. 

There has not been direct genetic selection on 

MBW or BW in Canada, but through indirect 

selection there has been a strong genetic trend 

observed. The genetic trend for BMR in bulls 

with official evaluations, as shown in Figure 2, 

has been in steady decline for the last 2 decades, 

demonstrating that genetic component for MBW 

and thus maintenance requirements has been 

increasing. In the most recent birth years, it 

appears that the trend may be lessening, which 

may be related to more awareness and a shift in 

selection away from larger animals and high 

stature. A similar genetic trend was also observed 

for cows, although not quite as steep.  

 

Figure 2. Genetic trend for bulls with an official body 

maintenance requirements (BMR) relative breeding 

value (RBV). 

 

Relationships with Other Traits 

 

Proof correlations were estimated between 

BMR and other routinely evaluated traits in 

Canada using 1 323 Holstein sires born since 

2008 with an official LPI and BMR. In general, 

BMR had the strongest negative proof 

correlations with conformation traits. The major 

type traits of conformation, dairy strength, rump, 

mammary system, and feet and legs had proof 

correlations with BMR 

of -0.40, -0.49, -0.27, -0.26, and -0.06, 

respectively. The individual traits with the 

strongest proof correlation with BMR were 

stature (-0.73) and chest width (-0.55). Many 

conformation traits, especially dairy strength 

traits, describe various aspects of the cow’s body 

size and structure and are often used to create 

proxy traits for body weight (e.g. Body Weight 

Composite Index, Holstein Association USA). A 

non-conformation trait strongly correlated with 

BMR was age at first service, with a negative 

correlation of -0.51. The group of proven sires 

used to estimate proof correlations spanned ten 
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birth years. Therefore, due to the negative genetic 

trend for BMR, some negative correlations that 

were found with traits displaying genetic 

improvement over this period may largely be a 

result of the opposite genetic trends over time. 

This is likely for the observed correlation of -0.29 

and -0.24 with LPI and Pro$, respectively, which 

become slightly positive when correlations are 

averaged within birth year. A slight positive 

correlation with calving ability was also observed 

(0.21). As expected, no correlation was observed 

between BMR and Feed Efficiency evaluations.  

 

Relationships Between Sire RBV and Daughter 

Phenotypes 

 

The average daughter MBW of sires with an 

official BMR were averaged by sire RBV for 

BMR by lactation. Sires were required to have at 

least ten daughter records in a lactation to be 

included. A regression of average daughter MBW 

on sire RBV was conducted to determine the 

relationship between the observed daughter 

phenotype and sire RBV. The average daughter 

MBW and regression is shown in Figure 3. Bulls 

with a higher BMR evaluation have daughters 

with lower MBW and body maintenance 

requirements in all lactations compared to bulls 

with low BMR evaluations. The regression 

coefficients were similar for each of the 

lactations, ranging from -0.51 to -0.57 kg0.75 per 

sire RBV point. As they were approximately 

equal, regression coefficients were averaged to 

form one interpretation value for interpreting 

BMR. For each plus five RBV points for BMR 

(one standard deviation) the MBW of daughters 

are approximately 2.75 kg0.75 lower. 

 

Conclusions 

 

The genomic evaluation for BMR was first 

implemented in April 2023 by Lactanet for the 

Holstein breed. Producers can utilize BMR in 

their selection decisions to help reduce feed costs 

by decreasing cow MBW and the feed required 

for body maintenance. Cow size has been 

increasing over time and BMR can be used to 

help cease this trend and either maintain or 

decrease body size in a herd. The BMR 

evaluations are not correlated to genetic 

evaluations for Feed Efficiency, which is 

calculated to be genetically independent of 

MBW. The Canadian Feed Efficiency and BMR 

evaluations are published separately and not 

together in an index. Producers can therefore use 

these two tools in combination or choose to 
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concentrate more on one to help reduce their 

overall feed costs. 
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Abstract 

 

Gestation length has become increasingly important in dairy genetic evaluations worldwide. This has 

occurred for several reasons. The initial focus was on improving calving ease, as calves which are born 

earlier are typically smaller. This was generally thought to reduce the incidence of dystocia (although 

this has been disputed in some countries). However, the effects of gestation length on reproductive 

performance have since become of greater interest. Reducing gestation length has positive effects on 

calving interval, as cows which have greater intervals between calving and mating are more likely to be 

cycling and have demonstrably higher conception rates than their late-calving counterparts. However, 

this benefit is not without its drawbacks. Reducing gestation length does not directly improve a cow’s 

ability to resume estrus cyclicity after calving, or to achieve fertilization after insemination. Gestation 

length is, rather, a trait that improves reproductive performance indirectly. Moreover, gestation length, 

if it is reduced too significantly, may have adverse effects on the health and survival of dairy calves, 

whose welfare is an increasing target of scrutiny from consumers and society in general. Genetic 

evaluations for gestation length are now being performed in many countries, including the United States 

and Australia since 2017 and 2020, respectively. This paper examines genetic trends for gestation length 

in these countries, with a specific focus on: 1) potential reasons for these genetic trends – for example 

trying to answer the question of whether selection for fertility traits could be placing indirect selection 

pressure on gestation length; 2) if there are differences between the countries that can be explained by 

seasonal or year round calving patterns; 3) how gestation length is being used as a tool to manage calving 

patterns, including the breeding and marketing of sires with extremely short gestation length breeding 

values; 4) evidence in the literature on genetic and phenotypic associations with other traits; 5) potential 

long term consequences of selecting for gestation length; and 6) the economic value of gestation length 

and its inclusion in (economic) selection indexes. 

 

Key words: dairy, gestation length, genetic trends, genetic evaluation 

 

Introduction 

 

The New Zealand dairy industry is dominated 

by seasonal calving, where peak herd lactations 

(and hence, nutritional requirements) are 

aligned with periods of maximum pasture 

availability (Bowley et al., 2015). While this 

system maximizes feed utilization and reduces 

production costs, it also exerts significant 

pressure on dairy cow fertility. Cows are 

expected to maintain a 365-day calving interval, 

which, when considered in the context of a 281-

day gestation period, leaves only 84 days post-

calving for uterine recovery, the resumption of 

ovarian cyclicity and successful fertilization. 

This is a highly constrained window to achieve 

conception – one which is only exacerbated for 

cows calving late in the season. 

For these reasons, many farmers in New 

Zealand and Australia routinely used calving 

induction to manage their calving patterns – a 

practice which became increasingly important 

as genetic merit for fertility declined. However, 

while well-managed calving induction did not 

negatively affect cows, it resulted in adverse 

outcomes for calf health and survival (Mansell 

et al., 2006). In response to increasing societal 

concerns around animal welfare and ethics, 

calving induction as a tool for manipulating 

calving patterns was phased out in 2015 and 
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2022 for New Zealand and Australia, 

respectively. However, this only intensified the 

pressure on cow reproductive performance. 

A key strategy to addressing the dairy 

fertility decline has been the development of 

genetic evaluation for fertility traits, with the 

resulting EBVs incorporated into selection 

indices worldwide (Miglior et al., 2005). In 

New Zealand, the current genetic evaluation for 

fertility relies on the Calving Season Day (CSD) 

phenotype, which describes the interval 

between planned start of calving and cow 

calving date. This is in line with many of the 

fertility traits developed worldwide which focus 

on continuous traits such as calving interval, 

days open, and calving to first service. 

However, interval metrics inherently 

combine gestation length (GL) and conception 

date. GL is also considerably more heritable 

than most fertility traits; for example, in New 

Zealand estimate of heritability for GL was 

0.67, which is significantly higher than the 0.02 

reported for CSD (Amer et al., 2016). This can 

make it easier to influence through selective 

breeding. In New Zealand, there has been a 

consistent decline in GL over the past few 

decades – a pattern which seems to be gaining 

momentum. This not only raises animal health 

concerns, but also echoes the ethical issues that 

prompted the ban on calving induction in the 

first place. 

New Zealand is not the only country that 

uses interval metrics for fertility genetic 

evaluations or has pursued genetic 

improvement in this trait. Therefore, with the 

cooperation of other Interbull countries, this 

paper aims to provide an initial exploration of 

global genetic trends in GL, within the context 

of each country’s dominant breeds and systems. 

It also touches upon some of the genetic and 

phenotypic correlations that have been 

identified with other traits.  

 

Materials and Methods 

 

A request for data was sent to all member 

countries of Interbull who are currently 

evaluating GL, with responses received from 

the countries listed in Table 1. For those 

countries who supplied scaled data (for 

example, the Netherlands publish GL EBVs 

with a mean of 100 and a standard deviation of 

5), additional data was obtained to convert these 

results to the phenotypic scale (units of days).  

It is important to note that the genetic trends 

between countries can be difficult to directly 

compare due to differences in how GL EBVs 

are predicted. For example, some countries use 

pedigree-based conventional BLUP to predict 

EBVs, while others use two-step or single-step 

genomic evaluation. The publication criteria for 

GL evaluations can also differ from country to 

country, in terms of the acceptable thresholds 

for reliability. Other key differences, such as 

production system, are outlined in Table 1. It is 

important to note that these differences are 

those most relevant to the cattle populations 

contributing to the genetic trend data provided 

by each country, rather than a comprehensive 

description of an entire country’s breed 

composition or calving systems. 

 

Table 1. Interbull countries (N = 10) who 

contributed GL data, along with the system(s) 

associated with the population from which the data 

were derived. 

Code Country System 

NZL New Zealand Seasonal 

IRL Ireland Mixed 

POL Poland Year round 

NLD The Netherlands Year round 

USA United States Year round 

CZE Czech Republic Year round 

ITA Italy Year round 

NOR Norway Year round 

CHE Switzerland Year round 

AUS Australia Mixed 

 

Results  
 

Genetic trends  

Figure 1 shows overall genetic trends by 

country and breed, with some countries 

contributing multiple breed-specific trends 

(e.g., New Zealand, Ireland, Australia, 

Switzerland, and the United States). Trends 
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from the United States were provided separately 

for males and females. 

Apart from Jerseys in Australia and the 

United States and Brown Swiss in the United 

States, the overall trend for GL is decreasing.  

 

 

 
Figure 1. Genetic trends for gestation length as 

reported by participating countries, separated by 

breed. 

 

Holsteins were the dominant breed in the 

provided data, with all nine contributing 

countries demonstrating declining genetic 

trends over time. Some of these countries 

exhibited weaker trends – such as the 

Netherlands, which experienced a slight decline 

of 0.05 days p.a. over 43 years from +1.86 in 

1980 to -0.28 in 2023, while others displayed 

much more dramatic trends such as the Czech 

Republic, which peaked at +4.6 days in 2001 

before dropping to -3.1 days in 2023 – a decline 

of 0.35 days p.a. over 22 years.  

The Jersey breed had diverging trends, 

depending on the country of origin. Data from 

New Zealand and Ireland show declining GL 

EBVs overall, much like the Holstein and 

Norwegian Red populations. However, a 

marked split occurred in 2010, where 

populations from the United States (and to an 

earlier extent, Australia) began to experience an 

upward trend in GL EBVs, which occurs 

contrary to overall trends.  

Much like the Holsteins, the Norwegian Red 

genetic trend shows a significant decrease over 

time. Data for Brown Swiss were available for 

two countries. In Switzerland, the trend was 

relatively stable over time, with a slight 

decrease beginning to become apparent since 

2015. However, the United States Brown Swiss 

population exhibits a similar trend to Jerseys 

from the same country, with an increase in 

recent years. 

 

Relationships with other traits 

Selected genetic correlations between GL and 

other traits are shown in Table 2. These were 

obtained from a brief search of the scientific 

literature, as well as calculations on New 

Zealand data (data not published). 

Genetic correlations between GL and 

fertility traits such as CSD and age at first 

calving (AFC) were high, as anticipated. The 

correlations between GL and protein yield were 

also high, ranging from -0.22 to -0.5, which is 

somewhat unexpected. However, correlations 

between other traits varied significantly 

depending on the source, with genetic 

correlations for longevity ranging from -0.25 to 

0.09, for example, or -0.49 to 0.17 for calving 

ease. Whether this is due to genuine genetic 

differences in the populations (country, breed), 

or due to differences in statistical methods is 

difficult to say. 

Norwegian Red 

Brown Swiss 
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Table 2. Genetic correlations reported between GL 

and other traits. 

Trait Rg Code Source 

CSDh1 

CSD1 

0.57 

0.45 
NZL Amer et al. (2016) 

PM212 -0.20 

BCS 0.02 

    

PR423 -0.05 NZL Unpublished data 

    

AFC4 -0.42 ITA Galluzzo et al. (2023) 

    

Calving ease 

-0.49 

0.17 

ITA 

CAN 

Galluzzo et al. (2023) 
Jamrozik et al. (2005) 

0.38 DNK Hansen et al. (2004) 

    

Dystocia 
0.34 

0.38 

GBR 

USA 

McGuirk et al. (1999) 
Johanson et al. (2011) 

    

Stillbirth 

-0.39 

-0.11 

ITA 

CAN 

Galluzzo et al. (2023) 

Jamrozik et al. (2005) 

0.18 DNK Hansen et al. (2004) 

    

Longevity 

-0.25 

0.09 

-0.23 

ITA 

GBR 

NZL 

Galluzzo et al. (2023) 

Eaglen et al. (2013) 

Unpublished data 

    

Milk yield 

-0.39 

-0.19 

-0.25 

ITA 

GBR 

NZL 

Galluzzo et al. (2023) 

Eaglen et al. (2013) 

Unpublished data 

    

Protein yield 

-0.50 

-0.22 

-0.43 

ITA 

GBR 

NZL 

Galluzzo et al. (2023) 

Eaglen et al. (2013) 

Unpublished data 

    

Protein % -0.23 NZL Unpublished data 

    

Overall type -0.31 NZL Unpublished data 

    

Udder 

overall 
-0.21 NZL Unpublished data 

1CSD: calving season day for heifers and cows; 2PM21: 3-

week submission rate; 3PR42: 6-week in calf rate; 4AFC: 

age at first calving 

 

Discussion 
 

Genetic trends 

Differences in genetic trends by country could 

not be attributed to any specific factor such as 

dominant production system, type of genetic 

evaluation (i.e., genomic or conventional 

BLUP), or the traits used to drive genetic 

improvement in fertility. 

This last point is of particular interest, as it 

could be hypothesized that the decline in GL 

has been due to strong selection for fertility 

improvement in Holsteins, which experienced 

the greatest historic decline (Heins et al., 2006). 

The Scandinavian dairy populations famously 

avoided this decline due to the early 

incorporation of genetic evaluations for fertility 

– but despite this, we still see a strong 

downward genetic trend for GL in the 

Norwegian Red breed.  

The absolute difference between countries in 

genetic trends for GL cannot be determined 

from the results presented as each country’s 

values are on different genetic scale/base. 

Haile-Mariam and Pryce (2019) examined 

differences between GL EBVs for bulls from 

different countries that were used in Australia, 

and observed that, on average, bulls that had 

their first proofs in Denmark, the Netherlands 

and New Zealand had shorter GL than bulls first 

tested in Australia or North America. Such 

results are only possible to be obtained for bulls 

that have already been used in each country. For 

importing foreign bulls with desired GL 

genetics, access to international genetic 

evaluation of GL would be of considerable 

value. 

 

Relationships with other traits 

Genetic associations between GL and fertility 

traits are high for traits that have GL embedded 

in, or closely related to, them (Amer et al., 

2016; Galluzzo et al., 2023). This is 

undesirable, as the general aim of selecting for 

fertility traits is to address inherent infertility 

issues – i.e., physiological failures of 

reproduction in dairy cows. Arguably, 

achieving indirect gains in reproductive 

performance by decreasing GL is not true 

fertility improvement. 

In New Zealand and Italy in particular, the 

relationship between GL and milk production 

traits is surprisingly strong. We could not find 
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any reported studies that would explain the 

source of this relationship. It is possible that 

admixtures of breeds or the combination of 

subpopulations with high milk yield and short 

gestation length, as well as lower milk yield and 

longer gestation length could cause this 

association. However, if there is a direct causal 

relationship between these two traits, the 

physiological mechanisms have yet to be found. 

The genetic correlation between GL and 

calving traits varied depending on the 

population (see Table 2). This is especially 

important to monitor as shortening GL below a 

certain (yet unknown) threshold could have a 

negative impact on calf size and survival, with 

Norman et al. (2009) concluding that direct 

selection pressure should not be placed on GL 

without further research becoming available. In 

New Zealand, Jenkins et al., (2016) concluded 

that slightly increased perinatal mortality rates 

in calves with very short GL (mean of 273 days) 

were likely to be offset by a reduction in calves 

with very long GL (mean of 291 days), which 

were 3 times more likely to die than calves in 

the short GL category. However, an appropriate 

lower threshold has yet to be defined.  

Our findings indicate that indirect selection 

pressure on GL is likely to be a widespread 

phenomenon across various countries and dairy 

breeds, even though the underlying mechanisms 

are not yet fully understood or anticipated. 

Furthermore, as restrictions on calving 

induction and the general use of hormonal 

interventions increase in response to consumer 

concerns (Pieper et al., 2016), farmers are more 

likely to opt for short GL sires as a tool to 

manage calving patterns. Although farmers are 

cautioned against retaining the daughters of 

such sires as replacement cows, these animals 

are still sometimes finding their way into 

milking herds, potentially exacerbating the 

decline in GL. Given this trend, the ongoing 

monitoring of GL is increasingly important. 

 

GL in selection index 

The economic value of GL can be substantial, 

especially when farmers respond to a shorter 

herd mean GL by delaying planned start of 

mating to achieve their preferred timing for 

seasonal calving (Ooi et al., 2023). Despite not 

being a true fertility trait, high economic values 

can be derived through GL’s indirect effects on 

fertility, with an associated improvement in 

milk profit, a reduction in empty rate, and a 

higher proportion of artificially bred calves.  

This finding prompted a revision of how 

fertility traits are included in the national 

selection index for seasonal dairy cows in New 

Zealand. The main fertility phenotype, which 

previously included GL, is slated for 

replacement by a conception-based fertility trait 

that is phenotypically independent of GL 

(Stachowicz et al., 2023).  Both this new 

conception-based fertility trait and GL will be 

incorporated into New Zealand’s economic 

selection index. This change allows the 

development of non-linear index functions that 

avoid favoring selection for excessively short 

GL, which could compromise the welfare, 

viability, and productive performance of the 

resulting calves (Norman et al., 2009). 

 

Conclusion 
 

It is evident that there is a consistent downward 

trend in GL for almost all countries, production 

systems, and dairy breeds. The reasons for these 

trends as well as the long-term implications of 

them are not fully understood yet. For this 

reason, the authors believe that close 

monitoring of genetic (and phenotypic) trends 

of GL is important. An international genetic 

evaluation of GL is strongly recommended; it is 

needed especially for countries heavily 

dependent on imported semen for their genetic 

improvement programs. 
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Abstract 

In April 2023, a new breeding value for milk yield persistency was introduced for German Holsteins, 

Jerseys, Red Dairy Cattle, German black-and-white dual purpose, and red-and-white dual-purpose 

breeds. The aim is to allow selection of animals that are genetically suited for voluntarily extended 

lactations. The new breeding value was derived from the Random-Regression-Test-Day-Model (3 

yield traits: protein-kg, fat-kg, milk-kg; 3 lactations each; 2nd order legendre polynomials in the 

genetic effect) that is used for routine genetic evaluations. The new trait is defined as the slope of the 

genetic Legendre polynomial between DIM 150 and 305 for each yield trait in each lactation. EBVs 

for fat and protein persistency are then combined according to their economic impact, using the same 

weights as for the overall yield index RZM: fat-kg:protein-kg weighted 1:2. The newly defined 

persistency index has a cumulative heritability of 0.34. Correlations of genomic breeding values to the 

traits that are included in the total merit index RZG are close to zero, except for RZM (0.24) and 

longevity RZN (0.18). Reliabilities for youngest genotyped animals without performance observations 

are approx. 0.60, which is lower than for the RZM. We observe a small positive genetic trend in the 

newly defined persistency trait in German Holsteins, which is expected, given the small but positive 

correlation to RZG that stems from the correlations to RZM and RZN. 

Key words: milk yield, persistency, Holstein, extended lactations, Germany 

Introduction 

In recent years, the interest of farmers to 

extend the lactations of their cows has 

increased. Main reasons are: 1) low calf prizes; 

2) each calving exposes cows to severe risks in

their health and even survival; 3) reduce the

portion of dry periods, where cows are not

productive; 4) expectation of higher successful

insemination rates (Römer et al. 2021, Van

Knegsel 2022). This voluntary increase of

lactation lengths puts new focus on the

persistency of milk production and promises

benefits in contact to animal health, economics

and management (Lehmann et al. 2014; Do et

al. 2017; Sehested et al. 2019). Common

definitions of persistency consider a fixed

period from lactation peak up to a certain day

in milk (DIM) in the second half of the

lactatation (Van Doormaal 2007, Biassus et al.

2010, Fürst et al. 2021, Aamand 2022). Our

interest is persistency in extended lactations 

that go well beyond 305 days (Sehested et al. 

2019). The aim is therefore to provide farmers 

with a breeding value that allows for the 

selection of animals that are genetically suited 

to maintain their production in extended 

lactations: the RZPersistenz. 

Materials and Methods 

Data was taken from the German routine 

genetic evaluation system of milk production 

traits for Holsteins in August 2022: 

 EBVs for the Legendre coefficients

from the conventional pedigree-based 

Random-Regression Test-Day Model 

(RRTDM). 

 Genotype data used in the German

Holstein genomic evaluations. 

 Raw phenotypic data to validate the

results. 

The EBV data set from the RRTDM, which 

is described in Liu et al. (2000), consisted of 
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about 17 million females and 200 000 bulls. 

The raw phenotypic test-day-data included 

about 19 million lactations and was used to 

assess the impact of the selection on the new 

EBV for persistency on the phenotypic scale in 

extended lactations. For this purpose, the 

following selections were applied: 

 Data from black-and-white Holsteins 

only 

 lactations from 2012 onward 

 minimum calving interval of 550 days 

 only use days in milk (DIM) up to 400 

These filters were applied to achieve a best-

possible representative data set of long 

lactations without an impact of gestation to the 

shape, which was described in previous works 

(Grossman and Koops 2003; Muir et al. 2004). 

After this step, approx. 7% of phenotypic data 

were used for validation.  

The genetic deviation curve of the RRTDM 

for German dairy cattle is modelled using 2nd 

order Legendre polynomials, which gives the 

following function 1:  

 

 

[1] 

Where a0, a1, a2 are the EBVs for the Legendre 

regression coefficients (index denotes the 

order), and dim is the time, measured as days 

in milk.  

Legendre polynomials in the RRTDM are 

defined from DIM 5 to DIM 305. We defined 

lactation persistency as the slope of the curve 

between DIM 150 and DIM 305. The first 

point was chosen, because we do not want to 

affect the lactation peak region and the latter is 

simply the end of the parameter range. The 

weights for the EBVs of the Legendre 

coefficients can then be computed from the 

following formula 2, where the subscripts 1 

(earlier) and 2 (later) of dim represent the start 

and end DIM during lactation.  

 

 

 

 

[2] 

From this calculation, we get for each trait 

and lactation a persistency breeding value. 

These were then combined in the same way as 

the milk production index RZM is combined: 

weighting the first three lactations equally and 

afterwards combine fat-kg and protein-kg with 

a ratio of 1:2, which represents their economic 

weights. This results in the RZPersistenz. 

To compute the h2 of the RZPersistenz, we 

used the estimated variants component Tables 

per trait for genetic (G), permanent 

environment (PE) and residual (R) effects used 

in RRTDM with the resulting weights (w) for 

a1 and a2, while a0 get zero weight. The 

formula is: h² = w'Gw/ (w'Gw + w'Pew 

+ w'Rw).  For the cumulative h2 of 

RZPersistenz, the same weighting as for the 

EBV between lactations and traits are applied. 

The aim of the new breeding value is to 

identify the genetic ability of animals to 

maintain their production level in extended 

lactations that go well beyond DIM 305. 

Therefore, we conducted a validation with 

phenotypic data up to DIM 400 to assess that 

our definition, which goes only to DIM 305, 

also works well for extended lactations. For 

this, approx. 1000 black-and-white Holstein 

AI-bulls born from 2013 to 2016 were grouped 

into 25%-quantiles based on their EBVs for 

persistency. Mean phenotypic daughter 

performance was then compared between 

daughters of top and bottom bulls.  

Genomic breeding values were estimated 

with the same method as described in Liu et. 

al. (2011). Deregressed EBVs of RZPersistenz 

were used as phenotypes for the reference 

population. The training set based on German 

animals with a minimum of 8 phenotypic test 

day records (for bulls, at least 10 daughters 

were required that fulfilled this requirement) to 
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cover enough phenotypic information in the 

relevant interval of the lactation. 

 

Results & Discussion 

 

In Figure 1 and 2, we see the mean 

phenotypic lactation curves in milk-kg from 

daughters of AI bulls in different lactations. 

These results for milk-kg are also largely valid 

for fat- and protein-kg. In general, we observe 

differences between the first and higher 

lactations, with a lower absolute level, but 

flatter course from primiparous cows. These 

findings were expected and are also described 

in Schutz et al. (1990) and López et al. (2015). 

The daughters of the top 25% bulls with regard 

to RZPersistenz show the same mean 

phenotypic curve in early lactation as the 

daughters of the bottom 25% bulls. The curves 

start to differentiate in the second half of the 

first lactation and after the first third of higher 

lactations. The difference is a flatter slope of 

the top 25% bulls’ daughters.  

 

 

 
Figure 1 and 2.  Phenotypic lactation curves for 

milk-kg from daughters of AI-bulls divided in best 

and worst 25% for RZPersistenz. 

 

In the mean phenotypic curves of third 

lactation, the yield of 23kg is reached approx. 

70 days later in for daughters of top bulls 

compared to bottom ones. In first lactation the 

difference on 25kg is approx. 60 days. These 

results show that the RZPersistenz extrapolates 

well up to DIM 400, although the lactation 

curve information used in RZPersistenz 

includes only DIM up to 305. 

With a cumulative heritability of 0.34 for 

RZPersistenz we observe that this is lower than 

the h2 of RZM. One reason most likely is the 

definition of the RZPersistenz that includes 

also less information than in RZM (only 2 of 3 

regression coefficients). The mean genomic 

reliability of young, genotyped animals is 0.6. 

This is less than for gRZM (0.74), which 

results from the lower h² on the one hand and a 

smaller training set for the genomic evaluation 

on the other hand. Reasons for the latter are: 

 We only include bulls with a minimum 

of 10 daughters with at least 8 test-day records 

(compared to 6 test-day records for RZM), in 

order to have enough phenotypic information 

in the relevant second half of the lactation. 

 Only German information can be used in 

RZPersistenz. For RZM, we can use MACE 

results to also get foreign information. This 

does not work for RZPersistenz, because 

MACE gives only single-trait results and no 

information on single regression coefficients. 

gEBV correlations calculated from 105 557 

young female black-and-white Holsteins from 

herd genotyping to most other EBVs in RZG 

(total merit index) are close to zero. RZM 

(0.24) and RZN (0.18) show a small positive 

correlation. We observe also a small positive 

genetic trend also for recent years in the newly 

defined RZPersistenz in German Holsteins, 

which is likely caused by these small but 

positive correlations. In contrast to previous 

studies for persistency like Harder et al. 

(2006a) or Appuhamy et al. (2007), who report 

undesired genetic and phenotypic connections 

to metabolic diseases or udder health, we do 

not observe such negative correlations. The 

reason might be that our definition does not 

include the lactation peak period. This point 

may also explain why we found only few and 

small positive correlations and close-to-zero 

correlations to, e.g., reproduction traits. 
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Different studies on lactation persistency 

expect benefits in reproduction traits or less 

metabolic challenges early in lactation. Among 

others because of a decrease of peak yield 

(Jakobsen et al. 2002, Muir et al. 2004, Harder 

et al. 2006a, Harder et al. 2006b, Van Knegsel 

2022). With our consideration of the period 

after peak, we increase the focus on extend 

lactations, without an impact to peak yield 

(Figure 1 and 2).  In herds with voluntarily 

extended lactations, a positive effect on 

conception rates might be expected, because at 

a later insemination time point, the energy 

balance of the animals is more favorable, 

which aids conception (Van Knegsel 2022). 

Therefore, in the context of extended 

lactations, fertility traits need some re-

consideration, e.g., the interval from calving to 

first insemination is no longer as relevant as it 

is currently in the RZR, the over-all fertility 

index (Vit 2023).  

Future developments will include the 

extension of the RRTDM beyond DIM 305, 

which will give the opportunity to directly use 

information on genetic curves from longer 

lactations to further increase the accuracy of 

RZPersistenz. 

 

Conclusions 

 

The RZPersistenz provides breeders with 

information to support the effective selection 

of animals that are genetically suited to 

perform lactations with flatter curves, without 

an influence on the peak period. This can be 

used in extended lactations. Based on gEBV 

correlations no negative side-effects on other 

traits are expected from selection on the 

RZPersistenz. 
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Abstract 

The SNP training for clinical mastitis (STCM) trait was introduced by the Interbull Centre in April 2021. 

Previously, the mastitis trait within the udder trait group allowed for a wide range of trait definitions: 

direct clinical mastitis, somatic cell score, or a combination of clinical and subclinical mastitis. Since 

the introduction of STCM, the Council on Dairy Cattle Breeding (CDCB) has participated with data for 

Holsteins and Jerseys, aiming to enhance the domestic SNP reference population with foreign 

evaluations. As expected, for Holstein and Jersey the inclusion of Multiple Across Country Evaluation 

(MACE) evaluations had a minor impact on the US evaluation due to the dominance of US animals in 

the reference population. In the August 2022 evaluation, Brown Swiss (BSW) animals began receiving 

domestic health evaluations in the US, which were also incorporated into the Net Merit Index. During 

the January 2023 test run, the BSW STCM successfully completed Trend Methods I and III validation 

at Interbull. Effective as of the April 2023 evaluation and going forward, BSW foreign evaluations are 

included in the United States of America (US) clinical mastitis evaluations. The initial expectation was 

that the impact of this inclusion would be limited, as only two other foreign countries (France and 

Switzerland) contribute to the Interbull clinical mastitis evaluation. However, the observed impact on 

the evaluations was noticeable. Correlations between April 2023 and March 2023, triannual genomic 

evaluations were as low as 0.73 for reference animals and 0.56 for young animals. Along with the 

significant variation in Genomic Estimated Breeding Values (GEBV), the mean genomic reliabilities 

(GREL) for young animals increased from 24% in March 2023 to 30% in April 2023. These results can 

be explained by two main factors: i) the contribution of foreign bulls from France and Switzerland in 

the SNP reference population for US BSW made the inclusion of MACE evaluations more relevant; ii) 

a large number of US BSW clinical mastitis records became available prior to the April 2023 evaluation 

and were added to the national cooperator database. Large changes in GEBV and GREL resulting from 

the initial inclusion of foreign data are not expected in subsequent evaluations unless more countries 

participate.  

Key words: foreign information, participating countries, PTA variation, reliability, gain, young bulls 

Introduction 

The United States of America (US) has 

ongoing health trait evaluations for three 

breeds: Holsteins (HOL; Parker Gaddis et al., 

2017), Jerseys (JER; Parker Gaddis et al., 

2020), and Brown Swiss (BSW; CDCB 

Connection, 2022), commencing in 2018, 2020, 

and 2022, respectively. Health traits evaluations 

consists of six disease resistance traits: milk  

fever, displaced abomasum, ketosis, mastitis, 

metritis and retained placenta. All six traits are 

incorporated into Net merit index (NM$) with a 

sub-index Health dollars, accounting for a total 

weight of 2%. (VanRaden et al., 2021). The 

same pipeline for all three breeds (HOL, JER 

and BSW), and the predicted transmitting 

abilities (PTA) are presented as percentage 

points of event resistance above or below breeds 

average (Mota et al, 2021).  

As the most common and costly trait among 

the six traits, mastitis has a significant impact 

on the dairy cattle sector. Mota et al. (2021) 

noted the rapid increase in mastitis phenotypes, 
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with an increase from 1.8 to 5.1 million records 

in three years. Two years later, the national 

cooperator database managed by the Council on 

Dairy Cattle Breeding (CDCB) accounts for 7.1 

million records, including 5.7 million HOL, 

840k JER, 19k BSW, and half a million from 

other breeds where health trait evaluations have 

not yet been implemented. 

The SNP training for clinical mastitis 

(STCM) trait was introduced by the Interbull 

Centre in April 2021. Previously, the mastitis 

trait within the udder trait group allowed for a 

wide range of trait definitions: direct clinical 

mastitis, somatic cell score, or a combination of 

clinical and subclinical mastitis. Since the 

introduction of Multiple Across Country 

Evaluation (MACE) evaluations for STCM, 

CDCB has participated with data for HOL and 

JER, aiming to enhance the domestic SNP 

reference population with foreign evaluations. 

In the case of BSW, this is even more crucial 

since over 50% of the reference population 

originates from Switzerland (CHE) and France 

(FRA). The percentage of bulls with MACE in 

more than 10 herds are 31% from FRA and 27% 

from CHE. The US has only 22% of its 

reference population consisting of domestic 

animals. 

To assess the impact of adding foreign 

information to the clinical mastitis evaluation 

for BSW, during the January 2023 test run, the 

BSW STCM successfully completed Trend 

Methods I and III validation at Interbull 

(Interbull Centre, 2018). Effective as of April 

2023, BSW foreign evaluations are included in 

the US clinical mastitis evaluations. As 

expected, for HOL and JER, the inclusion of 

MACE evaluations had a minor impact on the 

US evaluation due to the dominance of US 

animals in the reference population. However, 

even though the initial expectation is that the 

impact of this inclusion will be limited, as only 

two other foreign countries (FRA and CHE) 

contribute to the CDCB clinical mastitis 

evaluation, the non-US dominating reference 

population may suggest otherwise. 

 

 

Materials and Methods 

 
The data used in this study were BSW 

MACE values provided by the Interbull Centre, 

Uppsala, Sweden (Interbull Centre, 2020). 

 To assess the impact of including clinical 

mastitis MACE information in BSW, PTA 

means and standard deviations were calculated, 

as well as correlations among three different 

scenarios: i) 2303D, the previous March run 

with domestic information only; ii) 2304D, the 

current April run with domestic information 

only; iii) 2304F, the current April run including 

MACE information. 

 The Pearson correlations were calculated as 

follows: 

𝑟𝑔 =
𝜎𝑎𝑏

√𝜎𝑎
2 ∗ 𝜎𝑏

2

 

where rg is the genetic correlation, and a and b 

can be either of the investigated runs (2303D, 

2304D or 2304F).  

 The statistical analyses were done by using 

SAS software (Statistical Analysis System, 

Version 9.4, 2023). 

 Finally, the investigation was conducted for 

the reference population and prediction animals 

divided in five different groups: i) all animals; 

ii) all bulls; iii) all cows; iv) bulls with REL > 

50%; v) cows with REL > 50%. 

 

Results and Discussion 
 

The total number of animals within each 

group is presented in Table 1. Please note that 

the GEBV and GREL means, and standard 

deviations may vary for the same evaluation. 

This variation is due to the different number of 

animals whose GEBV is affected by MACE 

when compared to a specific evaluation. 
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Table 1.  Number of bulls in common between 

evaluation scenarios. 

Reference Population 

  Group 

2303F  

vs. 

 2304D 

2303F  

vs. 

 2304F 

2304D  

vs. 

 2304F 

All 1,165 1,354 1,354 

Bulls 561 902 902 

Cows 604 452 452 

Bulls 

GREL  

>50% 

168 164 168 

Cows 

GREL  

>50% 

21 20 21 

Prediction Population 

All 62,168 61,979 62,301 

Bulls 45,361 45,020 45,066 

Cows 16,807 16,959 17,235 

Bulls 

GREL  

>50% 

- - - 

Cows 

GREL  

>50% 

- - - 

2303F: foreign March 2023 run; 2304D: domestic 

April 2023 run; 2304F: foreign April 2023 run 
 

 The GEBV and GREL means, standard 

deviations, as well as correlations among three 

evaluation scenarios (2303D, 2304D, or 2304F) 

are presented in Table 2 for the reference 

population and in Table 3 for the prediction 

population. 

 In Table 2, which represents the reference 

population, GEBV means and standard 

deviations were very similar when domestic 

data was the sole source of information. 

However, when MACE information was 

included, there was a notable increase in GEBV 

variability. This had a pronounced impact on 

the correlations, particularly for non-reliable 

animals. The GEBV correlations exhibited a 

slight drop, ranging from 0.01 to 0.03 for bulls 

or cows with REL > 50%, but a drastic drop 

occurred in the group of all bulls, decreasing to 

0.69 when compared to the March run and to 

0.68 within the same April run. 

Despite this substantial GEBV variability, a 

significant increase in GREL was observed for 

the reference population, with an increase of 

approximately 38% for all animals and 47% for 

bulls. It is worth noting that both groups 

exhibited noticeable drops in correlations for 

both GEBV and GREL. As expected, the effects 

on bulls were much more pronounced than on 

cows.  

Table 3 reveals an even greater GEBV 

variability in the prediction population, 

amounting to approximately 52% increase in 

GEBV variability between the April 

evaluations with (2304F) and without (2304D) 

MACE information. Regarding GEBV 

correlations, the observed decrease was more 

significant compared to the reference 

population, plummeting from 0.95 (all groups) 

to a range of 0.55-0.56 for all animals and 0.45-

0.49 for the group of all bulls.  

Conversely, the increase in GREL was also 

quite notable, with a 25% increase for all 

animals and a 30% increase for the group of all 

bulls. These results highlight a substantial 

impact on both traditional and genomic 

evaluations in the US. Despite the substantial 

GEBV variability, the gain in GREL suggests 

that it is worthwhile to incorporate foreign 

information into the US mastitis evaluation. In 

general, these initially unexpected results, 

which have a noticeable impact on US 

evaluations, can be explained by several factors. 

First, the US BSW population is relatively 

small, with approximately 50% of the reference 

population originating from either CHE or 

FRA. Furthermore, all foreign BSW bulls in the 

reference population have genotypes in the 

national cooperator database, a situation 

different from that of HOL and JER breeds, 

where the impact was less pronounced due to 

the predominance of US animals in the 

reference population. 
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Table 2. GEBV and GREL means (standard 

deviations), and correlations between evaluations for 

five groups of reference population animals. 

BSW Reference Population 

2303F vs. 2304D 

Group 
GEBV Mean  

(SD) 
r 

GREL Mean  

(SD) 
r 

All 
0.56 

(2.14) 

0.50 

(2.23) 
0.97 

41 

(11) 

41 

(11) 
0.99 

Bulls 
0.55 

(2.33) 

0.49 

(2.40) 
0.98 

46  

(13) 

46 

(13) 
0.99 

Cows 
0.57 

(1.95) 

0.51 

(2.07) 
0.97 

36 

(6) 

36 

(6) 
0.99 

Bulls 

GREL  

>50% 

0.61 

(2.92) 

0.57 

(3.00) 
0.99 

63 

(10) 

63 

(10) 
0.99 

Cows 

GREL  

>50% 

0.53 

(2.33) 

0.54 

(2.39) 
0.99 

55 

(5) 

55 

(5) 
0.99 

2303F vs. 2304F 

All 
0.73 

(2.00) 

-0.09 

(2.96) 
0.73 

37 

(13) 

51 

(14) 
0.33 

Bulls 
0.76 

(2.00) 

-0.14 

(3.20) 
0.69 

38 

(15) 

56 

(15) 
0.29 

Cows 
0.65 

(2.00) 

-0.01 

(2.42) 
0.86 

36 

(7) 
41 (7) 0.93 

Bulls 

GREL  

>50% 

0.61 

(2.92) 

-0.06 

(3.29) 
0.92 

63 

(10) 

69 

(12) 
0.78 

Cows 

GREL  

>50% 

0.53 

(2.33) 

0.26 

(2.53) 
0.93 

55 

(5) 
58 (5) 0.93 

2304D vs. 2304F 

All 
0.62 

(2.07) 

-0.09 

(2.96) 
0.73 

37 

(13) 

51 

(14) 
0.33 

Bulls 
0.66 

(2.05) 

-0.14 

(3.20) 
0.68 

38 

(15) 

56 

(15) 
0.29 

Cows 
0.54 

(2.12) 

-0.01 

(2.42) 
0.88 

36 

(7) 
41 (7) 0.93 

Bulls 

GREL  

>50% 

0.53 

(2.99) 

-0.11 

(3.30) 
0.92 

63 

(10) 

68 

(12) 
0.79 

Cows 

GREL  

>50% 

0.46 

(2.36) 

0.16 

(2.50) 
0.94 

55 

(5) 
59 (5) 0.94 

GEBV: genomic estimated breeding value; GREL: 

genomic reliability; 2303F: foreign March 2023 run; 

2304D: domestic April 2023 run; 2304F: foreign April 

2023 run 

Table 3. GEBV and GREL means (standard 

deviations), and correlations between evaluations for 

five groups of prediction population animals*. 

BSW Prediction Population 

2303F vs. 2304D 

Group 
GEBV Mean  

(SD) 
r 

GREL Mean  
(SD) 

r 

All 
0.81 

(1.24) 
0.61 

(1.31) 
0.95 

24 

(5) 
24 

(5) 
0.99 

Bulls 
1.00 

(1.08) 
0.77 

(1.14) 
0.95 

23 

(5) 
23 

(5) 
0.99 

Cows 
0.32 

(1.49) 
0.18 

(1.61) 
0.95 

27 

(6) 
27 

(6) 
0.99 

2303F vs. 2304F 

All 
0.81 

(1.24) 
0.15 

(1.99) 
0.56 

24 

(6) 
30 

(6) 
0.64 

Bulls 
1.00 

(1.08) 
0.30 

(1.97) 
0.49 

23 

(5) 
30 

(6) 
0.62 

Cows 
0.32 

(1.49) 
-0.24 

(1.99) 
0.70 

27 

(6) 
31 

(6) 
0.77 

2304D vs. 2304F 

All 
0.61 

(1.31) 
0.15 

(1.99) 
0.55 

24 

(6) 
30 

(6) 
0.64 

Bulls 
0.77 

(1.14) 
0.30 

(1.97) 
0.45 

23 

(5) 
30 

(6) 
0.62 

Cows 
0.18 

(1.61) 
-0.24 

(1.99) 
0.72 

27 

(6) 
31 

(6) 
0.77 

GEBV: genomic estimated breeding value; GREL: 

genomic reliability; 2303F: foreign March 2023 run; 

2304D: domestic April 2023 run; 2304F: foreign 

April 2023 run; *No young animals with 

GREL >50% 

 

 Additionally, the clinical mastitis data for 

BSW only has three contributors: CHE, FRA, 

and the US (https://interbull.org/ib/geforms). 

The volume of BSW information provided by 

the US is relatively small compared to the other 

two countries. In the most recent April 2023 

evaluation, the US submitted only 82 estimated 

breeding values (EBV), while FRA and CHE 

combined contributed a total of 1,167 EBV. 

Finally, the impact on evaluations can also be 

attributed to the fact that the CDCB received a 

substantial number of US records that became 

available after the December 2022 evaluation 
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and were incorporated into the system for the 

April 2023 evaluation.  

 In summary, while these results were 

initially unexpected, they can be reasonably 

explained by the factors mentioned above. With 

data stability, we do not anticipate such a 

significant impact in future runs, unless 

substantial changes occur in terms of data 

availability and the participation of countries. 

Conclusions 

The use of foreign information has enabled 

an increase in the reference population, but the 

US still has a long way to go to build a strong 

reference population for BSW. There has been 

a noticeable impact in both traditional and 

genomic evaluations, with a 52% increase in 

GEBV standard deviations, which is more than 

expected from the prediction GREL gain (30% 

vs. 24%). No impact is expected in subsequent 

evaluations unless more countries participate. 

The authors hope that these results serve as 

inspiration to facilitate the exchange of such 

traits, particularly to assist small population 

countries like the US. 
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Abstract 

Cheese production is one of the most important segments of the agrifood sector in Italy and milk 

coagulation properties (MCP) are a key factor for an efficient cheesemaking process. Milk coagulation 

properties, referred as rennet coagulation time (RCT), curd firmness (a30) and curd-firming time (k20), 

are available from mid-infrared spectroscopy (MIRS) prediction models implemented within the 

official national milk recording system (LEO project, PSRN mis 16.2, AIA, 2023). Aim of this study 

was to assess the possibility to genetically improve MCP in Italian Holstein population and to develop 

a routine genetic evaluation for such traits. A multiple-trait repeatability linear animal model was 

employed, with RCT, a30, k20 and casein percentage (CAS) as outcome variables. Fixed effects were 

the interaction between year and season of recording, between parity (1,2+), year and age at calving 

class (7 classes) and between parity, year and days in milk class (10 classes). Random effects were 

contemporary groups, animal permanent environment, animal additive genetic and residuals. The 

models for RCT, a30 and k20 accounted also for somatic cell score as covariate. A total of 64,720 

records from 150 herds, randomly sampled from the full dataset of 4,001,769 observations after edits, 

were used for variance components estimation using THRGIBBS1F90. The pedigree was traced back 

to 4 generations and was composed of 59,124 individuals. Convergence was assessed using R package 

BOA. The posterior mean (PM) for heritability was 0.33 for CAS, 0.11 for RCT, 0.16 for a30, and 

0.15 for k20. The genetic correlation between RCT and a30 was -0.87, highlighting their antagonistic 

relationship; the same conclusion can be drawn from the correlation between k20 and a30 (-0.98). 

RCT and K20 were positively correlated (0.77). CAS was negatively genetically correlated to both 

RCT and k20 (-0.04 and -0.76, respectively), and positively to a30 (0.51). A SNPBLUP model was 

employed for estimating genomic breeding values (GEBV) using two distinct training populations: 

solely bulls and both bulls and cows (mixed reference population). The validation of GEBVs, 

conducted with complete and partial datasets (with a three-year back cutoff date for phenotypes), 

consistently demonstrated that employing a mixed training population results in reduced dispersion 

and heightened reliability for these traits. These results showed the feasibility of selecting for MCP 

improvement within the Italian Holstein population. Furthermore, they establish the foundation for 

implementing a routine genetic evaluation aimed at enhancing cheese production, utilizing a mixed 

reference population for SNP effects estimation. 

Key words: cheesemaking, dairy cattle, genomic selection, mixed reference population, mid-infrared 

spectroscopy, genetic parameters 
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Introduction 
 

In Italy, 77% of the milk is used for cheese 

production, the 55% of which is specifically 

utilized for crafting the 56 geographical 

indications and traditional specialties officially 

recognized by the European Union (ISMEA, 

2022). In this scenario, the significance of 

dairy production in the Italian agrifood sector 

is readily evident. The importance of milk 

coagulation properties (MCP), referred as 

rennet coagulation time (RCT, minutes), curd 

firming time (k20, minutes) and curd firmness 

(a30, millimeters), for an efficient 

cheesemaking process has been widely 

discussed (Riddel-Laurence et al, 1989; 

Wedholm et al, 2006; Pretto et al, 2012). 

Moreover, MCP were demonstrated to be 

moderately heritable, indicating the potential 

for improvement through genetic selection 

(Cassandro et al, 2008; Visentin et al, 2017). 

Milk coagulation properties are now available 

at the National Breeders Association of Italian 

Holstein, Brown Swiss and Jersey (ANAFIBJ) 

from mid-infrared spectroscopy (MIRS) 

prediction models implemented within the 

official national milk recording system (LEO 

project, PSRN mis 16.2, AIA, 2023). 

Considering the aforementioned, the aim of 

this study was the implementation of a routine 

genetic and genomic evaluation of MCP for 

the Italian Holstein breed. Furthermore, given 

the substantial availability of genotypes of 

Italian Holstein cows, the feasibility of 

incorporating them into the training population 

for the estimation of the SNP effects was 

explored.  

 

Materials and Methods 

Data editing 

The input dataset was composed of 6.7 

million records from 2017 onwards. Only 

records from regions that provided a consistent 

data flow were kept (10 regions out of 20). 

Records from parity 1 to parity 5 and from 5 to 

405 days in milk (DIM) were considered. 

Regarding MCP traits, accepted range of 

values for RCT, k20 and a30 where five to 60 

minutes, one to 20 minutes and five to 60 

millimeters respectively: all records out of 

these ranges were removed as obvious errors. 

In order to detect laboratory measurement 

anomalies, isolation forest algorithm 

implemented in the python module Scikit-learn 

was employed (Pedregosa et al, 2011). Briefly, 

reference values from Visentin et al, 2015 

were used for the phenotypic correlations 

between the three traits: -0.73 for RCT-a30, 

0.80 for rct-k20 and -0.79 for k20-a30. 

Phenotypic correlations within herd-year-test-

day (HTD) groups were calculated: all milk 

samples collected from the same herd in the 

same day are processed in the same laboratory. 

All the HTD groups with an anomalous value 

compared to the reference have been excluded. 

All test-day observations had to have a record 

for casein percentage (CAS) too to be included 

in the analysis. Finally, only herd-year-season 

of recording groups with at least 20 

contemporaries were kept. Pedigree was traced 

back to four generations.  

 

Statistical model 

A multiple trait repeatability linear animal 

model was used, with CAS, RCT, a30 and k20 

as correlated dependent variables.  

The model for CAS was the following: 

 

𝐶𝐴𝑆𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝 = ℎ𝑦𝑠𝑖 + 𝑆𝑗∗𝑌𝑘 + 𝐷𝐼𝑀𝑙∗𝑃𝐴𝑅𝐶𝑚∗𝑌𝑘 + 

𝐴𝐺𝐸𝐶_𝑃𝐴𝑅𝑛∗𝑌𝑘 + 𝑎𝑜 + 𝑝𝑒o + 𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝 

 

with 𝐶𝐴𝑆𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝 as the pth phenotypic 

observation of casein percentage. Fixed effects 

were 𝑆𝑗∗𝑌𝑘 as the crossed effect of season j by 

year k, 𝐷𝐼𝑀𝑙∗𝑃𝐴𝑅𝐶𝑚∗𝑌𝑘 as the lth days in 

milk class (10 classes of 40 days) by parity 

class m (3 classes: 1, 2, 3+) and year k, 

𝐴𝐺𝐸𝐶_𝑃𝐴𝑅𝑛∗𝑌𝑘 as the nth age at calving by 

parity class (9 classes: 3 age at calving classes 

for every parity class) by year k. Random 

effects were ℎ𝑦𝑠𝑖 as the ith contemporary 

group for herd-year-season of recording, 𝑎𝑜 as 

the additive genetic effect of the oth animal, 
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𝑝𝑒o as the permanent environmental effect of 

the oth animal and 𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝 as the residual of 

observation p. The same model with the 

addition of the fixed linear regression of 

somatic cell score was applied to MCP traits. 

 

Variance components estimation, genetic and 

genomic evaluation, approximate genetic 

correlations 

Variance components estimation was 

performed with the software THRGIBBS1F90 

(Misztal et al, 2002) on a sample of 64,720 

animals (150 herds). Convergence was 

assessed with R package BOA, Bayesian 

output analysis (Smith, 2007). Conventional 

estimated breeding values (EBVs) were 

estimated with MiX99 software (MiX99 

development team, 2012). Genomic evaluation 

was performed with a SNPBLUP model using 

GS3 software (Legarra et al, 2007). For 

estimated deregressed proofs (EDPs), the 

method from Degano et al (2009) was applied. 

A conventional quality control was applied to 

SNP data. For the imputation process, 

PedImpute software was used (Nicolazzi et al, 

2011). Approximate genetic correlations were 

calculated as Pearson correlation coefficients 

between genomic estimated breeding values 

(GEBVs) of 87,569 heifers born after 2016.  

 

Genomic validation 

    Genomic validation was performed as 

described in Finocchiaro et al (2012) and 

Galluzzo et al (2022). Briefly, two datasets 

were used for EBVs estimation: one full (with 

records up to 2308 run) and one reduced (with 

a 3-years back cutoff date). For both sets of 

EBVs, EDPs were calculated and used as 

pseudo-phenotypes for SNP effects estimation. 

Bulls with daughters in the full datasets but 

without in the reduced one were selected as 

validation bulls. Finally, a linear regression 

with EDPs of validation bulls from the full run 

as dependent variable and their direct genomic 

values (DGVs) from the reduced run as the 

independent one was fitted. The validation 

process was performed either using a training 

population composed of bulls only and of bulls 

and cows. Parameters considered for the 

comparison were the dispersion coefficient and 

the reliability of the linear regression model. 

 

Results & Discussion 

 

The dataset after edits was composed of 

4,001,769 records: phenotypes averaged 2.72%, 

25.40 minutes, 20.73 millimeters and 7.29 

minutes for CAS, RCT, a30 and k20 

respectively. The results of variance 

components estimation are listed in Table 1. 

Posterior mean for heritability was moderate to 

high for CAS and moderate for MCP traits: 

genetic correlations were high for all 

combinations of traits except for CAS and 

RCT.  

 

Table 1. – Results of variance components 

estimation.  

Posterior means of heritability on diagonal with 

posterior standard deviations in parentheses, 

genetic correlations above diagonal. 
 

The results of the genomic validation are listed 

in Table 2. Adding the females, the training 

population increased by 40,478 individuals. 

The mixed training population performed 

better than the one composed by only bulls for 

both the parameters considered, dispersion 

coefficient and reliability of the model.  

 

 

 

 

 

 

 

 

 

 

 

 CAS RCT a30 k20  

CAS 0.33(0.01) -0.04 0.51 -0.67  

RCT  0.11(0.01) -0.87 0.77  

a30   0.16(0.01) -0.98  

k20    0.15(0.01)  
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Regarding dispersion, a mean coefficient of 

0.91, compared to a mean of 1.28 for the bulls 

only, was detected for the mixed reference 

population; regarding reliability, a mean 

reliability of 0.48 was detected for the bulls’ 

reference population while a mean of 0.76 

resulted for the mixed one. These evidences 

suggest that the inclusion of females in the 

reference population would be beneficial for 

MCP traits. 

Based on these results, the mixed reference 

population was chosen for the subsequent 

analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.   Results of genomic validation. 

B=bulls only; M=mixed; b=dispersion coefficient; 

r2=model reliability. 
 

 

 

 

 

 

 

 Training Animals b r2 

CAS B 3,276 1.205 0.452 

 M 43,754 0.898 0.790 

RCT B 3,276 1.359 0.421 

 M 43,754 0.925 0.737 

a30 B 3,276 1.319 0.478 

 M 43,754 0.911 0.767 

k20 B 3,276 1.246 0.459 

 M 43,754 0.895 0.763 

  

Figure 1.  Bulls’ genetic trend by birth year. µGEBV=average GEBV. 

 

Figure 2.  Approximate genetic correlations for MCP traits. Mkg=milk yield, fkg=fat yield,pkg=protein 

yield, fpr=fat percentage, ppr=protein percentage, scs=somatic cell score, ifl=interval first-last 

insemination, dlo=direct longevity, mas=mastitis, htt=heat tolerance, cas=casein percentage, rct=rennet 

coagulation time, a30=curd firmness, k20=curd firming time, bhb=ketosis. 
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The genetic trend of bulls’ GEBVs by birth 

year is represented in Figure 1: an increasing 

trend is evident for CAS, a30 and k20. The 

trend for RCT is increasing too, but in a milder 

way compared to the other traits.     

The approximate genetic correlations are 

represented in Figure 2. For all the four traits 

analyzed, this study revealed a null or 

favorable approximate genetic correlation with 

all the traits considered. The only exception is 

milk yield: for this trait, a negative and 

unfavorable correlation was detected with CAS, 

a30 and k20. The strong favorable genetic 

correlations of CAS, a30 and k20 with protein 

yield and percentage may explain their 

increasing genetic trend. In contrast, the milder 

correlations calculated for RCT can be the 

motivation of its less pronounced trend. 

 

Conclusions 

 

In conclusion, this study increased the 

knowledge about the genetic aspects of MCP 

in the Italian Holstein population, revealed the 

possibility to genetically improve the breed for 

these traits and highlighted the benefits of 

including females in the reference population 

for SNP effects estimation. A routine genetic 

evaluation of CAS and MCP traits will be soon 

implemented in Italy for the Italian Holstein 

breed. 
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Abstract 

Improving reproductive performance remains one of the major goals for the dairy industry worldwide. 

Bull fertility has been recognized as an important factor influencing reproductive success in dairy cattle. 

In this study, we investigated bull fertility in the Italian Brown Swiss dairy cattle population based on 

extensive records. The data set included a total of 397,926 breeding records from 1,228 bulls and 

129,858 lactating cows between first and fifth lactation from 2000 to 2019, and all bulls have a genomic 

analysis on 454k single nucleotide polymorphisms (SNP). We estimated sire conception rate using only 

factors related to the bulls, our analyses revealed that there is a substantial variation in conception rate 

among Brown Swiss bulls, with more than 20% conception rate difference between high-fertility and 

low-fertility bulls and cross-validation analyses achieved predictive correlations equal to 0.30 for sire 

conception rate. The analysis included alternative whole-genome scans and gene-set analyses identified 

two genomic regions, located on BTA6 and BTA26 that showed marked non-additive effects. These 

regions harbor genes, such as WDR19 and ADGRA1, that are directly involved in male fertility, including 

sperm motility, acrosome reaction, and embryonic development.  The analysis to evaluate association 

between runs of homozygosity (ROH) and male fertility showed four different ROH regions located on 

chromosomes 6, 10, 11, and 24 were significantly overrepresented in low-fertility bulls. The predictive 

performance of the linear kernel-based regression models fitting the entire set of SNP markers exhibited 

predictive correlations around 0.19. Interestingly, the inclusion of two major non-additive markers as 

fixed effects achieved predictive correlations around 0.32. Moreover, including in the estimation also a 

new knowledge on the effect of ROH on the male fertility could improve reliability of prediction. 

Key words: Bull fertility, Genomic analysis, Genomic Inbreeding, Brown Swiss cattle 

Introduction 

Fertility is a critical factor for profitable dairy 

farming, but challenges persist in achieving 

optimal reproductive performance in dairy 

herds, leading to economic losses (Abdollahi-

Arpanahi et al., 2017). While female 

reproductive traits have been a focus in 

breeding programs, male fertility, which also 

plays a significant role in pregnancy success, 

has been somewhat overlooked (García-Ruiz et 

al., 2016; Toledo-Alvarado et al., 2017). 

Traditional laboratory methods are used to 

assess bull fertility based on semen 

characteristics. However, these methods often 

fall short in accurately predicting a bull's true 

fertility, which can be better estimated using 

field records, such as cow insemination and 

pregnancy data. Some national evaluations exist 

for female fertility traits, but male fertility 

assessments are usually conducted by 

individual breeding organizations and may not 

be widely available (Stahlhammar et al., 1994; 

Kastelic and Thundathil, 2008, Han and 

Peñagaricano, 2016). The Brown Swiss breed, 

with a substantial global presence, holds great 

importance in the dairy industry. This study 

aims to investigate bull fertility in the Italian 

Brown Swiss dairy cattle population by 

examining cow field records and evaluating 

statistical models for pregnancy success and 

sire conception rate (SCR), focusing on factors 

related to the bull (Kuhn and Hutchison, 2008; 

Kuhn et al., 2008). The study also assesses 

model predictive ability through cross-

validation techniques. 
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Materials and Methods 

We meticulously analyzed a comprehensive 

dataset, encompassing 397,926 breeding 

records from 1,228 bulls and 129,858 lactating 

cows over a two-decade period (2000-2019). 

This extensive dataset provided a valuable 

resource for our investigation. Moreover, for all 

bulls the genotype based on 454k SNPs ware 

available. The fundamental metric we employed 

to gauge bull fertility was the Sire Conception 

Rate (SCR).  

Sire conception rate was estimated using 

different factors closely related to the fertility of 

the bull. These factors included the age of the 

bull, inbreeding levels, mating inbreeding, the 

AI company involved, and the year of 

insemination (Kuhn and Hutchison, 2008a; 

Kuhn et al., 2008b). Additionally, our model 

incorporated genetic components, both additive 

and non-additive, and other influential 

variables. These variables encompassed the 

number of lactations, days in milk, AI company-

specific effects, and the effects associated with 

different herd-year-season conditions: 

 

 

The solutions for the linear and quadratic 

effects for age and inbreeding of the bull, 

namely β̂5, β̂6, β̂9 and β̂10, and the solutions 

for the random effects AI company_year were 

all obtained from the model used to evaluate 

cow pregnancy success. The proportion of the 

total variation in SCR due to additive genetic 

effects was estimated using a classical animal 

model with SCR as response variable and the 

kinship matrix constructed using pedigree 

information. Finally, male fertility evaluations 

were assessed using the Spearman's rank 

correlation coefficient on the cross-validation 

test (Pacheco et al., 2021). 

Whole-genome sequencing for additive and 

no additive effect were conducted to assess the 

impact of additive and non-additive effects on 

service sire fertility at a genomic level.  A two-

step mixed-model approach was employed, 

involving a model with fixed and random 

effects for SCR records and the evaluation of 

individual SNP effects for various genetic 

effects using a regression approach (Nicolini et 

al., 2018; Pacheco et al., 2022). 

We evaluated the feasibility of predicting 

bull fertility in Brown Swiss using genomic data 

under different scenarios. To assess the 

predictive power of the entire high-density SNP 

dataset, a whole-genome prediction model was 

employed using two model one with just a 

polygenic effect and the second including two 

SNPs (identify with genome scan on the non-

additive effect) were coded as 0 or 1, to 

represent the effect of having at least one or two 

copies of the B allele and were fitted as fixed 

effects in an alternative whole-genome 

prediction models. The predictive ability of two 

models was assessed by 5-fold cross-validation. 

Runs of homozygosity (ROH) analysis was 

conducted using PLINK software (Chang et al., 

2015). The genome was scanned for 

consecutive homozygous SNPs. Various 

characteristics of ROH segments were 

calculated, including the total number of 

segments, average and maximum segment 

length, and the number of SNPs within each 

ROH (Pacheco et al., 2023). The bull population 

was divided into low- and high-fertility groups 

based on SCR (Sire Conception Rate). The level 

of homozygosity, measured as total ROH 

length, was compared between these groups. To 

explore potential genetic factors related to male 

fertility, genomic regions with overlapping 

ROH segments were examined. 

 

Results & Discussion 

The study unveiled a myriad of insights into the 

factors influencing male fertility in Brown 

Swiss cattle. 

 

Sire Conception Rate 

The Sire Conception Rate (SCR) reflects 

male fertility, with a 1-point difference 
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representing a 1% change in Conception Rate 

(CR). SCR values varied significantly among 

the 1,228 Italian Brown Swiss bulls, with a 20% 

difference between high and low-fertility bulls. 

Notably, 20% of this variation was attributed to 

additive genetic effects. A positive correlation 

of +0.35 (**P< 0.01) was observed between 

Italian and American SCR values for 44 bulls 

evaluated in both countries.  

We then assessed the predictive performance 

of different models for SCR, revealing 

correlations between SCR and bull’s CR 

ranging from 28.2% to 30%. Variables like milk 

yield (MY), AI company within a specific year 

(AI company_year) and inbreeding of the 

potential embryo (Inbreeding mating) 

influenced these correlations. 

 

Genomic Non-Additive Effects 

 

Whole-genome scans divulged the presence 

of two genomic regions on BTA6 and BTA26 

with substantial non-additive effects on male 

fertility. These regions encompassed genes like 

WD Repeat Domain 19 (WDR19) and Adhesion 

G protein-coupled receptor A1 (ADGRA1), with 

known direct implications for key aspects of 

male fertility, such as sperm motility, acrosome 

reaction, and embryonic development (Figure 

1). 

 

 

Figure 1. The Manhattan plot illustrates the 

significance of recessive effects and their relevance 

to male fertility in Italian Brown Swiss cattle. 

Enhancing Genomic Predictive Accuracy 

Figure 2 shows the predictive ability of 

linear kernel-based regression models fitting the 

whole-genome model, ‘IT: Polygenic”, and the 

‘IT: Polygenic + Major Markers’ model that 

includes two significant recessive SNPs fitted 

as fixed effects. The ‘IT: Polygenic’ model 

exhibited an average correlation between 

observed and predicted SCR values of 0.19, and 

a mean-squared error of prediction (MSEP) 

equal to 22.11. The ‘IT: Polygenic + Major 

Markers’ model delivered an average predictive 

correlation equal to 0.32 and MSEP equal to 

20.34. Notably, the model predictive ability was 

largely improved by including the two markers 

with large effect, representing an increase in 

predictive correlation of about 68%. Pacheco et 

al. (2022) reported that these significant non-

additive markers are near genes directly 

involved in male fertility, including sperm 

motility, acrosome reaction, and embryonic 

development. 

 

 

Figure 2. Genomic predictions within the Italian 

Brown Swiss population using alternative whole-

genome predictive models. Predictive correlation 

(top) and mean squared error of prediction (bottom) 

were calculated using 5-fold cross-validation with 10 

replicates. Light blue boxes represent the ‘IT: 

Polygenic’ model that includes the whole SNP 

dataset (481,839 SNPs). Dark blue boxes represent 

the ‘IT: Polygenic + Major SNPs’ model that 

includes two major SNP markers fitted as fixed 

effects. 

Runs of Homozygosity 

The study highlighted the detrimental 

impact of inbreeding on male fertility in Brown 

Swiss cattle. Four regions of homozygosity 

located on chromosomes 6, 10, 11, and 24 were 

significantly overrepresented in low-fertility 

bulls. The results underscored the complexity of 

factors influencing male fertility and the 

potential of combining multiple sources of 
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information to enhance our understanding of 

this critical aspect of cattle breeding. 

Conclusions 

This study delves into the male fertility of 

Italian Brown Swiss dairy bulls using extensive 

cow field records and genomic data. It uncovers 

substantial variability in sire conception rates 

and successfully demonstrates the potential of 

assessing bull fertility directly from confirmed 

pregnancy records. The research reveals 

insights into genetic and genomic factors 

influencing male fertility, highlighting non-

additive genetic effects, relevant genomic 

regions, and the impact of inbreeding. 

Ultimately, this study provides a foundation for 

refining management and selection strategies in 

the dairy industry and offers valuable 

contributions to understanding male fertility in 

Brown Swiss cattle, with potential for future 

enhancements in this field. 
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Abstract 

Since the early 1990s, different initiatives have emerged worldwide to establish beef across-countries 

genetic evaluations. The experiences involving Ireland, France and the UK served as a precursor for 

today's Interbeef Working Group (WG). Interbeef is a WG of ICAR and offers, through the Interbull 

Centre, international beef cattle evaluation services for 12 countries, five breeds and three trait groups 

including adjusted weaning weight (aww), calving (calv), and since 2023, also carcass (carc). The 

evaluation of carcass traits has been an objective of Interbeef WG since its origin. The results of a survey 

carried out in 2014 verifying the status of this group of traits at the European level, determined that the 

main traits to be included in the evaluation would be carcass weight, fat and conformation. The first data 

call was carried out in 2018, and after several research evaluations and modifications to the model, a 

final pilot evaluation was performed in December 2022. The results were considered satisfactory, and 

the evaluation of carcass traits became a routine service run starting in October 2023. 

Key words: beef cattle, across countries genetic evaluations, carcass traits  

Introduction 

Interbeef is a Working Group (WG) of the 

International Committee for Animal Recording 

(ICAR), whose main objective is to develop and 

promote genetic and genomic evaluations of 

beef cattle at the national and international 

levels. In this regard, the Interbeef WG acts as 

a worldwide network for the improvement of 

beef cattle, in permanent dialogue with the 

different sectors of the industry, and develops 

international evaluation systems. On the other 

hand, it also has a role in coordinating and 

collaborating in scientific research related to 

beef cattle breeding (ICAR, 2022).  

Through the Interbull Centre, Interbeef 

offers international services to participating 

countries for five different breeds, including 

Aberdeen Angus, Charolais, Hereford, 

Limousin and Simmental, and three trait groups 

including adjusted weaning weight (adww), 

calving (calv) and, since 2023, carcass (carc). 

Female fertility is an important trait group 

currently under development and is intended to 

be introduced as a service in the coming years. 

All trait group services follow specific steps 

for their development, which may vary subtly 

given the requirements of the different traits. 

This article summarises the development 

process of the carcass trait service, from its 

idealisation to the recent first routine 

evaluation.  

Brief history of Interbeef 

The collaborative way of service 

development within Interbeef is related to its 

history and conception.  

The ambition to perform joint beef cattle 

evaluations for groups of countries dates back 

to the early 1990s. Since then, several projects 

have been conducted in different regions 

worldwide (Bullock et al., 2003; Reverter et al., 

2002; Journaux et al., 1996).   

In 1999, a collaborative research project 

brought institutions together from three 

European countries: the Irish Cattle Breeder 

Federation (ICBF) from Ireland, the Institut de 

l'Elevage (IDELE) from France and the Meat 

Livestock Commission (MLC) from the United 

Kingdom. The main objective of the project, 

called European International Beef Evaluation 

(EUBEEVAL), was to develop methodologies 

to obtain estimated breeding values (EBV) 

between European countries, accounting for the 

differences between production systems, and, in 

the other hand, to study the best way to compare 
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EBVs obtained in different systems (Journaux 

et al., 2006).  

One of the most important results of the 

project was the determination of the best model 

for international across-countries evaluations. 

In beef cattle production systems, the use of 

artificial insemination (AI) is limited; 

consequently, the connection between countries 

is also weak. In this context, it was determined 

that the best model to apply in beef international 

genetic evaluations is an Animal Model 

accounting for Across Countries Interactions 

(AMACI) (Phocas et al. 2004). Following this 

system, phenotypes, different models for each 

country and across-countries covariance are 

used. 

The efforts made in the framework of this 

project laid the foundation for the formation of 

Interbeef WG. The Interbull Centre team carries 

out the services offered by the WG, which 

currently consists of beef international 

evaluations for adjusted weaning weight, 

calving traits (calving ease and birth weight) 

and carcass traits (weight, fat and 

conformation) with the participation of 12 

countries. 

Carcass traits service 

There are several stages in introducing a set 

of traits into the routine evaluations performed 

by the Interbull Centre.  

When community interest in a set of traits is 

identified, a working group will conduct the 

investigation on their possible inclusion as a 

service.  

Although the latter stages have to be done 

with the resources of the Interbull Centre, part 

of the development and the estimation of the 

variance components are carried out in national 

genetic centers. This was the case with adjusted 

weaning weight developed mainly by ICBF in 

Ireland, calving traits at the Institute of Animal 

Science, Czech Republic, and fertility traits 

under development at Vereinigte 

Informationssysteme Tierhaltung (vit), 

Germany. Adjusted weaning weight and 

calving traits have been part of routine 

evaluations since 2013 and 2016, respectively. 

Carcass traits have been an Interbeef WG's 

goal since the beginning, and studies of this 

group of traits began at the initiative of 

Scotland's Rural College (SRUC) and then 

continued through the ICBF and Interbull 

Centre. Figure 1 presents a timeline from the 

first steps until the carcass traits routine 

evaluation. 

Figure 1. Timeline of the development of the 

Carcass traits service. 

As a first step, SRUC surveyed the 

participating countries to diagnose the status of 

national evaluations for carcass traits. The 

survey covered different aspects, such as proxy 

traits measured on the live animal, traits 

measured directly on the carcass, and breeds 

and models of the evaluations in the different 

countries. It identified carcass weight and 

EUROP grades of carcass conformation and fat 

as the most recorded traits (Table 1). Another 

important finding was the high number of 

crossbred individuals recorded in several 

countries, and some countries commented on 

the importance of carcass traits in beef from 

dairy systems. 
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Table 1. Carcass traits recorded by countries. Adapted from SRUC survey.  

 CHE CZE DNK FIN SWE FRA GBR IRL 
C. Weight          
C. Conformation         
C. Fat          
Individual Primal Cuts         
Total meat yield          
Tenderness         
Age at slaughter         

CHE = Switzerland, CZE = Czech Republic, DNK = Denmark, FIN = Finland, SWE = Sweden, FRA = France, 

GBR = Great Britain, IRL = Ireland.  

  

Given the importance of the participation of 

crossbred individuals in this trait group, the WG 

postponed the data call until the conclusion of 

studies to incorporate this type of information 

in the international evaluations of Interbeef.  

The data call was finally presented in 

September 2018 for the three recommended 

traits, carcass weight, fat and conformation, 

including three breeds: Charolais, Limousin and 

Simmental. 

The first research evaluations were 

performed on data from 4 populations: Ireland 

(IRL), Great Britain (GBR), Switzerland 

(CHE), and Denmark, Finland and Sweden 

(DFS) with a set of (co)variance components 

estimated by ICBF (Ireland). In 2021, new data 

was collected via the Interbull Data Exchange 

Area (IDEA) and new research runs were 

conducted within the Interbull Centre. Finally, 

in December 2022, a new set of (co)variance  

 

 
Figure 2. Comparison of carcass weight EVBs from 

bulls with reliability >0.7 from Interbeef pilot and 

Irish evaluations. Courtesy of Thierry Pabiou, ICBF.   

 

 

components was prepared by ICBF, and the 

carcass traits pilot run was performed with 

acceptable results. 

For example, Figure 2 presents a comparison 

of carcass weight EBVs of bulls with 

reliabilities over 0.7 from the Interbeef pilot 

evaluation and the Irish domestic evaluation for 

the three evaluated breeds. The correlation 

between the EBVs from each evaluation was 

approximately 0.7 in all of the breeds. 

Therefore, the Interbeef WG decided to include 

this trait group in the April 2023 Interbeef test 

run. 

 

The 2023 test and routine runs 

 

Even though four populations participated 

until the pilot run, for different reasons, only 

Ireland and Great Britain went ahead with the 

April 2023 test evaluation. The countries 

submitted a total of 1,620,279 records for 

Charolaise, 1,619,571 for Limousin and 

450,708 for Simmental (Table 2). A total of 

1,232,423, 1,276,613, and 361,419 individuals 

for Charolais, Limousin and Simmental, 

respectively, were included in the evaluation. 

The test and posterior routine evaluations used 

the set of (co)variance components estimated 

for the pilot run. Table 3 shows the correlations 

across Ireland and Great Britain for the three 

traits included in the evaluation. In general, the 

correlations are in a medium range, between 

0.56 and 0.75, with the highest (≥ 0.7) for 

carcass fat and the lowest (≤ 0.62) for carcass 

conformation.   
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Table 2. Number of records submitted to the April 

2023 test evaluation. 

    Number of records 

per trait 

CHA 
IRL  388,500 

GBR 151,593 

LIM 
IRL  386,257 

GBR 153,600 

SIM 
IRL  48,230 

GBR 102,006 

 

Table 3. Carcass genetic correlations between 

Ireland and Great Britain.   

 CHA LIM SIM 

C. Weight 0.61 0.65 0.69 

C. Conformation 0.60 0.62 0.56 

C. Fat 0.70 0.75 0.72 

 

The October routine evaluation counted with 

the participation of both countries, and an 

increase of 1.6% in the number of performance 

submissions was observed.   

 

Future developments 

 

Regarding future developments of the 

carcass evaluations, it is expected that more 

countries will be interested in participating in 

the evaluation, given the importance of this trait 

group for beef cattle breeding.  

It is also possible to expand the evaluation to 

Aberdeen Angus and Hereford when requested 

by the participating countries.  

Concerning potential new carcass traits to 

include in the evaluation, in the framework of 

the European GenTORE project, some research 

has been carried out on the evaluation of age at 

slaughter. This trait of interest can also be 

included in the future after a short research and 

pilot evaluation.  

On the other hand, Interbeef WG is currently 

discussing the development of international 

genomic evaluations. When discussions 

conclude on how to carry out the genomic 

evaluation, all current trait groups under 

evaluation are expected to be included.  

As previously mentioned, the SRUC survey 

identified many countries linking carcass traits 

to beef on dairy systems. Given the economic 

potential it represents this is also a topic of great 

interest within the beef cattle industry. 

Recently, a study conducted by Jo Newton 

(2023) under the ICAR Brian Wickham Young 

Person Exchange Program, identified the 

opportunity for international evaluation of beef 

on dairy through the Interbull Centre, whereby 

carcass traits could be the first trait group to be 

tested in a beef on dairy system. 

 

Conclusion 

 

After many years of development and testing 

different models, the carcass trait Interbeef 

evaluation has been successfully introduced as 

a service in routine evaluations. 

In the near future, more countries are 

expected to participate, as well as expansion of 

the evaluation to more breeds.  

The international carcass traits evaluation 

has great potential for the development of an 

international evaluation of beef on dairy. 
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Abstract 

A haplotype associated with calf recumbency and mortality having a recessive effect but apparent 

incomplete penetrance was previously linked to the end of chromosome 16 (78.7 to 80.7Mbp). 

Genotype analysis of 5.6 million Holsteins indicated that the haplotype was common and traced back 

to 1952, with a key ancestor born in 1984 (HOUSA1964484, Southwind) identified from chip 

genotypes as homozygous for the suspect haplotype. Sequence data from Southwind, an affected calf, 

and the sire of the affected calf were scanned for candidate mutations. A mutation in the CACNA1s 

gene causing symptoms of recumbency (lately termed Holstein Early Onset Muscle Weakness; HMW) 

was homozygous in the affected calf and heterozygous in the calf’s sire and Southwind. Improved 

methods for using pedigree to track new mutations within existing haplotypes were developed, and 

gene tests for the mutation were also included. For new mutations within existing common haplotypes, 

determining carrier status without gene tests is difficult, even with accurate pedigrees when the 

original haplotype has a high frequency. 

Key words: HMW, CACNAS1, Recessive, Recumbency 

Introduction 

Computational genomic tools allow for 

monitoring known genetic diseases in dairy 

cattle, predict the rise of novel markers 

(causal/associated), and link them to newly 

identified disorders of a genetic nature 

(https://www.ars.usda.gov/ARSUserFiles/8042

0530/Publications/ARR/Haplotype%20tests_A

RR-Genomic5.pdf). Recently, Holstein 

newborns exhibited higher death rates due to 

inability to stand and neuropathological 

symptoms described and termed as 

recumbency by Dechow et al. (2022). They 

identified the disorder using genotypes and 

pedigrees of affected calves that shared a 

haplotype on chromosome 16 (78.7 to 

80.7Mbp on ARS-UCD1 map) and ancestral 

links traced back to a bull born in 2008. 

The condition leading to calf recumbency is 

currently known as "Early Onset Muscle 

Weakness" (MW). Despite its clinical 

significance, official recognition of this 

disorder as a recessive trait is still in progress, 

and the nomenclature remains subject to 

finalization. 

Carriers of recessive inheritance genes are 

usually identified and tracked using a 

haplotype-based tests and, once enough 

research data supports the identification of the 

actual causal variation, a gene test is developed 

as a diagnostic tool with high accuracy. 

Precisely monitoring the rise in frequencies of 

inherited haplotypes of recessive conditions is 

essential, and constant improvement of the 

haplotype-based test is critical. One such 

example is Holstein Haplotype for Cholesterol 

Deficiency (HCD), where a new mutation 

occurred in a commonly and highly frequent 

haplotype (VanRaden and Null, 2015). 

The current study investigates the muscle 

weakness haplotype (HMW) using US data, 

reports a new mutation within it, and validates 

improved accuracy of the haplotype-based test 

by resolving status using pedigrees and gene 

test results. 

202

https://www.ars.usda.gov/ARSUserFiles/80420530/Publications/ARR/Haplotype%20tests_ARR-Genomic5.pdf
https://www.ars.usda.gov/ARSUserFiles/80420530/Publications/ARR/Haplotype%20tests_ARR-Genomic5.pdf
https://www.ars.usda.gov/ARSUserFiles/80420530/Publications/ARR/Haplotype%20tests_ARR-Genomic5.pdf


INTERBULL BULLETIN NO. 59.  26-27 August 2023, Lyon, France 

Materials and Methods 

The affected calves investigated by 

Dechow et al. (2022) were found to have a 

common ancestor born in 2008 

(HOUSA64966739 Roylane Socra Robust-

ET). By using a larger pool of chip-genotyped 

animals (over 5.5 million animals), the 

anticipated associated haplotype of the affected 

calves was found in further older ancestors 

(HOUSA1964484, Southwind Bell of Bar-Lee) 

born in 1984. Southwind carried the suspect 

haplotype and was also an ancestor of some 

recumbent calves that did not trace to Robust. 

Disregarding the association with the MW 

affected calves, the haplotype was common 

and was identified in further genotyped 

animals where the oldest (HOUSA1189870 

Osborndale Ivanhoe) was born in 1952.  

Sequence data for Southwind, an affected 

calf, and the sire of the affected calf were 

examined and to identify a potential causal 

mutation. CACNA1s mutation at position 

79,613,592 was identified as the most likely 

variant with high association concordance. 

Sorting Intolerant From Tolerant (SIFT) 

software (https://sift.bii.a-star.edu.sg/) utilized 

to predict the deleterious consequence of this 

mutation. 

A commercially developed gene test using 

the CACNA1s mutation was used to identify 

carrier status for 4,416 animals and reported by 

the Holstein Association USA (HAUSA). The 

method by VanRaden and Null, 2015 identifies 

recessively inherited haplotypes with a harmful 

effect was further improved and validated to 

identify the MW haplotype, and then sort 

genotyped animals that are carriers of the 

CACNA1s mutated MW haplotype. The 

revised algorithm also requires pedigree 

relatedness to the common ancestor of the 

affected calves. Then, it categorizes the 

haplotypes into the different genotype status 

groups (0 = noncarrier, 1 = carrier, 2 = 

homozygous defect, 3 = suspect carrier, 4 = 

suspect homozygous). 

As of May 2023, Select Sires, ABS Global, 

Genex, and Semex companies utilized the MW 

gene test and publicly reported results for 

2,609 tested animals. The reported results were 

examined, compared to the haplotype tests, 

and included in the haplotype determination 

algorithm to improve the accuracy of future 

calling of the MW carrier status. 

Results & Discussion 

Sequence data analysis confirmed the 

hypothesis of a new mutation. Southwind was 

homozygous for all sequence variants within 

the suspect region as expected but was 

heterozygous for the mutation at location 

79,613,592 bp in the CACNA1s   gene and 

was the earliest known carrier of the mutated 

haplotype (HMW). Thus, Southwind, or an 

ancestor between him and Ivanhoe was the 

source of a new mutation. The identified 

causal mutation was then utilized to develop a 

muscle weakness (MW) gene test.  

Haplotype test results from the newly 

adopted method were further updated by 

matching haplotype data to the gene test results 

to rule out ancestors that inherited the common 

haplotype but not the mutation.  Genotyped 

animals with unknown haplotype status may 

be resolved using gene tests for their ancestors 

(Table 1). This test examined 424,109 HO 

males (Table 2), and 5.9 million HO females 

(Table 3) genotyped as of July 2023. Before 

including 4,416 gene tests from HAUSA 

indirectly in the pedigree, 93.58% of males and 

88.35% of females had certain haplotype codes 

(0, 1, or 2), and the other 4.96% of males and 

11.11% of females had uncertain haplotype 

codes (3 or 4). That sex difference is because 

commercial females often have incomplete 

pedigrees and non-genotyped dams, whereas 

nearly all males have complete pedigrees and 

both parents are genotyped.  

For animals with uncertain haplotype 

status, the inclusion of gene tests changed the 

haplotype status for 22% of the males but only 

5% of the females. For example, of the 19,283 

males with uncertain status, 3,574 resolved to 

noncarrier and 1,845 to carrier status. Very few 

(513) of the 5.6 million animals that previously

203



INTERBULL BULLETIN NO. 59.  26-27 August 2023, Lyon, France 

 

had certain status (< 0.1%) changed after 

including gene tests in the pedigree. The 

conducted research affirmed the accuracy of 

the newly adopted haplotype test method and a 

high concordance achieved in identifying 

actual noncarriers, carriers, and affected 

Holstein calves.    

Popularity of Robust was responsible for 

the rapidly increasing trend of the mutation. 

The improved haplotype prediction method 

requiring a pedigree association to Robust and 

incorporating the CACNA1s mutation gene 

tests predicted only 220 HMW carriers by the 

end of 2009. The number of HMW carriers 

increased significantly over the next ten years 

to 66,432 carriers, of which 59,243 HMW 

carriers were animals genotyped in the last 

four years (2020 – present). Holstein 

Association USA and the dairy cattle industry 

are following our recommended preventative 

measurement by identifying muscle weakness 

disorder gene carriers and reporting affected 

animals using the gene test. 

Another observation for recessively 

inherited diseases such as MW with 

incomplete penetrance and/or semi-lethal 

nature is that under-reported death losses by 

farmers are negatively affecting estimated 

effects calculated for mating carrier sires and 

maternal grandsires (data not shown in this 

study). Accuracy of reporting death losses 

from such inherited diseases could influence 

other similar phenotypes such as longevity 

traits (heifer livability, stillbirth. etc.) 

(Wiggans and Carrillo, 2022). 

 

Conclusions 

 

Haplotype-based testing methods for 

recessively inherited diseases such as MW are 

essential but are complex when new mutations 

occur. The accuracy of identifying carriers can 

be greatly improved by using pedigrees to 

track the haplotype source and incorporating 

gene test results when they are available. 

Farmers are encouraged to accurately report 

newborn death losses and/or cases of calves’ 

early onset inherited disability as these 

accurately reported data could be correlated to 

infer confirmational estimates of the carriers of 

such recessive haplotypes.    
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Table 1. Carrier status (count and %) before and after adding gene test results to the pedigree and haplotype 

information (males and females). Status 3 reports unsure heterozygote and 4 reports unsure homozygote.   

Status before 

(rows) vs. after 

(columns)  

0 1 2 3 4 Total (%) 

0 
5,497,696 

(86.59) 

513        

(0.01) 

1                 

(0) 

91               

(0) 

 0 

 (0) 

5,498,301 

(86.6) 

1 
31               

(0) 

133,105    

(2.1) 

9                 

(0) 

13               

(0) 

0                 

(0) 

133,158    

(2.1) 

2 
0                 

(0) 

0                 

(0) 

796         

(0.01) 

0                 

(0) 

0                 

(0) 

796         

(0.01) 

3 
27,271    

(0.43) 

7,866      

(0.12) 

0                 

(0) 

634,717     

(10) 

0                 

(0) 

669,854 

(10.55) 

4 
1,048      

(0.02) 

1,058      

(0.02) 

221             

(0) 

0                 

(0) 

44,470      

(0.7) 

46,797     

(0.74) 

Total (%) 
5,526,046 

(87.04) 

142,542 

(2.25) 

1,027      

(0.02) 

63,4821      

(10) 

44,470      

(0.7) 

6,348,906 

(100) 

*Genotype status: 0 = noncarrier, 1 = carrier, 2 = homozygous defect, 3 = suspect carrier, 4 = suspect 

homozygous. 

 

Table 2. Improved predictions are achieved when gene test results are incorporated into the population 

pedigree information (male data).    

(old vs. new) 

gene code  

(%)  

0 1 2 3 4 Total (%) 

0 
381,409 

(89.93) 

228            

(0.05) 

0                              

(0) 

41                        

(0.01) 

0                             

(0) 

381,678                 

(90) 

1 
10                   

(0) 

15,321         

(3.61) 

4                              

(0) 

5                          

(0) 

0                             

(0) 

15,340                

(3.62) 

2 
0                     

(0) 

0                       

(0) 

181                     

(0.04) 

0                             

(0) 

0                          

(0) 

181                 

(0.04) 

3 
3,574               

(0.84) 

1,845                 

(0.44) 

0                            

(0) 

19,283              

(4.55) 

0                              

(0) 

24,702                

(5.82) 

4 
148                 

(0.03) 

232                  

(0.05) 

91                     

(0.02) 

0                           

(0) 

1,737                     

(0.41) 

2,208                 

(0.52) 

Total (%) 
385,141 

(90.81) 

17,626                

(4.16) 

276                     

(0.07) 

19,329                 

(4.56) 

1,737                    

(0.41) 

424,109                

(100) 

*Genotype status: 0 = noncarrier, 1 = carrier, 2 = homozygous defect, 3 = suspect carrier, 4 = suspect 

homozygous. 
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Table 3. Improved predictions are achieved when gene test results are incorporated into the population 

pedigree information (female data).    

(old vs. new) 

gene code 

(%) 

0 1 2 3 4 Total (%) 

0 
5,116,287 

(86.35) 

285   

(0) 

1 

(0) 

50 

(0) 

0 

(0) 

5,116,623 

(86.36) 

1 
21 

(0) 

117,784 

(1.99) 

5 

(0) 

8 

(0) 

0 

(0) 

117,818 

(1.99) 

2 
0 

(0) 

0 

(0) 

615 

(0.01) 

0 

(0) 

0 

(0) 

615 

(0.01) 

3 
23,697 

(0.04) 

6,021 

(0.1) 

0 

(0) 

615,434 

(10.39) 

0 

(0) 

645,152 

(10.89) 

4 
900 

(0.02) 

826 

(0.01) 

130 

(0) 

0 

(0) 

42,733 

(0.72) 

44,589 

(0.75)) 

Total (%) 
5,140,905 

(86.77) 

124,916 

(2.11) 

751 

(0.01) 

615,492 

(10.39) 

42,733 

(0.72) 

5,924,797 

(100) 

*Genotype status: 0 = noncarrier, 1 = carrier, 2 = homozygous defect, 3 = suspect carrier, 4 = suspect

homozygous.
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Abstract 

Claw lesions are the third most important health issue in dairy cattle, after mastitis and fertility issues. 

21 lesions defined according to ICAR standards are recorded by trimmers on touch pad since the early 

2010s. Seven of these lesions (Digital Dermatitis (DD), Heel Horn Erosion (HHE), Interdigital 

Hyperplasia (IH), Sole Hemorrhage Circumscribed (SHC), Sole Hemorrhage Diffused (SHD), Sole 

Ulcer (SU) and White Line Fissure (WLF)), which have a prevalence of more than 10%, and/or may be 

responsible for lameness, were studied in the Holstein, Normande and Montbéliarde breeds. Breed 

specificities have also led to study Toe Necrosis (TN) and Corkscrew Claw (CSC). In summer 2022 

dataset, more than 440,000 Holstein trimmings (respectively 80 000 Montbeliarde and 62 000 

Normande) from 250 000 cows (respectively 44 000 Montbeliarde and 35 000 Normande), including 

35,000 genotyped cows (respectively 15 000 Montbeliarde and 10 000 Normande) were available for 

the development of the genetic evaluation model. 40% of the cows were trimmed more than once, but 

only 20% were trimmed in different lactations. Estimated heritabilities ranged from 0.01 and 0.22 

depending on the trait. Genetic correlations showed two groups of traits that were highly correlated: 1) 

within the infectious traits (DD, HHE and IH), in particular with high correlations between DD and IH 

(between 0.65 and 0.80 according to the breed); 2) within the non-infectious traits (SHC, SHD, WLF 

and SU) with genetic correlations between 0.40 and 0.89 in Holstein; TN and CSC being relatively 

independent from the other traits. Multiple trait single-step genomic evaluations have been developed 

for each group of traits to limit computational times, with a negligible effect on estimated genetic values 

compared to a nine traits genetic evaluation. Implementation of routine evaluation is planned for April 

2024. 

Key words: claw health, single-step, genomic evaluation, genetic correlations   

Introduction 

Claw health are a major welfare problem in 

dairy farming, often causing pain and lameness 

in cows. In France, it is the third most costly 

disorder and is responsible for a fifth of culling 

after mastitis and fertility trouble. Lameness 

usually has a multifactorial origin. 24 claw 

health traits as described in ICAR Atlas (ICAR, 

2020) can be registered, and 11 of them are 

mandatory. 

Until now, the development of claw health 

genetic evaluation in France has been private 

initiatives directly led by breeding companies 

(Leclerc et al., 2019). A need to harmonise the 

different initiatives and to bring the Holstein 

closer to the Eurogenomics golden standards, 

led to initiate a national project in summer 2022. 

With data currently available, it is now possible 

to set up a multiple trait model that takes into 

account successive trimmings using a single 

step methodology, and to include new traits of 

interest as required. 

Based on data collected since 2012 in the 3 

main breeds (Holstein, Normande and Montbé-

liarde), the objective of this study was: 1) to 

select traits of interest from the 24 claw heath 

traits; 2) to estimate genetic relationships 

between those traits; 3) to develop a multiple 

trait model that takes into account successive 

trimmings using a Single Step Genetic 

Evaluation.  
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Materials and Methods 

The claw health database 

Breeding organizations (Evolution/Synetics, 

Genes Diffusion, Origen Normande, Umotest) 

gathered information on 642 540 claw trimming 

animals (Table 1 with breed distribution), 

collected by 220 professional trimmers on 

touch-pad from 2012 to 2022 in 9 091 herds.  

Data comes from a limited number of herd, 

because not all of them are using trimming 

service, and a large part part of the trimming 

service is carried out by independent trimmers 

who do not have the touch-pad to collect claw 

health data. In addition, the breeder chooses 

which cows to trim. Therefore, we have non-

exhaustive data within herd. 

To ensure the quality of the data, only data 

from herds enrolled in official milk recording, 

having a lactation rank of one to five5 and a 

lactation stage of one to 550 are considered. The 

cows must have at least the two rear claws 

trimmed and a minimum recovery period of 

four months after the previous lesion to be 

considered as a new lesion as mentioned in 

EuroGenomics Golden Standard (S. De Roo, 

2022 - personal comm.).  

Analysis of herds with exhaustive trimming 

has shown that only 12% (Normande) to 21% 

(Holstein) of cows have no lesions, so we 

decided to not assume a healthy status / absence 

of claw disorders of untrimmed cows by 

default.  

Nine claw health traits from the 24 ICAR Atlas 

were selected: Digital and interdigital Dermatis 

(DD), Interdigital Hyperplasia (IH), Heel Horn 

Erosion (HHE), White Line Disease (WDL), Sole 

Hemorrhage Diffused (SHD) and Circumscribed 

(SHC), Sole Ulcer (SU),  Toe ulcer and Necrosis 

(TN) and CorkScrew Claw (CSC). These traits 

present a prevalence of at least 10% in one of the 

three studied breeds, or for TN an increasing 

frequency and a large economic impact, culling 

being in most cases inevitable.  

Due to infectious status of Digital Dermatitis, 

only cows from a herd with affected contemporaries 

are considered healthy.  

Model 

Bivariate and Multivariate linear animal models 

were fitted using REML procedure from the 

Wombat software (Meyer, 2007), based on selected 

data described in Table 1. A minimum of 10% of the 

herd trimmed per year is required to select data for 

genetic evaluation, but this minimum is increased to 

15% with two annual visits for genetic parameter 

estimation (and 50% in Holstein).  

The following linear animal model, with repeated 

observations within and across lactations, was 

applied: 

y=X+Za+Zp+e 

where y is the vector of severity scores for the 

traits (from 0 = healthy to 3=severe lesion except for 

TN and CSC which are treated as a binary traits 0/1); 

 the vector of fixed effects consisting of a herd 

trimming date effect (with minimum five cows in

Table 1. Description of the datasets used for the differents step of the study 

Holstein Normande Montbéliarde 

Database #trimmed cows 451 322 61 975 79 371 

G
en

et
ic

 

p
ar

am
et

er
s 

es
ti

m
at

io
n

 #trimmed cows 89 930 25 551 38 148 

#trimmed data 142 090 41 017 64 471 

#herd x trimming date 4 258 3 298 3 682 

#animal in pedigree file 190 212 70 719 95 243 

S
in

g
le

 S
te

p
 

G
en

et
ic

 

E
v

al
u

at
io

n
 #trimmed cows 299 679 44 268 45 878 

#trimmed data 532 712 82 265 76 672 

#herd x trimming date 26 228 6 854 4 707 

#animals (♂+♀) in reference pop 46 072 13 291 12 817 
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Holstein and four in the other breeds), trimmer 

 year effect, age of calving  parity effect, 

calving month  year effect, parity  lactation 

month  3 year period effect ; a the vector of 

additive gene 

tic effect ~N(0,A²g), p the vector of random 

effect of permanent environment ~N(0,I²pe). X 

and Z are incidence matrices.  

A Single-Step genetic evaluation using 

HSSGBLUP software (Tribout et al., 2020) 

using multivariate model similar to variance 

component estimation was performed on the 9 

traits and then split in two groups of traits: a 

group of three infectious traits (DD, IH and 

HHE) and 6 traits (SHC, SHD, SU, WLD, CSC 

and TN) to limit memory requirements and 

computational time by two to three.  

 

Results & Discussion 

 

The prevalence of the traits is not similar 

from one breed to another one. In Holstein 

(Table 2) (Normande & Montbéliarde breed are 

in Annex), DD and HHE have a higher 

prevalence than on other breeds. In 

Montbeliarde breed, it is mainly the prevalence 

of WLD and CSC that distinguishes it, while in 

the Normande breed, many traits show higher 

prevalence than in the other breeds (DD, IH, 

TN, WL, SU).  

In Holstein (Table 2), heritabilities are quite 

low, between 2% and 10% (between 2 and 8%, 

in Normande except for interdigital hyperplasia 

with a moderate heritability of 22% (Table 5 in 

Annex) and between 4 and 9% in Montbéliarde 

(Table 6 in Annex), but within the range of 

similar studies (CRV, 2022 ; Johansson et al., 

2011). The repeatability trend is similar 

between breed, with some traits with moderate 

repeatability ranging from 0.17 to 0.23 for 

digital dermatitis, white line disease and sole 

ulcer and quite high for interdigital hyperplasia 

and toe ulcer and necrosis ranging from 0.34 to 

0.47, illustrating how difficult it is to treat for 

this lesions in the long term.  

The estimated genetic correlations tend to 

show the existence of 2 groups of traits: A first 

group of infectious traits with DD, HHE and IH 

and a second group with mechanical/physical 

lesions with SHC, SHD, WL, SU, TN and CSC. 

The genetic correlations within group are high: 

for instance, between 0.50 and 0.71 between the 

3 infectious traits in Holstein. Within group of 

mechanical lesion, genetic correlations are 

usually moderate (generally in the range from 

0.25 to 0.50), except high correlations between 

SHC and SU with 0.89, 0.78 and 0.84 

Table 2. Holstein genetic parameters estimates (Prevalence of the traits (%), heritabily on diagonal, Genetic 

correlations (rg) above diagonal – standard error of heritability and range of standard error of genetic correlations, 

and repeatability) for claw health traits (Digital Dermatis (DD), Interdigital Hyperplasia (IH), Heel Horn Erosion 

(HHE), White Line Disease (WDL), Sole Hemorrhage Diffused (SHD) and Circumscribed (SHC), Sole Ulcer 

(SU), Toe ulcer and Necrosis (TN) and CorkScrew Claw (CSC)). 

Holstein Preval. DD HHE IH TN SHC SHD WL SU CSC repeat. 

DD 35% 0.08 0.68 0.71 -0.06 -0.08 -0.17 -0.14 0.01 0.00 0.18 

HHE 39%  0.04 0.50 -0.12 0.22 -0.10 -0.05 0.28 0.18 0.09 

IH 14%   0.10 -0.10 -0.02 -0.09 -0.06 0.06 0.02 0.41 

TN 3%    0.01 0.48 0.55 0.50 0.58 0.06 0.34 

SHC 16%     0.04 0.44 0.47 0.89 0.19 0.08 

SHD 25%      0.02 0.43 0.40 0.32 0.05 

WL 17%       0.05 0.63 0.20 0.17 

SU 13%        0.06 0.09 0.17 

CSC 5%         0.02 0.11 

error h²  0.005 0.004 0.006 0.002 0.003 0.003 0.004 0.004 0.003  

error rg  

Min 0.03 0.04 0.03 0.08 0.03 0.06 0.04 0.04 0.06  

Max 0.10 0.11 0.10 0.13 0.10 0.11 0.10 0.09 0.13  
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respectively for Holstein, Normande and 

Montbéliarde breed. This suggests that SHD  

may be a precursor to SU. In the 3 breeds, the 

correlation between the two different sole 

haemorrhages (SHC and SHD) is moderate with 

values between 0.26 and 0.50, clearly showing 

that they are two different traits. 

Impact of splitting the nine traits into two 

groups of traits is negligible. Correlations 

between GEBV obtained in a nine traits sets vs 

a 3+6 traits are over 0.99 for all traits in the 

three breeds (except for DD and HHE in 

Montbéliarde breed > 0.984)  

More than 1,6 millions of animals were 

evaluated based on the 500 thousand trimmed 

data and 46 thousand animals in the Holstein 

reference population. GEBV are expressed in 

genetic standard deviation unit. Analysis of the 

risk factor (% of animals affected) as a function 

of GEBV shows, for instance in the Normande 

breed, that number of animals with IH drops 

from 73% for an index of -1 to 25% for an index 

of 0, and from 19% of animals with TN to only 

1% for similar index than previously. 

Composite indexes have been defined for 

each breed to optimize their uses and to improve 

the genetic level of the population, taking into 

account prevalence and estimated incidence 

costs (Table 3) (synthesis from Dolechek and 

Bewley, 2018 & 2019; Whay and Shearer, 

2017; Willshire and Bell, 2009; Bruijnis et al, 

2010; Charfeddine and Perez-Cabal, 2017; and 

discussion with French veterinarians R. Guatteo 

and A. Waché – personal comm.).  

For infectious traits, the composite SLI 

(Table 4) has the same weighting for the three 

breeds. For mechanical traits, breeds 

specificities have been taken into account 

(Table 4) by including toe necrosis in selection 

index in Normande breed, and corkscrew claw 

in Montbéliarde breed as well as increasing 

weight on white line disease for this breed. 

A claw health index gathers the SLI and 

SLM, with a balanced weight in Montbéliarde, 

whereas Holstein and Normande give 60% on 

SLI and 40% on SLM. 

 

Conclusions 

 

From the nine claw health traits studied, two 

groups of traits emerge which are more or less 

genetically independent of each other, and 

which make it is possible to evaluate them in 

two sets of 3+6 traits. 

Breed-specific composite for claw health 

have been decided in concertation between 

breed societies and will be included in future 

revisions of the Total Merit Index. 

 The first routine genetic evaluation is 

currently implemented at GenEval and the 

official release is scheduled in April 24. 

Table 3. Estimated claw disorders cost  

 Estimated Cost 

 Direct Indirect Total 

DD 50€ 150€ 200€ 

HHE 25€ 0€ 25€ 

IH 50€ 50€ 100€ 

SHC 25€ 0€ 25€ 

SHD 25€ 0€ 25€ 

WD 30€ 100€ 130€ 

SU* 50€ 200-300€ 300€ 

TN* 50€ 300-1000€ 450€ 

CSC 25€ 0€ 25€ 

* High culling risk for high severity levels 

Table 4. Composite of claw health traits: Infectious traits index (SLI), Mechanical trait index (SLM), and Claw 

Health index (STPI).  

 Infectious Traits index 

(SLI) 

Mechanical Traits index  

(SLM) 

Claw Health 

index (STPI) 

Traits DD IH HHE SHC SHD WL SU TN CSC SLI SLM 

Holstein 0.60 +0.30 +0.10 0.10 +0.10 +0.40 +0.40   0.60 +0.40 

Normande 0.60 +0.30 +0.10 0.05 +0.05 +0.25 +0.40 +0.25  0.60 +0.40 

Montbéliarde 0.60 +0.30 +0.10 0.10 +0.10 +0.45 +0.30  +0.10 0.50 +0.50 

Table 3. Estimated claw disorders costs in €uro.  

 Estimated Cost 

 Direct Indirect Total 

DD 50€ 150€ 200€ 

HHE 25€ 0€ 25€ 

IH 50€ 50€ 100€ 

SHC 25€ 0€ 25€ 

SHD 25€ 0€ 25€ 

WD 30€ 100€ 130€ 

SU* 50€ 200-300€ 300€ 

TN* 50€ 300-1000€ 450€ 

CSC 25€ 0€ 25€ 

* 
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Annex 1. Normande and Montbéliarde genetic parameters estimates 

Table 5. Normande genetic parameters estimates (Prevalence of the traits (%), heritabily on diagonal, Genetic 

correlations (rg) above diagonal – standard error of heritability and range of standard error of genetic correlations, 

and repeatability) for claw health traits (Digital Dermatis (DD), Interdigital Hyperplasia (IH), Heel Horn Erosion 

(HHE), White Line Disease (WDL), Sole Hemorrhage Diffused (SHD) and Circumscribed (SHC), Sole Ulcer 

(SU), Toe ulcer and Necrosis (TN) and CorkScrew Claw (CSC)). 

Normande Preval. DD HHE IH TN SHC SHD WL SU CSC repeat. 

DD 43% 0.08 0.37 0.80 -0.45 -0.25 -0.26 -0.39 -0.27 -0.19 0.18 

HHE 33% 0.02 0.18 -0.29 0.11 -0.01 -0.22 0.31 0.00 0.04 

IH 30% 0.22 -0.29 -0.24 -0.23 -0.16 -0.22 -0.15 0.47 

TN 5% 0.03 0.23 0.27 0.43 0.22 0.15 0.39 

SHC 14% 0.03 0.50 0.31 0.78 0.20 0.06 

SHD 29% 0.03 0.45 0.30 0.36 0.06 

WL 28% 0.07 0.25 0.36 0.23 

SU 18% 0.07 0.10 0.23 

CSC 3% 0.05 0.19 

error h² 0.010 0.004 0.017 0.008 0.005 0.006 0.010 0.009 0.010 

error rg 

Min 0.04 0.12 0.04 0.10 0.06 0.09 0.08 0.08 0.09 

Max 0.12 0.17 0.12 0.17 0.16 0.16 0.14 0.13 0.16 

Table 6. Montbéliarde genetic parameters estimates (Prevalence of the traits (%), heritabily on diagonal, Genetic 

correlations (rg) above diagonal – standard error of heritability and range of standard error of genetic correlations, 

and repeatability) for claw health traits (Digital Dermatis (DD), Interdigital Hyperplasia (IH), Heel Horn Erosion 

(HHE), White Line Disease (WDL), Sole Hemorrhage Diffused (SHD) and Circumscribed (SHC), Sole Ulcer 

(SU) and CorkScrew Claw (CSC)). 

Montbél. Preval. DD HHE IH TN SHC SHD WL SU CSC repeat. 

DD 24% 0.04 0.58 0.65 0.26 -0.10 -0.02 0.32 -0.20 0.13 

HHE 34% 0.04 0.34 0.44 -0.03 0.14 0.44 0.11 0.06 

IH 13% 0.09 -0.01 0.04 -0.02 0.06 -0.08 0.39 

TN 2% 

SHC 14% 0.04 0.26 0.36 0.84 0.36 0.08 

SHD 33% 0.04 0.17 0.32 0.46 0.06 

WL 33% 0.08 0.49 -0.02 0.18 

SU 10% 0.05 0.21 0.19 

CSC 15% 0.07 0.17 

error h² 0.006 0.005 0.009 0.005 0.005 0.008 0.006 0.008 

error rg 

Min 0.07 0.08 0.07 0.05 0.08 0.07 0.07 0.08 

Max 0.12 0.11 0.10 0.11 0.11 0.09 0.11 0.10 
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Abstract 

Genomic breeding values (GEBV) for resistance to foot and claw disorders (CD) have been estimated 

using a multi-trait model comprising linear type traits and single-step GBLUP. Infectious digital 

disorders (IDD) included dermatitis digitalis and interdigitalis, interdigital phlegmon, and heel horn 

erosion; claw horn lesions (CHL) included ulcers, white line disease, horn fissure, and double sole; 

overall claw disorders (OCD) comprised all the recorded CD. Datasets for IDD, CHL and OCD 

included 40,859; 25,143; 57,567 Holstein cows and 71,219; 44,265; 100,903 lactations with a lactation 

incidence rate of 13.3%; 12.5%; 17.0%, respectively. Cows calved between 2017 and 2021 in 46 

(IDD), 30 (CHL), and 64 (OCD) herds, respectively. CD traits were binary with 0 (no CD) and 1 (at 

least one CD) during lactation. Linear type traits were foot angle (IDD, CHL), rear leg set (side view) 

(CHL), feet & legs score (CHL, OCD), and locomotion (IDD, CHL, OCD). Linear model equations 

included the random additive genetic effect of animal, and for CD traits, fixed effects of parity and age 

at calving class, herd-year-season of calving and random effect of the permanent environmental effect 

of a cow; for linear type traits included fixed effects of herd-year-season of scoring, classifier and 

linear and quadratic regression on the age at calving and the days of scoring. Pedigree involved 

102,862, 72,921, and 130,354 animals. Number of genotyped animals was 12,959; effective SNP 

36,520; effective animals 12,672. Variance and covariances in the multi-trait model prediction yielded 

heritabilities 0.09 foot angle, 0.12 rear leg set (side view), 0.09 feet & legs score, 0.11 locomotion, 

0.07 IDD, 0.08 CHL, 0.04 OCD; genetic correlations between IDD and foot angle 0.23, locomotion -

0.30, between CHL and foot angle -0.33, locomotion -0.22, rear leg set (side view) 0.21, feet & legs 

score -0.28, between CHL and locomotion -0.42, feet & legs score -0.27. For young genomic bulls 

(n=186), average reliability of GEBV: for IDD 0.24 (0.14 to 0.34); for CHL 0.20 (0.10 to 0.27); for 

OCD 0.26 (0.15 to 0.35).  

Keywords: Genomic breeding values, multi-trait linear model, single-step genomic evaluation, foot 

and claw disorders, exterior, Holstein cow  

Introduction 

Foot and claw disorders are a foremost 

welfare problem in dairy cattle (Krpálková et 

al. 2019). They often caused pain, lameness, 

decreased production, and reduced 

reproduction (Charfeddine & Pérez-Cabal 

2017). Not surprisingly, they are associated 

with high costs and have been identified as the 

third most costly disease in dairy farming after 

mastitis and fertility problems (Green et al. 

2002). 

Although improving claw health can be 

achieved through better herd management, the 

most important is to change the genotype of  

cows through selection because it is a 

permanent solution lasting over generations.  

Until recently, the selection for improving 

claw health in the Czech Republic was 

attended indirectly by feet and leg type traits in 

selection indices (Krupová et al. 2019). 

However, it has been shown that there are low 

correlations between exterior traits and foot 

and claw disorders (Van der Waaij et al. 2005), 

which, therefore, do not allow effective and 

optimal selection progress in claw health  

The direct selection, generally more 

effective, for claw health traits was enabled 

because a source of information on the 

phenotypes of claw diseases appeared in 

Czechia. In 2017, the national cattle health 
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monitoring system "The Diary of Diseases and 

Medication" web application was implemented 

(Kašná et al. 2017). This recording system 

consists of farmers' online health recording 

form and a key of diagnoses based on ICAR 

recommendations. The arising databases are 

usable in genetic evaluation for several cattle 

health traits. 

Multi-trait linear mixed models are often 

employed to estimate genomic breeding value 

for claw disorders, possibly combining the 

multiple disorders in one multi-trait analysis 

(Machioldi et al. 2020). The single-step 

genomic method proved successful in genetic 

evaluation (Misztal et al. 2020). In the Czech 

Republic, it is used in the routine evaluation of 

many traits in Holstein cattle (Přibyl et al. 

2012). We also suggest using it as a proven 

method for the health traits.  

This study aimed to present the genomic 

breeding value estimation method for foot and 

claw disorders in Czech Holstein cattle that 

employed a multi-trait linear model and the 

single-step genomic BLUP. 

Materials and Methods 

Data 

Datasets for IDD, CHL and OCD consist of 

40,859; 25,143; 57,567 Holstein cows and 

71,219; 44,265; 100,903 lactations with a 

lactation incidence rate of 13.3%; 12.5%; 

17.0%, respectively. Cows calved between 

2017 and 2021 in 46 (IDD), 30 (CHL), and 64 

(OCD) herds, respectively. 

 Holstein Cattle Breeders Association of the 

Czech Republic and the Czech and Moravian 

Breeding Corporation provided health traits, 

linear type traits, and genomic data, including 

pedigree. 

The foot and claw data 

Foot and claw disorders (CD) records were 

gathered by farmers and registered voluntarily 

in the national cattle health monitoring system 

"The Diary of Diseases and Medication". The 

health records are unified with ICAR 

diagnoses.  Three group traits of CD were 

defined according to the aetiology of disorders: 

infectious digital disorders (IDD), including 

digital and interdigital dermatitis; interdigital 

phlegmon and heel horn erosion; claw horn 

lesions (CHL), including ulcers, white line 

disease, horn fissures, and double sole; and 

overall claw disorders (OCD) comprising all 

the recorded disorders. Separate analyses were 

made for each of these CD group traits. 

Similarly, Buch et al. (2011) analysed the CD 

disorders according to aetiology. 

The linear type 

The linear type trait datasets included foot 

angle, rear leg set (side view), locomotion as 

scored traits (1 to 9 points), and feet & legs in 

%. Cows were scored for the exterior in the 

first parity between the 30th and 210th day in 

milk.  The linear type traits were chosen for 

adding to the multi-trait genomic evaluation of 

the specific CD group trait according to the 

values of genetic correlation to the CD group 

trait: foot angle (IDD, CHL), rear leg set (side 

view) (CHL), feet & legs score (CHL, OCD), 

and locomotion (IDD, CHL, OCD). 

Genetic parameters 

Genetic parameters for CD and linear type 

traits have been estimated in separate analyses 

preceding genomic evaluation.  

  First, the genetic correlations have been 

set between linear type traits and CD group 

traits by bivariate analyses.  
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Table 1. Heritability and repeatability for CD group 

traits and linear type traits.  

Trait Heritability  Repeatability 

Infectious digital 

disorders  
0.07 0.14 

Claw horn lesions 0.08 0.16 

Overall claw 

disorders 
0.04 0.22 

Rear leg set (side 

view)  
0.12 

Foot angle 0.09 

Locomotion 0.11 

Feet & legs score 0.09 

The variance-covariance matrices were 

estimated by multi-trait animal model analysis, 

each formed by one of CD group traits and 

chosen linear type traits. The heritability and 

repeatability of analysed traits employed in the 

genomic analysis are in Table 1. The estimated 

genetic correlations between CD group traits 

and linear type traits are in Table 2. 

Table 2. Genetic correlations between CD group 

traits and linear type traits.  

Trait 

Infectious 

digital 

disorders 

Claw horn 

lesions 

Overall claw 

disorders 

Rear leg set 

(side view) 
0.21 

Foot angle   0.23 -0.33

Locomotion -0.22 -0.30 -0.42

Feet & legs 

score 
-0.28 -0.27

The genomic data and method 

Animals were genotyped using the Illumina 

BovineSNP50 Bead chip (Illumina, San Diego, 

CA, USA). 

 For the prediction of genomic breeding 

values, a single-step procedure was applied 

(Aguilar et al. 2010; Christensen & Lund, 

2010) with 12,959 genomic animals: 5,374 

bulls and 5,856 (IDD); 5,439 (CHL); 7,354 

(OCD) cows with CD phenotype; a total 

number of effective SNPs used in the 

calculation of G matrix was 36,520; effective 

animals 12,672. 

Description of model equations 

The following linear animal model was 

used to estimate genetic parameters and 

genomic breeding values for CD group traits in 

multi-trait genomic analysis: 

yijklm = parity_agegroupi + herd_year_seasonj +  

PEk + Al + eijkl,  

where yijkl is the CD group trait: IDD, CHL, 

OCD, 0/1 occurrence per lactation; 

parity_agegroupi is the effect of parity 

combined with age at calving class (15 levels: 

first, second, third, fourth, and five and higher 

parity; 3 classes of age at calving per parity); 

herd_year_seasonj is the combined effect of 

herd (46 (IDD), 30 (CHL), and 64 (OCD) 

levels); of calving year (2017-2021 levels) and 

calving season four levels: January–March, 

April–June, July–September, and October–

December); PEk is the random permanent 

environmental effect of cow across parity 

(40,856 (IDD); 25,143 (CHL); 57,567 (OCD)); 

Al is the random additive genetic effect of 

animal (number of animals in pedigree: 

102,862 (IDD); 72,921 (CHL); 130,354 

(OCD)), and eijkl is the random residual effect.  

The following linear animal model was 

used to estimate genetic parameters and 

genomic breeding values for linear type traits 

in multi-trait genomic analysis:  

yijkl= herd_year_seasoni + classifierj + β1 

agek + β2 agek + γ1 diml + γ2 diml + Ak + eijkl,  

where yijkl is analysed linear type trait (foot 

angle, rear leg set (side view), locomotion as 

scored traits (one to nine points), and feet & 

legs in %.); herd_year_seasoni is the fixed 

combined effect of herd, year and season of 

scoring; classifierj the fixed effect of the 

classifier. The model included the linear and 

quadratic regressions on age at calving β1agek; 

β2agek and the linear and quadratic regressions 

on days in milk at scoring γ1diml; γ2diml; Ak is 

the random additive genetic effect of animal 

and eijkl is the random residual effect. 
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Software employed 

The basic editing and preparation of 

datasets, processing of results and basic 

statistical evaluation were carried out by the 

SAS 9.4 programme) (SAS, 2016. Program 

package BLUPF90 (Misztal et al. 2018) was 

used to estimate genetic parameters and 

genomic breeding values. 

Results & Discussion 

The heritability of the analysed traits, see 

Table 1, including their genetic correlations 

with the type traits, correspond to commonly 

published values (Heringstad et al. 2018). The 

heritability of health traits was lower than 

those chosen linear type traits. The high values 

of repeatability occurred for the analysed 

health traits. These findings are following Van 

der Waaij et al. (2005).  

The linear type traits chosen to be included 

in the multi-trait genomic evaluation with the 

CD group trait showed at least a genetic 

correlation over 0.2, see Table 2.  The 

estimated genetic correlations were different 

between the CD group traits, confirming the 

etiological differences between the CD group 

traits. While locomotion was an important 

indicator for all CD group traits, foot angle 

showed an opposite relationship with IDD or 

CHL. These results agree with Chapinal et al. 

(2013).  Genetic correlation between foot angle 

and IDD indicated that the higher genetic 

predisposition for IDD is connected with a 

genetic disposition for steep foot angle, while 

the higher genetic predisposition for CHL is 

connected with a genetic predisposition for 

low foot angle. As Pérez-Cabal and 

Charfeddine (2016) stated, infectious foot and 

claw disorders, for example, digital dermatitis, 

are not strongly affected by the foot exterior.  

However, our analysis found low to moderate 

genetic correlations between CD group traits 

and the type traits, similar to what Chapinal et 

al. (2013) estimated.  

The mean values of breeding values for CD 

traits and their standard deviation are shown in 

Table 3. For all analysed CD group traits, the 

means for young genomic bulls are lower than 

those for all genomic bulls, which could 

indicate a positive genetic trend in bulls. The 

mean values of accuracy of breeding values 

and their standard deviations are shown in 

Table 4. The highest accuracy occurred for 

genomic bulls and cows with health records 

highlighting the importance of knowing the 

phenotype. In Figure 1, the accuracy is 

presented for genotyped animals. The accuracy 

is higher for genotyped cows than for 

genotyped bulls, probably due to more 

information available for cows including the 

phenotype. The most important is GEBV and 

its accuracy for young genomic bulls (n=186). 

Their average reliability of GEBV was for IDD 

0.24 (0.14 to 0.34), for CHL 0.20 (0.10 to 

0.27), and 0.26 (0.15 to 0.35). If comparing the 

accuracy of GEBV from the single-trait and 

multi-trait models, the increase is about two 

p.p. due to adding the type traits in the multi-

trait model. The low effect of the type traits on

the increase of the breeding value accuracy

agrees with the findings of the small genetic

correlations between CD traits and type traits

and agrees with Ødegård et al. (2015).

Table 3. Average genomic breeding values for 
multi-trait model. 

Category No. Mean SD 

Infectious digital disorders 

All 102,862 0.0033 0.03 

Genomic bulls 5,374 -0.0022 0.05 

Cows with  

health phenotype 

40,859 0.0047 0.04 

Young bulls 186 -0.0133 0.05 

Claw horn lesions 

All 72,921 0.0033 0.04 

Genomic bulls 5,374 0.0011 0.05 

Cows with  

health phenotype 

25,143 -0.0037 0.04 

Young bulls 186 -0.0431 0.03 

Overall claw disorders 

All 130,354 0.0037 0.03 

Genomic bulls 5,374 0.0012 0.04 

Cows with  

health phenotype 

57,567 0.0019 0.03 

Young bulls 186 -0.0190 0.04 
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Figure 1.  The accuracy of the breeding values for 

infectious claw disorders 
However, we welcome any increase in 

accuracy of GEBV because the datasets of 

health phenotypes are small. 

Table 4. Average accuracy of genomic breeding 

values for multi-trait model.   

Category No. Mean SD 

Infectious digital disorders 

All 102,862 0.14 0.11 

Genomic bulls 5,374 0.26 0.12 

Cows with  

health phenotype 

40,859 0.26 0.12 

Young bulls 186 0.24 0.04 

Claw horn lesions 

All 72,921 0.12 0.10 

Genomic bulls 5,374 0.21 0.10 

Cows with  

health phenotype 

25,143 0.17 0.08 

Young bulls 186 0.20 0.03 

Overall claw disorders 

All 130,354 0.15 0.11 

Genomic bulls 574 0.26 0.12 

Cows with  

health phenotype 

57, 567 0.21 0.08 

Young bulls 186 0.26 0.04 

Conclusions 

 We conclude that the presented method for 

genomic evaluation of the foot and claw 

disorder traits for the Holstein breed in the 

Czech Republic employing the multi-trait 

model and single-step BLUP method is 

feasible for genomic selection for the claw 

health of cows. The employed method depends 

closely on the structure and size of the datasets 

available. We assume the procedure will be 

adjusted depending on increasing herds and 

cows with foot and claw disorder records. 
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