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Abstract 

The availability of daily milk weights and pen location information provides an interesting opportunity 

to review how contemporary groups are defined for dairy cattle genetic evaluations. In the U.S., dairy 

cows in larger herds are grouped into pens according to various characteristics like parity, production 

level, reproductive status, lactation stage, and health status. Our dataset includes pen location 

information for each daily milk weight, and our goal is to more accurately model contemporary groups 

when estimating breeding values for daily milk production. Therefore, instead of using herd-year-

season, we updated our contemporary group to herd-pen-milking date, thereby capturing the differences 

in daily milk production more precisely by modeling the true environmental effects cows experience at 

the pen level. Our dataset includes 21,000,951 aggregated daily milk weights from 114,243 first parity 

Holstein cows in 157 herds representing 29 U.S. states. Our phenotype is 305-d milk yield or daily milk 

weight, and both animal and repeatability animal models were used to estimate genetic parameters and 

breeding values. Age at first calving (6 levels) and days in milk (10 levels) were included as fixed effects 

and cow (114,243 levels) was included as a random effect. Contemporary group effects included a fixed 

or random herd-year-season of calving effect (1,492 levels) and/or a fixed or random herd-pen-milking 

date effect (285,592 levels). Genetic parameters (kg2; posterior SD) were estimated using GIBBSF90+ 

software, and we found the additive genetic variance for 305-d milk yield was 842,500 (25,093), the 

herd-year-season variance was 878,960 (33,617), and the residual variance was 1,442,700 (20,438). 

Whereas for genetic parameters estimated using daily milk weights as the phenotype, the additive 

genetic variance ranged from 10.48 (0.60) to 24.12 (0.66) the herd-year-season variance was 10.34 

(0.40), herd-pen-milking date variance ranged from 4.91 (0.02) to 4.96 (0.02), permanent environmental 

variance ranged from 10.65 (0.44) to 16.94 (0.30), while the residual variance ranged from 11.81 (0.01) 

to 14.60 (0.01). Heritability estimates ranged from 0.21 (0.01) to 0.47 (0.01), while repeatability 

estimates ranged from 0.51 (0.01) to 0.71 (0.01). Although further work is required to disentangle the 

relationships among contemporary groups, our results suggest value in using daily milk weights and 

pen-based contemporary groups for genetic evaluation of production traits in dairy cattle. 

Key words: daily milk weights, contemporary groups, variance components 

Introduction 

The dairy industry has invested significantly in 

modern technology such as innovative sensors 

that collect high-frequency data that monitors 

animals at the individual or group level to 

inform management decisions. Consequently, 

precision livestock farming has advanced 

remarkably over time, generating an extensive 

volume of data (Lovarelli et al., 2020). Such 

high frequency data is currently predominantly 

used for management purposes, while 

production and management information 

collected on the test day by milk recording 

organizations is the gold standard data 

collection method used for genetic evaluations. 

Daily milk weights are one example of such 

high throughput data that are currently 

generated during each individual cows milking. 

Along with the daily milk weight, other 
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valuable information such as the pen location of 

each cow is also recorded during milking with 

either an automatic milking system or through 

in-line milk meters installed in conventional 

milking parlors. This information allows us to 

precisely identify which pen each cow belonged 

to on a specific date.  

Currently, to estimate variance components 

and genetic parameters, contemporary groups 

are typically defined using the herd-year-season 

of calving. The concept is that a cow is part of a 

cohort within a herd that experienced similar 

environmental conditions based on the year and 

season of calving (Van Vleck, 1987). Therefore, 

each cow would have only one contemporary 

group per lactation. Given the unique nature of 

our novel dataset, our objective was to redefine 

the contemporary group definition to more 

precisely reflect the actual (or micro) 

environment each cow experiences based on the 

specific pen she occupies on any given day. In 

the U.S., cows are grouped in pens according to 

parity, milk production level, lactation stage, 

and reproductive status (Contreras-Govea et al., 

2015). Managing cows at the group or pen level 

in the U.S. may be more labor efficient and, 

additionally, cows in different pens within the 

same farm may be fed different rations and may 

experience different housing or management 

conditions. In theory, albeit unlikely, following 

data edits, each cow could be part of up to 300 

distinct contemporary groups throughout the 

lactation period, assuming a daily pen change. 

This indicates a substantial increase in data 

availability, allowing for more accurate 

estimation of genetic parameters and, 

consequently, increased reliability of sire 

predicted transmitting abilities (PTAs). We 

found that fitting the contemporary group, 

either herd-year-season or herd-pen-milking 

date as fixed or random impacts the estimates of 

relevant genetic parameters and also the 

reliabilities of sire PTAs. Additionally, we 

observed differences when the phenotype for 

milk production changed from 305-d milk yield 

to daily milk weights. Interestingly, when 

modeling herd-pen-milking date as a random 

effect for daily milk weight phenotypes, we 

found a large increase in the additive genetic 

variance, and thus the heritability. However, it 

appears that this specific model (i.e. model 3) 

cannot disentangle the relationships among 

highly correlated daily contemporary groups, 

possibly due to the correlated residuals between 

levels of herd-pen-milking date. Consequently, 

we opted to model herd-year-season as a fixed 

effect and herd-pen-milking date as a random 

effect (model 4). This approach better 

disentangled the previous relationship and 

yielded estimates more consistent with the other 

models we evaluated. The aim of this study was 

to investigate genetic parameters for milk 

production traits using herd-pen-milking date as 

the contemporary group. Four models were 

employed to assess the impact of changing the 

phenotype from 305-d milk yield to daily milk 

weight. Additionally, these models were used to 

examine the effects of modeling contemporary 

groups using either herd-year-season or herd-

pen-milking date, considering both as fixed or 

random, on genetic parameters and sire PTA 

reliabilities. 

Materials and Methods 

Data were provided by Dairy Records 

Management Systems (Raleigh, NC) and were 

extracted from PCDART on farm management 

software. Detailed descriptions of the initial 

data edits can be found in Guinan et al., 2024. 

Additional edits include a minimum of 25 cows 

per herd-year-season of calving and at least 25 

cows per herd-pen-milking date contemporary 

group. After the additional edits above, our 

dataset contained 114,243 cows from 157 herds 

in 29 U.S. states with 21,000,951 daily milk 

weights. To investigate the differences between 

using 305-d milk yield and daily milk weights, 

along with the differences between using herd-

year-season (HYS) and herd-pen-milking date 

(HPM) as contemporary groups and as fixed or 

random we estimated variance components 

using four different models that are described in 

Table 1:
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Table 1. Outline of the four different models used to estimate genetic parameters for i) 305-d milk yield (kg) and 

ii) daily milk weights (kg). 
Model  

1 305-d Milk (kg) = AFC + HYS + cow + e 

2 Daily Milk Weight (kg) = AFC + DIM + HYS + cow + pe + e  

3 Daily Milk Weight (kg) = AFC + DIM + HPM + cow + pe + e 

4 Daily Milk Weight (kg) = AFC + DIM + HYS + HPM + cow + pe + e 

AFC = Age at first calving; DIM = Days in milk; HYS = Herd-year-season; HPM = Herd-pen-milking date; pe = 

permanent environmental; e = residual. The contemporary group(s) for each model are in bold. 

 

Where AFC is the fixed effect of age at first 

calving (6 levels; < = 22, 23–24, 25–26, 27–28, 

29–30, 30+), DIM is the fixed effect of days in 

milk (10 levels; 30 days each), HYS is the fixed 

or random effect of herd-year-season of calving 

(1,492 levels), HPM is the fixed or random 

effect of herd-pen-milking date (285,592 

levels), cow is the random additive genetic 

effect using up to 5 generations of pedigree data 

with 114,243 levels distributed as a ∼ N  (0, 

A𝜎𝑎
2), pe is the random permanent 

environmental effect distributed as pe ∼ N (0, 

I𝜎𝑝𝑒
2 ), and e is the random residual effect 

distributed as e ∼ N (0, I𝜎𝑒
2).  

Model 1, which utilized 305-d milk yield 

(kg) as the phenotype, served as a baseline for 

comparison with the more complex models. 

Models 2-4 utilized daily milk weights (kg) as 

the phenotype. For models 1-3, the 

contemporary group (HYS or HPM) was fitted 

as either fixed or random to estimate variance 

components, while for model 4, HYS was fitted 

as fixed and HPM was fitted as random to 

estimate variance components. GIBBSF90+ 

software was used to estimate variance 

components and posterior standard deviations 

using a Bayesian approach employing the Gibbs 

sampling algorithm with 50,000 samples. A 

total of 10,000 samples were discarded as burn 

in, while every 1 in 10 samples was stored to 

estimate posterior means and standard 

deviations (Misztal et al., 2024). Convergence 

was determined by visual inspection of the trace 

plots. Heritabilities (h2) were estimated using 

two formulas; h2 estimates include the  

contemporary group variance (when calculated) 

in the denominator, whereas h2* estimates do 

not include the contemporary group variance in 

the denominator. PTA reliabilities were 

approximated using the following formulas 

𝑃𝐸𝑉 = (𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑆𝐷)2; 𝑅𝐸𝐿 = 1 −  
𝑃𝐸𝑉

𝜎𝑎
2 , 

where PEV is the prediction error variance, or 

the squared posterior standard deviation of the 

PTA estimate. The reliability (REL) was 

estimated by subtracting the PEV divided by the 

additive genetic variance from 1. This serves as 

an estimate for the REL of the estimated PTA.  

 

Results & Discussion 

 

1. Milk yield phenotype - Daily Milk Weights 

vs 305-d milk yield 

The first analysis included modeling the 

phenotype for milk production using the 

standard Council on Dairy Cattle Breeding 

(Bowie, MD) method to serve as a comparison 

for more complex models. The current 

phenotype typically used to estimate variance 

components and PTAs is 305-d milk yield 

where test day information is used to first fit a 

lactation curve for each individual cow, and 

milk production is projected to 305-d. Model 1 

included 305-d milk production as the 

phenotype (1 phenotype), whereas the 

remaining models (2-4) used daily milk weights 

as the phenotype (at least 100 phenotypes). 

Depending on whether HYS was fitted as fixed 

or random, Model 1 had a h2 ranging from 0.27 

to 0.37, whereas for the remaining models with 

the exception of model 3 when HPM was 
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random, the h2 was lower whether the 

contemporary group was fitted as fixed or 

random. The use of daily milk weights as the 

phenotype introduced greater environmental 

(residual) variance, and therefore this decreased 

the heritability estimates for model 2-4. 

 

2. Updating contemporary group definition  

The primary objective of this research was to 

update the definition of contemporary groups to 

estimate genetic parameters for daily milk 

weight phenotypes by capitalizing on high 

frequency data not currently utilized for genetic 

evaluations. The current method to capture 

environmental effects is HYS of calving, which 

was developed during a period when herd sizes 

were smaller, and hence all cows were 

experiencing similar environmental effects. As 

herd sizes have increased, cows are grouped 

according to characteristics like parity, milk 

production levels, and reproductive status, 

among others. Consequently, our novel 

contemporary groups are now formed based on 

the phenotype throughout the lactation period, 

for example, high producing cows may be 

grouped together during the late lactation period 

based on their milk yield production in mid 

lactation. The effect HYS was used as a basic 

model for comparison with both 305-d milk 

(model 1) and daily milk weights (model 2). 

The contemporary group currently used to 

estimate genetic parameters for milk production 

in the U.S. is HYS (Wiggans et al., 1988). Our 

goal was to redefine the contemporary group for 

daily milk weights to more accurately model the 

true or “micro” environment the cow is 

experiencing. Therefore, we utilized the pen 

information that is attached to each individual 

daily milk weight to define contemporary 

groups as herd-pen-milking date with at least 25 

cows per level. For this section of results, we 

will focus primarily on model 2-4 for 

comparison purposes, as the variance 

components are in the same range. For model 2, 

depending on whether HYS was fitted as fixed 

or random, the additive genetic variance ranged 

from 10.76 to 10.85, contemporary group 

variance (when HYS was fitted as random) was 

10.34, permanent environmental variance 

ranged from 15.01 to 15.08, and the residual 

variance was 14.60. Model 3 had similar results 

for variance components, with the exception of 

when HPM was fitted as random, which will be 

discussed in the next section. Model 3 had a 

smaller residual variance than model 2, 

indicating that the environmental variance 

decreases when HPM is used as the 

contemporary group in comparison to HYS for 

daily milk weight phenotypes (Table 2). 

Finally, model 4 (HYS fixed; HPM random) 

had similar additive genetic variance (10.48) 

and permanent environmental variance (14.23) 

to models 2 and 3, with the exception of model 

3 where HPM was fit as random, and 

comparable residual variance with model 3 

(11.85). 

 

3. Fitting contemporary group as fixed vs 

random  

For models 1-3, we also investigated 

differences between fitting the contemporary 

group (HYS or HPM) as fixed or random. The 

question of fitting contemporary groups to 

estimate genetic parameters as fixed or random 

is not novel, however we were interested in 

understanding the differences in variance 

component estimates with 305-d milk yield, and 

more interestingly, daily milk weights. Given 

the size of our dataset, specifically herd size, we 

expect to observe minimal differences among 

variance component estimation methods. 

Additionally, as our dataset spans 5 years, we 

do not expect a genetic trend that we need to 

account for or major improvements in 

management practices which may indicate that 

contemporary group should be fit as a random 

effect to account for these trends. For model 1 

and 2, when HYS was fit as fixed or random, 

we found minimal differences between variance 

components. Similarly, the h2 estimates did not 

change, except the h2 decreased as expected 

when the contemporary 
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Table 2. Variance components, heritability and repeatability estimates (posterior SD), and sire predicted 

transmitting ability reliabilities for 305-d milk yield and daily milk yield using contemporary group (herd-year-

season or herd-pen-milking date) as fixed or random effects. 

305-d yield (kg) Daily milk yield (kg) 

Model 1 Model 1 Model 2 Model 2 Model 3 Model 3 Model 4 

Fixed Random Fixed Random Fixed Random Fixed & 

Random 

𝝈𝒄𝒈
𝟐 - 878,960

(33,617)

- 10.34

(0.40)

- 4.91

(0.02)

4.96 

(0.02) 

𝝈𝒂
𝟐 837,300 

(27,385) 

842,500

(25,093)

10.76 

(0.49) 

10.85

(0.47)

11.96 

(0.40) 

24.12

(0.66)

10.48 

(0.60) 

𝝈𝒑𝒆
𝟐 - - 15.08 

(0.35) 

15.01

(0.33)

16.94 

(0.30) 

10.65

(0.44)

14.23 

(0.43) 

𝝈𝒆
𝟐 1,442,700 

(20,438) 

1,493,200 

(19,145) 

14.60 

(0.01) 

14.60

(0.01)

11.81 

(0.01) 

11.86

(0.01)

11.85 

(0.01) 

h2 0.37 

(0.01) 

0.27 

(0.01) 

0.27 

(0.01) 

0.21

(0.01)

0.29 

(0.01) 

0.47

(0.01)

0.25 

(0.01) 

h2* 0.37 0.36 0.27 0.27 0.29 0.52 0.29 

r2 - - 0.64 

(0.01) 

0.51

(0.01)

0.71 

(0.01) 

0.68

(0.01)

0.60 

(0.01) 

REL 0.79 0.79 0.81 0.81 0.81 0.89 0.81 

cg = contemporary group. Depending on the model, this represents herd-year-season or herd-pen-milking date. 

σcg
2  = contemporary group variance; σ𝑎

2   = additive genetic variance; σpe
2  = permanent environmental variance; σ𝑒

2

= residual variance; h2 = heritability; h2* represents heritability calculated where cg is random without σcg
2  in the 

denominator of the h2 calculation;  r2
 = repeatability;  REL =  Predicted Transmitting Ability Reliability for sires 

with ≥10 daughters.

group variance was included in the 

denominator. Interestingly, we found large 

differences between variance components when 

HPM was modeled as random in model 3. The 

estimates for residual variance did not change, 

however the additive genetic variance increased 

from 11.96 to 24.12, while the permanent 

environment variance decreased from 16.94 to 

10.65. Given the high number of levels in HPM, 

and the non-independent relationship among 

HPM levels, we assume that the correlations 

among the residuals are high, which is causing 

this partitioning of variance between the 

additive component and permanent 

environmental variance. Finally, in model 4, 

once HYS is fit as fixed along with HPM as 

random, we see comparable results to model 2 

and 3 (HPM fixed) in terms of variance 

component estimates and heritabilities (Table 

2).  

4. Confounding effects among variables

For model 3, we found large differences among

variance components when HPM was fit as

fixed vs random. Our hypothesis is that there is

a relationship among residuals within the HPM

variable that is creating a challenge to

disentangling the relationship between repeated

records in HPM levels and additive genetic

variance. For example, although in theory a cow

could move pens every day and have 300

unique contemporary groups throughout a
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lactation, this is highly unlikely. The practice of 

grouping cows is to homogenously manage 

groups of cows, and to avoid the management 

and additional labor of managing cows at the 

individual level. Therefore, it is likely that the 

same group of cows are in the same pen for 

multiple days or weeks and this correlation 

among residuals is not being captured by the 

permanent environmental effect. Additionally, 

there is a risk of confounding between the 

genetic effect, contemporary group effect and 

permanent environment effect. This is due to 

the fact that HPM groups are reassigned 

throughout the lactation depending on the 

phenotype expressed by the individual animal 

and for management purposes, whereas in the 

past HYS was strictly based on the calving year 

and season of the cow. As such, we decided to 

fit HYS as a fixed effect along with HPM as a 

random effect and we found comparable results 

to previous models. This is probably because 

HYS is capturing the additive genetic effect that 

HPM was not previously capturing due to the 

confounding effect and breaking this 

relationship between repeated records of the 

same group of cows in the same pen over longer 

periods of time.  

 

5. Sire PTA Reliabilities 

Sire PTA reliabilities were estimated to assess 

whether using large volumes of daily milk yield 

data and assigning contemporary groups using 

pen information would increase the accuracy of 

selection decisions. We found a 0.02 increase in 

mean REL of sire PTA when using daily milk 

weights as the phenotype in comparison to 305-

d milk yield. Aside from model 3 when HPM 

was fit as random, we did not observe 

differences among reliabilities when fitting 

contemporary group as fixed or random (Table 

2). We did not observe differences in sire PTA 

reliabilities when using HPM as the 

contemporary group instead of HYS, which 

could be attributed to the fact that an 

autoregressive structure may be more suitable 

for modeling the HPM variable to account for 

the high correlations among residuals of each 

HPM levels, as discussed previously.  

Conclusions  

 

Utilizing daily milk weights generated by on-

farm sensors increases the reliabilities of sire 

PTAs. The advent of high frequency novel data 

sources for use in genetic evaluation purposes 

may require new definitions for contemporary 

groups. In the specific case of milk production, 

the reliabilities of sire PTAs increased when 

using daily milk weights as opposed to 305-d 

milk production. Updating the definition of 

contemporary groups for genetic parameter 

estimation using herd-pen-milking date as a 

fixed or random effect impacts the reliabilities 

of sire PTAs, perhaps due to the high 

correlations among residuals for contemporary 

groups. Additional research is required to 

optimize genetic parameter estimation with 

high frequency data generated by sensors for 

genetic evaluation purposes. Including herd-

year-season as a fixed effect along with herd-

pen-milking date as a random effect may 

account for the non-independent relationships 

among residuals while also increasing sire PTA 

reliabilities in comparison to the current model 

utilized in the U.S. which uses herd-year-season 

along with 305-d milk yield as the phenotype.  
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Heritable variation in gene expression is the key to maximizing 

genetic gain and preserving genetic diversity with a properly 

designed breeding program. 
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Abstract 

A hierarchical organization of molecular phenotypes provides a biological system of genes and 

pathways which can lead to different genotypes (redundancy) being selected in different 

subpopulations for the same phenotype. Heritable variation in transcription and translation is the key 

driver of genetic change. Redundancy in the regulatory code allows for genetic diversity amongst 

subpopulations. Gene expression is regulated by transcription factors (TF) ensuring that the right 

genes are active in the right tissue at the right time. A large amount of standing genetic variation is 

available from the many potential TF-TF interactions and TF interactions with other regulatory 

elements. Further diversity is possible in that each TF can target hundreds to thousands of different 

genes; and many of these genes through exon splicing, can produce functionally diverse transcripts 

and protein isoforms. These complex interactions form gene regulatory networks controlling 

specialized metabolic pathways. Which pathway is enriched is dependent upon the epistasis created by 

different founders, i.e., the ancestral makeup of the subpopulation. Selection on these epistatic effects 

leads to gametic disequilibrium between replicate populations causing them to differentiate. Different 

genetic architecture results in varied allele frequencies between subpopulations and intermediary allele 

frequencies in the global population. Genetic diversity within the Holstein breed can be preserved or 

increased with a proper population structure. This includes having multiple lines of Holsteins; utilizing 

multiple reference and target populations; genomic predictions for an overall global population and 

each separate subpopulation; avoidance of pooling SNPs; and analysis of transcriptomes for possible 

grouping of animals. 

Key words: gene expression, redundancy, subpopulations, genetic variation 

Introduction 

Increasing rates of inbreeding is a concern 

amongst all the major Holstein breeding 

countries. Surveillance of undesirable 

monogenetic conditions along with genetic 

testing and selective purging of carriers has 

minimized the negative impact of an increase 

in homozygosity at undesirable individual loci. 

However, over the long-term, a reduction in 

genetic variation could be a bigger problem. 

Rapid genetic change, population 

differentiation and maintenance of genetic 

variation has fascinated researchers for a long 

time. Charles Darwin reported that different 

species of finches lived on the different 

Galapagos islands. He speculated that 

population differentiation was a fundamental 

component of evolution.  Sewall Wright spoke 

frequently and forcibly about the importance 

of population structure in maintaining genetic 

variation. In his 1950 paper on “The Genetic 

Structure of Populations”, he wrote “the 

subdivided population maintains more alleles 

at each locus and more at moderately high 

frequencies”. That is, selecting for different 

alleles and different genes in different 

subpopulations helps maintain genetic 

diversity across the entire population. 

8
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Those scientists would have been greatly 

aided in their understanding of the changes in 

the genetics of subpopulations by today’s 

advancements in molecular biology. Much of 

the genetic variability observed in different 

polygenic traits originates from differences in 

gene expression. A meta-study in cattle 

estimated that 69% of the heritability of 

polygenic traits was due to variants associated 

with gene expression (Xiang et al., 2023). 

Genes are regulated by transcription factors 

(TF) ensuring that the right genes are active in 

the right tissue at the right time. Given that 

there are thousands of TF, within a population 

a large amount of genetic variation is created 

during transcription from specific TF having 

the ability to interact with many other TF, TF 

interacting with other regulatory elements, and 

by each TF having the ability to target 

hundreds to thousands of different genes. 

Further variation is created during translation 

where many genes, through exon splicing, can 

produce functionally diverse transcripts and 

protein isoforms. The amount of standing 

genetic variation within a population can be 

very large and there can be many different 

combinations of the genetic variants 

controlling gene expression that can lead to the 

same phenotypic change. The phenomenon of 

multiple genetic solutions leading to the same 

phenotypic change is known as genetic 

redundancy (Barghi et al. 2019). That is, there 

are more variants segregating in the whole 

population than are needed to achieve a 

specific phenotypic change. 

Genomic testing of populations that have 

been divided and selected for the same 

phenotypic goal frequently show non-parallel 

changes in allele frequencies (Barghi et al. 

2019) along with different transcriptomic 

changes, different gene networks being 

formed, and different biological pathways 

being emphasizes (Lai et al., 2023).  While the 

subpopulations differed in which genetic 

variants were favored or disfavored, the 

resulting change in metabolites were similar 

leading to the same overall phenotypic change. 

This hierarchical organization of molecular 

phenotypes provides a biological system of 

genes and pathways which can lead to different 

genotypes (redundancy) being selected in 

different subpopulations for the same 

phenotype. 

The biological system of different genes 

and pathways are known as a gene regulatory 

network (GRN). Often described as being 

modular, different GRNs can be used in a 

similar way. Having redundancy of different 

GRNs has several benefits. For an individual, 

the most obvious benefit is that one GRN can 

compensate for mistakes in other pathways. 

For a population, different genetic changes in a 

GRN can lead to an improved function or an 

evolutionary change. 

The ancestral makeup, i.e., the original 

founders, of the different subpopulations is 

important for multiple reasons. Given the large 

number of possible combinations of genetic 

variants involved in gene expression, different 

subsets of founders will possess different 

genotypes, different genes will be enriched, 

leading to different GRNs and pathways. 

Another important component is epistasis. 

Whereby a certain gene has a positive effect in 

one subpopulation and the opposite effect in 

another. The value of an epistatic gene differs 

across subpopulations because its value 

depends upon what other genes are in that 

subpopulation. With epistasis, different 

subpopulations are selecting for different gene 

combinations. 

Integrating new molecular biology 

information along with quantitative genetic 

theory provides us with a more accurate 

prediction of how divided populations change 

over time. With selection, subpopulations 

should diverge and become more differentiated 

over time as different genotypes, i.e., different 

gene-gene interactions, are favored in different 

subpopulations. This process is known as 

gametic disequilibrium (Tomoko, 1982). Rapid 

changes in genetic architecture in divided 

populations, when selecting for the same 

phenotypic goal has been observed in both 
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plants and animals. The variants changing the 

most tend to be associated with gene 

expression. Comparison between 

subpopulations indicate changes occurring in 

both shared and unique pathways. In dairy 

cattle, a decline in predictability of future 

performance is observed as the time between 

the animals in the reference and target 

populations increases. 

Materials and Methods 

The population structure of U.S. Holsteins was 

investigated for two different time periods, 

2014 and 2022, using the CDCB’s National 

Cooperator Database. The 2014 data set has 

been discussed by Steyn et al 2023. K-means 

clustering on the genomic relationships of 

animals born between 2010 and 2014 

identified five subpopulations. Four of the 

clusters were composed primarily of the 

descendants of four prominent sires that had 

been used extensively during that time period. 

The genetic contribution of the prominent sire 

for each cluster; Planet, Goldwyn, Shottle and 

O Man were 28.1%, 18.8%, 19.8% and 21.6%, 

respectively. The fifth and largest cluster was 

composed primarily of the offspring of many 

different sires, with no individual bull having a 

genetic contribution exceeding 4.3%. 

Trajectory of allele frequency change for 

58,990 SNP markers was calculated across 10 

generations for each of the subpopulation. 

The combination of genomic selection with 

sexed semen, advanced reproductive 

technology and restricted access to young 

genetics has led individual breeding 

organizations and countries to genetically 

diverge from one other. By 2022, population 

structure was no longer determined by the 

heavy usage of individual bulls but more by 

the breeding program of large organizations. 

Young bulls with a minimum TPI value of 

3000 were selected from the December 2021 

official genomic evaluations of CDCB. Almost 

all the 713 young bulls were sired by a bull 

controlled by the same breeding organization. 

Four breeding companies controlled 91% of 

these bulls. Between 83% and 94% of the 

mothers of these top young bulls were also 

controlled by the same breeding organization 

that had control over the sire and his sons. 

Each of these breeding organizations has 

created their own subpopulation. To measure 

genetic differentiation Wright’s Fixation Index 

(Fst) was calculated as follows: 

F
ST

 = (F
IT

 – F
IS

) / (1- F
IT

) 

where FIT is the inbreeding within total 

population and FST is the inbreeding within 

subpopulation. 

An important component of genomic 

architecture is the size of the SNP effects or 

substitution effects which includes the effects 

due to additive and dominance gene action, 

inter-locus interactions. 

Our primary interest in this paper was a 

researcher’s ability to identify inter-locus 

interactions when data from all subpopulations 

are pooled together.  

Results & Discussion 

New information from molecular biology 

provides valuable insight on the vast amount of 

redundancy available with respect to 

alternative genetic solutions to achieve a 

common phenotypic change. Extensive use of 

individual bulls or control of access to top 

genetics are two ways that subpopulations 

have been created within the U.S. Holstein 

population. Existence of subpopulations is 

beneficial in that it helps preserve genetic 

diversity.   

Steyn et al. 2023 reported that different sets 

of SNPs were changing over time in different 

subpopulations of U.S. Holsteins. 

Heterogeneity in SNP frequency changes 

across subpopulations indicates that different 

SNPs are being targeted in different 

subpopulations. While as many as 59 SNPs 

went to fixation in one of the subpopulations, 

10



INTERBULL BULLETIN NO. 60. 20-21 May 2024, Bled, Slovenia 

fixation of SNPs was infrequent across the 

whole population (3 alleles). 

Much of the genetic variability observed in 

different polygenic traits originates from 

differences in gene expression. These 

heterogenous genomic changes in different 

subpopulations lead to differences in 

transcriptomic response, development of 

distinct GRNs and enrichment of different 

biological pathways. So why are gene 

interactions so frequently ignored by 

quantitative geneticists? 

The pooling of all data together into a 

single national or global evaluation causes us 

to miss important gene-gene interactions that 

are important for maintaining genetic 

variation. Figure 1, adapted from Steyn et al, 

2023, provides an illustration of this point. By 

pooling all data together, genetic interactions 

which have a heterogeneous effect in different 

subpopulations are ignored. 

Figure 1. SNP A has a consistent effect in all 

families resulting it a high SNP effect. SNP B has 

an inconsistent effect across families, its SNP effect 

would be low due to being averaged across all 

families. 

This means that our current genomic 

selection programs are selecting for certain 

type of gene actions and ignoring other genetic 

options. For a SNP to have a consistent or 

large effect across all subpopulations the 

SNP’s action must be direct and largely 

independent of other genes, e.g., a protein 

coding gene or using terminology from the 

omnigenic model a “core” variant involved in 

gene expression (Mathieson, 2021). SNPs with 

an inconsistent effect across subpopulations 

are referred to as “peripheral” genes, affecting 

the phenotype through a network of 

interactions with other peripheral genes and 

core genes. 

The important message for our Interbull 

community is that pooling data sets together 

for the sake of obtaining higher accuracy of 

prediction does so by focusing on a limited 

type of genes, i.e., core genes while ignoring 

the more numerous peripheral genes. The 

solution would be to recognized multiple 

subpopulations within the Holstein breed with 

separate reference populations and separate 

genomic evaluations. This allows for the 

selection of more peripheral gene action, 

enriching different GRNs in different 

subpopulations, and preserving genetic 

diversity across the entire breed. 

Combining genomic selection with sexed 

semen, embryo transfer and restricted access to 

young genetics has led individual breeding 

organizations and countries to genetically 

diverge from one other. Figure 2 presents a 

measure of genetic differentiation (Fst) or 

population structure of the U.S. Holstein 

population in 2022. Each of the different 

breeding organizations are focusing on a 

slightly different group of animals. Current 

genetic differences between breeding 

organizations approach one quarter to one half 

of the genetic differences found between dairy 

breeds.  

A. SNP marker identifying the gene ERBB4

B. SNP marker with no known function
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Figure 2. Wright’s Fixation Index of major 

breeding organizations in U.S. Holsteins in 2022. 

Within-stud selection has led to the 

assembly of breeding units made up of slightly 

different families. This is the start of our breed 

having different lines of Holsteins to choose 

from. AI breeding companies can further 

expand this concept by having multiple lines 

available within each organization. Farmers 

could then rotate between lines and continue to 

make rapid genetic gain while maintaining low 

inbreeding within their own herd and high 

genetic diversity across our breed. 

Having multiple lines of Holstein does not 

mean that we all go off in different directions. 

Quite the contrary. It means that we must use 

our genetic resources more wisely. Breeding 

organizations will need to be committed to the 

program. National genetic evaluation centers 

will need to provide multiple genetic 

evaluations, which includes a national overall 

ranking as well as separate evaluations, with 

its own genomic reference population, for each 

domestic line. Our international organizations, 

such as Interbull, will need to develop genetic 

tools that routinely monitor the genetic 

distances between lines and the overall change 

in inbreeding in our global population. And we 

will all need to be heavily involved in the 

educational process of the benefits of this new 

breeding design and how to properly use 

multiple lines within a herd. 

Conclusions 

In our current genetic evaluations, all animals 

are pooled together causing the unique gene-

gene interactions from the different 

subpopulations to cancel one another out. 

Rather than selecting for unique and/or 

epistatic combinations of genes, we select for 

those genes that have a similar or additive 

effect across the breed. The highest genetic 

merit animals are those with the highest total 

of high average effect SNPs. Genetic diversity 

within the Holstein breed can be preserved or 

increased with a proper population structure. 

This includes having multiple lines of 

Holsteins; utilizing multiple reference and 

target populations; and providing genomic 

predictions for each separate subpopulation as 

well as the overall global population. 
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Abstract 

In 2006, Denmark, Finland, and Sweden have introduced across-country genetic evaluations for yield 

traits for their Holstein, Red dairy cattle (RCD) and Jersey populations. The implemented breed-specific 

random regression test-day models (RRM) were the outcome of an intensive research cooperation 

among the countries. Especially developing the RRM for the RDC population presented unique 

challenges due to its heterogeneous population structure spanning across Finland, Sweden, and 

Denmark. As genomic prediction became a key tool for breeding decisions, it became evident that the 

reliability of genomic enhanced breeding values (GEBV) for the RDC breed was lower than expected 

when compared to the Holstein and Jersey breeds. Several factors contributed to this discrepancy. 

Notably, during the last two decades, changes in herd and population structures were most pronounced 

within the RDC breed where the original RDC country-subpopulations have become much more alike. 

Thus, revision of the RRM is crucial in enhancing the reliability of GEBV for the selection of breeding 

candidate animals. First important improvements were the revision of modelling automated milking 

system data and a newly estimated set of variance components with lower h2. The updates made so far 

indicate considerable improvement in the genomic predictions. The LR regression coefficient (b1) values 

increased for example for milk yield from 0.85 of the original model to 0.92 of the revised model, 

indicating that the bias decreased with the revised model. Also, the coefficient of correlation (R2) 

increased for all production traits on average 4.5%. In a next step, we will truncate the phenotypic data, 

optimize the pedigree information, and study whether modelling metafounders for the heterogeneous 

RDC population will result in further improvements for the genomic prediction. 

Key words: Nordic Red dairy cattle, yield evaluation, automatic milking system 

Introduction 

 In 2006, the Nordic countries, Finland (FIN), 

Denmark (DNK), and Sweden (SWE), 

introduced across-country genetic yield 

evaluations for their dairy cattle populations. 

The outcome of intensive research cooperation 

was the random regression test-day models 

(RRM) for Holstein, Red dairy cattle (RDC), 

and Jersey. In 2010 the models were updated to 

replace the Swedish lactation yield observations 

by test-day observations and to apply a common 

set of variance components instead of country-

specific variance components (Lidauer et al., 

2015) and continue to serve as the basis for 

predicting genomic enhanced breeding values 

(GEBV).  

From the beginning, the model for the RDC 

breed proved to be the most challenging due to 

the heterogeneous population structure of RDC 

cattle across the Nordic countries. After 

genomic predictions for the three breeds were 

built, it was observed that the reliability of 

GEBVs for RDC was lower than expected, 

especially when compared to the reliability of 

GEBVs for Holstein and Jersey. Potential 

reasons for this discrepancy include changes in 

herd and population structures, which may have 

made the applied RRM suboptimal for genomic 

prediction. Revising the RRM for RDC 
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evaluation was found to be crucial for 

improving the reliability of GEBVs and for the 

optimal selection of candidate animals. 

Materials and Methods 

Model 

The applied multiple-trait RRM describes test-

day milk, protein, and fat yields for a cow's first 

three lactations using nine model equations. 

Each trait has a random regression function for 

random genetic and permanent environmental 

effects. The model includes fixed effects nested 

within countries, some of them also nested 

within breed, heterosis and recombination loss 

adjustments, and adjustments for heterogeneous 

variance (HV). Due to modelling of covariance 

functions, 15 cow-specific coefficients define 

all nine breeding value curves. For more 

information, see Lidauer et al. (2015). 

Revising the variance components 

In the old RRM (in use until November 2023), 

heritability was based on variance components 

estimated from Swedish data and were 

considered too high, especially for later parities. 

Most of the RDC test-day data come from 

Finland, where earlier studies found lower 

heritability (h²) values compared to those used 

in the RRM. Specifically, variance components 

for permanent environment and genetic effects 

in later lactations were too high. This became 

even more critical after 

assigning higher weights to later lactations in 

the Nordic Total Merit Index. The updated 

variance components are now based on Finnish 

data, resulting in lower heritabilities, 

particularly for protein and fat yields in later 

lactations (Figure 1). Consequently, now the 

variance components better fit the data. 

Updated modelling of automatic milking 

system data 

Over the last two decades, there has been a rapid 

decrease in conventional milking system 

(CMS) observations. Meanwhile, automatic 

milking system (AMS) observations have 

increased slightly, and currently, approximately 

half of the test-day records in Finland, Sweden, 

and Denmark come from AMS (Figure 2). 

The old RRM assumed the same residual 

variance for all AMS observations. However, in 

Finland, the measurement protocol has changed 

twice over the years, with the latest methods 

based on a smaller number of AMS milkings. 

The residual variances differ between 

measurement. This caused issues in 

simultaneously adjusting for HV, as it 

overcorrected observations made using the new 

measurement protocols due to incorrect 

Figure 1.  Heritabilities in old (solid line) versus 

updated (dashed line) model for milk, protein, and fat 

in lactations 1-3 

.

Figure 2. Number of test-day observations for first 

lactation milk yields by country and milking system. 

Blue lines from conventional milking system (CMS) 

and red lines from automatic milking system (AMS). 
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baseline variances. To address this, the model 

was updated to provide separate residual 

variances for the different methods to calculated 

24h yield from AMS. 

The updated milking protocols in Finland 

are defined 1) as sum of morning and evening 

milking yields in CMS for whole data collection 

period. For AMS there are three measurement 

types: 2) the average of one weeks milkings 

during years 2010-2015 (weekmean), 3) sum of 

two successive milkings scaled to 24h yield 

during 2015-2017 (Interval), and 4) four days 

average milkings (96hour) from 2017 onwards. 

The Figure 3 shows the level of residual 

variance in different daily milk yield 

measurements. It shows that the residual 

variance for CMS is always higher than that for 

different AMS systems. The correct 

measurement information for AMS 

observations was included also in the data, and 

the HV adjustment was updated to handle the 

different AMS recording protocols. 

Holstein observations in the Finnish test-day 

data 

In the past, Finnish herd sizes were small. As a 

result, test-day records for Holstein cows were 

included in the model to increase contemporary 

group sizes, although the results of the Holstein 

evaluations were not used from this model. 

However, herd sizes in Finland have increased 

and this is no longer as relevant, so Holstein 

observations were removed from the Finnish 

test-day data. This removal also required 

revising model effects that included breed 

interactions. 

Testing with updated model  

All test-day data and genotype data available in 

February 2023 were obtained from the NAV. 

The data included 4.7 million cows with 

observations and 6.2 million animals in the 

pedigree. Genotype data included 229,706 

genotyped animals. 

The animal model and single-step RRM 

were solved by preconditioned conjugate 

gradient method (Strandén and Lidauer, 1999). 

The genomic evaluation was realized by 

ssGTaBLUP (Mäntysaari et al., 2017). For 

setting up the genomic relationship matrix (G) 

the VanRaden method 1 and a 10% residual 

polygenic proportion (RPG) were used, and 

diagonal of G was scaled to be on average equal 

to the pedigree-based relationship matrix of the 

genotyped animals (A22) (Vanderplas et al., 

2023). The pedigree inbreeding coefficients 

were accounted for both in A-1 and 𝐀22
−1.

Model comparisons were based on forward 

prediction validation, utilizing solutions from 

both full-data and reduced-data evaluations. 

The reduced data were derived by removing the 

last four years of observations from the full data 

set. The linear regression validation (LR) 

method (Legarra and Reverter, 2018) was 

employed for validation. This method compares 

predictions based on reduced and full data, 

yielding estimates of accuracy and bias. 

Danish, Finnish, and Swedish bulls born 

between 2014 and 2018, each having at least 20 

daughters in the full-data set but no daughters in 

the reduced-data set, were defined as candidate 

bulls. This criterion resulted in a total of 222 

candidate bulls. 

Figure 3. The level of residual variance in different 

milking system protocols by months from 2010 to 

2023. Green line conventional milking system 

(CMS). 
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Results & Discussion 

The updated model changed the estimated 

breeding values (EBV) and the GEBV of the 

animals, with the correlation between the old 

and new EBVs averaging 0.97 and 0.98 for 

GEBVs. Consequently, the RRM update caused 

some reranking of the bulls. This was expected, 

as the incorrect AMS protocol had caused 

issues, particularly for Finnish cows, which also 

affected bull evaluations. With the corrected 

milking system data, the (G)EBVs for some 

bulls changed accordingly. 

The comparison of EBVs and GEBVs from 

the updated model showed that validation of the 

bulls improved with corrections (Table 1). In 

genomic animal model bias decreased 

considerably and both regression coefficient 

(b1) and coefficient of determination (R2) 

improved compared to the old RRM.   

Table 1. Linear regression (LR) results for the 

validation bulls’ breeding values based on the BLUP 

(EBV) or ssGTaBLUP (GEBV) evaluations 

applying the old (old) or the updated (new) model. 

The values in the table are: b0= 

mean(Full_((G)EBV–reduced_(G)EBV) ±SD, b1 

regression coefficient and R2 coefficient of 

determination. 

The protein genetic trends for bulls are 

shown in Figure 4A. After the introduction of 

genomic selection, the genetic trend in single 

step evaluation started to be much higher in the 

reduced data compared to that in the full data 

run with the old RRM, whereas with the 

updated RRM the difference between the 

genetic trend in the reduced run and full run is 

reduced and thus bias is decreased. As expected, 

the SD of the EBVs and GEBVs slightly 

increased with the updated model due to new 

AMS protocol (Figure 4B). 

The updates made to the RRM so far have 

already enhanced the genomic predictions for 

the RDC. Specifically, the bias has decreased, 

and the b1 value has increased. Further changes 

are underway, including data truncation to 

exclude test-day records prior to 2005 and 

optimization of pedigree. Additionally, work is 

ongoing to refine the definitions of calving age, 

heterosis, and recombination effects. Once all 

effects in the RRM have been updated, we will 

investigate replacing unknown parent groups 

Model b0 b1 R2 

M
il

k
 

EBV
old

129.46 (±540.0) 0.68 0.22 

EBV
new

-81.18 (±569.9) 0.69 0.23 

GEBV
old

-473.88 (±363.7) 0.85 0.66 

GEBV
new

-291.34 (±354.9) 0.92 0.70 

P
ro

te
in

 

EBV
old

-0.72 (±16.2) 0.62 0.21 

EBV
new

1.24 (±17.0) 0.63 0.21 

GEBV
old

-17.78 (±12.3) 0.75 0.60 

GEBV
new

-12.41 (±11.9) 0.84 0.63 

F
at

 

EBV
old

-1.77 (±21.4) 0.77 0.28 

EBV
new

3.20 (±27.9) 0.76 0.27 

GEBV
old

-22.91 (±15.6) 0.84 0.63 

GEBV
new

-18.61 (±19.6) 0.91 0.65 

A 

B 

Figure 4. A) Genetic trends for protein yield (kg) by 

birth year averages. (B) SD for protein yield 

breeding values (kg) by birth year. EBVold the old 

RRM model, GEBVold the single step with old 

RRM, EBVnew the updated RRM and the 

GEBVnew the single step with updated RRM. Solid 

lines are for full data and dashed lines for reduced 

run. 
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with metafounders to assess whether this 

approach further improves genomic 

predictions. 

Conclusions 

As a final remark, changes made so far in the 

model improved validation results. These 

changes included updating variance 

components, improved handling of residual 

variance of Finnish AMS records, as well as 

removing Holstein observations. 

Acknowledgements 

This work was a part of the Nordic project 

“Modelling of phenotypes and ancestral 

relationships in genomic prediction for yield 

traits in Nordic Red dairy cattle”. The Nordic 

cattle breeding organizations (Nordic Cattle 

Genetic Evaluation (NAV), Aarhus, Denmark; 

Viking Genetics, Randers, Denmark) are 

acknowledged for providing the test-day and 

genotype data, as well as for funding the work. 

References 

Legarra, A., Reverter, A. 2018. Semi-

parametric estimates of population accuracy 

and bias of predictions of breeding values 

and future phenotypes using the LR method. 

Genet. Sel. Evol. 50, 53. doi: 

10.1186/s12711-018-0426-6. 

Lidauer, M., Pösö, J., Pederson, J., Lassen, J., 

Madsen, P., Mäntysaari, E.A., Nielsen, U., 

Eriksson, J-Å., Johansson, K., Pitkänen, T., 

Strandén, I., Aamand, G.P. 2015. Across-

country test-day model evaluations for 

Nordic Holstein, Red Cattle and Jersey. J. 

Dairy Sci. 98, 1296–1309. doi: 

10.3168/jds.2014-8307. 

Mäntysaari, E.A., Evans, R.D., Strandén, I. 

2017. Efficient single-step genomic 

evaluation for a multibreed beef cattle 

population having many genotyped animals. 

J. Anim. Sci. 95, 4728-4737. doi:

10.2527/jas2017.1912.

Strandén, I., Lidauer, M 1999. Solving large 

mixed models using preconditioned 

conjugate gradient iteration. J. Dairy Sci. 82, 

2779-2787. doi: 10.3168/jds.S0022-

0302(99)75535-9. 

Vandenplas, J., ten Napel, J., Darbaghshahi, 

S.N., Evans, R., Calus, M.P.L., Veerkamp,

R., Cromie, A., Mäntysaari, E.A.; Strandén,

I. 2023. Efficient large-scale single-step

evaluations and indirect genomic prediction

of genotyped selection candidates. Genet.

Sel. Evol 55, 37. Doi:10.1186/s12711-023-

00808-z

VanRaden, P.M. 2008. Efficient methods to 

compute genomic predictions. J. Dairy Sci. 

91,  4414-4423. doi: 10.3168/jds.2007-0980. 

18



INTERBULL BULLETIN NO. 60. 20-21 May 2024, Bled, Slovenia 

Genetic trend in milk fat percent is highly responsive to the 

relative economic value of milk fat and milk protein in the New 

Zealand dairy sector  
M.A. Stephen1, R. Handcock1 and P. Amer2

1 DairyNZ, 605 Ruakura Road, Newstead, Hamilton.
2 AbacusBio, 442 Moray Place, Central Dunedin, Dunedin 9016 

Corresponding author: melissa.stephen@dairynz.co.nz 

Abstract 

Milk components are important traits within Breeding Worth (BWSI), the national selection index of 

the New Zealand dairy industry. Breeding Worth is an economic index, and trait weightings are 

calculated based on the economic value (EV) that each trait contributes to a dairy farm business. The 

EVs are updated annually, but key parameters like the absolute and relative values of milk solids, and 

the relative value of milk fat and milk protein are included as a 5-year rolling average to mitigate 

against volatility in animal rankings. In 2015, the global price for milk fat began to increase, and 

between 2015 and 2022 the value of milk fat relative to milk protein rose rapidly year on year. The 

increase in the dollar value of milk fat relative to milk protein was gradually mirrored in BWSI 

weightings, and although the response in milk fat yield was modest, a clear inflection in the genetic 

trend for milk fat percent was observed from 2018 onwards. We sought to understand the drivers for 

this change in the rate of genetic gain, especially given the multi-breed composition of the NZ dairy 

herd. For a trait like milk fat percent, which differs between the Jersey and Holstein-Friesian breeds, 

NZ farmers can use both breed substitution and within-breed selection to alter the performance of their 

herd. We report that both breed substitution and within-breed selection appear to have contributed to 

the genetic trend in milk fat percent. The use of Holstein-Friesian sires declined between 2015 and 

2020 in favor of Holstein-Friesian cross Jersey sires. Similarly, a 15-year decline in the use of Jersey 

sires was reversed in 2015, with a small increase recorded between 2015 and 2020.  The within-breed 

response to the change in relative weightings on milk fat and milk protein is also notable, 

demonstrating the power of coordinated selection towards a breeding objective. Our findings highlight 

the importance of carefully considering the approach used for determining weighting factors within a 

selection index, especially for traits as responsive to selection as milk fat.  

Key words: Genetic Trend, Milk Production, Jersey, Holstein-Friesian 

Introduction 

The national breeding objective for the New 

Zealand (NZ) dairy sector is to breed cows that 

efficiently convert feed into profit. DairyNZ, 

and its subsidiary New Zealand Animal 

Evaluation Limited (NZAEL) are responsible 

for designing the national selection index 

‘Breeding Worth’ (BWSI), which ranks 

animals according to their ability to meet this 

objective. The BWSI incorporates a range of 

economically important traits, each weighted 

according to its economic value to farmers. 

These economic values vary over time, and the 

weighting factors applied to each trait are 

updated annually in December to reflect 

current market conditions. The final BWSI 

assigned to each animal represents its ability to 

breed profitable replacement heifers for an NZ 

dairy herd, relative to other potential parents. 

The BWSI is widely used by farmers in NZ, 

and changes to the weightings and/or traits 

included in the BWSI have a noticeable effect 

on trait-specific genetic trends. For example, 

the fertility trait was introduced into BWSI 
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around 2002, resulting in an obvious increase 

in the rate of genetic gain for this trait (Pryce 

et al., 2014).   

The national herd in NZ is a highly 

admixed population, comprised of two major 

breeds, Holstein-Friesians (HF) and Jerseys 

(J), and their crosses. The BWSI is produced 

using across-breed estimated breeding values 

(EBVs), meaning that it is designed to provide 

farmers with an objective ranking of animals, 

irrespective of breed. Trait means differ 

between HF and J cattle for several traits that 

are economically relevant to farmers, and so it 

could be expected that the breed composition 

of the national herd might change in response 

to changes to the weighting factors in BWSI. 

Furthermore, where trait means differ by 

breed, the availability of more than one breed 

could be strategically used as a tool to more 

quickly respond to changing market 

conditions.  

Holstein-Friesians and Jerseys differ in 

milk fat percent (DairyNZ & LIC, 2022), and 

between 2015 and 2022 the value of milk fat 

relative to milk protein rose rapidly year on 

year. The structural shift in the market value of 

milk fat was reflected in the weighting factors 

within the BWSI and, consequently, an 

increase in the rate of genetic gain for milk fat 

percent. Given that NZ farmers can use both 

breed substitution and within-breed selection 

to modify the milk fat percent of their animals, 

we sought to understand the drivers for this 

change in the rate of genetic gain.  

Materials and Methods 

Data 

All animal data and EBVs presented in this 

analysis were provided by NZAEL.  

Breed categories 

Animals were assigned to breed categories 

based on pedigree-derived breed percentages. 

Animals that were 87.5% or greater HF or J 

were categorized as those breeds. Animals that 

were not 87.5% or greater HF or J, but whose 

HF and J percentage summed to at least 87.5% 

were categorized as HF cross J (HFJ). The all-

breeds category included all recorded animals, 

including minority breeds such as Ayrshires.  

Weighting factor of milk fat and milk protein 

over time  

The current weighting factors for traits 

included in the BWSI are publicly available on 

the DairyNZ website at the following URL: 

https://www.dairynz.co.nz/animal/breeding-

decisions/economic-values/. We obtained 

historic weighting factors from NZAEL 

directly (Figure 1). The weighting factors are 

presented in economic terms, and no attempt 

has been made to adjust for inflation.   

Genetic trends for milk fat and milk protein  

The genetic trend plots for milk protein percent 

(Figure 2) and milk fat percent (Figure 3) 

represent the mean EBVs of all recorded dairy 

cows, by birth year and breed. Animal counts 

increased over time and varied by age and 

breed. The number of animals contributing to 

the all-breeds category ranged from around 

700,000 to around 1,200,000.  The number of 

animals contributing to the HF breed category 

ranged from around 300,000 to around 

360,000. The number of animals contributing 

to the J breed category ranged from around 

80,000 to around 100,000.  The number of 

animals contributing to the HFJ breed category 

ranged from around 250,000 to around 

750,000.   

Breed composition of the national herd  

The breed composition plot (Figure 4) 

represents the proportion of all recorded cows 

in each birth year sired by either Holstein (H), 

HF, HFJ, or J sires. The number of animals 

represented in each birth year increased over 

time, ranging from around 640,000 to around 

1,100,000 in more recent years.  

Results & Discussion 

Weighting factor of milk fat and milk protein 

over time  

The weighting factor applied to milk fat in 

BWSI rapidly increased from 2017 to 2021 

(Figure 1).  Conversely, between 2014 and 

2020, there was a decrease in the weighting 

factor applied to milk protein. Between 2016 

and 2022, the negative weighting on milk 

volume increased (data not shown), further 

incentivizing selection for dairy cattle with 

higher milk fat and protein percentages. 
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The findings of this study have important 

implications for the formulation and 

adjustment of BWSI weightings. The clear 

inflection in the genetic trend in milk fat 

percentage following the adjustment of 

weightings suggests that even modest 

economic signals can lead to significant 

genetic responses if selection pressure is 

sustained, especially for traits like milk fat 

percent, which exhibit moderate to high 

heritability (Ahlborn & Dempfle, 1992; 

Jayawardana et al., 2023). The study 

underscores the importance of considering 

long-term structural changes in market signals 

when setting selection index weightings, as 

powerful changes in animal performance can 

result from changes in both within- and 

between-breed selection decisions. 

Genetic trends for milk fat and milk protein  

The genetic trend for milk protein percentage 

has been consistently positive since 1995 

(Figure 2). Conversely, the genetic trend for 

milk fat percent remained relatively flat until 

around 2017, at which point a positive 

inflection is clearly observed (Figure 3).  

The study highlights the significant within-

breed response to the changes in BWSI 

weightings. Successful within-breed selection 

for increased milk fat percentage demonstrates 

the potential for genetic improvement even 

within a single breed, provided that selection 

pressure is appropriately applied. This result 

emphasizes the importance of a national 

breeding objective and the need for continuous 

monitoring of selection indices. When clear 

new market signals are identified, indices 

should be adjusted to ensure they remain 

aligned with economic realities. 

A second avenue for genetic progress in 

breed-divergent traits like milk fat percent is 

breed substitution. The breed composition of 

the NZ national dairy herd has changed 

dramatically in the past 20 years (Figure 4). 

Most notably the proportion of cows sired by 

HFJ sires has risen from a starting point of 

nearly 0 in year 2000 to around 35% in year 

2022. Initially the increase in use of HFJ sires 

corresponded to a decline in the use of J sires, 

while the use of HF sires either remained 

stable or increased. During this period, breed 

substitution was likely to be limiting the all-

breeds genetic trend for milk fat percent. 

Around 2015 J sire use stabilized, and then 

began to increase slightly around 2017.  At the 

same time, the use of HF sires began to decline 

in favor of HFJ sires, further increasing the 

proportion of J genetics contributing to the 

national herd.  From 2017, breed substitution 

may have supported the positive genetic trend 

for milk fat percent in both the all-breeds and 

the HFJ category.  

The all-breeds genetic trend for milk fat 

percentage has likely been influenced by both 

breed substitution and within-breed selection. 

The recent decline in the use of HF sires in 

favour of J cross HF sires, coupled with the 

reversal of the long-term decline in J sire 

usage, indicates a potentially strategic shift 

among NZ dairy farmers in favour of J 

genetics. The ability to utilize breed 

substitution to increase milk fat percentage of 

the national herd highlights the importance of 

maintaining genetic diversity and the 

availability of multiple breeds with differing 

trait characteristics. The strengths of each 

breed represent a resource that can be 

exploited should market conditions require it.  

Figure 1. Weighting factor applied to milk fat and 

milk protein in the Breeding Worth Selection Index 

(BWSI) from 2008 to 2023.  
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Figure 2. Genetic trend for milk protein percent by 

birth year for all female cows recorded in the New 

Zealand dairy sector (All), Holstein (H), Holstein-

Friesian (HF), Holstein-Friesian cross Jersey (HFJ) 

or Jersey (J) cows.   

Figure 3. Genetic trend for milk fat percent by birth 

year for all female cows recorded in the New 

Zealand dairy sector (All), Holstein (H), Holstein-

Friesian (HF), Holstein-Friesian cross Jersey (HFJ) 

or Jersey (J) cows.   

Figure 4. Proportion of cows in each birth year 

sired by either Holstein (H), Holstein-Friesian 

(HF), Holstein-Friesian cross Jersey (HFJ) or Jersey 

(J) sires.

Conclusions 

In conclusion, this study provided valuable 

insights into the drivers of recent genetic gain 

in milk fat percentage in the NZ dairy herd. 

Although the genetic trend in milk fat percent 

appears to be primary driven by within breed 

selection, the occurrence of breed substitution 

highlights the opportunities that genetically 

diverse, mixed-breed populations can offer. 

This study contributes to a deeper 

understanding of the mechanisms driving 

genetic improvement in milk components in 

the NZ dairy sector.  
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Abstract 

Analysis of 88,068 autosomal or X-linked SNPs in the ANAFIBJ Holstein genomic database including 

males and females showed declining SNP heterozygosity over time. In 1990, average SNP 

heterozygosity was 0.3620. During the pre-genomics period (1990-2010), the annual decline was -

0.0003, reaching 0.3558 in 2010. However, in the genomics period (2010-2024), the average SNP 

heterozygosity declined to 0.3191 in 2024, with an annual decline of -0.0027, over 7 times higher than 

before. So far, this trend has been highly linear (R²=0.987), which would extrapolate (in the absence of 

other sources of genetic variation than selection and inbreeding) to result in a complete loss of genetic 

variation in ~130 years. We developed measures to estimate genomic expected future inbreeding 

(Gefi) based on Runs-Of-Homozygosity (ROH). A comparison with CDCB genomic future inbreeding 

(GFI) based on the genomic relationship matrix (GRM) was done using 38,280 genotyped proven 

males covering 70 years (1951-2020), which resulted in a Pearson correlation of 0.959. The CDCB 

GRM G was computed as G = ZZ’/Σ2p(1 – p) using p=0.5. Gefi estimates had a mean of 6.9% with a 

standard deviation of 2.6%. Minimum Gefi was 0.1% and maximum was 15.3%. GFI estimates had a 

mean of 7.2% with a standard deviation of 2.6%. Minimum and maximum GFI were -3.1% and 

13.5%. The correlation was quite high even though Gefi is an identity-by-descent (IBD) measure in 

the probability space of [0,1], whereas GFI measures identity-by-state (IBS) in the correlation space of 

[-1,1]. Comparison of the inbreeding depression across traits showed that the depression is largest on 

yield traits followed by contents, somatic cell score (SCS) and fertility at around 20% of the 

depression on yield traits. ANAFIBJ aims to reduce the increase in future inbreeding by giving a 

premium to male and female animals which are less related to the recent population, while penalizing 

those that are more related. 

Key words: Inbreeding, Holstein, effective population size, genetic diversity, SNP, Runs-Of-

Homozygosity, genomic selection 

Introduction 

If a population has no exchange of genes with 

other populations, then mutations become the 

only way for new genetic variation to arise, 

and they arise slowly. Over time, breeding 

within such a closed population reduces 

overall genetic variation unless mutations 

happen frequently enough. This results in 

individuals becoming genetically more similar 

and gradually leads to inbreeding. Choosing 

just a few breeding parents who are genetically 

alike speeds up the inbreeding process. This 

can have serious consequences; animals might 
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become less fertile and less healthy. Modern 

breeding techniques using genomic 

information (genomic selection) can worsen 

this decline, especially due to shorter 

generation intervals and stronger selection 

pressure. Unfortunately, low genetic variation 

makes populations less able to adapt to 

changing environments, increasing their 

extinction risk. 

The Holstein reigns supreme in the dairy 

world. However, a hidden threat lurks beneath 

its success: a remarkably narrow genetic base. 

Despite the vast number of Holsteins globally, 

the breed's ancestry is surprisingly limited. 

Less than 10,000 Friesian animals were 

imported into North America over 130 years 

ago, and today, only two male lines effectively 

remain. This history of restricted gene flow, 

coupled with multiple genetic bottlenecks, has 

resulted in a population with low genetic 

diversity. While this focus has yielded high 

milk production, it could leave Holsteins 

vulnerable in the long run. 

This paper and the presentation from the 

2024 annual Interbull meeting in Bled are a 

follow-up of the paper and the presentation at 

the 2023 annual Interbull meeting in Lyon 

(Van Kaam et al., 2023). Estimates of genomic 

diversity were updated. Additional work was 

done to check genomic inbreeding coefficients 

from imputed data, to estimate the correlation 

between genomic future inbreeding measures, 

and to compare the size of inbreeding 

depression estimates per trait. 

Materials and Methods 

Issue of declining genetic variation 

The ANAFIBJ genomic databank was used to 

analyze annual trends in genetic variation of 

Holstein SNP genotypes. After imputation, the 

annual average SNP heterozygosity of 88,068 

autosomal or X-linked SNPs from male and 

female animals born between 1990 and 2024 

was computed, excluding non-genotyped 

animals and animals without pedigrees. The 

year 2010 marked the transition from pre-

genomic to genomic selection. 

The analysis included both males and 

females. The average inbreeding coefficient 

per year was computed as (homozygosity this 

year - homozygosity first year) / (1 - 

homozygosity first year). Average generation 

intervals were calculated per year for the four 

pathways separately and then averaged. The 

relative year since 1990 was divided by the 

annual generation interval to estimate the 

number of generations that had passed since 

1990. No Hardy-Weinberg equilibrium was 

assumed. 

Genomic inbreeding coefficients from 

imputed data 

A verification was done to check if genomic 

inbreeding coefficients from imputed data 

were reliable. This was done by comparing 

genomic inbreeding coefficients from imputed 

and genotyped SNPs. In the verification a set 

of high-density (139K/778K) genotypes were 

downgraded to either the GeneSeek Genomic 

Profiler 3 (26K) or to the Labogena MD (62K) 

SNP set. The downgraded set of 329 animals 

was also split into 2 subsets: 

 Subset 1 of 266 animals with information

on both parental sides i.e., S+D or S+MGS

or S+D+MGS (S: Sire, D: Dam, MGS:

Maternal grandsire)

 Subset 2 of 63 animals without information

on one or both parental sides

Spearman rank, Pearson and concordance

correlation coefficients were computed for the 

full downgraded set as well as the two subsets. 

Three genomic inbreeding coefficients were 

used. Fgrm0.5 was based on the GRM using 

p=0.5. Froh coefficients were based on 27 or 

80 SNP segments, which correspond to 0.95 

and 2.8 Mb, respectively. In the case of ROH, 

longer SNP segments indicate more recent 

inbreeding. The three types of correlation 

coefficients were computed for each of these 

three genomic inbreeding coefficients. 

Correlation between Gefi and GFI 
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At Anafibj, a procedure was developed to 

estimate an Runs-Of-Homozygosity (ROH) 

style genomic inbreeding coefficient using an 

output file of our imputation software 

pedimpute.f90 (Nicolazzi et al., 2013), where 

haplotype segments are numbered. Using 

numbered haplotype segments, we could 

directly compare the segments by their number 

rather than using time-consuming SNP-by-

SNP comparisons. The fraction of autosomal 

haplotypes with the same number (i.e., 

identical) on a pair of homologous 

chromosomes is an estimate of the Froh. A 

Froh is an identity-by-descent (IBD) type of 

inbreeding coefficient. We computed the own 

as well as the future inbreeding coefficients. 

Our genomic expected future inbreeding 

coefficient was named Gefi. An advantage of 

an IBD type of inbreeding measure is that 

values are within the probability space [0,1], 

which avoids negative values that are more 

difficult to understand. 

A comparison was undertaken between the 

Gefi estimated by Anafibj and the genomic 

future inbreeding coefficients (GFI) estimated 

by CDCB using the diagonal from the genomic 

relationship matrix, which is an identity-by-

state (IBS) measure with values within the 

correlation space [-1,1]. This Pearson 

correlation was computed based on 38,280 

genotyped proven bulls covering 70 years 

(born 1951-2020), which had both estimates 

available. 

Inbreeding depression standardized effect size 

across traits 

In the literature, a number of articles showed 

results of genomic inbreeding depression using 

ROH-based inbreeding coefficients (Froh) in 

Holsteins. In order to compare traits and to 

understand which traits had a larger inbreeding 

depression, we standardized the inbreeding 

depression effects so that they became 

comparable across traits. We computed the 

standardized effect size as the inbreeding 

depression estimate (b) multiplied by the 

standard deviation of the genomic inbreeding 

coefficient (SD(F)) used to estimate the 

inbreeding depression. We then divided this by 

the observed standard deviation of the trait 

(SD(y)). Estimates from the following papers 

were included: Ablondi et al., 2023; Bjelland 

et al., 2013; Doekes et al., 2019; Makanjuola et 

al., 2020; Mugambe et al., 2023. Also, new 

unpublished results from Ablondi et al. were 

included. 

Results & Discussion 

Issue of declining genetic variation 

Figure 1 shows the annual trend in SNP 

heterozygosity before and during the genomics 

era. 

Figure 1. Pre- and post-genomic trends of SNP 

heterozygosity by birth year 

Figure 2. Decline of effective population size (Ne) 

during the most recent 16 birth years 

Genomic inbreeding coefficients from 

imputed data 

Table 1 shows different types of correlation 

coefficients between the genomic inbreeding 
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coefficients of the samples in the imputed 

downgraded set with their fully genotyped (i.e. 

not downgraded) samples. 

In the same manner Table 2 and 3 show the 

correlation coefficients for the subsets 1 and 2. 

Table 1. Correlations of inbreeding coefficients 

entire downgraded set (N=329) 

Downgrade Correlation 
GRM 

ROH

27 

ROH

80 

GGP3 

(26K) 

Spearman 0.85 0.85 0.90 

Pearson 0.43 0.48 0.89 

Concordance 0.26 0.39 0.87 

Labogena 

MD (62K) 

Spearman 0.93 0.96 0.96 

Pearson 0.65 0.97 0.98 

Concordance 0.55 0.97 0.96 

Table 2. Correlations of inbreeding coefficients 

downgraded set (N=266) with info on both parental 

sides 

Downgrade Correlation 
GRM 

ROH

27 

ROH

80 

GGP3 

(26K) 

Spearman 0.93 0.96 0.96 

Pearson 0.89 0.96 0.96 

Concordance 0.82 0.96 0.94 

Labogena 

MD (62K) 

Spearman 0.98 0.99 0.98 

Pearson 0.97 0.99 0.98 

Concordance 0.95 0.99 0.97 

Table 3. Correlations of inbreeding coefficients 

downgraded set (N=63) without info on one or both 

parental sides 

Downgrade Correlation 
GRM 

ROH

27 

ROH

80 

GGP3 

(26K) 

Spearman 0.68 0.54 0.67 

Pearson 0.65 0.34 0.65 

Concordance 0.14 0.10 0.55 

Labogena 

MD (62K) 

Spearman 0.83 0.77 0.83 

Pearson 0.72 0.82 0.90 

Concordance 0.27 0.79 0.84 

Correlation between Gefi and GFI 

Summary statistics from Gefi and GFI are 

presented in Table 4 based on 38.280 proven 

bulls. The Pearson correlation between Gefi 

and GFI was 0.959. 

Table 4: Summary statistics of Gefi and GFI 

Gefi GFI 

Average 6.9 7.2 

Standard deviation 2.6 2.6 

Maximum 15.3 13.5 

Minimum 0.1 -3.1

Inbreeding depression standardized effect size 

across traits 

Table 5 shows the average standardized effect 

size of the inbreeding depression per trait 

based on the estimates in literature. For all 

traits the effect was in the undesirable 

direction. 

Table 5. Standardized effect size of the inbreeding 

depression 

Trait Standardized 

effect size 

Milk kg -.068% 

Fat kg -.063% 

Protein kg -.084% 

Fat % -.015% 

Protein % -.013% 

SCS*  .020% 

SCS5-150  .006% 

SCS151-400  .017% 

Age at 1
st
 calving  .007% 

Heifer interval 1
st
-last insemination  .022% 

Heifer NR56 -.009% 

Heifer conception rate -.022% 

Cow interval 1
st
-last insemination  .016% 

Cow NR56 -.019% 

Cow conception rate -.028% 

Interval calving to 1st insemination  .008% 

Days open  .060% 

Calving interval  .018% 

*SCS: Somatic Cell Score

A further condensed overview of the 

standardized effect size of the inbreeding 

depression is given in Table 6. Here the 

average value per trait group is given. 
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Table 6. Average across trait standardized effect 

size of the inbreeding depression per trait group 

Trait Standardized 

effect size 

Yields -.072% 

Contents -.014% 

SCS*   .014% 

Fertility -.019% 

*SCS: Somatic Cell Score

Conclusions 

Regarding genomic inbreeding coefficients 

from imputed data, we can conclude: 

 The 62K chip outperforms the 26K chip.

 Froh exhibits stronger correlations than

Fgrm0.5.

 Longer Froh segments demonstrate higher

correlations than shorter segments.

 Spearman rank correlations > Pearson

correlations > Concordance correlations

 Results are satisfactory when both parental

sides have genotypes.

 In 2023, >97.3% of animals have genotypes

on both parental sides, so for recent animals

the results based on imputed data should be

fine.

The high correlation between Gefi and GFI

shows that they are both measuring future 

inbreeding producing very similar results. 

For the inbreeding depression per trait 

group, we can conclude that by far the largest 

impact is on the yield traits. Fertility, contents 

and SCS all have an undesirable inbreeding 

depression of around 20% from the inbreeding 

depression on yields. 

Overall take-home messages are: 

 There has been a rapid increase in

inbreeding since the advent of genomic

selection.

 Inbreeding detrimentally affects nearly all

traits, with the most pronounced impact

seen in yield traits.

 Anafibj intends to introduce a

premium/penalty for expected future

inbreeding later this year.

 We will use genomic estimates when

possible and otherwise pedigree-based

estimates on a comparable scale.

 It is important to give a signal regarding the

impact of inbreeding.
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Abstract 

Breeding programs differ in generation intervals, pedigree completeness, genomic merit, and 

relationships to recent US animals as measured by expected future inbreeding (EFI) using pedigree or 

by genomic future inbreeding (GFI). Properties were examined using December 2023 files for proven 

bulls born 2016-2017 with milk-recorded daughters in ≥10 herds from Interbull, and genotyped females 

born 2018-2023 from the Council on Dairy Cattle Breeding (CDCB). Those genotypes included 

3,709,707 females from USA and Canada, 498,480 from 13 countries in Asia, 378,650 from 17 countries 

in western Europe, 125,849 from 17 countries in eastern Europe, 153,362 from 12 countries in Latin 

America, 53,235 from 3 countries in Oceania, and 4,082 from 5 countries in Africa. Percentages of bulls 

with a foreign sire averaged 43% in Holsteins (HOL) and Brown Swiss, 12% in Red Dairy Cattle, and 

9% in Jersey. The sire’s age at son’s birth averaged 2.2 to 2.9 years in 11 of the 20 countries for HOL, 

indicating rapid use of young sires, whereas other countries and breeds chose older sires of sons. 

Numbers of first crop daughters per selected young bull averaged 771 in HOL and 201-676 daughters 

in other breeds. Percentages of proven HOL bulls with genotypes used in the USA reference population 

differed widely by country from 0-100% and averaged 66%. Average pedigree completeness for HOL 

females ranged from 64.2% for Latin America to 86.1% for western Europe but was much higher and 

averaged 98% for proven bulls due to the Interbull exchange. Pedigree inbreeding, EFI, and GFI showed 

that proven bulls and genotyped females in many countries and continents are almost as related to US 

animals as US animals are to each other, but relationships are lower in other breeds and with wider 

ranges due to less genetic exchange. Other populations have higher genetic merit bulls for some breeds, 

but North American HOL had higher merit than all other regions. 

Key words: genomic prediction, inbreeding, global breeding 

Introduction 

Breeding programs changed quickly after 

genomic selection began more than a decade 

ago (Garcia-Ruiz et al., 2016). Over a million 

foreign animals now have US genomic 

predictions. Their genotypes and pedigrees 

allow comparing breeding programs and 

relatedness within breeds around the world, 

including many countries that do not participate 

directly in Interbull services. Bull evaluations, 

pedigrees, and genotypes from countries that 

participate in multi-trait across-country 

evaluation (MACE) also allow directly 

comparing the sires and selection methods used 

in each country. Goals were to examine 

relationships and use of foreign sires across 

countries, inbreeding, pedigree completeness, 

generation intervals, and genetic merit across 

countries and continents for several breeds. 

Materials and Methods 

The National Cooperator Database used for 

December 2023 official evaluations of CDCB 

included 3.3 million domestic and 1.4 million 

foreign genotyped females born 2018-2023 to 

provide recent 

comparisons. The 69 countries providing 

genotypes were grouped into 7 continental 

regions, with numbers for breeds Holstein 

(HOL) and Jersey (JER) shown in Tables 1 and 
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2. Individual countries providing the most

foreign genotypes were 320,350 from Canada,

186,499 from Saudi Arabia, 160,558 from

China, 135,971 from Japan, 114,501 from Italy,

and 102,000 from Brazil.

Proven bulls born 2016-2017 with milk-

recorded daughters in ≥10 herds from Interbull 

were examined using December 2023 official 

data from MACE on USA scale. Counts for 

breeds HOL, JER, Brown Swiss (BSW), and 

Red Dairy Cattle (RDC) are shown in Tables 3-

6 for countries that had at least 10 domestic 

proven bulls during those 2 years, with 

Denmark-Finland-Sweden (DFS) treated as 1 

country. German Simmental bulls (DEA) and 

French Montbeliard bulls (FRM) are reported 

on the HOL base because those breeds do not 

have a separate base in USA. Their evaluations 

include the expected 100% heterosis boost 

when mated to HOL females. Statistics for bulls 

included pedigree completeness (Ped%), 

percent of genotypes in USA reference (Gen%), 

percentage with foreign sires (ForSire%), and 

sire generation interval in years (SireGI). 

Results & Discussion 

For the recent genotyped HOL females, average 

Net Merit (NM$) was $480 in North America, 

$335 in Latin America, $381 in Western 

Europe, $370 in Eastern Europe, $317 in Africa, 

$366 in Asia, and $211 in Oceania (Table 1). 

Corresponding properties for 19,566 JER are in 

Table 2. 

The average pedigree completeness for 

recent genotyped HOL females ranged from 

64.2% for Latin America to 86.1% for western 

Europe. The average pedigree inbreeding for 

HOL females ranged from 8.7% for Africa and 

Oceania to 9.6% for North America. Oceania 

also had the lowest EFI of 9.0% and GFI of 

9.4% compared to the highest EFI of 9.5% and 

GFI of 10.4% in North America.  For JER 

females, pedigree completeness ranged from 

57.3% in Latin America to 87.9% in North 

America. Western Europe had the lowest 

averages of 7.6% for pedigree inbreeding, 7.4% 

for EFI, and 5.7% for GFI compared to highest 

averages of 8.9% pedigree inbreeding, 9.0% 

GFI, and 7.7% EFI in North America.  

For proven bulls, pedigree completeness 

was much higher and averaged 98% due to the 

Interbull exchange. HOL bulls had > 90% 

foreign sires in 7 of the 20 countries having at 

least 10 domestic proven bulls (counting DFS 

as 1 country), whereas NZL had 1% and USA 

had 11% foreign sires. The average was 43% 

foreign sires in HOL and BSW, 12% in RDC, 

and 9% in JER. The sire’s age at son’s birth 

averaged 2.2 to 2.9 years in 11 of the 20 

countries for HOL, indicating rapid use of 

young sires, whereas other countries and breeds 

chose older sires of sons. Several populations 

average > 1,000 first crop daughters per young 

bull selected. 

Percentages of proven bulls with genotypes 

used in the USA reference population differed 

widely by country from 0-100% and averaged 

66% in HOL. For proven bulls, 11 of 20 

countries had GFI of 10.0 to 11.3%; EFI 

patterns were similar. All other countries had 

GFI above 8.1% except ISR (3.2%) and NZL 

(2.4%). Compared to 19 years ago (VanRaden, 

2005), pedigree completeness has improved a 

little but inbreeding levels for MACE bulls have 

more than doubled. 

Tooker et al. (2015) summarized the first 

200,000 foreign genotypes in Table 7. For 

recently genotyped HOL females, pedigree 

completeness decreased slightly compared to 

those born before 2015 on all continents except 

a small increase in Asia. Inbreeding levels have 

increased quickly, but foreign females are still 

almost as related to US animals as US animals 

are to each other (EFI and GFI). North 

American average NM$ remains higher than for 

all other continents but NM$ averages are not 

directly comparable to means from 2015 due to 

a base change in 2020 and other index formula 

changes. Other than the consistent increases in 

30



INTERBULL BULLETIN NO. 60.  20-22 May 2024, Bled, Slovenia 

inbreeding, properties in Tables 1 compared to 

7 show good progress on all continents after 9 

years of rapid growth in genotyping. 

Conclusions 

Most foreign HOL bulls and genotyped females 

are highly related to the USA reference 

population. Sire generation intervals were < 3 

years in many HOL breeding programs but 

longer in other breeds and smaller populations. 

Almost half of HOL and BSW bulls had foreign 

sires but fewer in other breeds. HOL genetic 

merit was higher in North America than in all 

other continental regions but varied more in 

other breeds. Breeders in many countries are 

choosing genomic predictions from USA. 

Predictions for foreign animals should be 

almost as accurate as for domestic animals, but 

genetic correlations are unknown in many new 

markets.  
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Table 1. Average pedigree completeness, inbreeding, expected future inbreeding, and genomic future inbreeding 

by continental region for genotyped Holstein females born 2018-2023. 

Continent 

Genotypes 

(N) 

Pedigree 

completeness 

(%) 

Net Merit 

($) 

Pedigree 

Inbreeding 

(%) 

Expected future 

inbreeding 

(%) 

Genomic future 

inbreeding 

(%) 

North America 3,082,090 84.2 480 9.6 9.5 10.4 

Latin America 141,679 64.2 335 9.1 9.4 9.9 

Western Europe 288,475 86.1 381 9.1 9.2 10.2 

Eastern Europe 96,940 74.5 370 8.8 9.2 9.7 

Africa 3,964 70.5 317 8.7 9.1 9.8 

Asia 491,371 76.5 366 8.8 9.2 9.7 

Oceania 23,764 75.2 211 8.7 9.0 9.4 

Table 2. Average pedigree completeness, inbreeding, expected future inbreeding, and genomic future inbreeding 

by continental region for genotyped Jersey females born 2018-2023. 

Continent 

Genotypes 

(N) 

Pedigree 

completeness 

(%) 

Net Merit 

($) 

Pedigree 

Inbreeding 

(%) 

Expected future 

inbreeding 

(%) 

Genomic future 

inbreeding 

(%) 

North America 441,024 87.9 304 8.9 9.0 7.7 

Latin America 8,902 57.3 75 8.5 8.7 7.0 

Western Europe 4,948 75.8 118 7.6 7.4 5.7 

Eastern Europe 519 79.4 284 7.8 8.0 6.2 

Africa 107 85.0 90 8.0 8.4 7.8 

Asia 1,430 74.6 41 8.1 8.6 7.1 

Oceania 3,497 63.9 1 8.1 8.1 7.1 

Table 3. Properties by country of ID for Holstein bulls and Simmental breed group bulls (DEA and FRM) 

expressed on HOL base. 

Country Bulls Daughters Ped% Gen% NM$ EFI GFI ForSire% SireGI 

USA 1754 1085 100 99 543 10.0 11.1 11 2.3 

DEA 1005 348 97 0 202 1.1 . 38 4.1 

DEU 590 871 100 88 378 8.6 10.1 79 2.4 

NLD 444 1012 99 66 326 7.8 9.8 58 3.0 

NZL 444 811 99 1 -61 2.8 2.4 1 5.9 

CAN 332 1125 100 100 479 10.0 11.3 65 2.2 

JPN 309 61 97 22 276 9.0 10.5 81 3.7 

FRA 282 1289 94 52 257 8.0 10.1 79 2.6 

FRM 194 591 92 0 233 1.3 . 1 3.6 

ITA 186 329 99 75 315 7.6 10.7 90 2.8 

DFS 162 1593 99 41 353 7.5 8.8 47 2.3 

CHE 145 245 100 10 -23 5.0 9.3 50 4.0 

POL 96 307 93 22 274 8.2 10.2 100 2.9 

SVN 82 107 91 1 31 4.6 9.4 98 5.2 

ISR 79 266 85 5 269 5.5 3.2 29 4.9 

KOR 71 36 94 0 31 8.9 . 100 8.0 

AUS 64 234 92 39 125 8.3 9.9 70 3.5 

ESP 60 185 97 42 247 9.4 10.5 98 2.6 

GBR 42 642 98 93 267 7.3 8.1 74 4.4 

CZE 23 473 100 78 430 9.7 11.2 100 2.5 

LUX 14 343 100 86 442 9.0 10.6 100 2.6 

BEL 13 476 99 85 306 7.7 9.4 85 2.6 
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Globe 6412 771 98 54 324 7.0 10.7 43 3.2 

Table 4. Properties by country of ID for Jersey bulls. 

Country Bulls Daughters Ped% Gen% NM$ EFI GFI ForSire% SireGI 

USA 359 594 95 100 279 9.1 7.4 4 3.1 

NZL 207 455 98 4 -7 2.8 2.6 6 5.9 

DFS 56 941 99 63 326 4.9 3.1 7 2.4 

AUS 21 229 89 24 -6 8.1 7.7 57 6.2 

CAN 19 176 100 100 69 8.4 8.1 47 2.5 

Globe 673 551 96 65 177 6.7 7.0 9 4.0 

Table 5. Properties by country of ID for Brown Swiss bulls. 

Country Bulls Daughters Ped% Gen% NM$ EFI GFI ForSire% SireGI 

DEA 157 213 96 93 436 5.4 6.3 37 4.4 

CHE 100 287 99 39 123 5.2 0.3 32 3.7 

ITA 57 116 99 93 289 6.2 6.8 63 3.8 

USA 49 130 99 100 223 7.8 7.5 39 4.3 

FRA 13 228 98 100 359 6.4 7.2 77 4.5 

SVN 12 54 98 50 226 5.6 6.1 92 4.9 

Globe 394 201 96 93 297 5.8 5.9 43 4.1 

Table 6. Properties by country of ID for Red Dairy Cattle bulls. 

Country Bulls Daughters Ped% Gen% NM$ EFI GFI ForSire SireGI 

DFS 149 708 98 20 786 3.2 2.0 1 2.4 

NOR 92 1177 97 0 652 2.2 . 4 4.4 

NZL 27 56 95 0 438 2.1 . 33 8.3 

CAN 18 99 100 94 412 7.3 5.8 33 5.3 

AUS 15 90 76 0 432 3.2 . 60 6.5 

GBR 11 147 83 64 57 6.1 4.2 27 9.4 

USA 7 94 97 100 129 7.6 5.6 43 6.6 

Globe 329 676 96 19 638 3.2 3.7 12 4.1 

Table 7. Averages from Tooker et al. (2015) for pedigree completeness, inbreeding, expected future inbreeding, 

and genomic future inbreeding by continental region. 

Continent 

Pedigree 

completeness 

(%) 

Net Merit 

($) 

Pedigree 

Inbreeding 

(%) 

Expected future 

inbreeding 

(%) 

Genomic future 

inbreeding 

(%) 

North America 86.1 191 6.5 6.4 6.9 

Latin America 67.7 9 5.9 6.0 6.0 

Western Europe 97.6 146 6.1 6.1 6.7 

Eastern Europe 88.0 111 5.5 5.8 6.2 

Africa 87.4 64 6.3 6.6 7.3 

Asia 71.9 48 5.8 6.0 6.3 

Oceania 93.6 44 6.0 5.8 6.2 
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Abstract 

The methodologies and parameters for estimating daily milk yields in the United States were mainly 

developed from the 1960s through the 1990s. A recent initiative by the Council on Dairy Cattle 

Breeding, USDA Animal Genomics and Improvement Laboratory, and the National Dairy Herd 

Improvement Association aims to update these methods and parameters for estimating daily yields by 

collecting and analyzing milking data from dairy farms. This study, serving as an initial case study, 

examined the factors influencing daily milk yield estimation at a dairy farm in New York State and 

compared the performance of the existing method with a recently proposed one. In total, 63,562 milking 

data were extracted from approximately 2,200 cows milked thrice daily in this farm. Data cleaning 

eliminated incomplete or missing records, retaining 47,670 entries from 1,869 cows for subsequent 

analyses. The average partial yields in kilograms (milking interval time in hours) of the three milkings 

were 14.6, 16.5, and 13.8 (7.88, 8.79, and 7.25), respectively. Analysis of variance based on an extended 

version of the Wiggans (1986) model revealed significant effects of milking interval time and months 

in milk on proportional daily milk yields. The lactation effects on proportional daily yields were 

significant for the first two milkings but not for the third milking. Nevertheless, the relative importance 

of milking interval time and lactations was very low. The polynomial-interaction-regression model 

analysis showed significant effects from partial yields and significant interactions between partial yields 

and milking interval times on daily yields. The latter model gave more accurate estimates than the 

Wiggans (1986) model. Regarding the relative predictability of the three milkings, the 2nd milkings, 

having the longest average milking interval time, gave more accurate estimates than the 1st and 3rd 

milkings. The calculated multiplicative correction factors in this farm increased slightly for the 1st 

milkings and remained roughly comparable (or slightly decreased) for the 2nd and 3rd milkings 

compared to the Wiggans (1986) assessment. These results revealed only minor changes in daily yield 

correction factors over the past four decades.  

Keywords: accuracy, dairy cattle, milking interval time, interactions, lactation, test-day 

Introduction 

The 1960s witnessed a significant shift in milk 

testing in the United States. Previously, farms 

followed a rigorous schedule of twice-daily 

milk tests conducted under supervision every 

month. This system then shifted towards more 

economical sampling methods to reduce the 

costs associated with supervisory visits by the 

Dairy Herd Improvement Association (DHIA). 

Test frequencies are often adopted to align with 

varied herd management practices. On a test 

day, a cow is usually milked two or more times 

daily, but not all milkings were recorded. One 

prevalent technique is the morning and evening 

(AM-PM) method, which alternates between 

morning and evening milking throughout the 

lactation period (Porzio, 1953). Then, the total 

daily milk yield (DMY) was estimated by 

doubling the yield of a single milking, 
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assuming equal length and rate of milk 

production on both sessions, each lasting 

precisely 12 hours. In the case of unequal 

morning and evening milking intervals, the 

biases are assumed to be offset by 

complementary unevenness between AM and 

PM milkings. However, these assumptions do 

not hold in reality. Morning milking intervals 

tend to be longer than afternoon milking 

intervals. Hence, AM milk yields are usually 

higher than PM milk yields (Putnam and 

Gilmore, 1970). 

Various statistical approaches have been 

developed to estimate daily milk yields from 

incomplete milking data (reviewed by Wu et al., 

2023a,b). The methodologies and parameters 

for estimating DMY in the United States were 

primarily developed from the 1960s through the 

1990s. A recent initiative by the Council on 

Dairy Cattle Breeding, USDA-AGIL, and the 

National DHIA seeks to update these methods 

and parameters for estimating DMY by 

collecting and analyzing milking data from 

dairy farms. This study represented an initial 

case study amid ongoing or planned data 

collection at other locations. We examined the 

factors influencing DMY estimation at a 

specific site, Farm 1 in New York State, and 

compared the performance of the existing 

method with a recently proposed one for 

estimating daily DMY.  

Materials and Methods 

Milking data 

We extracted 63,562 milking data from Farm 1, 

representing thrice-milkings daily for around 

2,200 Holstein cows. Milkings were collected 

and weighed at all three milkings for 18 weeks, 

starting May 5 and ending September 1, 2023. 

After that, three-day monthly milking data 

collections were carried out up to 305 days of 

milk and beyond. Milking times are 4am-12pm 

(1st milking), 12pm-8pm (2nd milking), and 

8pm-4am (3d milking). Milk yields and 

timestamps were extracted from BouMatic 

parlor software (https://boumatic.com/us_en/). 

Records with incomplete and missing data were 

removed. Milking records with prolonged 

lactation beyond 305d for up to one more 

month were retained. Records with days in milk 

greater than 335 days, approximately accounted 

for 0.6% of the milking records, were excluded. 

After data cleaning, we retained 47,670 milking 

records representing 1,869 cows. The cleaned 

data represented up to nine lactations (Figure 1), 

with 64.0% from the first two lactations and 

97.1% from the first five lactations. Milking 

records from lactation six and beyond, 

accounting for 2.9%, were pooled. Around 74.1% 

of the cleaned milking records were collected 

before 156 days in milk, and around 95.5% 

were collected before 250 days. 

Figure 1. Distribution of milking records by 

lactation  

Statistical methods 

Two statistical models are defined. Firstly, for 

the i-th animal, a proportional DMY (
𝑥𝑖𝑗𝑙

𝑦𝑖𝑗𝑙
) is

assumed to be a linear function of milking 

interval time ( 𝑡𝑖𝑗𝑙 ), months in milk ( 𝑚𝑗 ),

lactations (𝛾𝑙), and a residual term (𝜀𝑖𝑗𝑙).
𝑥𝑖𝑗𝑙

𝑦𝑖𝑗𝑙
= 𝛼 + 𝛽𝑡𝑖𝑗𝑙 + 𝑚𝑗 + 𝛾𝑙 + 𝜀𝑖𝑗𝑙 (1) 

The above model expands the Wiggans (1986) 

model by additionally including the categorical 

effects due to lactations and months in milk.  

MCF are derived for milking interval 

classes, each spanning 30 minutes while 

accounting for the average months in milk and 

lactation effects: 

𝐹𝑘 =
1

�̂�+�̂�𝑡̅(𝑘)+�̅�+�̅�
(2) 

where 𝑡̅(𝑘) is the average milking interval time

for the k-th milking interval class, and �̅� and �̅� 

are weighted averages for estimated months in 
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milk and lactation effects, respectively. 

Omitting these two effects in (1) reduces the 

model to the original Wiggans (1986) model, 

with MCF calculated as follows: 

𝐹𝑘 =
1

�̂�+�̂�𝑡̅(𝑘) (3) 

Hence, a DMY is estimated as follows: 

�̂�𝑖𝑗𝑙(𝑘) = 𝐹𝑘𝑥𝑖𝑗𝑙(𝑘)   (4)

The second model accounts for the 

interactions between partial yields and milking 

interval time in linear linear and quadratic terms, 

as follows:  

𝑦𝑖𝑗𝑙 = (𝑏0 + 𝑏1𝑡𝑖𝑗𝑙 + 𝑏2𝑡𝑖𝑗𝑙
2 )𝑥𝑖𝑗𝑙 + 𝑚𝑗 + 𝛾𝑙 + 𝜖𝑖𝑗𝑙

= 𝑏0𝑥𝑖𝑗𝑙 + 𝑏1(𝑡𝑖𝑗𝑙𝑥𝑖𝑗𝑙) + 𝑏2(𝑡𝑖𝑗𝑙
2 𝑥𝑖𝑗𝑙)

+𝑚𝑗 + 𝛾𝑙 + 𝜖𝑖𝑗𝑙    (5)

This model is referred to as the polynomial-

interaction regression (PIR) model. MCF are 

derived pertaining to a specific milking 

interval time t,  

𝐹𝑡 = �̂�0 + �̂�1𝑡 + �̂�2𝑡2 (6) 

In the above, the MCF at time t can be viewed 

as a baseline MCF, 𝐹0 = �̂�0 and adjusted

according to the milking interval time,  Δ𝑡 =

�̂�1𝑡 + �̂�2𝑡2.

Then, a DMY is estimated as follows: 

�̂�𝑖𝑗𝑙 = 𝐹𝑡=𝑡𝑖𝑗𝑙
𝑥𝑖𝑗𝑙 + �̂�𝑗 + 𝛾𝑙  (7)

Here, 𝐹𝑡=𝑡𝑖𝑗𝑙
 stands for a MCF on specific

milking interval time 𝑡, assigned to all animals 

satisfying 𝑡𝑖𝑗𝑙 = 𝑡.

Accuracy measures 

The accuracy of estimated DMY was evaluated 

based on two criteria: correlation and R2 

accuracy. The former is the correlation between 

estimated and actual DMY. The R2 accuracy is 

the following:  

𝑅2𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑉𝑎𝑟(𝑦)

𝑉𝑎𝑟(𝑦)+𝑀𝑆𝐸
(8) 

where 𝑉𝑎𝑟(𝑦) is actual phenotypic variance, 

and 𝑀𝑆𝐸 stands for mean squared errors. 

Analysis of variance (ANOVA) was 

conducted based on each of the two models 

separately. The importance of predictor 

variables was assessed by the Lindeman, 

Merenda, and Gold (LMG) metric of R squared 

(Lindeman et al., 1980), which measures the 

contribution of each predictor to the R-squared 

value, averaged over all possible orders of 

entering the predictors into the regression 

model. The confidence intervals for relative 

importances were obtained via 1000 bootstrap 

samples of the LMG R2. 

Results & Discussions 

Milking data summary statistics 

Overall, the mean (95% Confidence interval) of 

test-day milk yields was 45.0 (28.6 ~ 62.8) kg. 

Across lactations, the average test-day milk 

yield increased from 38.1 kg on the first 

lactation to 47.2 kg on the second lactation 2, 

peaked (49.9 kg) on lactation 3, and then began 

to drop on lactation four and beyond, from 49.7 

kg (lactation 4) to 48.8 kg (lactation 6+) (Figure 

2; upper). 

Figure 2. Trends of changes by lactations in average 

test-day milk yield (upper), average proportional 

daily yields (middle), and average milking interval 

time (bottom). 

Average proportional daily yields showed 

slight variations between lactations, except 

lactation 1 (Figure 2; middle). The pattern 

agreed with the changes in the average milking 

interval times for the three milkings across the 
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lactations (Figure 2; bottom). Proportional 

daily milk yields are primarily determined by 

the milking interval time. Assuming consistent 

milking interval time across lactations, 

common yield correction factors are arguably 

plausible.  

Overall, average proportional daily milk 

yields varied substantially between the three 

milkings (Figure 2; middle). The first milkings 

had the largest average proportional daily 

milking yield across lactations (0.35 – 0.38), 

followed by the third milkings (0.32 – 0.34); the 

second milkings had the least average 

proportional daily milk yield (0.31). The 

substantial differences in proportional daily 

yields were attributed to varied milking interval 

times for the three milkings (Figure 3; bottom). 

The average (95% confidence interval) of 

milking interval time was 8.79 (7.84-9.75) 

hours, 7.25 (6.39-8.07) hours, and 7.88 (7.06-

8.81) hours, respectively, for the three milkings. 

On average, the first milking interval time was 

approximately 1 hour longer than the third and 

1.5 hours longer than the second. Nevertheless, 

the average milking interval time varied very 

slightly between lactations, except for lactation 

one. Approximately the first milking interval 

time was 8.6 hours for lactation 1 and 8.9 hours 

for lactations 2 through 6+; the second milking 

interval time was 8.1 hours for lactation 1 and 

7.8 hours for lactations 2 through 6+; the third 

milking interval time was 7.3 hours for 

lactation 1 and 7.3 hours (Figure 3; bottom). In 

accordance with the lengths of milking interval 

time, the first milkings had the largest average 

DMY (16.5 kg), followed by the third milkings 

(14.6 kg); the third milkings had the lowest 

average DMY (13.8 kg). 

Relative importance of predictor variables 

Analysis of variance based on model (1) 

showed significant effects of milking interval 

time (Pr <2.20e-16 for all three milkings), 

months in lactation (Pr = 0.0008 for 1st milkings; 

Pr = 2.52e-10 for 2nd milkings; Pr = 0.0001 for 

3rd milkings), parities (Pr <2.20E-16) on 

proportional DMY. ANOVA based on the PIR 

model (5) revealed significant effects from 

partial milk yields (Pr < 2.20e-16), months in 

milk (Pr < 2.20e-16), and parities (Pr < 2.20e-

16) on DMY. The results also showed

significant interactions between partial yields

and linear milking interval times (Pr < 2.20e-16)

on DMY and significant interaction effects

between partial yields and quadratic milking

interval time for 1st milkings (Pr = 9.42e-08)

and 3rd milkings (Pr = 1.03e-11) but not

significant for the 2nd milkings (Pr = 0.1785)

on DMY. These significant interaction effects

justified using PIR models in the present study.

Table 1 presents the relative importance of 

predictor variables for two models in estimating 

daily milk yields across three different milkings 

(1st, 2nd, and 3rd). The values provided are the 

means and 95% confidence intervals of the 

LMG R², which measure the proportion of 

variance explained by each predictor. For the 

proportional DMY Model (1), milking interval 

time was the most significant predictor, with 

relatively high mean importance values across 

all milkings (0.157, 0.135, 0.159); months in 

milk had very low importance, indicating it 

contributes minimally to explaining the 

variance in DMY (0.002, 0.004, 0.002); 

Lactations also had a minor contributor, with 

slightly higher values than months in milk but 

still low (0.040, 0.032, 0.001). The low 

importance of months in milk and lactations 

agrees with the Wiggans (1986) model, which 

ignores these variables. Nevertheless, the total 

relative importance sums to around 0.199 for 

the 1st milking, 0.170 for the 2nd milking, and 

0.148 for the 3rd milking, suggesting that the 

predictors in this model together explain only a 

low to modest portion of the variance in daily 

milk yields. There may be other significant 

variables influencing proportional DMY that 

have not yet been identified.    

For the PIR model, partial yields were the 

most significant predictor, with consistently 

high importance across all milkings (0.285, 

0.280, 0.274). The interactions between partial 

yields and linear and quadratic milking interval 

time also had a major contributor, with 
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substantial mean importance values (0.226, 

0.244, 0.225) for the interaction with a linear 

milking interval time and also notable mean 

importance values (0.158, 0.199, 0.172) for the 

interaction with quadratic milking interval time. 

Months in milk showed higher importance in 

the PIR Model (5) compared to the proportional 

DMY Model (1), but still relatively low (0.022, 

0.021, 0.020). The relative importance of 

lactations varies more across milkings, with 

higher values in the 1st and 3rd milkings 

compared to the 2nd (0.129, 0.083, 0.101). The 

total relative importance sums to 0.820 for the 

1st milking, 0.830 for the 2nd milking, and 

0.790 for the 3rd milking, indicating that the 

PIR Model predictors together explain a much 

larger portion of the variance in daily milk 

yields compared to the proportional DMY 

model. However, both results are not directly 

comparable because they modeled different 

quantities. The dependent variable in the former 

model was proportional DMY, whereas it was 

DMY in the latter model. 

Table 1. Relative importance (mean and 95% of IMG R2) of predictor variables in two models 1 

Predictors 1st milking 2nd milking 3rd milking 

Mean Q2.5% Q97.5% Mean Q2.5% Q97.5% Mean Q2.5% Q97.5% 

Model 1 

MIT 0.157 0.145 0.171 0.135 0.121 0.149 0.159 0.146 0.172 

MIM 0.002 0.001 0.004 0.004 0.003 0.007 0.002 0.002 0.005 

LACT 0.040 0.035 0.046 0.032 0.026 0.037 0.001 0.001 0.003 

Sum 0.199 0.170 0.148 

Model 2 

PY 0.285 0.280 0.290 0.280 0.276 0.284 0.274 0.269 0.279 

TAR1 0.226 0.222 0.230 0.244 0.240 0.247 0.225 0.222 0.229 

TAR2 0.158 0.154 0.162 0.199 0.196 0.202 0.172 0.168 0.175 

MIM 0.022 0.020 0.025 0.021 0.019 0.024 0.020 0.018 0.023 

LACT 0.129 0.124 0.133 0.083 0.080 0.086 0.101 0.096 0.106 

SUM 0.82 0.83 0.79 
1 MIT = milking interval time; MIM = months in milk; LACT = lactations; PY = partial yields (1st, 2nd, or 3rd); 

TAR1 = interaction between PY and linear MIT; TAR2 = interaction between PY and quadratic MIT. 

Accuracy of estimated daily milk yields 

Table 2 compares the accuracy of estimated 

daily milking yields using two models, each 

under two scenarios. The scenarios differed 

based on whether the effects of months in milk 

and lactation were accounted for. GW1 and 

PIR1 did not include the variables for months 

in milk and lactations, whereas GW2 and PIR2 

accounted for their effects. The accuracy is 

measured by the correlation between estimated 

and actual daily milk yields, the R² accuracy, 

and the K value, which is the ratio of the 

estimated daily milk yields over the variance of 

actual daily milk yields. 

The Wiggans (1986) models, GW1 and 

GW2, showed roughly similar performance 

with slight differences in correlations, R² 

accuracies, and K values. Both models tend to 

overestimate the variance (K > 1). The PIR1 

and PIR2 models generally had a higher 

correlation and R² accuracies than GW1 and 

GW2, indicating they provide more accurate 

estimates of daily milk yields than the current 

method. Compared to the GW models, PIR1 

had around 1-2% increase in R2 accuracy, and 

PIR2 had around a 4-6% increase in R2 

accuracy. The PIR models derived continuous 

yield correction factors, which remedies the 

biases with discrete yield correction factors, 

and consider possible interactions. 

Nevertheless, these two PIR models performed 

differently on the variance of estimated DMY. 

PIR1 gave an overestimated variance of 

estimated DMY, whereas PIR2 led to a smaller 

variance of DMY than the actual daily milk 

yield variance. Generally speaking, the 

estimates from a linear regression tend to have 

a smaller estimate variance than the actual 

variance because the residuals are excluded. 

However, PIR1 was defined without intercept. 
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When fitting linear regression models, the 

inclusion or exclusion of an intercept has a 

significant impact on the variance of the 

predicted values. The intercept in a regression 

model captures the average expected value of 

the dependent variable when all predictor 

variables are at zero (assuming zero is within 

the range of normal values for these predictors). 

Table 2.  Accuracy metrics of estimated daily milking yields using the Wiggans (1986) (GW) and the polynomial-

interaction-regression (PIR) models 1,2 

Methods 
1st milking 2nd milking 3rd milking 

Corr R2 K Corr R2 K Corr R2 K 

Before variance rescaling 

GW1 0.880 0.781 1.237 0.901 0.809 1.253 0.875 0.769 1.285 

GW2 0.879 0.791 1.152 0.902 0.801 1.3207 0.875 0.769 1.283 

PIR1 0.883 0.800 1.205 0.903 0.815 1.2277 0.877 0.777 1.249 

PIR2 0.906 0.847 0.821 0.909 0.852 0.8278 0.889 0.827 0.792 

After variance rescaling 

GW1 0.880 0.806 1.000 0.901 0.835 1.000 0.875 0.800 1.000 

GW2 0.879 0.806 1.000 0.902 0.836 1.000 0.875 0.800 1.000 

PIR1 0.883 0.811 1.000 0.903 0.837 1.000 0.877 0.803 1.000 

PIR2 0.906 0.841 1.000 0.909 0.847 1.000 0.889 0.819 1.000 
1 Corr = correlation; R2 = R2 accuracy; K = ratio of  estimated versus actual daily milk yield variance. 
2 GW1, PIR1 = Omitting months in milk and lactations; GW2, PIR2 = These models included the effects of 

months in milk and lactations. 

Including an intercept typically reduces the 

sensitivity of the model to fluctuations in the 

data by adjusting the baseline level of the 

response. This often leads to smaller 

coefficients for the predictors because the 

intercept absorbs much of the average outcome, 

reducing the variability that each predictor 

needs to explain.  Hence, the variance of the 

predicted values generally reflects more closely 

the natural variability in the data centered 

around the mean.  

For a model without an intercept, each 

predictor variable must account not only for the 

variability related to its specific influence on 

the dependent variable but also for its overall 

mean. This often requires larger coefficients, as 

each predictor must scale more significantly to 

fit the data points. Because the model without 

an intercept is overly sensitive to changes in the 

predictor variables and tends to have larger 

coefficients, the range of predicted values can 

be significantly wider. This amplifies the 

variance of the predictions because the model 

tries to compensate for the lack of a baseline 

adjustment by stretching the effect of the 

predictors to cover all data points. Table 3 

shows model parameters for the PIR models. 

Without accounting for the effects of months in 

milk and lactations (PIR1), the regression 

coefficients for partial yields were between 

5.19 and 8.36. In contrast, the regression 

coefficients were substantially smaller (2.78 – 

5.97) with the PIR2 model when accounting for 

the effects due to months in milk and lactations. 

PIR2 had a higher R2 accuracy than PIR1 

because it accounted for the effects of months 

in milk and lactation. This is often the case 

when one or more secondary variables are not 

randomized in the experimental design, such 

that deviates due to these differences are not 

zero. Otherwise, PIR and PIR2 would perform 

similarly. In contrast, GW1 and GW2 

performed similarly, which may suggest that 

simply accounting for secondary variables by 

their averages in the Wiggans (1986) is 

inefficient.  

It should be noted that, in PIR2, the effects 

of the months in milk were estimated for each 

category, which is inherently related to the 

overall mean. In other words, though the overall 

mean was not present in the PIR2 model 

equation, it was presented via the months in 

milk effects. Therefore, PIR2 gave a smaller 

estimate variance than the actual variance. 
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Variance rescaling brought all K values to 1, 

indicating that the variance of estimated daily 

milk yields now matches the actual yields 

perfectly. Thus, variance rescaling effectively 

adjusted the variance of estimated yields to 

match the actual yields, improving the overall 

accuracy of the models except for PIR2. For 

PIR2, because the estimated daily yield 

variance was smaller than the actual variance 

and because the months in milk and lactation 

effects were adjusted additively, variance 

rescaling led to a slight decrease in the accuracy. 

Table 3.  Model parameters for the polynomial-interaction-regression with and without accounting for the effects 

due to months in milk and lactations in a thrice-milking dairy farm 1

Model 

parameters 
1st Milking 2nd Milking 3rd Milking 

Estimate SE Estimate SE Estimate SE 

M1a: Excluding the effects due to months in milk and locations 

𝑏0 8.358 0.353 5.185 0.288 7.554 0.535 

𝑏1 -1.003 0.088 -0.326 0.066 -0.832 0.147 

𝑏2 0.042 0.005 0.005 0.004 0.032 0.010 

M1b: Including the effects due to months in milk and lactations 

𝑏0 5.973 0.290 2.781 0.254 5.313 0.457 

𝑏1 -0.754 0.02 -0.014 0.057 -0.605 0.126 

𝑏2 0.034 0.004 -0.008 0.003 0.025 0.009 

𝑚1 10.49 0.172 10.51 0.170 11.75 0.184 

…... 

𝑚11 9.650 0.316 7.892 0.314 10.70 0.340 

𝛾2 3.563 0.083 1.438 0.084 2.559 0.089 

…... 

𝛾6 3.897 0.188 1.136 0.186 2.476 0.203 
1 M1a: 𝑦𝑖𝑗𝑙 = (𝑏0 + 𝑏1𝑡𝑖 + 𝑏2𝑡𝑖𝑗𝑙

2 )𝑥𝑖𝑗𝑙 + 𝜖𝑖𝑗𝑙; M1b: 𝑦𝑖𝑗𝑙 = (𝑏0 + 𝑏1𝑡𝑖 + 𝑏2𝑡𝑖𝑗𝑙
2 )𝑥𝑖𝑗𝑙 + 𝑚𝑗 + 𝛾𝑙 + 𝜖𝑖𝑗𝑙

Table 4.  Comparison of 3X multiplicative correction factors (MCF) obtained for every 30 minutes based on the 

present milking dataset and the reference (Ref) MCF for trice-milkings1,2

Milking interval 

time, hrs 

1st milking 2nd milking 3rd milking 

Ref. GW PIR Ref. GW PIR Ref. GW PIR 

5.75 3.76 4.11 3.98 3.89 3.74 3.48 3.92 3.94 3.83 

6.25 3.54 3.81 3.73 3.65 3.53 3.34 3.68 3.69 3.60 

6.75 3.34 3.55 3.50 3.45 3.33 3.21 3.47 3.46 3.40 

7.25 3.17 3.32 3.29 3.26 3.16 3.08 3.28 3.26 3.20 

7.75 3.01 3.11 3.11 3.10 3.01 2.96 3.12 3.08 3.03 

8.25 2.87 2.94 2.94 2.95 2.87 2.84 2.96 2.92 2.87 

8.75 2.74 2.78 2.80 2.81 2.74 2.72 2.83 2.78 2.72 

9.25 2.62 2.63 2.67 2.69 2.62 2.60 2.70 2.64 2.60 

9.75 2.51 2.51 2.57 2.57 2.51 2.48 2.59 2.53 2.48 

10.25 2.41 2.39 2.49 2.47 2.42 2.37 2.48 2.42 2.39 
1 GW = MCF according to Wiggans (1986); PIR = polynomial-interaction-regression; both models 

did not account for the effects due to months in milk and lactations. 
2 Reference MCF (Wiggans, 1986): 𝐹1𝑠𝑡 =

1

0.077+0.0329𝑡
; 𝐹2𝑛𝑑 =

1

0.068+0.0329𝑡
; 𝐹3𝑟𝑑 =

1

0.066+0.0329𝑡

In Table 4, multiplicative correction factors 

(MCF) for three milkings were derived from a 

historical reference (Wiggans, 1986), and 

compared to the current results derived by two 

models (GW and PIR) across milking intervals 

between 5.75 and 10.25 hours. For the 1st 

Milkings, the GW and PIR models consistently 

show higher MCF values than the historical 

reference across all intervals. For the 2nd and 

3rd milkings, MCF derived from the GW and 

PIR models are slightly lower than the 

reference. These results indicate minor changes 
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in MCF over the past decades. The PIR model 

shows a trend towards slightly lower MCF 

values across all milkings compared to the GW 

model. The average (range) of the reference 

MCF (Wiggans, 1986) was 3.00 (2.41 – 3.76) 

for the 1st milking, 3.08 (2.47 – 3.89) for the 

2nd milking, and   3.10 (2.48 – 3.92) for the 3rd 

milking. Based on the recent milking dataset 

analyzed by the Wiggans (1986) model, the 

average (range) of MCF was 3.11 (2.39 – 3.98) 

for the 1st milking, 2.99 (2.42 – 3.74) for the 

second milking, and 3.07 (2.39 – 3.83) for the 

3rd milking.   

Conclusions 

In conclusion, this initial case study 

demonstrated that modeling proportional DMY 

as a linear function of milking interval time is a 

valid strategy. The present results have shown 

that milking interval is the primary predictor for 

proportional DMY, whereas the effects of 

months in milk and lactations are considered 

secondary. Still, other major variables that have 

not yet been discovered can influence 

proportional DMY. Still, we have also shown 

that the polynomial-interaction-regression 

model can provide more accurate yield 

estimates than the Wiggans (1986) model. A 

primary reason was that discrete MCF 

introduces biases. Besides, precisely adjusting 

secondary variables with the Wiggans (1986) 

model is not straightforward. Instead, the new 

model captures linear and quadratic interactions 

between partial yields and milking interval 

times and can naturally accommodate 

secondary predictor variables. In Farm 1, the 

second milking had the longest interval and 

offered the most precise estimates. The 

calculated MCFs showed only minor deviations 

over the past four decades despite the 

significant genetic improvement in daily and 

lactation yields in the past decades. This result 

suggests that the proportional daily yields, 

reciprocal to MCF, remain relatively 

comparable over the past decades. Finally, this 

study represents an initial case study, and all the 

conclusions are subject to large-scale validation. 
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Abstract 

Mastitis is a prevalent inflammatory condition affecting udder tissue in dairy cows. It leads to reduced 

milk production, increased veterinary costs and potential culling of affected animals, impacting both 

animal welfare and economic outcomes in dairy farming. Recently introduced as a supplementary 

measure to somatic cell count (SCC), the differential somatic cell count (DSCC) is an innovative 

indicator for intramammary infection. DSCC quantifies the proportion of polymorphonuclear 

neutrophils plus lymphocytes (PMN-LYM) within milk somatic cells, providing enhanced insights 

into udder health status and infection severity. The aim of this study was to estimate genetic 

parameters and develop a genetic evaluation of DSCC in Italian Holstein. An innovative, new 

categorical phenotype, named state of infection (SI), was created from each test-day, combining SCC 

and DSCC records. Values from 1 to 4 were assigned to the different test-day records based on two 

thresholds related to the parity order: 100,000 SCC and 60% DSCC for first parity cows; 200,000 SCC 

and 65% DSCC for later parity cows. Observations with both SCC and DSCC below the respective 

threshold were assigned a value of 1; SCC below and DSCC above were assigned to category 2; both 

above to category 3; SCC above and DSCC below to category 4. A multiple-trait repeatability linear 

animal model was applied to the two traits, with year-month-parity-region of recording, herd-parity of 

recording, parity-age at calving-year-region and parity-days in milk-year-region as fixed effects. 

Random effects included herd-test-day-parity of recording, herd-year-month-parity of calving, animal 

additive genetic, and permanent environment. The posterior mean (PM) for heritability was 0.13 for 

SCS (posterior standard deviation, PSD: 0.01) and 0.09 (0.01) for SI. The genetic correlation between 

SCS and SI was 0.94, highlighting the strong relationship between the two traits but also their 

differences. A SNPBLUP model was applied for estimating genomic breeding values (GEBV) using 

either a reference population composed of bulls or of both bulls and cows (mixed reference 

population). For the validation of GEBV, a three-year back cutoff date for phenotypes was used: the 

results highlighted the positive impact of a mixed reference population on dispersion and accuracy. 

The genetic trend based on bulls’ GEBV indicates that the undergone selection for SCS indirectly 

improved the population also for SI. In conclusion, this study confirmed the possibility to select for SI 

in Italian Holstein population and provided the bases for the implementation of a routine genetic 

evaluation for this innovative udder health trait. 

Key words: mastitis, dairy cattle, genomic selection, infection, health, genetic parameters  

Introduction 

Mastitis is one of the most relevant diseases in 

dairy farming, with negative consequences on 

farm net profit and animal welfare (Seegers et 

al., 2003): its subclinical form (subclinical 

mastitis, SCM), when there are no visible signs 

of inflammation, can lead to an undetectable 

spread of mastitis, resulting in significant 

economic loss (Halasa et al., 2007). 
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Early detection of an ongoing inflammatory 

process can strongly mitigate the adverse 

outcomes of mastitis. Historically, somatic cell 

count (SCC) or its log-transformation (somatic 

cell score, SCS) has been the main indicator of 

SCM, with 200,000 cell/ml as threshold 

(Sharma et al., 2011). SCS is used as a proxy 

for mastitis resistance due to: i) its high genetic 

correlation with clinical mastitis, ii) its higher 

heritability, and iii) its possibility to be 

routinely measured within the national milk 

recording system on a large scale and at a cost 

effective. 

     Nowadays, a novel indicator of 

inflammation is available, differential somatic 

cell count (DSCC) (Bobbo et al., 2018). DSCC 

is the percentage of polymorphonuclear 

neutrophils and lymphocytes (PMN-LYM) 

within milk somatic cells. A high level of 

DSCC indicates an active immune response in 

the mammary gland (Damm et al., 2017). 

     Using DSCC independently from SCC can 

be misleading; indeed, an animal with low 

DSCC but high SCC cannot be safely 

classified as healthy. For this reason, a new 

phenotype was analyzed in this study: the state 

of infection (SI), regarded as the relationship 

between DSCC and SCC, as proposed by 

Bobbo et al. (2020). 

     The objective of this study is to evaluate the 

feasibility of selecting for SI, the genetic trend 

occurring in Italian Holstein and the possibility 

of including females in the reference 

population for SNP effects estimation. 

Materials and Methods 

Data editing 

Test-day data came from the official national 

milk recording system within the LEO project 

(PSRN mis 16.2, AIA, 2023).  

     Records from parity 1 to parity 5 and from 

5 to 405 days in milk (DIM) were considered. 

Minimum age at first calving was set to 18 

while the maximum admitted value for age at 

calving was 100 in parity 5. 

     Regarding TD records, the first recording of 

the lactation had to be within 60 DIM while 

the maximum allowed distance between 

consequent TD records was 70 days. 

     For the phenotypes, DSCC records out of 

the range 25 to 95% were deleted. SCC was 

log-transformed to somatic cell score (SCS) 

following Ali & Shook (1980) but adding 4 

instead of 3 as in Martins et al. (2010), in order 

to have less records below 0: allowed values 

for SCS ranged from 0 to 10, with the lower 

bound not included in the range. From the 

relationship between SCC and DSCC a new 

phenotype was derived: two different parity-

dependent thresholds were identified for both 

SCC and DSCC. For SCC, the thresholds were 

100,000 cells/ml for first parity cows and 

200,000 cells/ml for later ones. Regarding 

DSCC, the threshold for primiparae was 60% 

while for pluriparae was 65% (Bobbo et al., 

2019a, Bobbo et al., 2019b, Zidi et al., 2019). 

Four categories were then identified, from best 

(1) to worst (4):

- Category 1, healthy: both parameters

below the respective thresholds

- Category 2, at risk: SCC below while

DSCC above the threshold

- Category 3, ongoing mastitis: both

parameters above their respective

thresholds 

- Category 4, chronic: DSCC below

while SCC above the threshold

The minimum number of contemporaries in 

contemporary groups (CG) was set to 5 and 

other constraints were applied in order to 

maintain a consistent numerosity per level of 

the fixed effects included in the model. 

 Finally, to be included in the analysis, TD 

records had to have both SCS and DSCC 

recorded. 

 The dataset after edits was composed of 8 

million records. 

Statistical model 

A multiple trait repeatability linear animal 

model was applied, with SCS and SI as 

correlated dependent variables.  
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The model for both traits was the following: 

Y𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝qr = ℎtdp𝑖 + hympj + 𝑆k∗𝑌l + Hm + 

𝐷𝐼𝑀n∗𝑃𝐴𝑅𝐶o∗𝑌l + 𝐴𝐺𝐸𝐶_𝑃𝐴𝑅p∗𝑌l + 𝑎q + 𝑝𝑒q 

+ 𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝qr 

with Y𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝qr as the rth phenotypic 

observation of DSCC or SI. Fixed effects were 

𝑆k∗𝑌l  as the crossed effect of season k by year 

l, Hm as the mth herd of recording, 

𝐷𝐼𝑀n∗𝑃𝐴𝑅𝐶o∗𝑌l  as the nth days in milk class 

(10 classes of 40 days) by parity class o (3 

classes: 1, 2, 3+) and year l, 𝐴𝐺𝐸𝐶_𝑃𝐴𝑅p∗𝑌𝑘 

as the pth age at calving by parity class (9 

classes: 3 age at calving classes for every 

parity class) by year k. Random effects were 

ℎtdp𝑖 as the ith contemporary group for herd-

parity_class-date_of_recording, ℎympj as the 

jth contemporary group for herd-parity_class-

month_of_calving, 𝑎q as the additive genetic 

effect of the qth animal, 𝑝𝑒q as the permanent 

environmental effect of the qth animal and 

𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝qr as the residual of observation r. 

Variance components estimation, genetic and 

genomic evaluation 

 Variance components estimation was 

performed with the software THRGIBBS1F90 

(Misztal et al, 2002) on a sample of 279,896 

records on 26,168 animals located in 200 

herds. The pedigree was traced back to 4 

generations and was composed of 74,037 

individuals. Convergence was assessed with R 

package BOA, Bayesian output analysis 

(Smith, 2007). Conventional estimated 

breeding values (EBVs) were obtained with 

MiX99 software (MiX99 Development Team, 

2012). Genomic evaluation was performed 

with a SNPBLUP model using GS3 software 

(Legarra et al, 2011). For estimated 

deregressed proofs (EDPs), the method from 

Degano et al (2009) was applied. A 

conventional quality control was applied to 

SNP data. For the imputation process, 

PedImpute software was used (Nicolazzi et al, 

2013).  

Table 1. Results of variance components 

estimation. 

Genomic validation 

Genomic validation followed the method 

described in Finocchiaro et al (2012) and 

Galluzzo et al (2022). Briefly, two datasets 

were used for EBVs estimation: one full (with 

records up to the 2404 run) and one reduced 

(with a 3-years back cutoff date). For both sets 

of EBVs, EDPs were calculated and used as 

pseudo-phenotypes for SNP effects estimation. 

Bulls with daughters in the full datasets but 

without in the reduced one were selected as 

validation bulls. Finally, a linear regression 

with EDPs of validation bulls from the full run 

as dependent variable and their direct genomic 

values (DGVs) from the reduced run as the 

independent one was fitted. The validation 

process was performed either using a training 

population composed of bulls only and of bulls 

and cows. Parameters considered for the 

comparison were the dispersion coefficient and 

the reliability of the linear regression model. 

Results & Discussion 

The dataset after edits was composed of 8 

million records with phenotypes averaging 

3.73% for SCS, 1.59% for SI, and 62.79% for 

DSCC, respectively. The results of variance 

components estimation are listed in Table 1. 

The posterior mean for heritability was 

moderate for both SCS and SI: the genetic 

correlation between the two traits was high 

reflecting also the phenotypic one.  

Posterior means of heritability on diagonal with 

posterior standard deviations in parentheses, 

genetic correlation above diagonal and phenotypic 

correlation below.     

The results of genomic validation for SI are 

listed in Table 2. Including females 

significantly increased the number of animals 

in the reference population and improved 

SCS  SI 

SCS  0.13 (0.01) 0.94 

SI 0.77  0.09 (0.01) 
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reliability. Furthermore, its inclusion reduced 

the deviation of the dispersion coefficient from 

the expected 1. The mixed training population 

performed better than the one composed only 

of bulls for both parameters: dispersion 

coefficient and model reliability.  

Table 2.   Results of genomic validation. 

B=bulls only; M=mixed; b=dispersion coefficient; 

r2=model reliability. 

     Using a mixed reference population 

decreased the distance from 1 by 82% while 

doubling reliability. These results suggest that 

a mixed reference population composed by  

both bulls and cows would be beneficial for SI 

and thus was applied for the subsequent 

analyses. 

The genetic trend of bulls’ GEBVs by birth 

year is represented in Figure 1: an increasing 

trend is evident and may be due to the 

undergone selection for correlated traits like 

SCS. 

Conclusions 

In conclusion, this study demonstrated the 

possibility of genetically improving Italian 

Holstein for SI. It underscored the benefits of 

using a mixed reference population for SNP 

effects estimation. Moreover, selecting for 

correlated traits like SCS was effective to 

indirectly improve the population for SI. Based 

on these results, a routine genetic evaluation 

for SI in Italian Holstein will be developed and 

implemented. The SI is a powerful tool to help 

farmers make better decisions at the 

management and genetic level, thereby 

reducing the use of antimicrobials on the farm. 
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Abstract 

A Genomic evaluation has been developed for feed efficiency for German Holsteins and the first official 

release was in April 2024. As of the release date, more than 327,000 weekly phenotypes of dry matter 

intake (DMI), body weight (BW) and energy-corrected milk (ECM) were obtained from 14,774 cows 

from six countries through a collaboration in the resilient dairy genome project. Lactations 1, 2 and 3+ 

are considered genetically distinct traits. Variance components were estimated with a multi-trait 

repeatability model, where each of the first three parities was divided into four equal lactation stages. 

(Co)variance matrices for the random regression model were derived from this multi-trait estimation 

using the covariance function approach. These are used to obtain genomic estimated breeding values 

(GEBVs) for DMI, BW and ECM with a single-step random regression model in the routine genetic 

evaluation. Fixed effects are herd-test-week, inbreeding depression (as a covariate), and calving age by 

lactation week as a fixed curve (2nd-order Legendre polynomials). The permanent environmental and 

additive genetic animal effects are fitted as random effects in the model. The averages of heritability 

estimates for parities 1 to 3, respectively, were 0.19, 0.17, 0.16 for DMI, 0.30, 0.22, 0.20 for ECM and 

0.48, 0.45 and 0.50 for BW. The average genetic correlation between parities was 0.79 for DMI, 0.71 

for ECM and 0.89 for BW. GEBV for body weight change (BWC) were derived from BW. GEBV 

correlations of DMI with ECM and BWC were 0.15 and 0.74, respectively. The GEBV correlation 

between ECM and BWC was -0.07. GEBV for feed saved (FS; expressed in kg DMI), which represents 

feed efficiency, is then computed from the traits’ GEBV as 0.4×ECM + 4.5×BWC - DMI. GEBV 

correlations of FS with the milk production index RZM and other main indices in the total merit index 

are close to zero. The genetic standard deviation of FS is 247 kg per 305 days in milk, which is roughly 

3.5% of total DMI per 305 d. Starting in April 2024, the new GEBV for feed efficiency, 

RZFeedEfficiency, will be published routinely, expressed on a scale with a mean of 100 and a genetic 

standard deviation of 12. 

Key words: Feed efficiency, dairy cattle, genetic evaluation, Germany, covariance function

Introduction 

As feed expenses form the largest single part of 

the operating costs of dairy farms, enhancing 

the feed efficiency (FE) of dairy cattle is a major 

priority for dairy farmers (Connor, 2015). 

Reducing the environmental impact of dairy 

production can also be achieved through 

improving feed efficiency. Animals with higher 

feed efficiency could generate less greenhouse 

gas emissions and manure (Bell et al., 2012; 

Connor, 2015). Furthermore, animals with 

lower feed requirements use less land (Connor, 

2015). 

Compared to many other dairy cattle traits, 

defining FE is particularly challenging. This is 

because selecting for FE requires knowledge of 

how much feed has been used for production. 

Consequently, several approaches (e.g., Pryce 

et al., 2015 and VandeHaar et al., 2016) have 

been developed to account for all components 

involved and to obtain a phenotype that most 

accurately identifies animals with favorable 

genetic merit for FE. 
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Data on FE is scarce because obtaining feed 

intake records is both costly and challenging. 

Hence, the amount of available data is still a 

limiting factor for achieving highly reliable 

genetic predictions for FE. Therefore, an 

international collaboration became essential to 

expand the reference population (van Staaveren 

et. al., 2024). 

Random regression models (RRM) are well-

suited for analyzing longitudinal data with 

varying variation of traits across the different 

lactation stages. However, with limited data 

size, estimation of the variance parameters of an 

RRM is difficult. Thus, an indirect estimation 

approach, based on a covariance function, has 

been proposed (Kirkpatrick et. al., 1994 and Liu 

et. al., 2000). We describe the German genetic 

evaluation of FE including variance component 

estimates, genetic correlations, and the 

development of the target selection index 

RZFeedEfficiency. 

Materials and Methods 

Data 

The current data set used in the German genetic 

evaluation consisted of 327,408 weekly 

phenotypes of dry matter intake (DMI), body 

weight (BW), and energy-corrected milk 

(ECM) from 14,774 cows. The data was 

obtained through a collaboration with six 

countries in Europe and North America within 

the resilient dairy genome project (van 

Staaveren et al., 2024). These countries are 

Canada (CAN), Switzerland (CHE), Germany 

(DEU), Denmark (DNK), Spain (ESP) and the 

United States of America (USA; Figure 1).  

In addition to the phenotypes of the three 

traits mentioned above, the pedigrees along 

with the genotypes (50K) of these cows were 

also obtained. As per quality control for the 

phenotypes, for each parity, a record was 

excluded if it exceeded 3 standard deviations 

either above or below the mean. Animals that 

had a conflict in the pedigrees and/or the 

genotypes, had less than 4 records per parity, or 

had no DMI records were also excluded.  

Figure 1. Number of cows with dry matter intake 

records per country. 

Records from higher than the 3rd parity were 

considered repeated measurements of 3rd parity 

records. The quality control for the genotypes to 

clean the genotypic data was the same as for all 

other German Holstein routine genomic 

evaluations. For the variance component 

estimation, the pedigree was limited to the 

previous five generations of animals with 

phenotypes. A summary of the final data set is 

shown in Table 1. 

Table 1. Number of records, means and standard 

deviations for DMI, ECM and BW within the first 

three parities. 

Trait* Parity 
Number of 

records 
Mean SD 

DMI 

1 163,833 20.47 3.89 

2 110,419 24.06 4.50 

3+ 92,813 24.78 5.06 

ECM 

1 127,599 32.51 6.25 

2 876,88 39.60 8.38 

3+ 759,91 40.68 9.08 

BW 

1 124,535 605.59 62.84 

2 842,11 669.33 66.86 

3+ 721,58 713.03 72.01 

*DMI: Dry matter intake.

*ECM: Energy-corrected-milk.

*BW: Live body weight.

Model 

The traits DMI, BW, and ECM were analyzed 

separately, but within trait, the first three 

parities were analyzed jointly, treating them as 

genetically distinct traits. Higher parities were 

considered as repeated measurements of the 
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third parity. We first fitted a repeatability 

animal model by dividing each parity into 4 

equal stages (11 weeks). Herd-test-week was 

fitted as a fixed effect, animal as an additive 

genetic effect, as well as a permanent 

environmental effect, were fitted as random. 

The analysis was carried out using WOMBAT 

(Meyer, 2007).  

The variance components obtained from this 

multivariate model were then used to derive the 

(co)variances of second-order random 

regression coefficients (RRC) for the additive 

genetic, the permanent environmental and the 

error effects. This was done based on the 

covariance function approach (Kirkpatrick et. 

al., 1994, Tijani et. al., 1999 and Liu et. al., 

2000). The residual variance was assumed to be 

homogeneous throughout lactation. 

Subsequently, a single-step RRM was fitted to 

estimate the breeding values for each 

phenotype.  

In the single-step random regression model, 

three fixed effects were fitted: herd-test-week, a 

fixed curve (2nd order) of calving age by 

lactation week and a regression on inbreeding. 

Random effects were animal additive genetic 

and permanent environmental effects, and the 

analysis was implemented in MiX99 (Vuori et. 

al., 2006). In the April 2024 routine genetic 

evaluation run, the number of genotyped 

animals was 1,518,447 and the number of 

animals in the pedigree was 3,839,445. 

Genomic estimated breeding values (GEBV) 

for BWC were calculated as the weekly change 

in GEBV of BW, using the derivative of the 

genetic Legendre function. GEBV from the 

three parities were aggregated with an equal 

weight (1/3) into a single GEBV per trait. 

Feed efficiency index (RZFeedEfficiency, 

short: RZFE) 

The expected GEBV for DMI was calculated 

from ECM and BWC. It was assumed that an 

average ration’s energy density is 7.0 MJ NEL 

per kg DMI. Additionally, it is assumed that 

0.4 kg DMI are required to produce 1 kg ECM, 

and 4.5 kg DMI are required to produce 1 kg 

BWC. Hence, feed saved was calculated as 

follows: 

GEBVFeed saved = 4.5 × GEBVBWC + 0.4 × 

GEBVECM – GEBVDMI 

The resulting EBV for feed efficiency is the 

feed saved, expressed in kg DMI, compared to 

the average cow. It represents a measure of feed 

efficiency over the first three lactations, which 

is roughly the average longevity of Holsteins in 

Germany. This feed saved GEBV is then 

expressed as a relative GEBV with a mean 

value of 100 in the female base population and 

a genetic standard deviation of 12. The female 

base population is defined as 4 to 6-year-old 

genotyped Holstein females at the time of the 

routine genetic evaluation. 

Results and Discussion 

The bar chart in Figure 1 shows the number of 

cows for the six countries whose data is used in 

the German genetic evaluation of feed 

efficiency from the resilient dairy genome 

project database. The United States have the 

highest number of cows by a significant margin, 

followed by Germany while Switzerland has the 

lowest number. Collaboration in the resilient 

dairy genome project (van Staaveren et al., 

2024) with international partners provided the 

largest possible reference population for feed 

intake. Modelling the underlying component 

traits of feed efficiency (DMI, ECM, and BWC) 

offers flexibility in defining the target trait on 

the genetic side (based on GEBV), which could 

be, if necessary, easily adjusted. We found that 

applying the covariance function approach 

(Kirkpatrick et. al., 1994, Tijani et. al., 1999 and 

Liu et. al., 2000) provides stable random 

regression coefficients, especially as the 

phenotypic data is limited. Additionally, since 

feed efficiency varies at different periods of 

lactation, using an RRM has the advantage of 

fitting the genetic curves to capture the changes 

over time. Moreover, switching to daily 

measurements in this case would be 
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straightforward, and future improvements can 

be, if needed, easily implemented. 

The heritability estimates obtained from the 

RRM over the 44 weeks in milk in the first three 

parities are depicted in Figure 1. In the first 

parity, heritability starts around 0.1, peaks 

around 0.25 between 15 to 20 weeks, then 

slightly decreases and stabilizes around 0.2. In 

the second parity, it starts around 0.1, peaks 

slightly below 0.2 around the 15th week, then 

gradually decreases and stabilizes around 0.15. 

Finally, in parity 3 heritability estimates were 

also around 0.1 at the beginning of the lactation 

and slightly increased to reach 0.2 while 

remaining relatively stable towards the end of 

the lactation.  

It can be seen that heritability estimates of 

DMI change over time along the lactation cycle 

with slight differences between parities 

showing distinct patterns for each parity group. 

Heritability for DMI has been intensively 

reported in the literature based on different 

methods and in general, it averages between 

0.08 and 0.34 (e.g., Berry et. al., 2014, Khanal 

et. al., 2022 and Stephansen et. al., 2023). Our 

estimates for the three parities were highly 

similar and generally slightly lower at the 

beginning of the lactation, compared to mid-

lactation and after. Nevertheless, these 

estimates are consistent with the most recent 

reported estimates.  

Total heritability estimates for each parity 

for the three traits are presented on the diagonal 

of Table 2. Highest estimates were observed in 

the first parity for all three traits, while the 

lowest were observed in the third parity for 

DMI and ECM. The heritability for DMI ranged 

from 0.30 to 0.39, with an overall total of 0.38. 

The weekly and the cumulative heritability over 

parities indicates substantial genetic variation, 

allowing for better discrimination of genetic 

differences between animals. 

The heatmap in Figure 3 illustrates the 

correlations between weeks in milk across the 

first three parities. As expected, adjacent weeks 

had the highest positive correlations. 

Figure 2. Heritability of DMI over the weeks in milk 

in the first three parities. 

Although genetic correlations between 

different weeks are all moderately to highly 

positive, our results show that DMI is 

genetically not the same trait within and across 

lactations with minimum genetic correlation 

estimates within parities of 0.64 (parity 1), 0.52 

(parity 2), and 0.70 (parity 3). The minimum 

genetic correlation between parity 1 and 2 was 

0.50, between 1 and 3 was 0.39, between 2 and 

3 was 0.49. 

Figure 3. Genetic correlation of DMI over the weeks 

in milk in the first three parities (Par1, Par2, Par3). 

Each cell of the matrix represents the correlation 

between two weeks. 

Numerous studies (e.g., Pech et al., 2014) 

have reported lower genetic correlations for 

DMI than our estimates, and even negative 

between mid-lactation and both the start and 

end of the lactation. It is well known that dairy 

cattle traits do differ over the course of 

lactation, but the vast shifts from high positive 
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to negative correlations could be essentially 

attributed to the way that RRM estimates are 

obtained when the data used is small 

(Kirkpatrick et al., 1994; Liu et al., 2000). For 

this reason, we implemented the covariance 

function to reliably estimate random regression 

coefficients. Genetic correlations within and 

between entire parities for the three traits are 

listed below the diagonal in Table 2. Genetic 

correlation estimates between parities are 

highly positive, but many values, especially 

between first and higher parities are below 0.90, 

indicating a somewhat distinct genetic 

background of the same trait at different times 

in the life of the cow. 

Table 2. Estimates of heritability (on diagonal) and 

genetic correlations (below diagonal) for DMI, ECM 

and BW across the first three paraties. 

Trait* Parity# 1 2 3 1/2/3 

DMI 

1 0.39 

2 0.88 0.31 

3 0.79 0.95 0.30 

1/2/3 0.93 0.99 0.96 0.38 

ECM 

1 0.43 

2 0.79 0.31 

3 0.63 0.97 0.29 

1/2/3 0.86 0.99 0.94 0.40 

BW 

1 0.58 

2 0.94 0.54 

3 0.88 0.94 0.61 

1/2/3 0.96 0.99 0.97 0.63 

*DMI: Dry matter intake.

*ECM: Energy-corrected-milk.

*BW: Live body weight.

#1/2/3: Combination of parities 1, 2 and 3.

The variance component parameters were 

then used with the genetic evaluation model to 

obtain GEBV for the three traits based on a 

single-step approach, including all available 

genotyped and pedigree animals.  

GEBV of the different traits were then 

combined to the overall index representing feed 

efficiency, expressed as feed (DMI) saved. For 

this index combination, we do not only consider 

the economically most relevant output of dairy 

cows, milk (ECM), but also BWC. This is, 

because body weight is an important storage of 

energy in the body of the cows. Not respecting 

BWC could therefore lead to a wrong 

estimation of the energy balance of the cows, 

e.g., when a cow uses energy from her body

weight within a lactation, but regains weight

between lactations. Additionally, slaughter

weight is a secondary output from dairy cows

that has also an economic value for the farmers.

On average, Holstein cows gain more than 200

kg body weight over the first three parities.

Mean genomic reliability is 0.4.

The correlation between GEBV of the 

different traits was 0.74 (DMI with ECM), 0,15 

(DMI with BWC), and -0.07 (ECM with BWC). 

The values suggest that DMI is genetically 

highly correlated with ECM and mostly 

genetically independent of BWC. Many studies 

have reported a positive genetic correlation of 

DMI with ECM and typically ranging from 

moderate to high (e.g., Hüttman et. al., 2009 and 

Li et al., 2018). As selection increases milk 

production, DMI also tends to increase due to 

the higher energy demands. The genetic 

standard deviation of RZFE is 247 kg per 305 

days in milk, which is roughly 3.5% of total 

phenotypic DMI. Correlations of RZFE with 

GEBV of other trait complexes calculated for 

352,692 genotyped females born in 2021 and 

2022 are shown in Table 3. Overall, GEBV 

correlations among RZFE and other trait 

complexes were low, close to zero. This 

suggests that genetic improvement for feed 

efficiency can be targeted without significantly 

affecting other main dairy traits, including 

health traits. 

To find out how RZFE characterizes the 

more and the less efficient animals, we obtained 

the differences in GEBV between the 25% top 

and the 25% bottom RZFE genotyped females, 

born in 2021 or 2022 (N = 352,692 per quartile; 

Table 4). Clear differences exist between the 

two subgroups in feed efficiency (16.4 for 

RZFE and 1,264 kg feed saved) while the level 

for ECM and BWC is very similar between the 

top and bottom animals. It can be noted that 

selection for feed efficiency will not decrease 

ECM and will also not decrease the weight of 

the cows, because even the top 25% cows for 

RZFE have a slightly positive breeding value 
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for body weight. Therefore, most of the 

difference in RZFE between top and bottom 

animals stems from the difference in DMI. 

Table 3. Correlations of RZFE and GEBVs of other 

trait complexes 

Breeding 

value 
Trait complex 

Correlation 

to RZFE 

RZG Total merit 0.02 

RZ€ Total merit (€) 0.05 

RZM Production -0.07

RZN Longevity 0.05

RZE Conformation -0.11

RZR Reproduction 0.02

RZHealth Health -0.03

RZKm Calving, maternal 0.03

RZKd Calving, direct 0.10

RZCalffit Young stock survival 0.06

Table 4. Differences between the top and the bottom 

25% females for feed efficiency (352,692 per 

quartile) born between 2021 and 2022. 

Item Top 25% Bottom 25% Difference 

RZFE# 107.9 91.5 16.4 

FS* 607 -657 1,264 

DMI* -307 917 -1,224

ECM* 743 625 118

BWC* 0.6 2.2 -1.5

BW+ 4.1 27.1 -23.0

RZFE: Feed efficiency index (RZFeedEfficiency). 

FE: Feed saved. 

DMI: Dry Matter Intake. 

ECM: Energy Corrected Milk. 

BWC: Body Weight Change. 
# On a relative scale (Mean of 100±12) 
* Sum of first three parities in kg.
+ Mean of first three parities in kg

Conclusions 

The German feed efficiency index 

(RZFeedEfficiency, short: RZFE) was first 

introduced in April 2024. The international data 

exchange enables a sufficient data basis for the 

genetic evaluation of feed efficiency. However, 

with 0.4, the genomic reliability of the RZFE is 

at the lower range of genomic reliabilities when 

compared to other traits under routine genetic 

evaluation in Holsteins. Applying the 

covariance function approach facilitated the 

estimation of variance components for the 

random regression model. Our results show that 

underlying traits are heritable with reasonable 

estimates of the genetic parameters, allowing 

for considerable genetic selection. The feed 

efficiency trait definition considers dry matter 

intake, energy-corrected milk and body weight 

change as main energy sources/sinks and refers 

to three lactations, the average productive life 

of Holstein cows in Germany. RZFE is mostly 

independent of production level and health 

traits. The genetic standard deviation of RZFE 

is 247 kg per 305 days in milk, which is roughly 

3.5% of phenotypic DMI. 
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Abstract 

Residual Feed Intake (RFI) is commonly defined as residuals from linear regression of feed intake on 

energy sinks, expressed on the phenotypic scale.  Estimates of partial regression coefficients are 

obtained by Least Squares, and RFIs are subsequently used as phenotypes in a genetic evaluation 

model. Alternatively, regression coefficients for RFI can be derived directly from phenotypic co-

variances among feed intake and the energy sinks, and EBVs for RFI can be formulated as 

reparameterizations of EBVs for feed intake and energy sinks from a multiple-trait (MT) model. This 

is equivalent to the recursive model (RM) approach, with EBVs calculated as system parameters. 

Using RM as operational tools, RFI can be defined and the respective parameters calculated, for 

overall and any individual source of random variation covered by the MT model for feed intake and 

energy sinks, i.e., genetic, PE, residual.  Different definitions of RFI result in independence of RFI 

from energy sinks on different levels of variability. These concepts are illustrated by application of the 

genetic evaluation model for feed efficiency of Canadian Holsteins. A six-trait MT model for Dry 

Matter Intake (DMI), Energy Corrected Milk (ECM) and Metabolic Body Weight (MBW) in two DIM 

intervals of 1st lactation was fitted to approximately 100,000 weekly records on 5,000 cows, with 

9,000 genotyped animals in the pedigree via MC-EM-REML and Single-Step GBLUP, for the purpose 

of co-variance component estimation and genomic evaluation. Four different expressions of RFI in 61 

– 305 DIM in lactation (phenotypic = pRFI, genetic = gRFI, permanent environmental = eRFI and

residual = rRFI) were defined and examined as potential selection criteria or as tools for optimizing

management, with respect to estimates of genetic parameters and GEBV. Standardized regression

coefficients of DMI on sinks differed among RFI definitions, but the relative impact of sinks was

similar. Heritabilities of RFIs ranged from 0.05 (gRFI) to 0.15 (rRFI). Genetic and phenotypic

expressions of RFI were genetically correlated at 0.84. Genetic correlations between pRFI and energy

sinks were 0.62 for ECM and 0.04 for MBW (versus 0.00 for gRFI). Genetic correlations with DMI

were 0.37 and 0.59 for gRFI and pRFI, respectively. Correlations between GEBV, for official sires (N

= 298), ranged from 0.64 (gRFI and pRFI) to 0.99 (pRFI and eRFI). Results illustrate substantial

differences among definitions of RFI in dairy cattle and consequences of using different definitions for

genetic evaluation and selection. Generalizations to other traits are straightforward.

Key words:   RFI, feed efficiency, single-step genomic evaluation

Introduction 

Feed represents a significant proportion of 

dairy cattle production expenses. To reduce 

costs, genetic selection for feed efficiency has 

recently become more widely used across 

different dairy populations. Examples include 

the Canadian Holstein genetic evaluation for 

metabolic feed efficiency (Jamrozik et al., 

2022), and US genetic evaluation for feed 

saved (Parker Gaddis et al., 2021). Both North 

American approaches are based on the concept 

of Residual Feed Intake, as a measure of feed 

efficiency independent of an animal’s body 

size and production level. It is considered to 
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represent the inherent variation in metabolic 

processes to describe efficiency. 

Residual Feed Intake (RFI) was initially 

proposed by Koch et al. (1963) as the residuals 

from linear regression of feed intake on 

various energy sinks, expressed on the 

phenotypic scale. For simplicity, let Energy 

Corrected Milk (ECM) and Metabolic Body 

Weight (MBW) be the only energy sinks 

acting on Dry Matter Intake (DMI). 

 The equation for linear regression can 

be represented as: 

DMIi = xi‘b + cM*ECMi + cW*MBWi + ei, 

with b being a vector of selected systematic 

(fixed) effects acting on DMI. 

Estimates of the covariable regression 

coefficients cM  and cW  are obtained by Least 

Squares (LS) and phenotypes for RFI are 

defined as residuals (ei) from the above model. 

These residuals are subsequently used as 

observations in genetic and genomic 

evaluation models for RFI. 

 Alternatively and equivalently, cM  and cW 

can be derived as partial regression 

coefficients from phenotypic co-variances 

between DMI and the energy sinks. Define C = 

[Cij] (2x2) phenotypic co-variance matrix for 

ECM and MBW,  w = [wij] vector of 

phenotypic co-variances between sinks and 

DMI. Then [cM  cW ]’ = C-1w (Kennedy et al., 

1993). 

The calculation of phenotypes for RFI from 

LS, to be used for further (i.e. genetic) 

analyses,  faces challenges from conceptual, 

statistical, and practical perspectives (Lu et al., 

2015): 

1. RFI is not an observable trait and hence it

may be difficult to explain to farmers,

2. Any regression analysis used to derive RFI

implicitly assumes that all covariates (i.e.,

energy sinks) are recorded and known without

any measurement error,

3. If any of the energy sink covariates are

completely missing for a particular animal,

none of the records on that animal can be used

to derive the animal’s RFI, and

4. The presence of non-zero genetic and

residual correlations between DMI and the

energy sink traits distorts heritability estimates

for RFI (Kennedy et al., 1993) and

interpretation of the inferences.

Materials and Methods 

Use of mixed model methods for RFI 

Genetic parameters and EBVs for RFI can be 

obtained without directly using phenotypes for 

RFI. The mixed linear model associated with 

the i-th multivariate record for ECM, MBW 

and DMI can be written as: 

yi = X b + ai + pi + ei, where 

yi is a vector of observations on subject i for 

DMI and the two energy sink measurements, b 

is a vector of fixed effects, ai is a vector of 

animal additive genetic effects, pi is a vector of 

permanent environmental (PE) effects, ei is a 

vector of residuals, X is an incidence matrix. 

Assumptions are that: v(ai) = G, a genetic 

covariance (3x3) matrix;  v(pi) = E, a 

covariance (3x3) matrix for the PE effects; 

v(ei) = R,  a residual covariance matrix. 

Phenotypic co-variance matrix (P) can be 

defined as P = G + E + R.  

Let a = [a1, a2, a3]’ refer to EBV for ECM, 

MBW and DMI, respectively. To obtain 

phenotypic independence between an RFI 

variable (not yet defined) and the energy sinks, 

a linear re-parameterization of the EBV for 

ECM, MBW and DMI can be postulated as:  

a* = Λ a, with 

 1     0       0 

Λ = 0        1         0 

-L31   -L32  1 

Non-zero elements of Λ, L31 and L32, can be 

expressed as functions of elements of 

phenotypic co-variance matrix P as: 

L31 = (p12*p23 - p13*p22)/(p12*p12 - p11*p22) 

L32 = (p12*p13 - p11*p23)/(p12*p12 - p11*p22), 
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and they are partial phenotypic regression 

coefficients of DMI on ECM and MBW. The 

EBV of ECM and MBW remain unchanged, 

and EBV for DMI is transformed into an EBV 

for RFI:  

 a3
* = a3 – L31 a1 – L32 a2. 

This definition for RFI can be interpreted as 

DMI phenotypically adjusted for energy sinks. 

Co-variance components involving this RFI 

can be obtained as:  

G* = ΛGΛ’, 

E* = ΛEΛ’, 

R* = ΛRΛ’, and 

P* = G* + E* + R*. 

The re-parameterization described above 

can also be derived using a recursive model 

approach (Jamrozik et al., 2017). Let Y1, Y2, 

and Y3 refer to phenotypes for ECM, MBW 

and DMI, respectively, and let recursive  

equations for DMI in this model be: 

Y1   = fixed1 + random1 + e1  

Y2   = fixed2 + random2 + e2  

Y3  = L31* Y1 + L32* Y2 + fixed3 + random3 + 

e3,  

with Ljk denoting a recursive coefficient  

parameter for the effect of change in trait j 

caused by the phenotype of trait k. The mixed 

linear recursive model associated with the i-th 

record for ECM, MBW and DMI can be 

written as: 

Λ yi = X b* + ai
*+ pi

* + ei
*, with 

v(ai
*) = G*, v(pi 

*) = E*, v(ei
*) = R*, and P* = 

G* + E* + R*. 

Imposing restrictions on phenotypic co-

variances i.e. setting p13
* = p23

* = 0 of the 

phenotypic co-variance matrix P* of the 

recursive model will yield the same Λ and 

expressions of co-variance components and 

EBVs on a recursive scale for RFI, as 

presented earlier using a simple re-

parametrization of the EBVs to compute EBVs  

for RFI. Additionally, the recursive model 

parameters G*, E*, and R* can be interpreted as 

system co-variances.  

Given the estimates of partial regression 

coefficients and the known co-variance 

structure of the model, EBV for RFI can be 

derived using estimates of EBV for DMI and 

sinks from a regular multiple-trait model for 

these traits, due to the equivalency between 

recursive and multiple-trait models (Jamrozik 

et al., 2017). In addition, the EBVs for RFI can 

be interpreted as parameters of the recursive 

model from sinks to DMI, under the 

assumption of known recursive regression 

coefficients.  

Alternative RFI definitions 

So far, RFI has been discussed on the 

phenotypic level (pFRI), as feed intake 

phenotypically adjusted for, or independent of, 

energy sinks. In other words, we looked at RFI 

as feed intake on the same phenotypic level of 

ECM and MBW. This can be extended to other 

random variables affecting DMI, like genetic 

or  permanent environment effects, which 

would lead to different interpretations with 

different definitions for RFI. Genetic RFI 

(gRFI) can be defined as feed intake 

genetically independent of energy sinks. 

Similarly, PE RFI (eRFI) can describe feed 

intake adjusted for (or independent of) 

systematic environmental effects  on repeated 

measurements for an animal over time (e.g. 

affecting all daily or weekly DMI 

measurements throughout a lactation). Finally, 

residual RFI (rRFI) will refer to feed intake 

adjusted for all effects in the model or 

independent of all residual effects on the 

energy sink observations. For derivation of 

regression coefficients on any given sources of 

variation we can use the corresponding co-

variance matrix of interest to compute Ljk, 

either as shown in the previous paragraph for a 

pair of energy sinks, or using the more 

generalized equation below, which 

accommodates any number of sinks. 

Let vector L with order (n-1) be the vector 

of multi-variate regressions of variable n on 

variables 1 through (n-1). Partition the 

covariance matrix V of interest for recursions 
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(e.g. genetic, phenotypic, etc.) to separate the 

nth row and column from all previous rows and 

columns, and L is then defined as follows: 

It is easily verified that the general equation 

above yields the same values for L31 and L32 as 

shown in the earlier example for phenotypic 

RFI with two energy sinks, where V=P, and 

the generalization by Kennedy et al. (1993) for 

genetic RFI, where V=G. 

In the scope of recursive modelling, 

phenotypic restrictions on covariances (i.e. 

zeroing phenotypic co-variances between 

traits) are replaced by restrictions related to the 

definition of RFI.  

An example of application 

A first lactation feed efficiency model applied 

to Canadian Holsteins was used to illustrate the 

concepts presented above. The data and model 

descriptions, from Jamrozik et al. (2021), are 

as follows. 

Traits 

The model defined all traits in two periods of 

first lactation: 5-60 days and 61-305 days in 

milk (DIM). Traits were: 

 MBW, calculated as (body weight)0.75;

 ECM, calculated as 0.25*Milk + 12.2*Fat +

7.7*Protein; and

 DMI.

All traits were weekly averages expressed in

kg/day (ECM and DMI) or kg0.75 (MBW).

Data 

The feed efficiency data available at Lactanet 

included data from seven herds in five 

countries within the EDGP project plus eight 

more US herds outside of EDGP. 

The final data (after edits) for co-variance 

component estimation consisted of 99,713 

weekly records on 4,952 first lactation cows 

from 1,101 sires. Pedigrees of cows with 

phenotypes were traced back four generations, 

for a total of 18,085 animals included in the 

estimation. More details on the data can be 

found in Jamrozik et al. (2021). 

Model 

The linear animal model used for co-variance 

components estimation was the same for each 

of the 6 feed efficiency traits (ECM, MBW and 

DMI, in 2 DIM intervals). Fixed effects in the 

model were: Age at calving, Lactation week, 

Year-Season of calving, and Herd-Year of 

calving. Random effects included Additive 

genetic, Permanent Environmental (PE), and 

Residual effects. 

The multiple-trait model for 6 traits can be 

written as: 

y = X b + Z1 a + Z2 p + e, where 

y is a vector of observations (traits within cows 

within DIM interval), b is a vector of all fixed 

effects, a is a vector of animal additive genetic 

effects, p is a vector of PE effects, e is a vector 

of residuals, X and Zi (i =1, 2) are respective 

incidence matrices. 

Assumptions were that: 

v(a) =A  G, A is additive genetic relationship 

matrix, G is the additive genetic covariance 

(6x6) matrix;  

v(p) = I  E, E is the covariance (6x6) matrix 

for the PE effects; 

v(e) =



N

i 1





N

i 1

Ri, Ri is a residual covariance 

matrix (3x3) for either first or second DIM 

interval, N is the total number of weekly 

records. Residuals for traits collected in the 

same week of lactation were assumed 

correlated, and uncorrelated otherwise.  

Co-variance components of the model were 

estimated with the Monte Carlo - Expectation 

Maximization - Restricted Maximum 

Likelihood (MC-EM-REML) algorithm 

(Matilainen et al., 2012) implemented in the 

MiX99 software package (MiX99 

Development Team, 2017).  

Recursive model matrix for the six-trait 

model Λ was defined as  ∑+ Λi, where Λi (i = 
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1, 2) corresponds to the i-th DIM interval of 

lactation. 

Genomic evaluation 

The Single-Step method was used to fit the 

multiple-trait linear animal model for 6 traits 

(ECM, MBW and DMI, in 2 DIM intervals) 

with genotypic information via MiX99 

software. The same model as presented for co-

variance component estimations was used for 

genomic evaluation, with A replaced by H 

(combined pedigree/genotypes relationship 

matrix).  

The data included 111,857 weekly records 

on 5,325 cows (4,585 cows with DMI; 4,313 

genotyped cows with data). There were 1,160 

sires of those cows with data (934 genotyped 

sires). In total, there were 19,137 animals in 

pedigree, and the genomic reference 

population included 8,375 genotyped animals.  

GEBVs for different expressions of RFI 

were derived as presented earlier. Sire 

evaluation for all traits was defined as 

‘Official’ when the bull had at least 5 

daughters with DMI data and a minimum 

reliability for GEBV for RFI of 50%. There 

were 298 Holstein sires with an official status.  

Results & Discussion 

Genetic RFI calculated in 61 – 305 DIM is the 

principal selection criterion for feed efficiency 

in Canadian Holsteins. Therefore, and also for 

illustration purposes of the proposed methods, 

only results pertaining to traits (including 

different expressions of RFI) defined in this 

part of lactation will further be presented and 

discussed in this paper. In addition, the most 

emphasis will be put on comparisons between 

gRFI and pRFI, as the most popular 

expressions of RFI. 

Genetic parameters 

Estimates of regressions coefficients of DMI 

on energy sinks for different definitions of RFI 

are in Table 1. 

Table 1. Estimates of regression coefficients and 

relative impact (%) of energy sinks on DMI   

gRFI pRFI eRFI rRFI 

Regression 

coefficient 

ECM 0.48 0.31 0.28 0.19 

MBW 0.14 0.13 0.11 0.15 

Relative 

impact 

ECM 63 62 63 62 

MBW 37 38 37 38 

Regression coefficients differed among 

different RFI definitions, especially for ECM. 

Relative impact of energy sinks on RFI 

remained approximately the same (60:40) for 

different RFI, with a larger emphasis on ECM. 

Estimates of heritability for ECM, MBW 

and DMI in 61 – 305 DIM were 0.29, 0.50 and 

0.27, respectively. Corresponding 

repeatabilities were 0.67, 0.91 and 0.57. 

Estimates of heritability and repeatability for 

different definitions of RFI are in Table 2. 

Table 2. Estimates of heritability and repeatability 

(x100) for different RFI expressions 

gRFI pRFI eRFI rRFI 

Heritability 5 9 11 15 

Repeatability 38 40 42 45 

Heritability of RFI ranged from 5% (gRFI) 

to 25% (eRFI). Estimates of repeatability were 

more similar across RFI definitions (38 – 

45%), with the same pattern of changes 

between different RFIs  as observed for 

heritability. 

Estimates of genetic and phenotypic 

correlations between each definition of RFI 

and the other traits in the model (sinks and 

DMI) are in Table 3. 

By definition, genetic correlations between 

gRFI and energy sinks were equal to zero. 

Similarly, pRFI and energy sinks were 

phenotypically independent. The same patterns 

applied to eRFI and rRFI, they were 

independent of energy sinks on PE and R 

scale, respectively (results not shown).   
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Table 3. Estimates of genetic and phenotypic 

correlations (x100)   between RFI versus energy 

sinks and DMI, for different expressions of RFI 

Correlation gRFI pRFI eRFI rRFI 

Genetic ECM 0 62 67 80 

MBW 0 4 11 -11

DMI 37 82 88 83 

Phenotypic ECM -33 0 6 23 

MBW -4 0 3 -6

DMI 59 81 85 88 

Phenotypic RFI was strongly genetically   

correlated with ECM. It was also genetically 

and phenotypically more similar to DMI than 

was the case for gRFI. 

Genetic correlations among different RFI 

expressions were on average smaller than 

corresponding phenotypic correlations (Table 

4). Genetic  correlation of 0.84 between pRFI 

and gRFI would suggest that phenotypic and 

genetic RFIs are genetically not the same 

traits. 

Table 4. Genetic (above diagonal) and phenotypic 

(below diagonal) correlations (x100) between 

different expressions of RFI 

gRFI pRFI eRFI rRFI 

gRFI - 84 72 68 

pRFI 94 - 92 99 

eRFI 84 92 - 92

rRFI 84 98 91 -

Genomic evaluation 

Correlations between GEBVs for gRFI and 

other definitions of RFI were significantly 

smaller than 1 for a set of ‘Official’ bulls 

(Table 5).  

Table 5. Correlations (x100) between GEBV of RFI 

for ‘Official’ sires (N = 298) 

gRFI pRFI eRFI rRFI 

gRFI - 64 58 46 

pRFI - - 99 96 

eRFI - - - 96 

Significant re-ranking of animals can 

therefore be expected between genetic versus 

phenotypic RFI. 

Correlations in Table 6 show that relative to 

gRFI ranking, pRFI ranking was more similar 

to ECM and DMI.  Selecting for pRFI is to 

some degree like selecting for ECM. 

Table 6. Correlations (x100) between GEBV of RFI 

and other traits for ‘Official’ sires (N = 298) 

ECM MBW DMI 

gRFI -1 -8 21 

pRFI 75 14 83 

eRFI 80 23 89 

rRFI 88 1 82 

General remarks 

Using recursive modelling as operational tools 

(re-parameterization of multiple-trait model 

parameters) allowed for definition, derivation 

and interpretation of different expressions of 

RFI in dairy cattle. 

No causal links between traits were 

imposed in the context of structural equation 

models discussed above. Recursive 

parameterizations served solely as operational 

tools, enabling inferences for traits (e.g. RFI) 

defined as linear combinations of correlated 

variables (ECM, MBW and DMI), and given 

certain assumption regarding correlations (i.e. 

imposing restriction on system parameters). 

The presented RFI derivations, based on 

either the multiple-trait co-variance matrix or 

the recursive model machinery, can be easily 

extended for additional energy sinks, for 

example body weight change. 

Similarly, we may contemplate other 

definitions of RFI. ‘Producing Ability’ RFI, 

derived from G + PE co-variance components, 

can serve as another management tool. We 

may also have ‘Herd’ RFI, derived from 

random ‘herd’ (if considered in the model) 

parameters. These again will have different, 

and possibly not always straightforward, 

interpretations. 

Generalizations can also include an 

expansion of the model for multiple recursive 

traits of interest. For example, with lifetime 

feed efficiency being of interest, the first 

lactation RFI model was extended to a 
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multiple-lactations RFI model, with DMI and 

energy sinks all treated as different traits in 

first versus second lactation for genomic 

evaluation of Canadian Holsteins (Jamrozik et 

al., 2022). Finally, heterogeneity of RFI 

between and across lactations can be modeled 

using random regressions for DMI and energy 

sinks (Houlahan et al., 2024) 

Recursive model approach to attain genetic 

independence between trait and energy 

sinks/sources has recently been applied to 

derive residual methane production that is 

genetically independent of milk production 

traits, for methane efficiency of Canadian 

Holsteins (Oliveira et al., 2023). Another 

application could be for functional herd life in 

dairy cattle, derived as length of productive 

life independent of production levels. 

A similar approach can be used for analysis 

of traits expressed as ratios (Jamrozik et al., 

2017). This relates, in particular, to possible 

application of this method for methane yield 

(g/kg DMI) or methane efficiency (g/kg milk).  

Conclusions 

Results indicate substantial differences among 

definitions of RFI, for estimates of genetic 

parameters and genomic evaluations of 

animals. It should be emphasized, that this 

could have serious consequences of using 

genetic vs. phenotypic RFI for 

genetic/genomic selection in dairy cattle. 

Phenotypic RFI is commonly used across the 

world for genetic evaluation of feed efficiency 

in dairy cattle. An exception is Canada, where 

gRFI is the genomic selection criterion in 

Holsteins. 
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Abstract 

Phenotyping costs in dairy cattle breeding exhibit significant variability across traits. While milk 

production is recorded routinely at only low costs, traits such as feed efficiency and methane 

emissions pose challenges due to their expensive measurement requirements. This study leveraged the 

real-size digital twin of the Geno breeding program for the Norwegian Red dairy cattle breed to 

simulate genetic progress following ten years of selective breeding, particularly targeting traits 

demanding costly phenotyping. Multiple scenarios were simulated, varying in the number of 

phenotypes recorded, economic weight, and genetic correlation between the trait and total merit index. 

Our results highlight the importance of genetic correlation in achieving progress for traits with 

expensive phenotypes recorded at a limited scale. Increasing economic weight and the number of 

phenotypes increased genetic progress. Thus, there is an indirect indication that traits with low 

phenotyping costs and high correlation to expensive phenotypes should be prioritized when selecting 

for genetic improvement of a trait with expensive phenotypes. However, precise phenotypes are 

required for accurately estimating genetic correlations between traits with expensive phenotypes and 

traits with cheap phenotyping. 

Key words: genomic selection, phenotyping, Norwegian Red Dairy Cattle, breeding program, digital 

twin, future genetic progress 

Introduction 

Since the introduction of genomic selection in 

the Norwegian Red Dairy Cattle (NR) 

breeding program in 2016, single step genomic 

prediction approach was used (Nordbø et al., 

2019). This method integrates pedigree and 

genotype information into a single relationship 

matrix, allowing the inclusion of all the 

individuals with phenotype and genotype 

information in the reference (Christensen and 

Lund, 2010). Consequently, the reference 

population comprises progeny tested bulls and 

phenotyped cows, enhancing the accuracy of 

predicted breeding values (Legarra et al., 

2014). 

As of 2024, the reference population of the 

NR breeding program includes approximately 

100 000 animals for production traits and 

47 000 animals for conformation traits. While 

phenotype data for production traits are 

collected routinely at low costs, the recording 

of type traits has a long history and incurs 

intermediate cost. However, recording for 

enteric methane emission and feed efficiency 

began only recently, resulting in smaller 

reference populations for these traits 

(Heringstad and Bakke, 2023). Due to high 

cost recording these traits, it will take 

significantly more time to establish a reference 

population sufficient for predicting highly 

accurate genomic breeding values. 

This study aims to demonstrate the 

potential of genomic selection in the NR 

breeding program for traits with expensive 

phenotyping by utilizing the digital twin of 

Geno’s breeding program (Ehsani et al., 2022). 

We analysed the effect of the reference 

population size, different economic weights, 
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and the correlation between the selection index 

and the expensive trait. 

Materials and Methods 

A real-size breeding program was simulated 

beginning with fifty years of historical 

breeding (from 1971 to 2020), followed by ten 

years of alternative future breeding scenarios. 

The future scenarios differed in the number of 

phenotypes collected annually (1000, 2000, or 

3000), the economic weight of an expensive 

trait in the future selection index (0.2 or 0.5), 

and the genetic correlation between the index 

trait and the expensive trait. 

During the historical breeding period, 

animals were selected based on the predicted 

breeding values for the index trait. For 

simplicity, this trait was represented milk yield 

(h2=0.192), one of the most important traits in 

the history of NR breeding program. In the 

future breeding scenarios, animals were 

selected based on the future selection index, 

which combined the breeding values of the 

index trait and the expensive trait according to 

the specified economic weights. The 

heritability of the expensive trait was set at 0.3, 

reflecting the estimated heritability of enteric 

methane emission and dry matter intake in NR 

(Heringstad and Bakke, 2023). 

For the first 45 years of historical breeding, 

breeding values were predicted using only 

pedigree data. From 2016 onward, pedigree 

information was combined with genotype 

information into a single step genomic 

evaluation approach. Genomic breeding values 

were calculated using the singular value 

decomposition method (Ødegård et al., 2018). 

In this method, chromosome specific principal 

components explained 98% of genetic variance 

among the 20 000 core individuals. This core 

group included genotypes from all progeny 

proven bulls while the rest were genotypes 

from the cows with available phenotype data. 

The estimated breeding values (rEBV) from 

the final year of future breeding were 

standardised (EBV) so that: EVB = m + k * 

(rEBV - mEBV) / sEBV, where m = 100, k = 

12, mEBV is the mean breeding value of 

females born between 2023 and 2028, and 

sEBV is the standard deviation of the bulls 

breeding values born between April 2011 and 

March 2016. Each scenario was run in ten 

replicates, and the mean genetic progress was 

Figure 1. Fifty years of historical breeding program of Norwegian Red Dairy Cattle breed followed by ten 

years of future breeding as integrated in digital twin of Geno breeding program 
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calculated across the ten replicates for each 

year of selection. The different scenarios were 

compared based on the achieved genetic 

progress after then years of future breeding. 

Results & Discussion 

We present the achieved genetic progress in 

the final year of future breeding separately for 

the index trait and the expensive trait in each 

simulated scenario, as shown in Table 1. We 

will begin by analysing the effect of increasing 

the number of phenotypes. Next, we will 

examine the impact of assigning a higher 

economic weight to the expensive trait. 

Following this, we will explore the effect of 

varying the correlation between the index trait 

and the expensive trait. Lastly, we will 

compare the changes when two or three 

parameters are simultaneously adjusted 

Table 1. Genetic progress (∆G) in ten years of 

future breeding for index trait (IT) and expensive 

trait (ET) with different number of phenotypes (N) 

for ET, different economic weights (EW) for ET 

and IT in the future selection index and different 

genetic correlations between IT and ET (rg) 

N for 

ET 

EW for 

ET* 

rg ∆G for 

IT 

∆G for 

ET 

1000 0.2 0 64.1 2.7 

2000 0.2 0 63.9 3.7 

3000 0.2 0 63.4 6.2 

1000 0.5 0 58.7 11.6 

2000 0.5 0 57.2 15.1 

3000 0.5 0 56.0 17.0 

1000 0.2 0.3 64.4 20.9 

1000 0.2 0.6 64.2 38.6 

1000 0.5 0.3 61.9 26.4 

1000 0.5 0.6 63.3 40.7 

2000 0.2 0.3 64.5 21.9 

2000 0.2 0.6 64.4 39.5 

2000 0.5 0.3 60.8 28.8 

2000 0.5 0.6 62.6 42.6 

3000 0.2 0.3 64.3 22.1 

3000 0.2 0.6 64.4 39.9 

3000 0.5 0.3 59.8 30.3 

3000 0.5 0.6 62.1 43.4 

*EW for IT is: 1 – EW for ET

Effect of increasing phenotype numbers 

Collecting a higher number of phenotypes for 

the expensive trait slightly decreased the 

genetic gain for the index trait while increasing 

the gain for the expensive trait. When 1000 

phenotypes were collected each year during 

the future breeding period, with the economic 

weight for the expensive trait set at 0.2 and no 

correlation between the traits, the genetic 

progress achieved was 64.1 for the index trait 

and 2.7 for the expensive trait. As the number 

of phenotypes increased to 2000 per year, the 

genetic progress for the index trait dropped 

slightly to 63.9, while the gain for the 

expensive trait rose to 3.7. With 3000 

phenotypes per year, the genetic progress 

further declined to 63.4 for the index trait, but 

it increased to 6.2 for the expensive trait. This 

indicates that doubling the number of 

phenotypes for the expensive trait does not 

result in a proportional increase in its genetic 

progress. 

Impact of economic weight 

An increase in the economic weight of the 

expensive trait in the future selection index 

reduced the genetic gain of the index trait but 

enhanced the gain for the expensive trait. 

Specifically, when the economic weight of the 

expensive trait was raised from 0.2 to 0.5 in 

the future selection index, the genetic progress 

over ten years of future breeding fell from 64.1 

to 58.7 for the index trait, while it rose 

significantly from 2.7 to 11.6 for the expensive 

trait. This indicates that increasing the 

economic weight by two and a half times leads 

to more than a fourfold increase in the genetic 

progress of the expensive trait, while the 

genetic progress for the index trait decreases 

by only 8.4%. 

Effect of genetic correlation 

A higher positive genetic correlation between 

the index trait and the expensive trait had no 

significant effect on the genetic improvement 

of the index trait, but it strongly enhanced the 

genetic progress of the expensive trait. When 

the genetic correlation between the two traits 

increased from 0 to 0.3 and then to 0.6, the 

genetic progress of the index trait remained 
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relatively stable, at 64.1, 64.4, and 64.2. In 

contrast, the genetic progress for the expensive 

trait saw substantial increases: from 2.7 with 

no correlation to 20.9 at a correlation of 0.3, 

and further rising to 38.6 when the correlation 

was 0.6. 

Combined parameter adjustments 

Increasing the number of phenotypes for the 

expensive trait, raising its economic weight, 

and having a higher genetic correlation 

between the index and expensive traits 

positively impacted the realized genetic gain of 

the expensive trait. The highest genetic gain of 

43.4 for the expensive trait occurred in the 

scenario where 3000 phenotypes were 

collected, the economic weight was 0.5, and 

the genetic correlation with the index trait was 

0.6. This gain is more than sixteen times 

greater than the baseline scenario, where only 

1000 phenotypes were collected per year, the 

economic weight was 0.2, and there was no 

genetic correlation between the traits. 

Among the three parameters analysed, the 

genetic correlation between the index trait and 

the expensive trait had the greatest impact on 

the genetic gain of the expensive trait. 

Therefore, identifying a phenotype with lower 

recording costs but a strong genetic correlation 

to the expensive trait could be a viable strategy 

for future trait improvement. Since building a 

reference population for the expensive trait 

requires many years, continuing to collect 

precise phenotypes is crucial. This allows for 

the accurate estimation of genetic correlations 

between traits with costly phenotyping and 

those with cheaper phenotyping. Thus, even on 

a smaller scale, ongoing phenotyping for the 

expensive traits is justified. 

Conclusions 

Our findings underscore the critical role of 

genetic correlation in enhancing genetic 

progress for traits with expensive phenotypes, 

especially when phenotyping is limited. 

Increasing the economic weight assigned to 

these traits in the selection index, along with 

the number of phenotypes collected, 

significantly boosts genetic gains. This 

suggests that traits with lower phenotyping 

costs but strong genetic correlations to 

expensive traits should be prioritized in 

breeding programs to achieve indirect genetic 

improvements in costly traits. 

Moreover, the study highlights the 

necessity of obtaining precise phenotypes to 

accurately estimate genetic correlations 

between expensive and inexpensive traits. This 

precision is essential for developing cost-

effective strategies in future breeding efforts 

aimed at enhancing traits with prohibitive 

phenotyping costs. 
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Abstract 

Traditionally, a two-step modeling approach of residual feed intake (RFI) is incorporated into the Feed 

Saved index at dairy cattle genetic evaluation centers. Challenges have been identified in the 1st step on 

handling fixed effects in the statistical model and dealing with missing phenotypes. This could be solved 

using a multi-variate modelling approach for genetic RFI (gRFI). Most existing RFI models use changes 

in body weight, and therefore, likely inadequately account for changes in body reserves because energy 

density differs between mobilization and deposition, and between adipose and muscle tissue. 

Alternatively, energy balance can be estimated from body reserve changes (EBbody). Therefore, this 

study aimed to explore a genomic evaluation of gRFI in Nordic primiparous cows using EBbody as energy 

sink for changes in body reserves. Weekly records were collected from 2,029 Jersey (JER) cows, 3,178 

Red Dairy Cattle (RDC) cows, and 4,661 Holstein (HOL) cows. For JER and RDC, the feed intake data 

was obtained with the Cattle Feed InTake system (CFIT, VikingGenetics, Denmark). For HOL, feed 

intake data was collected from CFIT farms and a research farm (857 cows and 25,547 weekly records). 

The genotyping rate for cows with data were 92% for JER and RDC, and 81% for HOL.  The gRFI 

model was a random regression multi-variate model with 2nd order Legendre polynomials for additive 

genetic and permanent environmental effects. The gRFI model was validated with an across-herd cross-

validation scheme using the Legarra Reverter method and reporting bias, dispersion and correlation 

terms. Breeding values were predicted using the single-step approach for both genotyped and non-

genotyped animals. The bias was close to 0 for all breeds. The dispersion coefficients were found in an 

acceptable range at 0.92 (DMI) and 0.87 (gRFI) for HOL and 0.96 (DMI) and 0.85(gRFI) for RDC, 

while overdispersion was observed for JER (DMI:0.75, gRFI:0.69). Correlations between genomic 

breeding values, estimated with whole and partial phenotypic information, were moderately high for all 

breeds (DMI: 0.51-0.68, gRFI: 0.46-0.59). In conclusion, it was possible to construct a genomic gRFI 

model for all three Nordic dairy cattle breeds and integrate EBbody as an energy sink indicator. We 

observed promising validation metrics for HOL and RDC, but JER models need further refinement. The 

results demonstrate selection for gRFI is expected to provide genetic gain of feed efficiency in dairy 

cattle. 

Key words: feed efficiency, Feed Saved, multi-variate modelling, Nordic dairy cattle 

Introduction 

Improving feed efficiency through genetics 

poses an important part of enhancing economic 

viability and environmental sustainability in 

dairy cattle farming (VandeHaar et al., 2016). 

Several genetic evaluation centers have 

integrated the "Feed Saved" index, as selection 

criteria for feed efficiency in the national 

breeding goals. A significant component of this 

index lies in the residual feed intake (RFI) part, 

which traditionally is modelled in a two-step 
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process (Tempelman and Lu, 2020). Initially, a 

precorrection step generates a model-based 

residual for feed intake, serving as the 

phenotype for subsequent genetic evaluation. 

However, challenges arise concerning the 

handling of fixed effects and missing records 

within this initial step. To address these 

challenges, Tempelman and Lu (2020) 

proposed the genetic multi-variate approach to 

RFI (gRFI) based on the work by Kennedy et 

al. (1993). This model has not been tested 

within Nordic breeds. 

 Most existing RFI models address body 

reserve management using changes in body 

weight (ΔBW). However, this approach likely 

suffers deficiency because of significant 

variations in energy density between 

mobilization and deposition, as well as among 

different tissue types (adipose and muscle). An 

alternative is outlined by Thorup et al. (2018), 

who proposed to estimate energy balance from 

changes in body reserves (EBbody) by 

employing energy-specific coefficients tailored 

to tissue types and energy status. However, the 

effect of EBbody has yet to be investigated for 

RFI models. 

 Genomic prediction offers implementation 

of traits that have relatively few records due to 

expensive recording schemes (e.g. feed 

efficiency). Studies have demonstrated the 

feasibility of genomic prediction for dry matter 

intake (Berry et al., 2014, De Haas et al., 2015). 

As a limited number of records are available, 

the traditional forward prediction outlined in 

Mäntysaari et al. (2010) were not feasible for 

validation of genomic predictions. 

Alternatively, the Legarra-Reverter cross-

validation method (Legarra and Reverter, 

2018), using whole and partial datasets seems 

attractive. However, limited literature exists on 

genomic validation of gRFI.  

 This study aimed to explore the ability to 

establish a genomic evaluation of gRFI and 

perform herd cross-validation, using Nordic 

primiparous cows and incorporating the EBbody 

as energy sink trait for body reserve 

management. 

Materials and Methods 

The modelling of the multi-variate gRFI model 

is based on weekly means of dry matter intake 

(DMI), energy corrected milk (ECM), and 

body weight (BW) records for each individual 

cow. The phenotyping systems were the Cattle 

Feed InTake (CFIT) system installed on 19 

commercial Danish farms and research data 

from the Danish Cattle Research Center 

(DCRC) at AU-Foulum. A detailed description 

of the 3D camera based CFIT system is outlined 

in Lassen et al. (2023) and for DCRC in Li et al. 

(2017) and Stephansen et al. (2023). 

Feed intake data 

The data compromised repeated records from 

one to 45 weeks in milk of 3,873 HOL cows 

with 161K weekly CFIT DMI records (2,564 

primiparous), 2,068 JER cows with 93K weekly 

CFIT DMI records (1,505 primiparous), 3,235 

RDC cows with 139K weekly CFIT DMI 

records (2,006 primiparous) and 878 HOL cows 

with 50K weekly DCRC DMI records from the 

Roughage Intake Control System (Insentec 

B.V., Marknesse, the Netherlands) (835

primiparous). A detailed description of the data

and quality control can be found in Stephansen

et al. (2024).

Energy balance from body reserves 

We adapted the estimation method of EBbody, 

using frequent BW measurements from Thorup 

et al. (2013) as: 

𝐸𝐵𝑏𝑜𝑑𝑦 , 𝑀𝐽/𝑑𝑎𝑦 = 𝑧 × ∆𝐵𝐿 + 𝑦 × ∆𝐵𝑃𝑠𝑡𝑑

where EBbody is the energy balance phenotype 

calculated from frequent BW measurements 

and expressed in changes of mega joule per day, 

z is the energy coefficient for lipid, being 39.6 

MJ/kg mobilized and 56 MJ/kg deposited 

adipose tissue, y is the energy coefficient for 

protein, being 13.5 MJ/kg mobilized and 50 

MJ/kg deposited muscle tissue, ΔBL is the 

change in body lipid and ΔBPstd is the predicted 

change in body protein outlined in Thorup et al. 
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(2013). Details on the modelling of EBbody can 

be found in Thorup et al. (2018) and in context 

of this data in Stephansen et al. (2024). 

Pedigree and Genotypes 

Breed-specific pedigrees used from the Danish 

cattle database and underwent a pruning process 

using the DMU trace software (Madsen, 2012) 

for cows with data. The pruned pedigrees 

consisted of 18,432 HOL animals, 7,294 JER 

animals, and 12,423 RDC animals. Phantom 

parent groups were assigned to animals with 

missing parents using combinations of sex 

(Male or Female), breed (breed in analysis or 

other breeds), country (HOL: Nordic, EU, 

North America & rest; JER+RDC: Nordic & 

rest), and birth year classes (HOL: <2000, 

2000-2010, & >2010; JER+RDC: before and 

after 2000).  

Imputed genotypes were provided by Nordic 

Cattle Genetic Evaluation (Skejby, Denmark). 

Most animals were genotyped with 50k 

Illumina Bovine SNP50 or imputed from the 

LD chip panels. The imputation was done by 

SEGES Innovation (Skejby, Denmark) and part 

of the routine genetic evaluations in Nordic 

Genetic Cattle Evaluation (Skejby, Denmark). 

For Holstein 46,342 single nucleotide 

polymorphisms (SNP) were available, which 

were 41,897 SNPs for Jersey and 46,914 SNPs 

for RDC. Genotypes from animals born before 

2000 were omitted because genotypic 

information on distantly related animals 

contribute little to accuracy of prediction in 

focal animals, and because including genomic 

information across multiple generations can 

promote prediction bias.  

To calculate the relationship matrix 

encompassing genotyped and non-genotyped 

cows for a ssGBLUP analysis, we calculated the 

inverse of H as (Aguilar et al., 2010, 

Christensen and Lund, 2010):  

𝐇−1 =  𝐀−1 + [
0 0
0 (𝜔𝐆 + (1 − 𝜔)𝐀22)−1  −  𝐀22

−1],

where A-1 is the inverse of the pedigree 

relationship matrix, G the genomic relationship 

matrix, ω is the relative weight of the 

polygenetic effect (ω=0.8), A22 is the part of the 

pedigree relationship matrix with genotyped 

animals, and  𝐀𝟐𝟐
−𝟏 is the inverse of A22. The

genomic relationship matrix was calculated 

according to VanRaden (2008) using method 1 

and the invgmatrix software by Su and Madsen 

(2011). 

Statistical model 

Variance components for the multi-variate 

model were estimated using a Gibbs sampler in 

the RJMC module in DMU version 5.5 Madsen 

and Jensen (2013). For variance component 

estimation, the pedigree-based relationship 

matrix was used for following multi-variate 

model: 

y = Xb + Mh + Za + Wpe + e, 

 where y is the vector of phenotypes with 

sub-vectors for DMI, ECM, BW and EBbody in 

the different weeks of lactation; b is the fixed 

effects year x experimental diet at DCRC or 

version of CFIT system, a fourth order 

Legendre polynomial fixed regression on weeks 

in milk and nested within herd, and a second 

order Legendre polynomial fixed regression on 

age at calving; h is the vector of random effects 

for herd × year × test-week (record date); a is 

the vector of random regressions for random 

additive genetic effect of cows with sub-vectors 

for each of the traits; pe is the vector of random 

regressions for random permanent 

environmental effects of cows with sub-vectors 

for each of the traits. Weekly means were 

modelled across traits from one to 45 weeks in 

milk by a second Legendre polynomials 

(intercept, linear, quadratic) for both a and pe; 

e is the vector of random residual effects with 

sub-vectors of all traits included in the analysis. 

X is the design matrix for fixed effects, M is the 

design matrix for herd × year × test-week 

random effects and Z and W are the design 

matrices with covariable matrices containing 
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Legendre polynomial coefficients 

corresponding to week of lactation. Details on 

post-model processing of variance components 

to derive heritability, additive genetic 

correlations, and genetic regressors can be 

found in Stephansen et al. (2024). 

Genomic herd cross-validation 

We aimed to perform genomic validation by 

herd. Thereby, we assessed the expected value 

of genomic breeding values (GEBV) in herds 

which do not have the CFIT system. The 

estimated variance components of the multi-

variate model and H-1 were applied to 

ssGBLUP models to estimate GEBVs using the 

DMU5 module with the preconditioned 

conjugate gradient computation method.  

 To set up the different datasets for the herd 

cross-validation, we first formed a whole 

dataset containing all phenotypic information, 

that was used to estimate GEBVs (GEBVwhole). 

Hereafter, we formed three partial datasets for 

HOL and two for JER and RDC. In each of the 

partial datasets, we omitted all phenotypic 

information for 1-3 herds, and a herd could only 

appear as validation herd in one partial dataset. 

Assigning herds to be validation herds in the 

different partial datasets were done such that a 

group of validation herds consisted of herds that 

were geographically close and approximately 

1,000 validation cows. These partial datasets (7 

in total across breeds) were used to predict 

GEBVs (GEBVpartial). A few of the CFIT herds 

were not used as validation herds and the DCRC 

herd were always included in the training 

population for HOL to avoid backward 

predictions in time. Using only validation 

animals, we created following linear model to 

assess herd cross-validation metrics according 

to Legarra and Reverter (2018):  

GEBVwhole = µw,p + ßw,p × GEBVpartial + ɛ 

 where GEBVwhole was the GEBVs of 

validation animals with full phenotypic 

information, µw,p was the intercept (bias term), 

ßw,p was the slope (dispersion term), GEBVpartial 

was the GEBVs of validation animals with no 

phenotypic information and ɛ was the residual. 

From the linear model we also reported the 

correlation (ρw,p) for the lactation-sum GEBVs 

of DMI and gRFI. Detailed information on how 

lactation-sum results were calculated can be 

found in Stephansen et al. (2024).  

Results & Discussion 

Figure 1 presents the average phenotypic level 

of EBbody through first lactation. For all breeds, 

the cows undergo a period of negative energy 

balance in early lactation, which becomes 

positive between 5-10 weeks in milk. These 

phenotypic results of EBbody in terms of level 

and pattern throughout first lactation are in line 

with the findings in Holstein and Jersey with 

experimental data (Thorup et al., 2018). 

Variance component from the tested gRFI 

model can be found in Stephansen et al. (2024). 

Genomic validation results, using the Legarra-

Reverter method, are presented in Table 1. To 

the authors’ best knowledge, no studies have 

conducted by-herd cross-validation of GEBVs 

for feed efficiency traits in dairy cattle. We 

observed limited bias for DMI and gRFI in all 

breeds, comparing µw,p to the lactation-sum 

additive variance level. Acceptable ßw,p values 

was found for HOL and RDC, but 

overdispersion was observed in JER. Further 

research is needed for JER on the observed 

overdispersion, when more data is collected. 

Moderately high ρw,p were found across breeds 

and highest for DMI (0.51-0.68) compared to 

gRFI (0.46-0.59). The pattern across breeds 

shows the highest cross-validation correlations 

were obtained for HOL, the breed with most 

cows, while lowest for JER, the breed with 
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Holstein 

Jersey 

Red Dairy Cattle 

Figure 1. Lactation curves of energy balance 

calculated from changes in body reserves as MJ/day. 

Color and line pattern represents different herds. 

smallest number of cows. The results suggest 

that genomic predictions of gRFI in herds with 

no phenotypic information can provide reliable 

GEBVs that can be used to generate genetic 

gain for feed efficiency.  

This study aimed to validate the effect of 

GEBVs for gRFI in herds with no phenotypic 

information. However, it could be emphasized 

that not all phenotypic information would be 

missing, such as phenotypic information on 

milk production from a test-day recording 

scheme and BW records from some herds with 

milking robots or other measuring techniques  

(Lidauer et al., 2019). Future research should 

aim to investigate the effect of not having all 

phenotypic information missing in a herd cross-

validation study, but as well validate the effect 

of missing information at different life stages, 

such as very young animals before first mating 

and only phenotypic information in very early 

lactation used for extension of the lactation. 

This can potentially be valuable information for 

management and breeding decisions on dairy 

farms, but as well for the breeding companies. 

Table 1: Results from Genomic Legarra-Reverter 

validation using a herd cross-validation scheme for 

primiparous Nordic breeds. HOL = Holstein, JER = 

Jersey, RDC = Red Dairy Cattle, DMI = Dry Matter 

Intake, gRFI = genetic Residual Feed Intake, µw,p = 

intercept (bias term), ßw,p = slope of regression 

(dispersion term), ρw,p = correlation between 

genomic breeding values with whole and partial 

phenotypic information for validation animals. 

Trait HOL 

Estimates 

JER RDC 

DMI 

µw,p -0.36 3.64 -1.15

ßw,p 0.92 0.75 0.96

ρw,p 0.68 0.51 0.66

gRFI 

µw,p 0.34 1.69 -2.00

ßw,p 0.87 0.69 0.85

ρw,p 0.59 0.46 0.54

Conclusions 

We aimed to evaluate gRFI genomically and 

test the feasibility of incorporating a novel 

energy sink trait for changes in body energy for 

Nordic primiparous cows, using data from the 

3D camera-based system CFIT and the DCRC 

research herd. The genomic validation results 

show limited bias, and acceptable dispersion of 

predicted breeding values for HOL and RDC. 

However, overdispersion of predicted breeding 

values was observed in JER. Correlations 

between GEBVs from whole and partial 

datasets of validation cows, shows moderately 

high (0.46-0.59). These results show that 

selecting for gRFI GEBVs are expected to 

71



INTERBULL BULLETIN NO. 60. 20-21 May 2024, Bled, Slovenia 

provide genetic gain of feed efficiency in other 

dairy herds. 
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Abstract 

Clinical mastitis (CM) is a disease which causes great losses to the dairy industry. Due to the low 

incidence of CM and its discrete nature, somatic cell scores (SCS), which are measured on a regular 

basis, are often included in genetic evaluation. As such, determining the genetic architecture of udder 

health traits at different risk stages is important. Thus, the objectives of this study were to estimate 

variance components for (i) CM events at two risk stages (early and late lactation) and at three lactations, 

and for (ii) SCS at three lactations. Data consisted of CM and SCS records for Holstein (HOL), Jersey 

(JER), and Red dairy cattle (RDC) cows. For CM, each risk period of each lactation was considered as 

a correlated trait, and for SCS each lactation was considered as a separate trait modelled using random 

regression. The genetic component was modelled using sire information (sire model). Variance 

components were estimated using Monte Carlo expectation-maximization residual maximum 

likelihood. Mean CM incidence ranged from 3.5% to 13.2% for HOL, from 5.6% to 13.6% for JER, and 

from 3.10% to 10.9% for the RDC breed. Combined heritability of CM was 5.4%, 6.2%, and 6.3% for 

HOL, JER, and the RDC breed, respectively. Heritability estimates for individual lactations and periods 

ranged from 0.73% to 3.48% for HOL, 1.11% to 2.82% for JER, and 1.62% to 3.39% for RDC. In 

addition, genetic correlations among CM traits ranged from 0.28 to 0.95, from 0.32 to 0.98, and from 

0.44 to 0.93 for the HOL, JER, and RDC breeds, respectively. On the other hand, the combined 

heritability of SCS of 305 days in milk and for 1st, 2nd, and 3rd lactations were 0.14, 0.17, and 0.19 for 

the HOL breed, 0.17, 0.18, and 0.16 for the JER breed, and 0.18, 0.19, and 0.20 for the RDC breed. 

Genetic correlations for SCS among lactations were high (> 0.80) for all breeds. Furthermore, genetic 

correlations between CM and SCS traits ranged from 0.41 to 0.78 for HOL, from 0.29 to 0.69 for JER, 

and from 0.27 to 0.66 for RDC. Overall, the heritability estimates for traits related to udder health, 

including CM and SCS was low or moderate for all the breeds considered. On the other hand, genetic 

correlations among CM traits, and among SCS traits were moderately high to high.  

Key words: Udder health, heritability, genetic correlations 

Introduction 

Clinical mastitis (CM) is a costly disease 

affecting dairy cattle, causing not only direct 

losses due to a reduced production and early 

culling of affected cows, but also due to changes 

in management necessary for the treatment of 

affected cows (Rollin et al., 2005). The risk of 

clinical mastitis is not constant throughout the 

life of an individual, but instead is greater at the 

beginning of the lactation and increases for 

latter lactations, as compared to the first 

lactation (Valde et al., 2004). As such, trait 

definition should properly reflect these risks. 

 Due to the binary nature of CM, variance 

component estimation may be challenging. In 
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addition, depending on management and 

environmental conditions, the incidence of 

clinical mastitis may be low such that many 

records may be necessary for estimation of 

variance components. On the other hand, 

somatic cell scores (SCS) are regularly 

recorded and may provide additional 

information for estimation of variance 

components related to udder health (Nash et al., 

2000). 

 Due to the interest in efficiently using the 

joint reference population, EuroGenomic 

member countries have agreed to harmonize 

traits and adopt the “gold standard” definition 

of CM traits which identifies early (up to 60d) 

and late (> 60d) risk periods for each lactation. 

Thus, the objective of the current work was to 

estimate variance components, including 

heritability and genetic correlations for (i) early 

and late risk periods for CM at three lactations, 

and for (ii) SCS at three lactations for the 

Holstein (HOL), Jersey (JER), and Red dairy 

cattle (RDC) breeds. 

Materials and Methods 

Data 

Data for the HOL and RDC breeds were 

sampled from herds in Sweden, while for the 

JER breed were sampled from herds in 

Denmark. For all breeds phenotypic records 

were considered starting in 2010, and herds 

with a minimum of 20 and a maximum of 100 

first year calves were included in the analyses.  

Records corresponding to 68,422, 64,194, 

and 71596 HOL, JER, and RDC cows, 

respectively, were included. These cows were 

sired by 2159, 986, and 1258 bulls for the HOL, 

JER, and RDC, respectively. Mean CM 

incidence ranged from 3.50% to 13.20% in 

HOL, from 5.65% to 13.58% in JER, and from 

3.11% to 10.86% in RDC. The largest incidence 

of CM was observed at the late period of the 

third lactation. As part of the EuroGenomic trait 

harmonization strategy, CM records were 

transformed into Snell scores (Snell, 1964). 

Mean SCS (in logarithmic scale) was 4.04, 4.40, 

and 4.70 for HOL, 4.19, 4.32 and 4.49 for JER, 

and 4.07, 4.41 and 4.71 for RDC. 

Model 

For CM, six traits were included consisting of 

the two risk periods defined earlier for each of 

three lactations. In addition, one SCS trait was 

defined for each lactation and analyzed with a 

multi-trait random regression model. All nine 

traits were analyzed using a multi-trait linear 

mixed model. For CM, fixed effects included 

herd-year and age while for SCS a fixed 

lactation curve was also included. Regression 

effects for both CM and SCS traits included 

heterosis, recombination loss, and inbreeding.  

Random effects for both CM and SCS traits 

included a sire and a permanent environmental 

effect, both of which were modeled using 

random regression. For CM, only an intercept 

was fitted, while SCS was modeled using a 

quadratic Legendre polynomial (intercept, 

linear, and quadratic) plus an exponential 

(Wilmink) term. For the sire effect, pedigree 

information was pruned to four generations. 

 Variance components corresponding to the 

nine traits defined earlier were estimated using 

the Monte Carlo Expectation Maximization 

REML algorithm in MiX99 (Vuori et al., 2006). 

Results & Discussion 

Overall, estimates of heritability were low 

(Table 1), ranging from 0.74% to 3.48% for the 

early and late period of the first and third 

lactation, respectively, in the HOL breed. 

Heritability in the JER breed was slightly lower 

overall and remained consistent across periods 

and lactations ranging from 1.11% to 2.82%, 

while the RDC was similar to the HOL ranging 

from 1.62% to 3.39%. These estimates 

resemble those reported by Negussie et al. 

(2011) for first lactation in Finnish Ayrshire. 
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Table 1. Heritability (%) for CM traits at three 

lactations and two risk periods (early, late) in the 

HOL, JER, and RDC breeds.  

Breed Lactation Early Late 

1 0.74 1.24 

HOL 2 1.38 2.08 

3 1.43 3.48 

1 1.11 1.22 

JER 2 1.38 2.32 

3 1.51 2.82 

1 1.62 1.13 

RDC 2 1.29 2.61 

3 1.61 3.39 

Genetic correlations among CM traits 

ranged from 0.35 to 0.95 for the HOL, 0.33 to 

0.98 for the JER, and from 0.47 to 0.91 for the 

RDC. Genetic correlations were, in general, 

larger for subsequent risk periods. On the other 

hand, phenotypic correlations were low for all 

breeds. 

Heritability for SCS traits, as a function of 

days in milk, ranged from 0.05 to 0.12 for the 

HOL, from 0.04 to 0.13 for the JER, and from 

0.07 to 0.14 for the RDC (Figure 1). Overall, the 

largest estimates of heritability were found in 

the third lactation. Genetic correlations among  

Figure 1. Heritability of SCS as a function of days in 

milk for HOL, JER, and RDC at three lactations. 

daily SCS were high within a lactation, ranging 

from 0.79 to 0.99, and decreased slightly across 

lactations ranging from 0.59 to 0.84. 

In general, combined CM heritability was 

about 6% for all three breeds, while the 305-d 

SCS heritability ranged from 14% to 21% for 

all breeds (Table 2). Genetic correlations 

among 305-d SCS traits were high and ranged 

from 0.84 to 0.98. On the other hand, 

phenotypic correlations for those traits were 

smaller, ranging from 0.18 to 0.51. 

Genetic correlations between combined CM 

and 305-d SCS were moderate to large and 

increased with each lactation (Table 2). For the 

HOL these ranged from 0.61 to 0.74, for the 

JER they ranged from 0.43 to 0.63, and for the 

RDC they ranged from 0.47 to 0.63. Due to the 

magnitude of these genetic correlations, 

information from SCS can be useful for the 

estimation of CM traits.  

Table 2. Heritability (diagonal), genetic correlations 

(upper triangle), and phenotypic correlations (upper 

triangle) for combined CM and 305-d SCS for HOL, 

JER and RDC breeds. 

Breed Trait1 CM SCS1 SCS2 SCS3 

HOL 

CM 0.058 0.147 0.191 0.208 

SCS1 0.614 0.146 0.404 0.321 

SCS2 0.733 0.861 0.172 0.478 

SCS3 0.736 0.836 0.982 0.198 

JER 

CM 0.061 0.108 0.182 0.227 

SCS1 0.433 0.179 0.408 0.328 

SCS2 0.486 0.911 0.188 0.488 

SCS3 0.627 0.851 0.952 0.169 

RDC 

CM 0.064 0.128 0.175 0.191 

SCS1 0.474 0.182 0.443 0.336 

SCS2 0.564 0.913 0.201 0.506 

SCS3 0.632 0.845 0.960 0.215 

1. Combined heritability for CM, and 305-d

heritability for SCS at each lactation.

Conclusions 

Overall, heritability for CM traits was low for 

all breeds but increased for the late period of 

each lactation and was larger for the third 

lactation. On the other hand, heritability for 

SCS traits was larger. Because of this, and due 

to the moderate to large genetic correlations 
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between SCS and CM traits, it would be 

beneficial to include both sets of traits to aid in 

the genetic evaluation of udder health traits in 

the Nordic evaluation.  
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Abstract  

 

Selecting for reduced enteric methane emissions and improved feed efficiency in cattle is of interest. 

These are important traits both considering climate and utilization of feed resources on farm. Before 

genetic selection on new traits can be implemented, a base population with phenotypes on the desired 

trait(s) must be established. This study collected and analyzed data on feed intake, methane emissions, 

and body weight on Norwegian Red dairy cows in commercial dairy farms in Norway. Our goal was to 

estimate genetic parameters and breeding values for the three traits, and to estimate genetic correlations 

amongst them. We also calculated correlations to current breeding indices in Norwegian Red dairy cows. 

The relevant traits were daily dry matter intake (dDMI), average daily body weight (dBW), and average 

daily methane emissions (dCH4). There were 452 055 daily records on 2 074 cows in the dataset. 

Bivariate linear animal repeatability models were used. The model included fixed effects of parity week, 

age at calving, and herd in addition to permanent environmental effects of herd testday, additive genetic 

effects and residual as random effects. The pedigree was traced 8 generations back and contained 18 697 

animals. The estimated heritabilities were 0.29, 0.39, and 0.57 for dDMI, dCH4, and dBW, respectively. 

Standard errors were low (0.04 to 0.05). Genetic correlations among all three traits were significant and 

strong, and ranged from 0.50 to 0.65. The strongest correlation (standard error) was found between 

dDMI and dCH4 of 0.65 (0.10). Positive and relatively strong genetic correlations imply that selection 

for lower level of one trait also will reduce the level of the other two traits. The correlation between the 

breeding values of the three novel traits to current indices from routine genetic evaluations of Norwegian 

Red ranged from (-0.26 to 0.16), and the fertility index had strongest favorable correlation to the three 

traits with -0.19, -0.22, and -0.26 for dBW, dCH4, and dDMI, respectively. This indicate that higher feed 

intake, larger cows and more methane emissions are associated with lower genetic merit for fertility. 

Further research is needed to investigate the consequences of selecting for reduced methane emissions 

or reduced body weight and how this will affect cows’ ability to utilize grass. For Norwegian Red it 

remains to define the feed efficiency trait, but we started to analyze traits that are key ingredients of a 

future feed efficiency trait.   

 

Key words: Novel traits, phenotype on farm, greenfeed, body size, index correlations   

Introduction 

 

Improving feed efficiency and at the same time 

reduce the methane produced by Norwegian 

dairy cows have gained increased focus in 

recent years. Norway is committed to reduce 

greenhouse gas emissions from agriculture by 

55 % of 1990 levels before 2030 according to 

the agreement made between government and 

the farmers organization. Selection and 

breeding for climate friendly cows are 

suggested as one of the most important 

solutions to achieve the reduction goal in the 

climate agreement.  

Norwegian Red (NR) dairy cattle has a 

broad breeding goal, where beef traits are part 

of the breeding goal and weighted in the total 
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merit index (www.norwegianred.com). Before 

we can implement new traits in the breeding 

goal we need knowledge on how feed efficiency 

and enteric methane can be improved and how 

this will affect current traits in the breeding 

program. Direct measurements of feed intake 

and methane phenotypes are costly, despite this 

collecting data on the actual traits are necessary 

as the cost of implementing new traits without 

considering the effect on current breeding goal 

can be more expensive in the long run. Hence, 

Geno have established a project collecting data 

both on daily feed intake, methane, and body 

weight for cows in 14 commercial herds, 

ongoing since 2021.  

Some breeding organizations have recently 

published breeding values for feed efficiency 

traits based on feed intake records from 

commercial herds (CRV 2023, Manzanilla-Pech 

et al. 2023, Viking genetics 2021), while others 

publish breeding values based on phenotypes 

measured at research farms (Jamrozik et al., 

2021). Heritability of feed intake and methane 

traits in Nordic Red dairy breeds range from 

0.18 to 0.20 for feed intake (Bakke and 

Heringstad 2023, Manzanilla-Pech et al. 2023) 

and from 0.22 to 0.44 for enteric methane 

(Chipondro 2024, Wethal et al. 2022), 

respectively. Methane and feed efficiency are 

reported to be genetically correlated with 

estimates ranging from 0.05 to 0.76 (López-

Paredes et al. 2021, Manzanilla-Pech et al. 

2022). In the study by Manzanilla-Pech et al. 

(2022) they reported favorable and positive 

genetic correlations between two definitions of 

feed efficiency with methane intensity and 

methane production in Holstein cows. This 

suggests that genetic selection for both 

improved feed efficiency and reduced enteric 

methane at the same time, is feasible.  

A relatively strong genetic relationship 

between methane production and body weight 

of 0.65 was reported for Holstein cows across-

country (Manzanilla-Pech et al. 2021), and a 

genetic correlation of 0.69 was estimated for 

Nordic Red (Manzanilla-Pech et al. 2023), 

which imply more methane are produced with 

increasing cow size.   

  Body weight is accounted for in some 

definitions of feed efficiency. In RFI, a popular 

way to define feed efficiency in dairy cattle, 

energy sinks used for production, maintenance 

of body weight and loss or gain in body weight 

are usually accounted for (Stephansen et al., 

2021). Hence, collection of longitudinal data on 

cows’ body weight are important for calculating 

individual feed efficiency. Genetic correlations 

between body weight and methane are scarcely 

investigated, and previous studies have reported 

strength and direction of the correlations 

ranging from non-significant, negative, to a 

strong positive correlation (Breider et al. 2019, 

Lassen and Løvendahl 2016, Manzanilla-Pech 

et al. 2021). This suggests that more research 

are needed on how cows body weight might 

affect the other traits. 

Limited research on genetic associations 

between methane, body weight and feed intake 

in Red dairy breeds is published. Therefore, the 

current study aimed to analyze these traits 

genetically based on data from commercial 

herds with NR and examine how they correlate 

with some of the traits in the current breeding 

goal of NR dairy cattle. 

Materials and Methods 

Data 

Data was collected by Geno’s feed efficiency 

project and included records from fourteen 

Norwegian dairy herds with equipment from 

BioControl for individual feed intake recording, 

as well as weight scales from BioControl. In 

addition, were methane data from 25 herds with 

GreenFeed included in the study. We had 

records from GreenFeed from more herds 

because these units were moved during the 

period of data collection. Feed samples of silage 

was collected weekly and feed analyses gave 

information for calculation of daily dry matter 

content of the feed consumed. The dataset had 

data from 2020 to 2024 and a total of 452 055 

observations. The number of cows measured for 

one or more of the traits methane, feed intake, 

or dry matter intake was 2 074.   
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Edits of data 

Before genetic analysis of the novel traits was 

performed, data was checked and edited for 

logical values. Average body weight for six 

parity and lactation stages was calculated, and 

observations within 3 standard deviations of the 

mean was considered a logical body weight 

record for the cow and used in further analyses. 

All records out of this range were excluded from 

the genetic analysis. Records from 6 to 350 days 

in milk were included. Cows had to have a 

minimum of eight days with feed intake data 

and information on both silage and concentrates 

intake in order to be included in the genetic 

analysis. Additional information on birth info 

and calving data was collected from the national 

herd recording system and pedigree information 

used to construct relationship matrix. The 

pedigree was traced eight generations back, and 

cows with a known NR A.I. sire was included 

in the analysis. Lastly, breeding values on 

current established traits from Genos database 

for the routinely breeding value estimation was 

collected. 

  

Traits 

Feed intake was defined as daily dry matter 

intake (dDMI) from both grass (silage) and 

concentrate. Methane production was measured 

as gram per day for each visit in GreenFeed. The 

phenotype for methane was calculated as daily 

average methane emission (dCH4) for each 

cow. Body weight was collected from each visit 

on the scale and the final phenotype included for 

further analysis was the daily average body 

weight (dBW). Descriptive statistics for the 

traits are given in Table 1. Daily dry matter 

intake (dDMI) ranged from 7 to 35.9 Kg, 

Methane (dCH4) from 100 to 799 gram per day 

and daily body weight (dBW) from 400 to 850 

kg. The number of records for each trait 

combination were 3 162 for dDMI and dCH4, 

40 284 for dDMI and dBW, and 49 290 for 

dCH4 and dBW (Table 1). 

 

Table 1. Descriptive statistics of daily dry matter 

intake (dDMI), methane produced (dCH4), and body 

weight (dBW) after editing the data. 

Trait    

 dDMI dCH4 dBW 

Cows, n  557 1 370 1 011 

Mean  

(SD) 

 

20.4  

(4.4) 

418.4 

(104) 

607 

(77) 

Maximum 35.9 799 850 

Minimum 7.0 100 400 

N obs. dDMI  61 321   

N obs. dCH4 3 162 220 932  

N obs. dBW 40 284 49 290 260 132 

 

Statistical model 

Bivariate mixed linear repeatability animal 

models were used to estimate (co)variance 

components and breeding values (EBV). 

Variance components were estimated with 

DMUAI (Madsen and Jensen, 2013). The 

following mixed model was used for all 3 traits: 

 

Y = Herd + Week + Parity/CAge + htd + a + pe + e 

 

where the effect of herd, lactation week, and 

parity and age at calving were fixed effects, 

while the effect of testday within herd (htd), 

additive animal genetic effect (a), permanent 

environment of animal (pe), and residual (e) 

were random effects. 

 Days in milk ranged from 6 to 350 and was 

grouped in 50 classes according to week after 

calving. Age at first calving and parity were 

merged in contemporary groups due to limited 

records in the tails of the dataset. For dDMI we 

grouped first parity cows in six contemporary 

groups according to their age in months at 

calving: ≤ 22, 23, 24, 25, 26, and ≥ 27, while 

second parity and third or later parities were in 

two separate groups. For dCH4 age at first 

calving were grouped as ≤ 21, 22, 23, 24, 25, 

26, 27, and ≥ 27 while parity 2 and ≥ 3 was in a 

separate group. For dBW age of calving in first 

and second parity was in different groups, while 

cows in parity ≥ 3 were in one group. The 

pedigree was traced 8 generations back and 

contained 18 697 animals. A relationship matrix 
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(A) was constructed assuming no inbreeding 

between animals and without genetic groups for 

animals with unknown parents.  

 

Correlations between breeding values 

We calculated the spearman correlations 

between EBV for the novel traits in this study to 

other traits in the breeding goal of NR. For the 

cows with phenotypes on dDMI, dCH4, and 

dBW correlations between their estimated 

EBV’s and indexes included in routine genetic 

evaluations of NR were calculated.  

 

Results and Discussion 

The phenotypic mean (standard deviation, SD) 

for dDMI and dBW was 20.3 (4.4) and 607 (77) 

kg per day, respectively. For dCH4 the mean 

(SD) was 418.4 (104). The phenotypic 

distribution for dBW (Figure 1) did not follow 

a perfect normal distribution. This can be 

explained by different mean weights for cows in 

first and second parity compared to older cows.  

 

 
 

Figure 1. Phenotypic distribution of daily body 

weight for 1 011 Norwegian Red cows in 

commercial herds. 

Body weight can vary a lot between two 

visits and high standard deviation is expected. 

Body weight is largely influenced by time from 

eating, milking, and drinking before weighing. 

The cows were either weighed in the 

concentrate feeding station, or before they 

entered or after they left the milking unit. 

Current results are the first to report 

longitudinal records on feed intake, body 

weight and methane in commercial herds with 

NR. The average dBW was higher than the 

average body weight reported to be 557 kg for 

NR cows in a previous study by Wallén et. al 

(2018). However, their study was from one 

research facility at the Norwegian University 

for Life Sciences and might not be 

representative for the population as a whole.  

 

Variance components  

There were significant genetic variation for all 

three traits, and the variance components 

differed from zero. Estimated variance 

components are given in Table 2.  

Table 2. Variance components (standard errors), 

heritability and repeatability for daily dry matter 

intake (dDMI) (kg), daily methane (dCH4) (gram), 

and daily body weight (dBW) (kg) 

Variance 

components 

   

 dDMI dCH4 dBW 

 Estimate 

(SE) 

Estimate 

(SE) 

Estimate

(SE) 

Herd-testday 

(σ2
htd) 

4.4 

(0.2) 

 

1891.7 

(28.5) 

836.5 

(17.2) 

Additive  

(σ2
a)  

4.7 

(0.9) 

 

3971.9 

(419.3) 

3057.5 

(374.6) 

Permanent 

(σ2
pe)  

1.5 

(0.6) 

 

522.6 

(272.3) 

911 

(245.5) 

Residual 

(σ2
e)  

5.6 

(0.02) 

 

3707.4 

(11.5) 

540.8 

(1.5) 

Repeatability* 0.38 0.45 0.74 

Heritability** 0.29 

 

0.39 

 

0.57 

*  r  = (σ2
a + σ2

pe ) /(σ2
a + σ2

pe + σ2
htd +σ2

e) 
** h2 = σ2

a / (σ2
a + σ2

pe + σ2
htd +σ2

e) 

Heritability of dDMI was 0.29 (0.05) which 

is larger than the estimate from previously 

analyses of the trait in a univariate model 

(Bakke and Heringstad, 2023). The heritability 

of dry matter intake is in line with results 

reported in Holstein (Li et al. 2016). Heritability 

of daily methane production on 0.39 (Table 2) 

corresponds with what Wethal et al. (2022) 

estimated based on a subset of the data used 

here. Body weight had the highest heritability of 

0.57, and this is comparable to heritability 
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estimates for body weight in Holstein from 

another study on using electronical weight 

measurements from scales (Toshniwal et al., 

2008). 

Our results confirms that significant genetic 

variation for dry matter intake, body weight, 

and methane production in NR dairy cattle 

exists. The relatively high heritabilites of dDMI, 

dCH4, and dBW are promising for the further 

work of defining feed efficiency in NR. The 

repeatabilities for dDMI and dCH4 was low 

compared to dBW, we need to find good 

solutions to improve repeatability for these 

traits. Good quality controls of data are 

important, and filtering and editing of data at 

feed bin level, testday level or cow level is 

important in order to improve the 

repeatabilities.  

 

Genetic correlations 

The genetic correlations between the traits were 

strong and positive, ranging from 0.50 to 0.65 

(Table 3). The highest correlation was between 

dDMI and dCH4. 

 

Table 3. Estimated genetic correlations between 

daily dry matter intake (dDMI), average daily 

methane (dCH4), and body weight (dBW) in 

Norwegian Red cows. Standard errors of 

correlations in parenthesis. 

Genetic correlations 

Trait  dDMI dBW 

dCH4 

 

0.65 

(0.10) 

0.50 

(0.09) 

 

dBW 

 

0.59 

(0.11) 

 

 

Our results for dDMI and dBW are comparable 

with what Manzanilla-Pech et al. (2023) 

reported in Nordic Red and Holstein cattle who 

estimated correlations from 0.58-0.65 with 

phenotypes from 3D-cameras. Genetic 

correlation between dCH4 to dBW and dDMI 

are a little higher compared with what Breider 

et al. (2018) estimated. The direction and level 

of the genetic correlations was logical. Body 

weight (adult), methane production, and dry 

matter intake can be reduced when selection 

pressure is put on one of the traits. Our results 

support that the level of methane production and 

feed intake will be reduced if selecting for lower 

body weight. 

 

Fixed effects 

The significance of effects included in our 

models were tested. For all 3 traits there was a 

significant effect of weeks in milk, parity and 

age at calving. For dDMI and dCH4 the fixed 

effect solutions for lactation week followed a 

lactation like curve, as illustrated for dDMI in 

figure 1, with largest effect around peak 

lactation.  

 

Figure 1. Best linear unbiased estimates of fixed 

effect of lactation week on daily dry matter intake 

for Norwegian Red cows.  

 

For dBW we discovered the opposite pattern for 

the effect of weeks in milk (Figure 2). Here the 

body weight drops after calving, before 

increasing almost linearly throughout the 

lactation. Cows are losing weight after calving 

for biological reasons and on average 20 kg of 

weight loss are within the first 7 weeks of the 

lactation. The phenotypic change of body 

weight throughout the lactation showed a 

different curve for different parities (not 

shown). 
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Figure 2. Solution of fixed effect of lactation week 

on body weight (Kg) for Norwegian Red cows. 

 

Breeding values estimation 

The EBVs for dDMI ranged from -4.01 to 6.49 

kg dry matter per day (±1.5). For dCH4 the 

EBVs ranged from -124.5 to 150 gram per day 

(± 40.5), for dBW from -178. 5 to 190.9 kg of 

body weight. There was a large variation in 

EBVs for alle tree traits as illustrated for dBW 

in figure 3. This shows the differences between 

animals with high and low breeding values.  

 

Figure 3. Breeding values (EBV) for body weight in 

kg for 1 960 Norwegian Red cows. Standards error 

(SE) illustrated with blue bars. EBVs are sorted from 

lowest to highest (x-axis) and illustrated with EBV 

+/- SE (y-axis). 

 

Index correlations 

Correlations between EBV for dDMI, dCH4, 

dBW and indexes for traits in the routine genetic 

evaluations of NR are given in table 4. In 

general correlations were low and ranged from 

-0.26 to 0.14 for dDMI, -0.22 to 0.14 for dCH4, 

and from -0.19 to 0.14 for dBW. Fertility came 

out as the sub-index with highest correlation to 

the EBVs for all the 3 analysed traits. The 

correlation was negative from -0.19 to -0.26, 

indicating higher EBVs are associated with 

lower genetic merit for fertility i.e. larger cows, 

with higher feed intake and more methane will 

have poorer fertility. The weak positive 

correlation between EBVs for dDMI and dCH4 

to milk index (0.09-0.14) indicates that higher 

yielding cows tend to eat more and produce 

more methane.  

 

 

Table 4. Index correlations to daily dry matter intake 

(dDMI), methane (dCH4), and body weight (dBW) 

in Norwegian Red cows. 
Trait 

(index) dDMI dCH4 dBW 

Milk yield 0.14 

(<.001) 

0.09 

(<.001) 

-0.00 

(0.96) 

Fertility -0.26 

(<.001) 

-0.22 

(<.001) 

-0.19 

(<.001) 

Udder 

health 

-0.10 

(<.001) 

-0.14 

(<.001) 

-0.13 

(<.001) 

Milk 

fever 

0.13 

(<.001) 

0.14 

(<.001) 

0.16 

(<.001) 

Mastitis -0.10 

(<.001) 

-0.08 

(<.001) 

-0.4 

(0.05) 

Claw 

health 

-0.11 

(<.001) 

-0.11 

(<.001) 

-0.15 

(<.001) 

Ketosis 0.05 

(0.03) 

0.06 

(<.01) 

0.13 

(<.001) 

Carcass 0.00  

(0.1) 

0.07 

(<.01) 

0.14 

(<.001) 

Total 

Merit 

-0.04 

(0.07) 

-0.07 

(.001) 

-0.13 

(<.001) 

 

 

Correlations between EBVs and the current 

total merit index (TMI) for NR were slightly 

negative for both dCH4 (-0.07) and dBW (-

0.13). Negative correlation indicates lower TMI 

with increased genetic potential for more dry 

matter intake and more methane produced 
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because the EBVs were not standardized. For 

dDMI the correlation to TMI was not significant 

different from 0.  

We need estimates of genetic correlations to 

other traits before we can start selecting for feed 

efficiency or methane. It is important to have a 

make good decisions when defining feed 

efficiency and methane in the breeding goal. 

More research is needed to understand the 

genetic relationship between methane and feed 

efficiency traits. A definition of feed efficiency 

considering body weight changes, energy intake 

(from grass and silage versus concentrate), and 

milk production will be investigated further for 

the NR population. We aim to balance feed 

efficiency, climate effects, production, health 

and fertility in a sustainable breeding goal for 

NR. 

 

Conclusions 

 

Genetic variation for traits considered important 

for feed efficiency in NR exists. The new traits 

dDMI, dBW, and dCH4 measured in 

commercial dairy farms are genetically 

correlated. The results are promising for the 

further work on feed efficiency as a new trait to 

be included in routine genetic evaluations of 

NR.  
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Abstract 

Greenhouse gases emissions from ruminants are one of the causes of climate change. Methane (CH4) 

from dairy cows is a major greenhouse gas and is also associated with the energy use efficiency in 

dairy cows. This study aimed to use data of CH4 emissions (PME, g/d) predicted using the recorded 

milk mid-infrared (MIR) spectra to develop a genomic evaluation system for CH4 of Holstein cows in 

the Walloon region of Belgium. The preliminary relationships among predicted CH4 (PCH4, defined as 

the estimated breeding value for PME), expected CH4 (ECH4, estimated based on production traits), 

residual CH4 (RCH4) [defined as PCH4- ECH4] and MACE traits and local indices were also 

investigated. The data of PME predicted between 2007 and 2023 on Walloon Holstein cows were used. 

The number of used test-day records (cows) was 2,129,225 (319,301), 1,675,056 (250,707), 1,184,377 

(178,882) for the first, second, and third lactation, respectively. Genotypic data on 28,317 SNPs were 

available for 18,378 (3,887 sires) animals. The EM-REML method was employed to estimate the 

variance components. Mean (SD) daily PME per cow was 324 (68) g/d, 353 (71) g/d, and 367 (73) g/d 

for the first, second, and third lactation, respectively. Mean (SD) heritability estimates for daily PME 

were 0.13 (0.04), 0.13 (0.04), and 0.14 (0.04) in the first, second and third lactation, respectively. The 

average reliability of PCH4 for the selected bulls was 70% and ranged from 51% to 98%. The 

corresponding value for RCH4 was 71% and ranged from 50 to 98%. The ECH4 was estimated for 

1,170 selected international sires using available GEBV of milk, fat, and protein yields as:  

ECH4 = b1GEBVMY + b2GEBVFY + b3GEBVPY. The Pearson correlation of PCH4 and RCH4 was 0.83. 

PCH4 was correlated with production traits (from 0.16 to 0.51) while RCH4 was independent of them. 

The Pearson correlation among PCH4 with MACE traits and local indices ranged from 0.05 to 0.45, 

while the results of RCH4 ranged from -0.01 to 0.14. Our results suggest that an efficiency CH4 trait 

could be incorporated into our current genomic evaluation systems, but our results also showed that 

definitions of methane efficiency solely on production traits can be dangerous. 

Key words: Methane production, mid-infrared spectroscopy, single-step genomic evaluation 

Introduction 

Emissions of greenhouse gases (GHG) such as 

carbon dioxide (CO2), methane (CH4), nitrous 

oxide (N2O), and halocarbons are considered 

to have a considerable impact on climate 

change (Knapp et al., 2014). Dairy cattle 

production is a significant contributor to the 

global human-induced GHG emissions mainly 

in the form of CH4 (De Haas et al., 2021). 

Each dairy cows emits between 60 and 160 kg 

of CH4 per year (Hristov et al., 2013). The 

produced CH4 is a part of feed energy that is 

not metabolized by the animal for productive, 

reproductive or maintenance purposes and the 

majority is eliminated in the atmosphere by 
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eructation and respiration. It has been reported 

that between 2 and 12% of the total gross 

energy intake in dairy cows is lost in the form 

of CH4 (Johnson and Johnson, 1995, Boadi and 

Wittenberg, 2002, Benchaar and Greathead, 

2011). Therefore, next to the environmental 

impact, methane production has a negative 

effect on energy use efficiency and may have 

therefore a direct, however not yet clearly 

established, economic value that may be a 

financial incentive for dairy farmers beyond 

carbon taxes or similar potential future 

developments.  

Opportunities for nutritional and microbial 

manipulation to reduce enteric CH4 emissions 

have been extensively investigated in dairy 

cows (Benchaar and Greathead, 2011, Tseten 

et al., 2022). However, genetic selection of 

lower CH4 emitting cows should be added as 

an effective tool to any combination of 

strategies, making a permanent, cumulative 

over generations, and long-term contribution to 

reduce CH4 production from dairy cattle 

(González-Recio et al., 2020, Manzanilla-Pech 

et al., 2022). However, conducting a successful 

genetic selection needs to establish a method to 

measure the trait of interest on many animals 

at low costs. Milk mid-infrared (MIR) spectra, 

currently used to predict various milk 

components, has been proven to be a fast and 

cheap method for predicting the amount of 

daily CH4 produced by individual daily cows 

(Vanlierde et al., 2021) providing an 

opportunity for genetic studies and genetic 

evaluations (Kandel et al., 2017). Although 

MIR-predicted daily CH4 production was 

found to be a heritable trait (Kandel et al., 

2017), it also relates to traits of milk yield and 

milk composition beyond links between daily 

CH4 production and other traits of interest. 

Moreover, the assessment of the best way how 

CH4 should be reported in will need the 

collection of new information. Therefore, the 

primary aim of this report is to report the next 

steps towards the development of a 

collaborative genomic evaluation system for 

residual methane production in Walloon 

Holstein cows, the final aim being the 

development a genomic evaluation system 

using MIR-predicted CH4 and MACE traits. 

 

Materials and Methods 

 

Data 

Data of CH4 emissions (PME, g/d) predicted 

between 2007 and 2023 on Walloon Holstein 

cows using the recorded milk MIR spectra 

were used. Records from days in milk (DIM) 

lower than 5 d and greater than 365 d were 

eliminated. The number of used test-day 

records (cows) was 2,129,225 (319,301), 

1675056 (250,707), 1,184,377 (178,882) for 

the first, second, and third lactation, 

respectively.  

 

Genomic data 

Genomic data was available for 18,378 (3,887 

sires) animals. Non-mapped SNP, SNP located 

on sexual chromosomes, SNP with Mendelian 

conflicts, and those with minor allele 

frequency (MAF) less than 5% were excluded. 

The difference between the observed and 

expected heterozygosity was estimated, and if 

the difference was greater than 0.15, the SNP 

was excluded (Wiggans et al., 2009). Finally, 

genotypic data used consisted in 28,317 SNPs 

located on 29 Bos taurus autosomes (BTA). 

 

Model  

Variance components and estimated (genomic) 

breeding values (G(EBV)) of the animals were 

estimated based on the integration of the 

random regression test-day model (RR-TDM) 

into the single-step GBLUP procedure (SS 

RR-TDM) using a multi-trait model (PME1, 

PME2, and PME3), considering the fixed 

effects HTD and random effects of –herd-

calving-year (HY), animal additive genetic (a), 

permanent environmental (PE), and residual. 

The genomic relationship matrix (G) is 

constructed by VanRaden Method I. 

(VanRaden, 2008), and G is blended with the 

additive relationship matrix (A) assuming that 
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60% of the total genetic variance was 

explained by SNP effects. 

Because of computational demands, genetic 

parameter estimation was performed using six 

different subsets each representing 10% of the 

herds in the dataset. On average, the subsets 

contained 211,325, 162,385, and 113,551 

records from 30,562, 23,932, and 17,002 cows 

in the first, second, and third lactation, 

respectively.  

The EM-REML method was employed to 

estimate the variance components in 

REMLF90, with each of the subsets (Misztal et 

al., 2014). The average GEBV of PME was 

calculated by summing the daily GEBV 

divided by number of DIM. Subsequently, the 

mean of the average GEBV for the first three 

locations was computed (PCH4). Then, sires 

having at least 30 CH4-phenotyped daughters, 

and genomic reliability (GREL) for  

PCH4 ≥ 0.50 were selected for the next 

analyses (n = 1,170). As these sires were all 

also locally evaluated, Multiple Across 

Country Evaluation (MACE), respectively 

local (G)EBV for traditional evaluated and 

reported traits were also available for all these 

sires. 

The expected CH4 (ECH4) was estimated 

for the selected sires using GEBV of milk, fat, 

and protein yields (collected from the Walloon 

genetic evaluations of dairy cattle 

(https://www.elinfo.be/indexEN.html) as: 

ECH4 = b1GEBVMY + b2GEBVFY + b3GEBVPY
 

and the residual CH4 (RCH4) was defined as: 

RCH4 = PCH4 - ECH4. In this study regression 

coefficient b1, b2 and b3 were developed 

directly from the observed covariances 

between (G)EBV. 

Polygenic reliability, calculated based on 

the Effective Daughter Contributions and 

computed using established procedures in 

routine genetic evaluations, was used as a prior 

to estimate GREL. Double-counting due to 

pedigree information was removed (Zaabza et 

al., 2022) and GREL computed implementing 

an approach based on Gao et al. (2023). The 

GREL of RCH4 was calculated using the 

method (selection index) given by VanRaden 

et al. (2018). The Pearson correlations among 

the PCH4 and RCH4 with the selected MACE 

traits and local indices were calculated based 

on the selected sires. The MACE traits 

included udder health (represents the 

opposite SCS), longevity, fertility, direct 

calving ease (DCE), maternal calving ease 

(MCE), and local indices included production 

economic index (V€L), member economic 

index (V€M), capacity economic index (V€C), 

udder economic index (V€P), functional type 

economic index (V€T), functional economic 

index (V€F), global economic index (V€G) 

(https://www.elinfo.be/indexEN.html).  

 

Results and Discussion  

 

Mean (SD) daily PME per cow were  

324 (68) g/d, 353 (71) g/d, and 367 (73) g/d for 

the first, second, and third lactation, 

respectively. Mean (SD) heritability estimates 

for daily PME were 0.13 (0.04), 0.13 (0.04), 

and 0.14 (0.04) in the first, second and third 

lactation, respectively. 

 

 

 
Figure 1: Distribution of 1,170 sires based on 

country of origin. 

 

 

The distribution of the selected sires based on 

the country of origin is presented in Figure 1. 

As Wallonia is importing most of its Holstein 

semen and this from many countries over 100 

bulls were present from major exporting 

countries like USA, NLD, CAN, and DEU. 

Sires from other exporting countries, 

especially including ITA and GBR were less 
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present, still one can speculate that many 

internationally important sires were evaluated. 

The distributions of standardized PCH4 and 

RCH4 for the selected sires are shown in 

Figure 2. The average GREL of PCH4 for the 

selected bulls was 70% and ranged from 51% 

to 98%. The corresponding values for RCH4 

were 50% and ranged from 50 to 98% (Figure 

3). As GEBV for RCH4 was computed 

combing CH4 with relatively reliably evaluated 

production traits (in ECH4), GREL for RCH4 

did not show the loss of reliability that maybe 

one could expect for a residual trait. 

 

 

 
Figure 2: Distribution of standardized GEBV 

for PCH4 and RCH4 (n = 1,170 sires)  

 

 

 

 
Figure 3: Distribution of reliability for PCH4 and 

RCH4 (n = 1,170 sires)  

 

 

 

 
Figure 4: Pearson correlations of PCH4 and RCH4 

with selected traits and indices (n = 1,170 sires). 

 

 

The estimated Pearson correlations among 

PCH4, RCH4, MY, FY, and PY are presented 

in Figure 4. The correlation of PCH4 and RCH4 

was 0.83 showing that a large part of variance 

of RCH4 was not explained by ECH4. PCH4 

was correlated with production traits while 

RCH4 was independent of them as expected by 

its definition. These results were similar to 

those reported by Van Doormaal et al. (2023).  

The Pearson correlations PCH4 with other 

MACE and the local (G)EBV and indices 

ranged from 0.05 to 0.45, while the results of 

RCH4 ranged from -0.01 to 0.14 (Figure 4). 

The correlations of PCH4 with other traits and 

indices were bigger than those results of RCH4. 

It is important to remind that positive 

correlations mean that in the case of a direct 

selection against PCH4, but also RCH4, we 

would lose production (because of its 

definition not for RCH4), udder health, fertility, 

longevity, calving ease and all indices. Even if 

these results should be considered preliminary, 

they indicate that expression of CH4 traits must 

be done be very carefully and the definition of 

methane efficiency solely on production traits 

(Van Doormaal et al., 2023) can be dangerous. 

 

Conclusions 

 

The RCH4 has been defined as an efficient trait 

to be included into genetic selection programs 

for dairy cows. This trait is not associated to 

production levels and has the potential to 

decrease CH4 emissions without impacting 

milk, fat, and protein yields. Our results 

showed that the Walloon genomic evaluation 

system can evaluate many foreign AI sires. 

However, our results also showed that 

definitions of methane efficiency solely on 

production traits can be dangerous. 
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Abstract 

 

Nordic Cattle Genetic Evaluation (NAV) introduced a breed-specific index for Saved Feed in 2020, 

focusing on the maintenance and metabolic efficiency of cows. Maintenance efficiency is based on 

genomic breeding values for metabolic body weight (MBW), for which a multi-step (genomic) 

evaluation was implemented in 2019. The model utilizes body weight and conformation observations 

from Finland and Denmark, but only conformation observations from Sweden. This study aimed to 

enhance the MBW evaluation by including carcass weight (CARW) from all three countries and by 

developing a single-step genomic prediction model. The new model includes three MBW traits and 

two correlated traits: CARW and stature (STA). The data were collected from Danish, Finnish, and 

Swedish Red Dairy Cattle (RDC), Holstein (HOL), Jersey (JER) cows born between 1990 to 2020. 

After data editing, the RDC, HOL, and JER datasets comprised of 2.3 million, 4.3 million, and 0.4 

million records, including 0.9 million, 0.5 million, and 11 thousand MBW observations, respectively. 

The pedigree of RDC, HOL, and JER included 3.9, 7.2 and 0.6 million animals, respectively. Among 

these, 84 232 RDC, 117 845 HOL, and 39 650 JER animals were genotyped since 2009 onwards. To 

develop single-step genomic best linear unbiased prediction (ssGBLUP) models, we applied 

VanRaden method I to construct the genomic relationship matrix, with a residual polygenic proportion 

of 30%. We utilized the ssGTaBLUP method to solve the models. Separate ssGBLUP models were 

developed for each breed, and these models were validated through forward prediction cross-

validation, linear regression of full data breeding values on reduced data breeding values, and 

comparison of pedigree-based and ssGBLUP breeding values. The inclusion of carcass weight data 

substantially increased phenotypic information in all three breeds, resulting in enhanced reliability of 

MBW breeding values. The new ssGBLUP models showed higher validation reliability and better 

predictive ability than the pedigree-based BLUP models. Furthermore, the new models corrected the 

genetic trend of MBW, addressing a previous underestimation in all breeds. Including CARW records 

as correlated observations and applying ssGBLUP models offers a significant improvement for the 

Nordic metabolic body weight evaluations, thereby enhancing the Saved Feed index. 

 

Key words: animal breeding, genomic predictions, carcass weight, saved feed index

  

Introduction  

  

The Saved Feed index of the Nordic Cattle 

Genetic Evaluation (NAV) was integrated into 

the Nordic Total Merit index in 2020. It 

comprises two components: maintenance and 

metabolic efficiency. Metabolic body weight 

(MBW, kg0.75) is the core trait for maintenance 
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feed requirement, while residual feed intake is 

the main trait for metabolic efficiency (Lidauer 

et al. 2019, Stephansen et al. 2021). Each 

breed, including Red Dairy Cattle (RDC), 

Holstein (HOL), Jersey (JER), has its own 

evaluation. The current multiple-trait model 

for maintenance efficiency includes six traits: 

MBW in the first, second, and third parity, and 

the conformation traits stature (STA), chest 

width, and body depth, as correlated indicator 

traits.  

A current challenge is the decreasing 

number of body weight recordings in Denmark 

and Finland, and no body weight (BW) data 

available from Sweden. However, there is a 

substantial amount of slaughter information 

available across the Nordic countries. The 

correlations between carcass weight (CARW) 

and MBW are high, ranging from 0.77 to 0.85 

in RDC (Mehtiö et al. 2021). Additionally, 

CARW has high heritability with estimates of 

0.52 for RDC and 0.37 for Jersey (Mehtiö et 

al. 2021, 2023). These characteristics make 

incorporating CARW information highly 

valuable in the genetic evaluation of MBW. 

The aims of this study were to incorporate 

CARW data into the evaluation of MBW, 

upgrade the current multiple-step genomic 

prediction model to a single-step genomic 

prediction model, and assess the prediction 

ability of the models through validation tests. 

Materials and Methods 

Data 

Phenotypic data and pedigree were obtained 

from the February 2022 NAV Saved Feed 

evaluation. Breeding organizations Faba, 

Växa, and Seges extracted country-specific 

carcass weight data for this study. 

Observations were from the Danish, Finnish 

and Swedish RDC, HOL, and JER cows born 

between 1990 and 2020. The data included all 

available MBW observations (kg), the first 

parity STA observation (cm) from the NAV 

routine conformation evaluation (NAV, 2022) 

and CARW data from the year 2007 onwards. 

The CARW data were further restricted to: a) 

parities 1 to 5, b) 60-550 days after the last 

calving, c) animals aged 24–110 months at 

slaughter, and d) herds with more than three 

CARW records. CARW records deviating 

more than 3 SD from the mean were removed 

as outliers. The BW observations were pre-

processed as described by Lidauer et al. (2019) 

to obtain one MBW observation per lactation. 

After editing, the RDC and HOL data 

consisted of 0.93 and 0.54 million MBW 

observations, respectively. The JER data had 

11 thousand MBW observations. The number 

of phenotypic records is presented in Table 1. 

Table 1. Number of records for metabolic body 

weight in the first three parities (MBW1, MBW2, 

MBW3), first parity stature (STA), and carcass 

weight (CARW) in Red Dairy Cattle (RDC), 

Holstein, and Jersey dairy cows. 

RDC Holstein Jersey 

N N N 

MBW1 521 132 293 237 6 064 

MBW2 318 764 173 686 3 458 

MBW3 93 502 72 766 1 926 

STA 349 329 740 521 301 844 

CARW 686 946 1 740 589 175 636 

Genotype data from February 2022 

included 84k RDC, 117k HOL, and 39k JER 

animals. The genomic data were truncated, 

retaining only the most resent genotyped 

animals from the year 2009 onwards. The 

pedigrees of the RDC, HOL and JER cows 

with observations were pruned for five 

generations, including 3.9, 7.2 and 0.6 million 

animals, respectively. Genetic groups were 

formed by categorizing unknown parents 

within country and breed based on 5-year birth 

year classes, resulting in 182, 202 and 70 

unknow parent groups (UPG) for RDC, HOL, 

and JER, respectively.  

Models 

The pedigree-based Best Linear Unbiased 

Prediction (BLUP) models developed for the 

NAV routine MBW evaluation (Lidauer et al., 

2019) served as the foundation for building the 

single-step genomic prediction (ssGBLUP) 
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models. These multiple-trait models were 

updated by replacing the traits chest width and 

body depth with CARW, resulting in multiple-

trait BLUP models with five traits: MBW in 

the 1st, 2nd, and 3rd parity, first parity STA, and 

CARW. Multiple-trait linear mixed animal 

models for the 1st, 2nd, and 3rd parity MBW and 

STA are detailed in Lidauer et al. (2019). The 

linear model for CARW was as follows: 

 

yijkln = sagePi + catsPj + symk +shyl + an + eijkln, 

 

where yijkln is a CARW observation, sagePi is 

the slaughter age × parity × 5–year period 

interaction, where year periods are constructed 

from the birth years; catsPj is the fixed effect of 

days from calving to slaughter × parity × 5–

year period, again with periods based on birth 

years; symk is the fixed effect of slaughter year 

× month; shyl is the fixed effect of slaughter 

herd × birth year; an is the random additive 

genetic effect of animal, and eijkln is the random 

residual. 

Single-step models were solved with the 

ssGTaBLUP approach (Mäntysaari et al. 

2017). The VanRaden method I (VanRaden 

2008) was used for building the genomic 

relationship matrix by blending the G matrix 

with a 30% residual polygenic proportion. 

Pedigree inbreeding coefficients were 

considered in A-1 and A22
-1. Genetic groups 

were included in the single-step models using 

the partial QP transformation that omitted G-1 

in QP (Koivula et al. 2021).  

For each animal, combined MBW breeding 

values (BV), including estimated breeding 

value (EBV) and genomic enhanced breeding 

value (GEBV), were formed using the BVs 

from the 1st, 2nd, and 3rd parities with 

weighting coefficients of 0.30, 0.25, and 0.45, 

respectively. 

BLUP and ssGBLUP BVs were validated 

using forward prediction cross-validation. For 

the evaluations with reduced data, observations 

from the most recent four years (2016-2020) 

were excluded. Candidate bulls for validation 

were chosen from genotyped bulls born 

between 2013 and 2018 that had an effective 

record contribution (ERC) >1 in the full data 

and ERC=0 (i.e., no daughters) in the reduced 

data. For the cow validation group, genotyped 

cows born between 2015 and 2020, with no 

records in the reduced data (ERC=0) and at 

least one record in the full data (ERC>0), were 

considered as candidate cows. In the validation 

cohort, we had 43 503 RDC cows and 290 

RDC bulls, 75 707 HOL cows and 470 HOL 

bulls and 18 235 JER cows and 150 JER bulls. 

The same pedigree and genomic information 

were used in the reduced data as for the full 

data set evaluations to obtain BVs (either EBV 

or GEBV) for candidates (BVc). Cross-

validation reliability (r2
cv) was calculated as:  

 

r2
cv = corr (DRP, BVc)2 / r2

DRP, 

 

i.e., squared correlation between deregressed 

proofs (DRP) estimated from the full data and 

BVc divided by the average reliability of the 

DRPs. The second statistic applied was the 

linear regression of full data breeding values 

on reduced data breeding values (Legarra and 

Reverter 2018).  

 

Results and Discussion 

 

Results showed that the genetic trend of 

combined MBW is increasing in each breed 

(Figure 1). The current BLUP models 

underestimate the genetic trend for MBW 

compared to the new BLUP or ssGBLUP 

models. The new ssGBLUP models give a 

slightly higher trend compared to new BLUP-

models. This was an expected result because 

the ssGBLUP models incorporate genomic 

information directly, which increases the 

accuracy of estimated breeding values and 

allows to account for genomic pre-selection.  

The cross-validation results are given in 

Table 2. The correlations between candidates’ 

BVc and their future DRP were the highest 

when BVc were estimated with ssGBLUP for 

both bulls and cows in all breeds. On average, 

correlations between candidates’ BVc and their  
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Figure 1. Genetic trends of MBW (G)EBVs by 

birth year in Red Dairy Cattle, Holstein, and Jersey 

cows. Trends of MBW from the single-step model 

(red line), new BLUP model (blue line), and current 

BLUP-model used by NAV (black line) are 

expressed as standardized breeding values for cows 

born between the years 2005-2007. 

 

DRP were 20.0 and 14.0 percentage units 

higher for the single step models compared 

with BLUP models in cows and bulls, 

respectively.   

The optimal prediction of genetic merit of 

young individuals should have a regression  

Table 2. Cross-validation and Legarra-Reverter 

(LR) estimates: Correlation between DRP and BV 

of canidates (r(DRP, BVc)), regression coefficient (b1), 

validation reliability (r2
cv), and coefficient of 

determination (R2) for RDC, HOL and JER bull and 

cow candidate groups by different models. 
  Cross-validation LR 

  r(DRP, BVc) b1 r2
cv b1 R2 

BLUP1 

RDC cows 0.25 1.04 0.19 1.04 0.43 

 bulls 0.63 1.03 0.43 1.03 0.39 

HOL cows 0.19 0.87 0.11 0.92 0.33 

 bulls 0.60 0.88 0.40 0.88 0.36 

JER cows 0.14 0.97 0.09 0.94 0.28 

 bulls 0.46 0.91 0.23 0.98 0.21 

ssGBLUP2 

RDC cows 0.48 1.32 0.73 1.08 0.80 

 bulls 0.76 0.92 0.61 1.06 0.71 

HOL cows 0.36 1.08 0.39 1.00 0.70 

 bulls 0.74 0.85 0.60 0.98 0.67 

JER cows 0.34 1.39 0.51 1.03 0.59 

 bulls 0.61 0.88 0.40 1.08 0.59 
1BLUP = Best Linear Unbiased Prediction 
2ssGBLUP = Single-step Genomic BLUP  

BVc = Breeding Value for candidates 

 

coefficient (b1) of one. In our cross-validation 

of bulls, the b1 estimates obtained using the 

BLUP model were slightly better compared to 

those from the ssGBLUP model (Table 2). 

This difference is likely because our DRPs 

were based on the BLUP model. Using the 

Legarra-Reverter (LR) validation method, all 

b1 values were close to one for both bulls and 

cows in both the BLUP and ssGBLUP models, 

except in HOL. The BLUP model appeared to 

slightly overpredict the future breeding values 

for HOL candidate cows and bulls. 

The validation reliabilities (r2
cv) for the 

BLUP model varied between 0.23 and 0.43 for 

RDC, JER, and HOL bulls, and between 0.09 

and 0.19 for cows (Table 2). In contrast, the 

r2
cv for the ssGBLUP model varied between 

0.40 and 0.61 for bulls, and between 0.39 and 

0.73 for cows. This indicates that, across all 

breeds, the validation reliability was on 

average 18.3 percentage units higher for the 

single-step model in bulls and 41.3 percentage 

units higher in cows. Additionally, using the  

LR method, the coefficients of determination 

(R2) were on average 33.7 percentage units 
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higher for the single-step model in bulls and 

35.0 percentage units higher in cows. These 

results suggest a better predictive ability of the 

model with genomic data. 

Conclusions 

In this study we developed models that include 

carcass weight data as correlated information 

for predicting genomic breeding values for 

MBW. The CARW data significantly 

increased the amount of phenotypic 

information used for the genomic evaluation in 

all Nordic breeds. This, along with the 

development of single-step genomic 

prediction, contributes positively to the 

reliability and unbiasedness of predictions of 

breeding values for maintenance. As a result, 

animals will receive more accurate breeding 

values.  
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Abstract 

Over the past decade, climate change has raised the importance of addressing heat stress in dairy 

cattle. The Temperature-Humidity Index (THI) is a key tool for assessing the animals’ response to 

varying weather conditions, serving as an indicator of heat stress. Studies suggest that higher THI is 

linked to reduced milk production and compromised health. Despite this, little is known about the 

effect of temperature and humidity on methane emissions of dairy cattle. Our study aims to investigate 

the potential impact of temperature and humidity on methane emissions in the Dutch Holstein 

population. We analyzed 132,960 weekly methane concentration (CH4c) records from 7,669 cows 

across 72 commercial farms in the Netherlands spanning from 2019 to 2023. Each methane record was 

paired with weekly THI data computed from meteorological records provided by the Nederlands 

Meteorologisch Instituut (KNMI). Weekly THI values were calculated using the National Research 

Council formula, resulting in indexes ranging between 28 and 72. At the population level, a 

repeatability animal model included fixed effects such as herd-year-season interaction, week of 

lactation, and parity-age of cow at calving interaction (parities = 1, 2, 3, ≥4). Random effects included 

animal additive genetic effects and permanent environment effects. Methane concentrations showed a 

significant increase starting at a THI value of 46. At the individual level, a reaction norm model 

focusing on THI values higher than 46 (THI46+) was implemented. An interaction between animal 

additive genetic effect and THI46+ level using Legendre polynomials of first order was fitted, 

resulting in different aggregate Estimated Breeding Values (EBVs) at different THI46+ values per 

animal. Results demonstrated a significant THI effect (P < 0.001) on CH4c at a population level. 

Estimated aggregated heritabilities at different THI46+ level for  CH4c ranged between 0.11 (at THI 55 

and 56) and 0.50 at THI level 70 (SE=0.01). The permanent environment ratio ranged between 0.19 at 

THI level 70 to 0.35 at THI level 56. Based on the EBV for CH4c at the THI value lower than 46 (that 

is, in a thermo-neutral environment), cows were ranked into top (high emitting animals, n=50) and 

bottom (low emitting animals, n=50) groups. The results revealed that aggregate EBVs for low-

emitting cows tended to increase as THI levels rose, whereas high-emitting cows showed decreasing 

EBVs at higher THI46+ levels. This could potentially impact the selection of CH4 emissions reduction 

strategies in a future affected by climate change (global warming) and/or in countries with different 

temperatures and humidity levels. 

Key words: heat stress, methane emissions, temperature-humidity index. 

Introduction 

Climate change has intensified the need to 

address heat stress in dairy cattle over the past 

decade. The Temperature-Humidity Index 

(THI) serves as a critical indicator of heat 

stress, correlating with reduced milk 

production and compromised health in dairy 

cows (Hammami et al. 2015; Herbut et al. 

2018). Despite these associations, little is 
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understood about how temperature and 

humidity specifically affect methane emissions 

in dairy cattle. Understanding these 

relationships is crucial for developing effective 

strategies to mitigate methane emissions in 

dairy farming, particularly in the context of 

climate change. This study investigates the 

potential impact of temperature and humidity 

on methane emissions within the Dutch 

Holstein population. 

 

Materials and Methods  

 

Data collection 

Methane records 

The data included 7,669 Dutch Holstein cows 

with 132,960 records of CH4 concentration (in 

parts per million, ppm). These records were 

collected in primiparous and multiparous cows 

during 2019 to 2023 in 72 commercial farms in 

the Netherlands. Parities were grouped into 

categories of 1, 2, 3, and 4+, and only records 

up to lactation week 53 were included. 

 

THI records 

Each CH4c record was associated with a 

corresponding weekly THI record computed 

from daily meteorological information 

measured in the closest meteorological station 

to each farm. Twenty-four meteorological 

stations were identified as the closest to the 72 

farms. Daily meteorological records were 

provided by the Nederlands Meteorologisch 

Instituut (KNMI). Weekly THI were computed 

using the National Research Council formula 

as follows:  

 

THI = (1.8*t+32) - (0.55-0.0055*rh) * (1.8*t-

26)                                                                (1)  

 

where t is daily average temperature (in 

degrees Celsius), and rh is the daily average 

relative humidity (in %). Subsequently, THI 

were averaged weekly to match the weekly 

CH4c records. 

 

 

Population-level analyses 

 To evaluate the effect of THI at a 

population level we used the following 

repeatability animal model: 

  

y= Xb +  Zaa +  Zppe + e    (2) 

  

where y is the vector of phenotypes (CH4c); b 

is the vector of fixed effects: herd, year-season 

interaction (n=312), week of lactation (n=54), 

age of cow at calving nested within parity 

(n=4), and THI (n=44); a is the vector of direct 

additive genetic effects;  pe  the vector of 

random permanent environment effects; and e 

is the vector of residual effects. The matrices 

X, Za and Zp are the incidence matrix relating 

observations with the fixed effects, random 

genetic effects, and random permanent 

environment effects. Distributions of the 

random effects are var(a) = Aσ2
 a where A is 

the pedigree relationship matrix and σ2
 a, and 

var(pe) = Iσ2
pe, where I is an identity matrix of 

an order equal to the number of observations 

and σ2
pe is the residual variance., and var(e) = 

Iσ2
e, where I is an identity matrix of an order 

equal to the number of observations and σ2
e is 

the residual variance. The pedigree included 

98,324 individuals, with maximum 14 

generations. The estimation of the variances 

components and of the different effects was 

performed with ASReml 4.0. 

 

Individual level analyses 

Based on the results of the previous analyses at 

a population level, we determined that CH4c 

increased from a THI value of 46. Therefore, a 

reaction norm model was used to evaluate the 

effect of THI values higher than 46 (THI46+) at 

an individual (cow) level. To estimate variance 

components and EBV for CH4c associated to 

heat stress the following model was used: 

 

y = Xb + QZa aT + Zp pe + e                      (3) 

 

where b is the vector of fixed effects as 

defined for Model (2), except that THI level 

classes have been replaced by three THI group 
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classes (that is, low, mid, and high, and 

defined below); aT is a vector of random 

regression coefficients for additive genetic 

effects; Q is the covariate matrix for first-order 

Legendre polynomials for THI defined below; 

and other vectors and matrices are the same as 

for Model (2). 

The group “low” includes THI values 

between 28 and 43 , the group “mid” between 

43 to 58 and the group “high " between 58 to 

72.  

In the random terms an interaction between 

animal additive genetic effect and THI values 

≥46) was modelled using first-order Legendre 

polynomials as followed:  

 

T =      0         if THI  ≤ THI-TH                      (4) 

  THI-THI-TH      if THI  > THI-TH 

 

Where, THI is the THI value, and THI_TH is 

the THI (heat) threshold (46). In our case this 

could be represented as: 

THI46+ = THI46+n – 46        

 

Genetic parameters estimation 

Estimated (co)variance components of the 

random regression were used together with 

Legendre polynomial coefficients to calculate 

genetic variances and covariances for each 

THI46+ level using the methodology described 

in Fischer et al. (2004): 

 

G = Φ K Φ′          (5) 

 

where G is the genetic variance-covariance 

matrix within trait per THI46+ level (matrix of 

size n × n), Φ is a matrix of order l × n, which 

contains l orthogonal polynomial coefficients 

for each of the traits through n THI46+ levels; K 

is a matrix of order l x l , which contains the 

estimated covariance function describing the 

genetic variance components for the random 

regression coefficients. Where n = 23 THI46+ 

levels (47-70) and l = 2 (2 coefficients, one for 

the intercept and one for the lineal regression). 

Phenotypic variance, heritabilities and 

permanent environmental ratio were estimated 

as follows: 

 

σ2 P 2 = G + σ2
pe + σ2

e        (6) 

 

h2 = G /  σ2 P               (7) 

 

pe2 = σ2
pe /  σ2 P          (8) 

 

where σ2 P is the phenotypic matrix of (co) 

variances, G is the genetic matrix of 

(co)variances, σ2
pe is the (scalar) variance for 

permanent environment and σ2
e is (scalar) the 

residual variance; h2 is the heritability and pe2 

is the permanent environment ratio. 

 

Estimated breeding values per THI unit 

Based on the EBV for CH4c in a thermo-

neutral conditions (that is THI<46), cows were 

ranked into top (high emitting animals, n=50) 

and bottom (low emitting animals, n=50). The 

purpose of this ranking was to observe how 

low-emitting and high-emitting animals 

perform under heat stress (higher THI values). 

Subsequently, their EBV were plotted at 

different THI46+ levels. 

 

Results and Discussion  

 

Among the 72 herds and between 2019 and 

2023, Temperature-Humidity indexes varied 

between 28 and 72 with an average of 50. 

Descriptive statistics for CH4c (for all and per 

THI group) are presented in Table 1. The mean 

CH4c was 572 ppm, and the mean per THI 

group was lower for the group with high THI 

compared with the group with low THI. 

However, the standard deviations (SD) were 

high. Methane concentration averages were 

higher than those reported by van Breukelen et 

al. (2022; in a subset of this population), 

Sypniewski et al. (2021) in Polish Holstein 

cows and Manzanilla-Pech et al. (2022) in 

Danish Holstein cows.  

 

99



INTERBULL BULLETIN NO. 60. 20-21 May 2024, Bled, Slovenia 

 

 

Table 1. Descriptive statistics for CH4 concentration 

(ppm) for the whole population, and per group of 

THI value. 

THI 

group 

THI 

range 

No. obs No. 

animals 

Mean SD 

Whole 28-72 132,960 7,669 572 294 

Low 28-43 27,960 5,614 597 312 

Mid 43-58 83,101 7,332 571 296 

High 58-72 30,511 5,602 561 284 

 

Population level analyses 

Figure 1 shows the effects on THI level on 

CH4c based on the solutions of Model 2. A 

positive effect on CH4c is observed with 

increasing THI values starting at THI level of 

46. Therefore, this level was used as a heat 

threshold (THI46+)  as suggested by 

McWhorter et al. (2023) for the individual 

level analyses. However, McWhorter reported 

a higher heat threshold (69 THI), this could be 

due to geographical and climate differences. 

Figure 1. Effect of THI level on CH4 

concentrations.  

Genetic parameters for CH4c 

Estimated (co)variance components of the 

random regression were used together with 

Legendre polynomial coefficients to calculate 

genetic variances and covariances for each 

THI level after the heat threshold (THI46+). 

Heritabilities for CH4c at different THI46+ level 

are presented in Figure 2. Heritabilities ranged 

between 0.11 (at THI 55 and 56) and 0.50 at 

THI level of 70.  There h2 agree with 

heritabilities for CH4c in the literature and 

ranging between 0.1 to 0.3 (Difford et al. 2020, 

Sypniewski et al. (2021) and van Breukelen et 

al. (2022). 

 

 
 

Figure 2.  Heritabilities for CH4 concentrations per 

THI level (from the heat threshold defined at a THI 

value equal to 46). Average standard error was 

0.01. 

 

Genetic correlations for CH4c between 

different THI46+ levels are presented in Figure 

3. Genetic correlations between consecutive 

THI46+ levels are high as expected. However, 

as the THI46+ levels become more distant from 

each other, the correlations can approach zero 

(e.g., between THI 47 and THI 59) or show 

moderate negative correlations (e.g., -0.5 

between THI 46 and THI 70). This negative 

correlation could potentially impact the 

selection of CH4 emissions reduction strategies 

in a future affected by climate change (global 

warming) and/or in countries with different 

temperatures and humidity levels (e.g., 

Mediterranean vs. Scandinavian 

countries).

Figure 3. Genetic correlations for CH4c between 

different THI46+ levels 

 

Estimated breeding values per THI unit 

When plotting aggregate EBVs of the 50 top 

animals and 50 bottom animals at different 

THI46+ levels (Figure 4), the bottom animals 

showed an increased CH4c effect at higher THI 

levels, whereas the top animals reduced their 

CH4c effect. McWhorter et al. (2023) reported 

a study where 100 animals with high genetic 
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merit for milk production and 100 animals 

with high genetic merit for heat tolerance were 

plotted at different THI levels. The first group 

experienced a slight decrease in production 

(Holstein) and a more drastic decrease in 

production (Jersey) at higher THI levels. In 

contrast, the second group increased their 

production at higher THI levels. However, in 

this study, the 50 top and bottom animals were 

chosen based on their EBV at the THI46+ level, 

which represents the intercept, and were 

further plotted at different THI levels. 

Figure 4. EBV for CH4c for top 50 (high emitting) 

and bottom 50 (low emitting) cows at different 

THI46+ levels 

Conclusions 

This pilot study aimed to assess the impact of 

THI on CH4 emissions (concentration), and 

revealed significant findings that is the bottom 

animals showed an increased CH4c effect at 

higher THI levels, whereas the top animals 

reduced their CH4c effect. This knowledge 

could be pivotal for future selection strategies 

aimed at reducing CH4 emissions, taking into 

account genotype by environment interactions. 

Additionally, further validation through multi-

trait analysis, including milk production, is 

recommended. This would allow us to form 

the groups with animals based on their 

methane emissions at the same production 

level e.g. high and low emitting animals at a 

high milk production level. 
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Abstract 

Dairy cows could face several environmental disturbances during a lactation like weather conditions 

or changes in roughage quality, resulting in reduced functioning. Cows which are minimally affected 

by disturbances and/or quickly recover are the preferred cows. Reduced functioning of dairy cows is 

measured as the difference in daily milk yield and the expected milk yield for that day. This is called 

deviation. The expected daily milk yield is estimated with polynomial quantile regression based on all 

milkings of a cow during a lactation. Based on the deviations, two resilience traits are calculated: 

stability and recovery. Stability is the natural logarithm of the variance (LnVar) from all deviations 

during a lactation, recovery is the autocorrelation (Rauto) between all deviations during a lactation. A 

lower LnVar indicates less affection by disturbances, thus more stability, a lower Rauto indicates 

quicker recovery. Breeding values are estimated for stability and recovery for lactation 1, lactation 2 

and lactation 3 and higher (3+). Heritability (h2) is 0.09, 0.06 and 0.09 for stability and 0.07, 0.04 and 

0.04 for recovery for respectively lactation 1, 2 and 3+. Genetic correlations between different parities 

for stability ranges from 0.91 to 0.98 and for recovery it ranges from 0.84 to 1.00. Overall breeding 

values for stability and recovery are calculated based on traits in lactation 1, 2 and 3+. An overall 

index for resilience is calculated based on the overall breeding values for stability and recovery. 

Breeding on resilience results in cows that are less affected by environmental disturbances and recover 

quicker. The overall index and the two overall breeding values are the traits that are published in the 

Netherlands and Flanders since April 2024. 

Key words: resilience, milk yield, variance, autocorrelation, automatic milking system, dairy cow 

Introduction 

Focus in dairy breeding is more and more on 

health. There are numerous health traits where 

breeders can breed for: fertility, udder health, 

claw health, reproduction disorders and 

metabolic disorders.  

These health traits are all aiming at one 

specific health factor. However, dairy farmers 

are looking for cows with a good general 

health and which can cope with different 

circumstances and changes in the environment. 

This is called resilience. Resilience is the 

ability to be minimally affected by 

disturbances and/or to recover quickly when 

affected (Colditz and Hine, 2016). 

Previous research has shown that 

fluctuations in milk yield are heritable and can 

be used as resilience indicator (Elgersma et al., 

2018), and different resilience traits can be 

made from the fluctuations in milk yield 

(Poppe et al., 2020).  

Since 2010, records on milk yield of 

individual cows during their visit in the 

automatic milking system (AMS) or milking 

parlour with electronic milk measure device 

(EMM) are automatically uploaded to the 

database of CRV when the Dutch or Flemish 

dairy farmer is willing to share the data. This 

makes it possible to estimate the lactation 

curve of the cow and to calculate fluctuations 

in milk yield based on 24h milk yield of the 

cow.  

The availability of the data on individual 

milk yield observations and the previous 

research on resilience based on fluctuations of 
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milk yield (Poppe et al., 2020), made it 

possible for CRV to estimate and publish 

breeding values for resilience in the 

Netherlands and Flanders since April 2024. 

Materials and Methods 

Data for breeding value estimation 

Individual milk yield data is available for the 

genetic evaluation from more than 6,850 Dutch 

and Flemish dairy farms. These farms are 

milking their cows with an AMS or milk 

parlour with EMM. Each week, around 14 

million milk yield observations are added to 

the database.  

 Based on milk yield and milk interval with 

the previous milk event of the cow, the 24h 

milk production of the cow is calculated up to 

350 days in lactation. If the milk interval with 

the previous milk event is more than 24 hours, 

the 24h milk production is not calculated for 

that day, and also not for the day before.  

 Special attention is needed to uncompleted 

milk events, because the milk yield will be less 

than expected based on milk interval, while the 

next milk event, if completed, will result in a 

higher milk yield than expected based on milk 

interval because the extra milk from the 

uncompleted milk event is still in the udder of 

the cow. Therefore, the milk yield of both milk 

events is summed up and the milk interval is 

calculated as the time between the milk event 

before and after the uncompleted milk event.  

 If the cow has at least 50 days with a 

known 24h milk yield between day 11 and 340 

in lactation, and if at least 70 percent of the 

days between the first and last day with a 

known 24h milk yield has a known 24h milk 

yield, an optimal production curve will be 

estimated for the cow in that lactation. This 

optimal production curve will be calculated 

using a fourth order polynomial quantile 

regression (Koenker, 2005). A 0.7 quantile is 

used, what makes the assumption that the 

realized production of the cow (24h milk 

yields during the lactation) is already disturbed 

by environmental factors. 

 From day 11 to day 340 in lactation, for 

each day the deviation (realized production – 

optimal production) will be calculated. Two 

resilience indicators will be calculated based 

on the deviations: Rauto and LnVar. The 

Rauto is a lag-1 autocorrelation, and LnVar is 

the natural logarithm of the variance.  

 The Rauto is a measure of how quickly a 

cow can recover from a drop in milk 

production, so the trait is called recovery. The 

LnVar is a measure of how many drops in milk 

yield the cow has during a lactation, so the trait 

is called stability.  

 Data from all parities is used. In the April 

2024 breeding value estimation, the number of 

individual milk events was 5,056,750,621 

which can be reduced to 5,967,719 lactations. 

After some selection steps as described in E-

chapter Resilience (CRV u.a., 2024), 

2,818,469 lactations from cows milked by an 

AMS and 869,526 lactations from cows milked 

in a milking parlour with EMM are left.  This 

data is from 6,857 different herds and 

1,338,368 animals.  

Parameters 

Parameter estimation was based on 357,531 

lactations from 172,981 cows with 149,275 

lactations belonging to parity 1 (104,878 from 

AMS, 44,397 from EMM), 103,552 belonging 

to parity 2 (78,657 from AMS, 24,895 from 

EMM) and 104,704 belonging to parity 3 and 

higher (81,970 from AMS, 22,734 from 

EMM). All cows were at least 87.5% Holstein. 

Parameters were estimated using an animal 

model.  

Model 

The statistical model used for resilience based 

on fluctuations in daily milk yield is: 

Yijklmnopqrst = HYSi + DILj + AFCk + PARl + 

DMm + KGMn + HETo + RECp + INBq + Ar + 

PMEs + Restt 
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In which: 

Y  observation on resilience on heifers 

(parity 1), young cows (parity 2) and 

cows (parity 3+); 

HYS  herd x year x season of first calving; 

DIL length of lactation; 

AFC age at first calving; 

PAR parity number; 

DM    difference in milk yield compared to 

herd mean; 

KGM average daily milk yield during the 

lactation; 

HET heterosis effect; 

REC recombination effect; 

INB inbreeding effect; 

A additive genetic effect; 

PME permanent environmental effect; 

Rest residual term of that which is not 

explained by the model of Y. 

 

    The effects A, PME and Rest are random, 

the effects HET, REC and INB are covariables, 

the other effects are fixed. AFC is only added 

to the model for parity 1 and parity 2, PAR is 

only added to the model for parity 3+. 

 DIL consist of seven classes, divided into 

periods of three years. The first class is 

between 50 and 90 days, where the number of 

days reflects the amount of days with a known 

24h milk yield during the lactation. Each class 

consist of 40 days, and the seventh class is 

from 290 days and higher with data. 

 The variance of the deviation in milk yield 

is sensitive for the level of milk production of 

the cow. High yielding cows have a higher 

variance by nature. Therefore, DM and KGM 

are added to the model to correct for the level 

of milk production of the cow and the herd. 

 

Results & Discussion 

 

The descriptive statistics for recovery and 

stability are given in Table 1. These numbers 

are based on the April 2024 breeding value 

estimation, and data selection was done as 

described in E-47 (CRV u.a., 2024). The 

  

Table 1: Descriptive statistics (mean, standard 

deviation (sd), minimum (min.) and maximum 

(max.)) of the autocorrelation (recovery) and LnVar 

(stability) for parity 1 (p.1), parity 2 (p.2) and parity 

3+ (p.3) based on cows milked by AMS. 

Trait Mean   SD       min.     max. 

autocorrelation p.1 0.56 0.20 -0.21 0.98  

autocorrelation p.2 0.56 0.19 -0.26 0.99  

autocorrelation p.3 0.56 0.19 -0.32 0.98  

      

LnVar p.1 1.57 0.67 -1.01 3.95  

LnVar p.2 1.85 0.69 -0.74 4.30  

LnVar p.3 2.06 0.70 -0.98 4.64  

 

descriptive statistics are based on cows milked 

by AMS. 

The mean observation for autocorrelation is 

equal over the different parities, while for 

LnVar there is a clear increase over the 

lactations. Higher values for autocorrelation 

and LnVar indicates less resilience, so younger 

cows have better observations on LnVar than 

the older cows (1.57 vs. 2.06). 

When a cow has a drop in daily milk yield, 

the deviation between realized and predicted 

milk yield becomes large and negative. Many 

large deviations during the lactation will result 

in a high LnVar (poor stability), and many 

large negative deviations in a row will result in 

a high autocorrelation (long recovery). So, 

lower values for LnVar and autocorrelation 

indicates better recovery and stability because 

the realized daily milk yield is close to the 

predicted milk yield.  

 

Genetic parameters 

Table 2 shows heritabilities of the resilience 

traits. Table 3 shows the genetic correlations 

between the same traits, but measured on two 

different milking systems. Table 4 shows 

genetic correlations over the different parities 

within the same traits measured on cows 

milked by AMS.  

The heritabilities in table 2 shows that 

stability has a higher heritability compared to 

recovery. Traits retrieved from AMS data have 

higher heritability compared to traits retrieved 

from EMM data. 
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Table 2: Heritabilities of recovery and stability in 

parity 1 (p.1), parity (p.2) and parity 3+ (p.3) for 

AMS and EMM observations. 

Trait            AMS                EMM         

recovery p.1  0.07  0.04  

recovery p.2  0.04  0.03  

recovery p.3  0.04  0.02  

      

stability p.1  0.09  0.05  

stability p.2  0.06  0.05  

stability p.3  0.09  0.04  

 

 An AMS will measure all milk events of 

the cow, even when the cow is sick and treated 

with, for example, antibiotics. An EMM will 

not measure the milk yield of a cow when the 

cow is treated with antibiotics, because this 

milk is not going into the milk tank. Cows are 

normally only treated with antibiotics when 

they are ill, so affected by an environmental 

disturbance. This makes that in the EMM 

dataset data is missing that will bring most 

variance in the resilience traits. As a result, 

traits based on EMM data have lower 

heritabilities.  

 

Table 3: Genetic correlations for the resilience traits 

in parity 1 (p.1), parity (p.2) and parity 3+ (p.3) 

between AMS and EMM observations. 

           recovery                stability         

p.1  0.76  0.90  

p.2  0.63  0.88  

p.3  0.35  0.91  

 

The difference between resilience based on 

AMS or EMM observations is visible in the 

genetic correlations for recovery. In parity 1, 

the genetic correlations between recovery for 

cows milked by AMS or milked by EMM is 

0.76. In parity 2, this genetic correlation 

declined to 0.63. In parity 3+ it is even lower, 

0.35. Lower genetic correlations are found for 

the later parities because there will be more 

use of antibiotics for older cows. 

 

Table 4: Genetic correlations for recovery and 

stability between parity 1 (p.1), parity (p.2) and 

parity 3+ (p.3) for AMS and EMM observations. 

            recovery               stability 

p.1 – p.2  0.98  0.98  

p.1 – p.3   0.84  0.91  

p.2 – p.3  1.00  0.98  

The genetic correlations between different 

parities of the same trait are all high. The 

lowest correlations are found for the parities 

that are most apart from each other, namely 

parity 1 and parity 3+. For recovery, this 

genetic correlation is 0.84, and for stability it is 

0.91. These genetic correlations indicate less 

reranking of animals between the different 

traits. 

 

Health 

The aim of developing breeding values for 

resilience is to captures all health factors in 

one trait. Table 5 shows the genetic 

correlations with other health traits and 

production, since production is still one of the 

most important traits in dairy breeding. The 

resilience traits in table 5 are overall breeding 

values, and are composed of parity 1, parity 2 

and parity 2+ with a weight of respectively 

0.41, 0.33 and 0.26. 

 

Table 5: Genetic correlations for the overall 

resilience traits with production and other health 

traits. 

trait        recovery      stability         

milk production  -0.14  -0.36  

fertility  0.08  0.31  

ketosis  0.16  0.49  

longevity  -0.06  0.33  

metabolic disorders  0.14  0.48  

claw health  -0.03  0.14  

reproduction disorders  0.06  0.15  

udder health  0.22  0.50  

 

 The model is correcting for the level of 

milk yield of the cow on a phenotypic level. 

Despite this correction, there is still a negative 

genetic correlation between resilience and milk 

production. High yielding cows are less 

resilient. 

 The health traits have positive genetic 

correlations with resilience. Only recovery has 

slightly negative correlations with longevity 

and claw health, but they are not significant 

different from zero. Highest genetic 

correlations between resilience and health 

traits are found for stability with fertility 

(0.31), ketosis (0.49), longevity (0.33), 
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metabolic disorders (0.48) and udder health 

(0.50).  

Resilience on farm 

The performances of dairy cows with breeding 

values for resilience were analyzed to check 

the validity of the breeding values. For 

recovery, the time it takes to recover from a 

drop in milk production was counted during a 

lactation. For stability, the number of drops in 

milking production during a lactation were 

counted.  

This was done for cows with breeding 

values two standard deviations below average 

(low resilience, EBV 92), cows with a mean 

breeding value (average resilience, EBV 100) 

and cows with breeding values two standard 

deviations above average (good resilience, 

EBV 108). The results of this check are shown 

in table 6. 

Table 6: On farm performances for cows with low 

(EBV 92), average (EBV 100) or high (EBV 108) 

breeding values for recovery and stability. 

      EBV 

trait unit   92      100  108  

recovery days to recover 14.0 10.9 7.0 

stability number of drops   4.8   3.8 2.4 

Cows with high breeding values for 

recovery recover two times faster than cows 

with low breeding values, 7.0 vs. 14.0 days.  

 For stability is the same pattern visible. 

Cows with high breeding for stability have half 

of the number of drops in milk production 

compared to cows with lows breeding values, 

respectively 2.4 vs.  4.8. 

Conclusions 

Fluctuations in milk yield, retrieved from AMS 

and EMM systems, can be used as indicator to 

derive resilience traits. In the Netherlands and 

Flanders, two resilience traits are derived 

based on individual milk event data: recovery 

and stability.  

 Heritabilities are low for both recovery and 

stability, ranging from 0.04 to 0.09. The 

heritabilities for the same traits based on EMM 

data are slightly lower. Between AMS and 

EMM data, recovery is genetically different, 

whereas stability is genetically more equal. 

 Between parities are the traits genetically 

almost equal.  

 The resilience traits are positively 

correlated with other health traits, especially 

stability. Genetic correlations of stability with 

ketosis, fertility, metabolic disorders, longevity 

and udder health were highest ranging from 

0.31 to 0.50.  

Cows which are genetically resilient have 

less drops in milk production during a lactation 

and recover quicker when having a drop. 

Breeding for resilience leads to trouble-free 

animals, which can be seen as animal welfare, 

and an easy to manage herd. 
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Abstract 

 

Selection on feed efficiency traits can help to reduce costs and improve sustainability in the dairy 

cattle industry. Recent advances propose to use a random regression to derive breeding values for dry 

matter intake (DMI) from longitudinal models. In this study, we conduct a forward cross-validation of 

different random regression specifications of an animal model for DMI. The specifications combine 

basis functions for regression over days in milk with varying numbers of factors used in variance 

component estimation via a factor-analytic approach. Data from 10,766 predominantly Dutch and 

Belgian Holstein cows, comprising 21,008 lactations and 1,026,192 DMI records from 10 farms, were 

analyzed. Estimates obtained from partial data (pre-2020) were compared to those from the full dataset 

(up to early 2024). Multiple sets of focal individuals were used to estimate prediction errors for the 

models, decomposing global error summaries into intercept bias, slope bias, and correlation; for early, 

middle, and late lactation stages. The validation results identify random regression specifications that 

outperform the accuracy of a conventional repeatability model for DMI, in particular on the early and 

middle stages of lactation. This provides valuable insights for genomic prediction modeling of feed 

efficiency in cattle. 

 

Key words: cross-validation, random regression, dry matter intake, dairy cattle 

Introduction 

  

Feed efficiency is an important trait in dairy 

cattle breeding due to its significant economic 

and environmental implications. Until at least 

2017, the genetic trend for feed efficiency was 

slightly negative (Pryce and Bell, 2017; de 

Jong et al., 2019), primarily due to increased 

body size and associated maintenance feed 

requirements (de Jong et al., 2019). While 

debate continues on whether to include dry 

matter intake (DMI) directly in breeding goals 

or consider it through traits like residual feed 

intake (RFI) (Veerkamp et al., 2013), 

individual DMI recording remains essential for 

genetic improvement of feed efficiency in 

dairy cattle. 

 Direct measurement of DMI is expensive 

and logistically challenging (Berry et al., 

2014). Genomic prediction models help to 

address this issue by enhancing the value of 

phenotypes recorded from genotyped cows. 

Furthermore, single-step genomic models 

enable efficient use of information from both 

genotyped and non-genotyped animals 

connected through pedigree. Despite these 

advantages, genetic models for DMI have 

typically been focused on repeatability models 

due to limited data availability. 

 As more DMI records accumulate, there is 

an opportunity to explore more complex 

random regression models (RRMs) that can 

account for changes in genetic effects across 

lactation. These models provide dynamic 

predictions of breeding values depending on 

lactation stage and can be used in conjunction 
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with predictions for energy sinks and sources 

(milk production and liveweight changes) to 

estimate recently proposed traits such as 

genomic residual feed intake (gRFI; Islam et 

al., 2020). Even when obtaining a gRFI is not 

the objective, RRMs can improve the 

utilization of records from cows at different 

lactation stages by accommodating higher 

correlations between records taken close 

together in time, while allowing for lower 

correlations between early and late lactation 

and across lactations (Veerkamp et al., 2013). 

In contrast, repeatability models assume a 

genetic correlation of unity and can over-

estimate the amount of information for cows 

with sparsely recorded data. 

 In this study, we assess the efficacy of these 

random regression models and compare them 

to each other with a forward cross-validation 

technique. This process involves comparing 

estimates from partial datasets to those from 

complete datasets, thereby evaluating the 

predictive accuracy of the models. Through 

this empirical validation, the study aims to 

identify the most accurate random regression 

specifications for estimating breeding values 

for DMI, offering insights for genomic 

prediction models in feed efficiency.  

 

Materials and Methods 

 

Feed Intake Data and Genetic Model 

Data used in this study were routinely 

collected for the analysis of feed intake in 

dairy cattle in the Netherlands and northern 

Belgium. Individual feed intake was recorded 

at 10 facilities: the Dairy Campus of 

Wageningen Livestock Research, Schothorst 

Feed Research, ILVO Research Institute, feed 

companies Trouw Nutrition and AVEVE, and 

five commercial farms associated with CRV. 

 Cows with fewer than 3 DMI records and 

those with less than 50% Holstein breed 

composition were excluded. Records below 8 

kg/day and above 55 kg/day were removed. 

The final dataset included 10,766 cows, 21,008 

lactations, and 1,026,192 DMI records. Daily 

records were aggregated into 389,967 weekly 

averages (Figure 1). 

 

 

 

 

 

Figure 1: Number of weeks with DMI records per parity and stages of lactation. In cyan, measurements recorded 

before 2020, in red measurements from 2020 onwards. Lactation divided into early (0-9 weeks), middle (10-24 

weeks), and late (25+ weeks). 
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The following statistical model, based on 

research by Veerkamp et al. (2014), was used 

to calculate breeding values for DMI: 

 

y = PAR + HM + HY + AGE + LS + B + 

PERM + A + Res 

 

where: 

y: Individual DMI (weekly average) 

PAR: Parity, 3 levels (parity 1, 2, and 3+) 

EXP: Experiment, a combination of farm and 

management/experiment effect 

HM: Herd*month of calving 

HY: Herd*year of calving 

AGE: Age at calving per parity, quadratic 

polynomial 

LS: Lactation stage (Days in milk), 4th order 

polynomial 

B: Breed % of the second breed, intercept and 

slope 

PERM: Permanent environment of animal 

A: Breeding value of animal 

Res: Residual 

 

The random effects PERM and A were 

specified with random regression models, as 

described in the next section. For the animal 

effect A, the numerator relationship matrix was 

used for pedigree-based models (Henderson, 

1976). For single-step genomic models, marker 

information was integrated following the 

method of Liu et al. (2014), using a 

ssSNPBLUP model fitted with the hpblup 

solver in MiXBLUP (Vandenplas et al., 2022). 

 

Random Regression Specifications 

Four random regression model structures were 

evaluated on days in milk: 

1. Repeatability 

2. Piecewise-constant 

3. Linear 

4. Cubic 

 

The repeatability model structure is the 

simplest, similar to those currently used in 

genetic evaluations, with a single breeding 

value for each parity of the cow. The 

remaining models allow the breeding values of 

an individual animal to change over days in 

milk, within the same lactation. The piecewise-

constant model can be considered a multi-trait 

model, where DMI is divided into six different 

traits depending on the stage of lactation. The 

linear and cubic models are typical random 

regression models, modeling the varying 

breeding value as a polynomial curve of the 

corresponding order. 

 All models can be formulated as random 

regressions, differing only in the basis 

functions used: 

- The repeatability model uses a single 

constant basis function. 

- The piecewise-constant model uses an 

indicator function for each stage of lactation. 

- The linear and cubic models use Legendre 

polynomial basis functions of degree 1 and 3, 

respectively. 

 

Variance components for each model were 

estimated using ASReml (Gilmour, 2019). 

Except for the repeatability model, variance 

component estimation was simplified using a 

factor-analytic approach, iteratively increasing 

the number of factors until model likelihood 

stopped improving. 

 

Cross-validation Scheme 

A forward cross-validation scheme was used to 

assess the predictive accuracy of the models. 

Data were split into partial (records before 

2020) and whole (records up to early 2024) 

datasets. Breeding values for DMI were 

predicted from the partial dataset and 

compared to corresponding breeding values 

from the whole dataset (similarly to Legarra 

and Reverter, 2018). Each lactation was 

divided into early (weeks 5 and 10), middle 

(weeks 15 and 25), and late (weeks 35 and 45) 

periods for the validation. 

 To overcome the limitation of each model 

being validated against itself, a common 

reference model (piecewise-constant) was 

selected, and partial predictions of each model 
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were compared to the whole predictions of this 

reference model. 

 Validation was performed for multiple sets 

of focal individuals, with metrics reported here 

for validation cows (the largest focal group). 

Validation cows were defined as those with at 

least 3 DMI records after January 1st, 2020, 

and no DMI records before that date, 

consisting of 2,958 cows. 

 Following Gauch et al. (2003), the 

following validation metrics were calculated 

(Table 1): Bias Squared (BS), Non-unity of 

slope (NU), Lack of Correlation (LC), and 

their sum which equals the Mean Squared 

Error (MSE). 

 

 

 

 

Table 1:  Validation metrics used in this study. Where, ‘a’ are breeding values for DMI, subindices ‘p’ and ‘w’ 

indicate the partial and whole dataset, respectively. 

Validation metric Quantifies Related Variable Formula 
Bias Squared (BS) Level bias Intercept (b0) (āw - āp)2 
Non-unity of Slope (NU) Inflation/deflation Slope (b1) (1-b1)2Var(ap) 
Lack of Correlation (LC) Accuracy Correlation (r) (1-r2)Var(aw) 
Means Square Error (MSE) All discrepancies BS + NU + LC Σi (aw (i) - ap (i))2 
 

 

 

 

 

 

Figure 2: Validation metrics for different random regression specifications with pedigree-based models. 

Lactation divided into early (0-9 weeks), middle (10-24 weeks), and late (25+ weeks). 
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Results and Discussion 

 

Comparison of the four random regression 

models for predicting DMI breeding values, 

using pedigree-based models and the 

piecewise-constant model as a reference, 

revealed that the piecewise-constant model 

showed the best overall performance (Figure 

2). The piecewise-constant model had the 

lowest MSE (0.48) and highest correlation 

(0.41) between predicted and observed values. 

 The linear model performed relatively well 

in mid-lactation but poorly in early and late 

lactation periods. Most of the MSE in early 

and late lactations was due to intercept and 

slope bias rather than lack of correlation, 

suggesting that true genetic effects on DMI are 

non-linear across days in milk, and the linear 

model lacks the flexibility to capture these 

changes. 

 The cubic model showed variable 

performance across lactation stages, with the 

highest MSE in early lactation for second 

parity and the lowest in middle and late 

lactation for 3+ parities. The general lack of 

improvement over the linear model suggests 

that pedigree information alone is insufficient 

to predict varying breeding values accurately 

with a cubic regression, given the current data 

availability. 

 The repeatability model showed low bias 

overall but low accuracy for early and middle 

lactation periods. The low bias indicates that 

the typical curve for the true genetic effects 

does not deviate greatly from the constant 

breeding value assumed in the repeatability 

model. However, the lack of correlation in 

early and middle lactation suggests that the 

absence of distinctions between different 

stages of lactation in the repeatability model 

impacts the predictive accuracy.  

 Prediction was generally most challenging 

in early lactation, with the piecewise-constant 

model showing the lowest MSE in this period. 

This may be due to metabolic changes during 

the transition period and reduced data 

availability in early lactation compared to 

middle lactation. Late lactation was easier to 

predict, though it is unclear whether this is due 

to the pattern of data available for validation 

cows or a more stable metabolic state at this 

stage. 

 Inclusion of genomic information in single-

step random regressions (for linear and cubic 

models) improved both stability within models 

and consistency across models (Table 2). This 

improvement was more pronounced for the 

more complex cubic model (65% vs. 30% 

improvement in stability, 45% vs. 21% in 

consistency) compared to the linear model. 

This suggests that the more efficient use of 

available records with genomic information 

might allow for effective use of a polynomial 

model, contrary to observations with pedigree-

based models. 

 

Table 2: Correlations for pedigree and single-step 

genomic models, between estimated breeding 

values in partial and whole datasets. 

  Validation Target 

Model Regression Linear Cubic 

Pedigree Linear 0.39 0.28 
 Cubic 0.29 0.26 
Single-step Linear 0.51 0.34 
 Cubic 0.42 0.43 

 

Conclusions 
 

This study demonstrates the potential for 

improving genetic evaluation of DMI in dairy 

cattle using more flexible random regression 

models compared to simple repeatability 

models. The piecewise-constant approach 

appears promising, though it may be beneficial 

to further refine the lactation periods over 

which prediction is constant in this model. 

With single-step genomic models, a 

polynomial random regression model may 

sufficiently model genetic changes throughout 

lactations. 

 Future work could explore additional model 

structures such as splines, evaluate uncertainty 

in validation metrics, and combine results 

across different focal groups. As DMI data 

continues to accumulate, a reassessment of 
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model comparisons and optimal recording 

periods can be useful to ensure optimal use of 

available information for genetic improvement 

of feed efficiency. 

 

Acknowledgments 

 

The authors would like to thank the 

participating farms and research institutions for 

providing the data used in this study. This 

research was supported by CRV, Wageningen 

Research and the Dairy Campus innovation 

fund. 

 

References 

 

Berry, D.P., Coffey, M.P., Pryce, J.E., De 

Haas, Y., Løvendahl, P., Krattenmacher, 

N., Crowley, J.J., Wang, Z., Spurlock, D., 

Weigel, K. and Macdonald, K., 2014. 

International genetic evaluations for feed 

intake in dairy cattle through the collation 

of data from multiple sources. Journal of 

dairy science, 97(6), pp.3894-3905. 

https://doi.org/10.3168/jds.2013-7548  

de Jong, G., de Haas, Y., Veerkamp, R., 

Schopen, G., Bouwmeester-Vosman, J. and 

van der Linde, R., 2019. Feed intake 

genetic evaluation: Progress and an index 

for saved feed cost. Interbull Bulletin, (55), 

pp.1-4. 

Gauch, H.G., Hwang, J.G. and Fick, G.W., 

2003. Model evaluation by comparison of 

model‐based predictions and measured 

values. Agronomy Journal, 95(6), pp.1442-

1446. 

https://doi.org/10.2134/agronj2003.1442  

Gilmour, A.R., 2019. Average information 

residual maximum likelihood in practice. 

Journal of Animal Breeding and Genetics, 

136(4), pp.262-272.  

https://doi.org/10.1111/jbg.12398  

Henderson, C.R., 1976. A simple method for 

computing the inverse of a numerator 

relationship matrix used in prediction of 

breeding values. Biometrics, pp.69-83. 

https://doi.org/10.2307/2529339  

Islam, M.S., Jensen, J., Løvendahl, P., 

Karlskov-Mortensen, P. and Shirali, M., 

2020. Bayesian estimation of genetic 

variance and response to selection on linear 

or ratio traits of feed efficiency in dairy 

cattle. Journal of dairy science, 103(10), 

pp.9150-9166. 

https://doi.org/10.3168/jds.2019-17137  

Legarra, A. and Reverter, A., 2018. Semi-

parametric estimates of population accuracy 

and bias of predictions of breeding values 

and future phenotypes using the LR 

method. Genetics Selection Evolution, 50, 

pp.1-18. https://doi.org/10.1186/s12711-

018-0426-6  

Liu, Z., Goddard, M.E., Reinhardt, F. and 

Reents, R., 2014. A single-step genomic 

model with direct estimation of marker 

effects. Journal of Dairy Science, 97(9), 

pp.5833-5850. 

https://doi.org/10.3168/jds.2014-7924  

Pryce, J.E. and Bell, M.J., 2017. The impact of 

genetic selection on greenhouse-gas 

emissions in Australian dairy cattle. Animal 

Production Science, 57(7), pp.1451-1456. 

https://doi.org/10.1071/AN16510  

Vandenplas, J., Veerkamp, R.F., Calus, 

M.P.L., Lidauer, M.H., Strandén, I., 

Taskinen, M., Schrauf, M.F.S.G. and ten 

Napel, J., 2022, December. MiXBLUP 3.0–

software for large genomic evaluations in 

animal breeding programs. In Proceedings 

of 12th World Congress on Genetics 

Applied to Livestock Production 

(WCGALP) (pp. 1498-1501). Wageningen 

Academic Publishers. 

https://doi.org/10.3920/978-90-8686-940-

4_358 

Veerkamp, R. F., Pryce, J. E., Spurlock, D., 

Berry, D., Coffey, M., Løvendahl, P., van 

der Linde, R., Bryant, J., Miglior, F., Wang, 

Z., Winters, M., Krattenmacher, N., 

Charfeddine, N., Pedersen, J., and de Haas, 

Y, 2013. Selection on feed intake or feed 

efficiency: a position paper from gDMI 

113

https://doi.org/10.3168/jds.2013-7548
https://doi.org/10.2134/agronj2003.1442
https://doi.org/10.1111/jbg.12398
https://doi.org/10.2307/2529339
https://doi.org/10.3168/jds.2019-17137
https://doi.org/10.1186/s12711-018-0426-6
https://doi.org/10.1186/s12711-018-0426-6
https://doi.org/10.3168/jds.2014-7924
https://doi.org/10.1071/AN16510
https://doi.org/10.3920/978-90-8686-940-4_358
https://doi.org/10.3920/978-90-8686-940-4_358


INTERBULL BULLETIN NO. 60. 20-21 May 2024, Bled, Slovenia 

breeding goal discussions. Interbull 

Bulletin, (47) 

Veerkamp, R.F., Calus, M.P.L., de Jong, G., 

van der Linde, C., and De Haas, Y. 2014. 

Breeding Value for Dry Matter Intake for 

Dutch Bulls based on DGV for DMI and 

BV for Predictors. In Proceedings of 10th 

World Congress on Genetics Applied to 

Livestock Production (WCGALP), 

Vancouver.  

https://edepot.wur.nl/359020  

114

https://edepot.wur.nl/359020


INTERBULL BULLETIN NO. 60. 20-21 May 2024, Bled, Slovenia 

 
 

 
 

Using cow carcass weight to select efficient cows in UK 
Getinet M. Tarekegn1, Harriet Bunning2,*, Marco Winters2, Raphael Mrode1,3, Mike Coffey1 

1Scotland’s Rural College, Easter Bush Campus, Roslin Institute Building, EH25 9RG, UK; 2Agriculture and 

Horticulture Development Board, Middlemarch Business Park, Siskin Parkway East, Conventry, CV3 4PE, UK; 
3International Livestock Research Institute (ILRI), Naivasha Road, Nairobi, Kenya P.O.Box 30709 

Corresponding author: *Harriet.Bunning@ahdb.org.uk 

 

Abstract 

 

Breeding more efficient cows is important for both increased profitability and reduced environmental 

impact. Therefore, there is a need to estimate genetic merit for feed intake of cows. While direct 

measurement of feed intake is difficult, maintenance requirements which accounts for one third of the 

energy intake of a cow, can be adequately approximated using body weight. Mature cows are not usually 

weighed, but abattoirs do collect carcass weights of cull cows. Carcase weight varied between 268 kg 

and 400 kg. Heritability estimates of carcass weight, conformation and fat class of mature cows were 

calculated. Mature cows between 1 095 and 7 301 days of age were included in the study. A total of 4 

721 cows with weight phenotypes were included, born between 1997 and 2020. A mixed linear animal 

model was fitted considering the cow, parity of the cow’s dam, number of calvings per cow, breed and 

season of birth as fixed effects and coefficient of heterosis and recombination loss estimated from four 

breed groups as covariate effects. The study cows were traced back up to five generations in the pedigree 

that include 67 641 animals in total. The heritability estimates were generated using ASReml. The 

estimated heritabilities were 0.64 ± 0.01, 0.49 ± 0.10 and 0.44 ± 0.01 for carcass weight, carcass fat and 

conformation, respectively. The moderate to high heritability estimates observed in this study indicates 

there is cull cow carcass weight genetic variation to allow for genetic improvement and that when data 

for direct feed intake is limited, this trait in the meantime could be used as a proxy for cow feed intake 

and consequently, predicted methane emissions.   

 

Key word: Carcass trait, Genetic parameter, Heritability, Mature cow 

 

Introduction 

 

Compared to historic breeding goals which 

focussed on increased production alone, 

increasing milk yield in dairy and growth rates 

in beef, modern breeding goals aim to increase 

overall efficiency and increasing production per 

unit of input. The impact of selection for 

increased production levels can be seen across 

dairy and beef across the globe. For example, in 

the past 50 years, the annual milk yield per cow 

increased from 1 000 kg to >11 000 kg in 

Canada and from 4 000 kg to ~12 000 kg in US 

(Cole et al., 2023). In the same period in the US, 

beef production increased by 25%, even while 

the number of cattle destined for beef 

production decreased by 6%, the latter 

percentage has been countered by a more than 

30% increase in average cattle (mainly steers 

and heifers) weights (USDA, 2019).  

However, the positive genetic correlations 

between both milk yield and growth rates with 

animal size (e.g. cow) (Ouataha et al., 2021) 

imply that selection focussed on production has 

increased the average mature cow size across 

beef and dairy (Rowan, 2022). Although these 

heavier cows have some benefits, including less 

ketosis, metabolic, infectious, and other 

diseases than lighter cows (Frigo et al., 2010), 

they also have increased feed requirements 

(Liinamo et al., 2012), meaning they cost more 

to feed and have a greater environmental impact 

(IPCC, 2019). For example, in dairy 

production, feed accounts up to 60% of the 

operating cost (European Commission, 2013). 

On the other hand, animals that consume more 
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feed tend to produce more methane (CM4) on a 

daily basis (Crompton et al., 2011; de Haas et 

al., 2014). These all imply that our previous 

selection goals may have led to less efficient 

cows. 

In order to breed for efficiency, a measure of 

cow size can be included as a trait in a selection 

index. Various strategies are used to measure 

cow size. Both liveweight and linear body 

measurements have been also used as selection 

indices for beef production in different 

countries like New Zealand, Australia and US. 

The use of some measures of body size and 

other linear body measurements instead of 

liveweight are used whenever there is absence 

of liveweight data (Haile-Mariam et al., 2014) 

as there are situations where animals do not 

have either liveweight records or any linear 

body measurements. This absence of 

liveweight records is very common for cows. 

However, interestingly abattoirs in countries 

like UK collect records for carcass traits of the 

animals slaughtered. These records can be used 

as a proxy for cow feed intake and consequently 

to predict methane emissions, liveweight 

prediction, genetic parameters estimation to 

help understand the genetic merits for cow size 

for efficient cows and evaluate breeding values 

of the carcass traits that can be later utilized for 

selection and improvement purposes by 

considering the traits in the selection index. In 

this preliminary study we estimated 

heritabilities for carcass weight, carcass 

conformation and carcass fat for mature cows 

of different breeds combined in UK. 

Materials and methods 

In this study, cows that include multiple beef, 

dairy and cross breeds with age in days above 

1 095 days were considered as mature cows 

(Figure 1). Carcass traits that include carcass 

weight, carcass conformation and carcass fat 

were evaluated. Carcass conformation and fat 

were scored as the EUROP carcass 

classification (EEC Regulation N.1208/81 and 

N.2930/81; details present at Englishby et al.,

2016). Carcass weight varied between 268 kg 

and 400 kg, defined based on the mean and 

standard deviation (µ ± SD) of extracted data, 

were considered in the study (Table 1). This 

range of the carcass weight is equivalent to the 

liveweight between 487 kg and 727 kg in an 

assumed killing out percentage of 0.55. The box 

plot distribution of the carcass weight by breed, 

parity of the cow’s dam and number of calvings 

per cow is presented at the figure below (Figure 

2). Heritability estimates of carcass weight, 

conformation and fat class of the mature cows 

(n = 4 721) were evaluated. These animals were 

born between 1997 and 2020 (Figure 3). Mixed 

linear animal model was fitted as follows 

considering sources of the cows, parity of the 

cow’s dam, number of calvings per cow, breed 

and season of birth as fixed effects. In addition, 

heterosis and recombination loss estimates 

generated from four breed groups were fitted as 

covariate effects.  

𝑌𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞𝑟 = µ + 𝑆𝑖 + 𝑃𝑗 + 𝐶𝑘 + 𝐵𝑙 +

 𝑆𝑒𝑚 + 𝐻1𝑛 +…+𝐻6𝑛 + 𝑅1𝑝 + ⋯ +

𝑅6𝑝+𝑎𝑞 +  𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞𝑟 ,      (1) 

where, 𝑌𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞𝑟= the analysed trait; µ = the

overall mean; 𝑆𝑖 is 𝑖𝑡ℎ source of the cows; 𝑃𝑗

= 𝑗𝑡ℎparity of the cow’s dam (j = 1, …, 7;

parities > 7 merged into the 7th parity); 𝐶𝑘 is 𝑘𝑡ℎ

number of calvings per cow (k = 1, …, 10; 

number of calvings > 10 were merged in to 10th 

calving); 𝐵𝑙  is 𝑙𝑡ℎ breed (l = LIMX, CH, SMX,

BRBX, AAX, HEX, BBX, BF, HF, LIM, HFX 

and HO); 𝑆𝑒𝑚 = 𝑚𝑡ℎ is season of birth of the

cows (m = March–May, June–August, 

September–November, and December–

February); 𝐻1−𝑛 is estimates of coefficient of

heterosis generated from four breed groups 

considered as covariate effect in the model; 

𝑅1−𝑛 is estimates of coefficient of

recombination loss generated from four breed 

groups considered as covariate effect in the 

model; 𝑎𝑞is the random additive genetic effect

of cow q with var (𝑎), ~ ND (0, 𝑨𝛿𝑎
2), where

ND is normally distributed, 𝛿𝑎
2 is the additive

genetic variance, 𝑨 is the additive relationship 
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matrix using pedigree information that was 

traced back five generations for 67641 animals 

in total; and 𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞𝑟 is the random residual 

variance with var (𝑒), ~ IND (0, 𝛿𝑒
2), where 𝛿𝑒

2 

is the residual genetic variance. The variance 

components were estimated using ASReml 

(Gilmour et al., 2015), and used to evaluate 

heritability estimates as: 

 

 ℎ2 = 𝛿𝑎
2/(𝛿𝑎

2 + 𝛿𝑒
2)       (2) 

 

The coefficient of heterosis (Het) and 

recombination loss (Rec) were calculated for all 

animals using the formulae derived by 

VanRaden and Sanders (2003): 

 

𝐻𝑒𝑡 = 1 − ∑ 𝑆𝑖𝑟𝑒𝑖 𝑥 𝐷𝑎𝑚𝑗 
𝑛

𝑘=0
      (3) 

 

 

𝑅𝑒𝑐 = 1 − ∑ (𝑆𝑖𝑟𝑒𝑖
2 + 𝐷𝑎𝑚𝑗

2)/2 
𝑛

𝑘=0
         (4) 

 

where, 𝑆𝑖𝑟𝑒𝑖 and 𝐷𝑎𝑚𝑗 are the proportion of 

breed i and breed j in the sire and dam, 

respectively 

 

 

Table 1. Descriptive statistics of carcass weight by 

breed 

Breed* N µ±SD Max. Min. 

HF 738 319.26 ± 31.60 399.8 268.2 

LIM 695 338.97 ± 33.84 399.9 269.5 

HFX 673 320.48 ± 32.88 399.7 268.1 

BRBX 736 348.20 ± 32.83 400.0 268.2 

HEX 766 326.30 ± 33.57 399.3 268.3 

AAX 734 330.38 ± 34.84 399.9 268.4 

BBX 798 342.97 ± 32.62 399.9 269.3 

HO 738 322.53 ± 32.62 399.8 268.3 

CH 435 351.65 ± 34.23 400.0 268.1 

BF 664 314.58 ± 29.78 398.1 268.1 

LIMX 791 338.95 ± 33.14 400.0 268.1 

SMX 796 334.82 ± 33.75 399.8 269.1 

*LIMX=Limousin cross; CH=Charolais; 

SMX=Simental cross; BRBX=British Blue Cross; 

AAX=Aberdeen Angus Cross; HEX=Hereford 

Cross; BBX=Belgian Blue cross; BF=British 

Friesian; HF=Holstein-Friesian; LIM=Limousin; 

HFX=Holstein-Friesian cross; HO=Holstein; Max= 

maximum; Min=minimum 

 

 

Figure 1. Distribution of culled mature cows by age 

at slaughter 

 

 

 

 

a)    

b)  

c)  

Figure 2. Distribution of carcass weight by: a) breed; 

b) parity of the cow’s dam; c) number of calvings 

per cow 
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Figure 3. Distribution of culled mature cows by year 

of birth 

 

 

Results and Discussion 

 

The average carcass weight considering all 

breeds was 332.42 ± 33.0 kg. The breakdown 

of average carcass weight by breed is present in 

the table (Table 1). It is not a surprise that the 

beef origin mature cows showed heavier 

carcass weight over the dairy type, as carcass 

weight reflects lifetime growth (Pabiou et al., 

2011a) and lifetime growth varies between 

breeds and breed types. Heritability estimates 

of the carcass traits are depicted in the table 

(Table 2). The result indicated high heritability 

estimate (ℎ2 = 0.64) for carcass weight of 

mature cows, followed by carcass fat (ℎ2 =

0.49) and carcass conformation (ℎ2 = 0.44). 

The genetic parameter estimates for carcass 

conformation and carcass fat obtained in the 

present study go in line with the previous 

studies reported for other cattle populations 

(Kause et al., 2015; Pabiou et al., 2009, 2011b). 

Similarly for carcass weight, comparable 

heritability estimate was reported for Black 

cattle in Japan (ℎ2 = 0.70) (Hoque et al., 2006) 

and Charolais sire groups in Ireland (ℎ2 = 0.65) 

(Hickey et al., 2007). Whereas, in breed 

specific evaluation of the beef breeds, moderate 

heritabilities were reported for carcass weight 

(h2 = 0.39 to 0.48), for conformation (h2 = 0.30 

to 0.44) and carcass fat (h2 = 0.29 to 0.44) in 

Finland (Kause et al., 2015).  

 

Table 2. Heritability (ℎ2) and standard error (SE) 

estimates of carcass traits of mature cows 

Trait 

Variance  

components 

 

ℎ2 ± 𝑆𝐸 

 𝛿𝑎
2  𝛿𝑒

2 

CWT1 664.778 375.357  0.64 ± 0.01 

CC2 30.9875 38.6982  0.44 ± 0.01 

FC3 22.6136 23.5714  0.49 ± 0.10 

 1CWT=Carcass weight; 2Carcass conformation; 
3FC=Fat class; 𝛿𝑎

2= Additive variance; 𝛿𝑒
2= Residual 

variance; ℎ2 = heritability; 𝑆𝐸=Standard error 
 

However, compared with the current study 

lower and wider range of estimates of 

heritability were reported for carcass traits 

(carcass weight: h2 = 0.24 to 0.42; 

conformation: h2 = 0.08 to 0.34; fat score: h2 = 

0.16 to 0.40) for Irish beef herds that included 

heifers, steers and young bulls (Englishby et al., 

2016) where the highest heritability estimate 

was observed for heifers (age in days: 420 to 

970 days) compared to steers and young bulls. 

Similar range of heritability estimates for 

carcass conformation and fat were previous 

reported for sire groups of eight beef breeds in 

Irland (Hickey et al., 2007) unlike to the highest 

heritability estimates (Carcass conformation: h2 

= 0.78; carcass fat: 0.63) for pooled data of 

dairy and beef breeds still in Irland in later 

study (Pabiou et al., 2009). 

In the current study we observed that the 

carcass traits evaluated are highly heritable and 

this suggests in helping to improve and 

maximize the response to selection if the 

carcass traits are considered in the breeding 

program. However, we pooled the data set from 

different breeds together that may shadow to 

provide full picture of breed specific evaluation 

as there is huge variation between breeds on the 

heritability estimates of these traits (Hickey et 

al., 2007; Pabiou et al., 2009; Englishby et al., 

2016).  

Overall, to our knowledge evaluating 

genetic parameters for mature cows is the first 

work that could provide insights on the 

importance of this group of animals for efficient 

cow selection specially when data for direct 

feed intake is limited. Moreover, the carcass 

traits for this group of animals demonstrated 
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high heritability and may encourage to use for 

the purpose of genetic evaluation in the 

breeding programs. However, evaluating these 

traits for each breed separately could help to 

provide breed specific estimates for effective 

breed specific breeding management decision. 

It is also important to note that the carcass data 

collected in UK abattoirs can serve as a proxy 

of cow liveweight prediction and feed intake. 
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Abstract  

 

A single-step SNP BLUP model was developed for routine genomic evaluation of German Holstein. 

The current weekly genomic evaluation of young selection candidates based on a multi-step SNP BLUP 

model needed to be upgraded to optimally use the effect estimates from the single-step model. For 

indirect genomic prediction of newly genotyped selection candidates, two alternative statistical methods 

were assessed, an exact GRV method and a summation method. Both methods calculated direct genomic 

values using the SNP effect estimates from the full evaluation in the same way, but they differed in the 

computation of residual polygenic effects for the young candidates. GEBV of the candidates from the 

two methods were then compared to those from a single-step evaluation using phenotypic, genotypic 

and pedigree data from April 2023. To investigate the accuracy and bias of the two weekly evaluation 

methods, all 1,318,720 genotyped Holstein animals were divided into a reference set containing 

1,169,502 animals born before April 2022 and a validation set of 149,218 animals born after April 2022. 

For all 69 evaluated traits in the German dairy cattle evaluation, correlation of GEBV of the weekly 

evaluation with the full evaluation was unity for the exact GRV method and ranged from 0.996 to 1 for 

the summation method. The regression coefficient of GEBV the full evaluation on the weekly evaluation 

was 1 for the exact GRV method and ranged from 0.988 to 1.002 for the second summation method. 

The two statistical methods for the indirect prediction of young candidates were shown to be accurate 

and unbiased.  

 

Key words: indirect prediction, genomic evaluation, single-step model, selection candidates  

Introduction  

  

An indirect prediction of genomic breeding 

values (GEBV) for newly genotyped selection 

candidates at a weekly basis provided a key 

service for routine genomic selection in German 

Holstein (Alkhoder et al. 2014). In contrast to a 

full genomic evaluation, based on either a 

multi-step model (MSM, Liu et al. 2011) or a 

single-step model (SSM, Liu et al. 2014), the 

weekly genomic evaluation does not have any 

new phenotypic records added to evaluate but 

only new genotypic data of typically young 

animals. Therefore, the SNP marker effect 

estimates from the latest full genomic 

evaluation can be used to calculate direct 

genomic values (DGV) of the newly genotyped 

animals. Under the model MSM, a parental 

average (PA) of conventional evaluation was 

estimated via a BLUP animal model and was 

then combined with DGV using the selection 

index approach to obtain genomic estimated 

breeding values (GEBV) of the young 

candidates. For the SSM model, Liu et al. 

(2014) showed that GEBV of a newly 

genotyped animal be equal to the sum of DGV 

and parental average of residual polygenic 

effect (RPG, Liu et al. 2011).  

A full single-step genomic evaluation 

including genotypes of new animals provides 

the most accurate GEBV for the newly 

genotyped animals. However, it is infeasible to 

complete the full single-step evaluation with 

millions of genotyped animals for all trait 

groups during a weekend. Therefore, the single-

step weekly evaluation must be 
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computationally fast while ensuring GEBV 

being as accurate as possible.  

The aims of this study were 1) to compare 

two statistical methods for an indirect 

prediction of GEBV of newly genotyped 

animals; and 2) to investigate accuracy and bias 

of the indirect prediction methods via a 

validation study.  

 

Statistical methods for indirect 

prediction of GEBV for candidates 

 

For the single-step SNP BLUP (ssSNPBLUP) 

model with an RPG effect (Liu et al. 2014), 

GEBV of a genotyped animal is the sum of its 

two components DGV and RPG:  

  𝑢 = 𝑑 + 𝑎         [1] 

where u is GEBV, d is DGV, and a is RPG of 

the animal. GEBV of a newly genotyped young 

candidate after the full single-step evaluation 

can be approximated based on estimates of all 

model effects from the latest full single-step 

evaluation (Liu et al. 2014): 

  𝑢𝑐 = 𝑑𝑐 + 𝑎𝑐 = 𝑑𝑐 + 1

2
(𝑎𝑠 + 𝑎𝑑)  [2] 

where 𝑢𝑐 is GEBV of the genotyped candidate, 

𝑑𝑐 is its DGV, 𝑎𝑐 is its RPG, 𝑎𝑠 𝑎𝑑 represent 

RPG of its sire and dam, respectively, that were 

evaluated in the latest full single-step evaluation 

with their own genotype data. Note that the 

models [1] and [2] are a univariate model or 

single-trait model, not like a multi-lactation 

random regression test-day model for a full 

single-step evaluation of milk production traits 

in German dairy cattle (Alkhoder et al. 2024).  

The ssSNPBLUP model estimated RPG for 

all genotyped animals, with or without their 

own phenotypic data in the latest, full single-

step evaluation. However, for the young, 

genotyped animal that was not included in the 

latest single-step evaluation, its RPG effect was 

assumed be equal to its expected value of 

parental average of RPG, 1

2
(𝑎𝑠 + 𝑎𝑑). 

 

An Exact Method for GEBV of New Animals   

In contrast to the single-step genomic BLUP 

model (ssGBLUP, Aguilar et al. 2010), the 

ssSNPBLUP provided direct estimates of SNP 

marker effects that can be used to calculate 

DGV of all newly genotyped animals.  

The RPG effects of the newly genotyped 

animals can be estimated using RPG effect 

estimates of all genotyped animals in the latest 

single-step evaluation (Liu et al. 2016): 

 �̂�𝑐 = 𝐀cg 𝐀gg
−1𝒂g      [3] 

where �̂�𝑐 is a vector of estimated RPG effects 

of all new genotyped candidates, 𝒂g is a vector 

of RPG effects of all genotyped animals in the 

latest single-step evaluation, 𝐀gg
−1 is the inverse 

of pedigree relationship matrix for all the 

genotyped animals of the latest evaluation and 

𝐀cg is the pedigree relationship matrix between 

the new candidates and the old, genotyped 

animals. This statistical method for indirect 

prediction of the RPG, together with the 

calculation of DGV, was termed as an exact 

GRV method (Vandenplas et al. 2023).  

 The RPG effects for the new selection 

candidates via Equation [3] are estimated by 

setting up the following equations:  

 [
𝐀00 𝐀0g 𝐀0c

𝐀g0 𝐀gg 𝐀gc

𝐀c0 𝐀cg 𝐀cc

] [

�̂�0

�̂�𝑔

�̂�𝑐

] = [
𝟎

𝐀gg
−1

𝟎

�̂�𝑔] [4]  

where �̂�0 is a vector of RPG effects of for 

ancestors of the genotyped animals from the 

latest single-step evaluation and the new 

selection candidates. Solving the Equation [4] is 

technically equivalent to deregress the RPG 

effect estimates of the genotyped animals 𝒂g 

without using the inverse matrix 𝐀gg
−1 but the 

Henderson’s inverse of the pedigree 

relationship matrix for the three groups of 

animals: 

[
𝐀00 𝐀0g 𝐀0c

𝐀g0 𝐀gg 𝐀gc

𝐀c0 𝐀cg 𝐀cc

] = [

𝐀00 𝐀0g 𝐀0c

𝐀g0 𝐀gg 𝐀gc

𝐀c0 𝐀cg 𝐀gg

]

−1

[5] 

The deregression process, without generating 

deregressed RPG effects for the genotyped 

animals g, estimates RPG effects of the 

ancestors denoted as group 0, that is equivalent 

to solving: 

  �̂�0 = −(𝐀00)−1 𝐀0g 𝒂g .    [6] 
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From Equation [4], we can see that the RPG 

effects of the new candidates, 𝒂𝑐, are estimated 

with the (deregressed) RPG effects of the 

genotyped animals via the pedigree [5].  

 

A Summation Method for GEBV of New 

Animals   

GEBV of the newly genotyped selection 

candidates are computed using the Model [1], 

as with the exact GRV method. However, a 

simpler method is assumed here for calculating 

the RPG effects of the new candidates, namely 

a linear summation of RPG effects of all 

genotyped ancestors from the latest single-step 

evaluation. When both parents of a new 

candidate c were evaluated with own genotype 

data in the latest single-step evaluation, 𝑎𝑐 =

 1

2
(𝑎𝑠 + 𝑎𝑑). Should only male animals be 

genotyped in a population, then 𝑎𝑐 = 1

2
(𝑎𝑠 +

1

2
(𝑎𝑚𝑔𝑠 + 1

2
(𝑎𝑠𝑚𝑔𝑑 + ⋯ ))), where 𝑎𝑚𝑔𝑠 is RPG 

effect of maternal grandsire of the candidate, 

and  𝑎𝑠𝑚𝑔𝑑 is RPG effect of sire of maternal 

granddam of the candidate. In practice, the RPG 

of the candidate 𝑎𝑐 is calculated by processing 

the pedigree from the youngest candidate to its 

oldest genotyped relatives for the summation. 

Ancestors having no genotype data in the latest 

single-step evaluation were assumed to have 

RPG effect being 0 in this process. The 

summation method for computing RPG effects 

of the new candidates may be described as: 

  �̂�𝑐 = 𝐀cg 𝐈𝒂g      [7] 

where I is an identity matrix.  

 

Data materials for a comparison of the 

indirect prediction methods 

  

Genotypic, phenotypic and pedigree data from 

the April 2023 single-step evaluation were used 

to investigate accuracy and bias of the two 

indirect prediction methods. A total of 

1,318,720 genotyped German Holstein 

population were divided into two groups: 

1,169,502 ‘reference animals’ born in March 

2022 and earlier, and 149,218 ‘genotyped 

candidates’ born from April 2022 onwards. The 

pedigree for all animals of the two groups 

contained 3,427,852 animals, including 

2,109,132 non-genotyped ancestors.  

In the single-step evaluation for German 

Holstein, a total of 69 single traits or indices of 

evaluated traits were evaluated. For instance, a 

total of 9 random regression coefficients of a 

multi-lactation random regression test-day 

model (Alkhoder et al. 2024) were combined 

into a single value, 305-day milk yield on a 

combined lactation basis. The weekly genomic 

evaluation was conducted for milk yield on the 

305-day combined lactation basis instead of the 

9 random regression coefficients.  

 

Results & Discussion  

 

Estimates of SNP markers for the 69 traits or 

indices were obtained from the latest single-step 

evaluation with data from April 2023. The RPG 

effects for the genotyped candidates were 

computed using the two statistical methods: the 

exact GRV method and the summation method. 

The program predict_GEBV of the MiX99 

software suite (Strandén and Lidauer 1999) was 

used to compute GEBV of the young candidates 

with the exact GRV method (Vandenplas et al. 

2023). Our own software for the summation 

method was developed in python. For all the 69 

traits or indices, the GRV method took 38 

minutes on 46 cores simultaneously and the 

peak RAM usage was 15.5 Gb.  

Table 1 shows correlations of GEBV with 

DGV and RPG for the reference animals as well 

as regression slopes of GEBV on DGV or RPG 

for the genotyped animals in the full single-step 

evaluation April 2023 for all the 69 traits or 

indices. Similarly, the correlations and 

regression slopes are given in Table 2 for the 

genotyped selection candidates. In general, 

GEBV is higher correlated with DGV than RPG 

for either group of the genotyped animals. 

Regression slope values of GEBV on DGV are 

close to 1, on average, for both groups of the 

animals, whereas the average regression slopes 

of GEBV on RPG deviate more from 1.  
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Table 1: Correlations and regressions of GEBV, 

DGV and RPG estimates of the reference animals for 

all 69 traits or indices  

 Average Minimum Maximum 

Correlation of GEBV with DGV 

 0.969 0.935 0.986 

Regression slope of GEBV on DGV 

 1.05 0.990 1.138 

Correlation of GEBV with RPG 

 0.406 0.248 0.650 

Regression slope of GEBV on RPG 

 1.64 0.886 3.169 

 

 

Table 2: Correlations and regressions of GEBV, 

DGV and RPG estimates of the genotyped selection 

candidates for all 69 traits or indices  

 Average Minimum Maximum 

Correlation of GEBV with DGV 

 0.976 0.944 0.991 

Regression slope of GEBV on DGV 

 1.024 0.974 1.118 

Correlation of GEBV with RPG 

 0.304 0.064 0.589 

Regression slope of GEBV on RPG 

 1.434 0.324 3.102 

 

 

To validate GEBV of the weekly genomic 

evaluation, GEBV of the new candidates from 

the full single-step evaluation were correlated 

with their GEBV from the weekly genomic 

evaluation. Figure 1 shows the GEBV 

correlations of the selection candidates between 

any of the three evaluations: the weekly 

genomic evaluations with the exact GRV and 

the summation methods, and the latest full 

single-step evaluation. It can be seen in Figure 

1 that the exact GRV method has a unity 

correlation with the latest single-step evaluation 

for all the 69 traits or indices. As far as the 

summation method for the weekly evaluation is 

concerned, its GEBV correlations with the 

single-step evaluation ranged from 0.9970 to 

0.9999 with a mean of 0.9995. The GEBV 

correlations between the two methods for the 

weekly evaluation have an average of 0.9994.  

GEBV of the candidates from the latest 

single-step evaluation were regressed on those 

from the weekly genomic evaluation based on 

either of the method: the exact GRV or 

summation method. Figure 2 shows the 

regression slope values of the two weekly 

evaluation methods for all the traits or indices. 

The regression slope values of the exact GRV 

method ranged from 0.9987 to 1.0008 with an 

average of 0.9998. In comparison, the 

summation method has a regression slope value 

between 0.9872 to 1.0018 with a mean of 

0.9981 for the 69 traits or indices.  

 

 

 
Figure 1. Correlations of GEBV of the candidates 

using the exact GRV and summation methods with 

the latest single-step evaluation for all the traits or 

indices.  

 

 
Figure 2. Regression of the latest single-step GEBV 

of the candidates on that of the exact GRV or 

summation method for all the traits or indices.  

 

 

GEBV bias of the weekly genomic evaluation 

In addition to the GEBV correlations and 

regressions of the weekly genomic evaluation 

methods, GEBV bias, defined as GEBV of the 

weekly evaluation minus that of the latest 

single-step evaluation, was investigated for all 

the selection candidates.  

Figure 3 shows the frequency distribution of 

the GEBV biases of all the 149,218 candidates 

for trait no. 3 which was under the highest 

selection pressure among all the 69 traits or 

indices. A total of 87% or 67% of all the 

candidates had no bias, i.e., GEBV of the 

weekly evaluation being equal to that of the 
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single-step evaluation, for the exact GRV or the 

summation method, respectively. The 

distribution of the GEBV bias was symmetric 

around zero for both weekly evaluation 

methods. However, for the summation method 

about 5.4% of all the candidates had a 

downward bias of lower than -20% of genetic 

standard deviations of the trait no. 3. The 

downward bias was caused by the fact that some 

ancestors of the candidates did not have 

genotypic data in the latest single-step 

evaluation, and the summation method assumed 

RPG of those ancestors being zero. Due to the 

high selection pressure on this trait, those 

ancestors might have had an RPG greater than 

zero, if they had been genotyped.  

 

 

 
Figure 3. Distribution of GEBV bias of all the 

candidates using the two weekly evaluation methods 

for the trait no. 3 under the highest selection 

pressure.  

 

 

 To further investigate the impact of 

ancestors having no own genotype data in the 

full single-step evaluation, we selected a trait 

with little selection pressure on it, trait no. 4. 

The distribution of GEBV bias is shown for all 

the candidates in Figure 4. In contrast to Figure 

3, no candidates have a downward GEBV bias 

for this trait as for the trait no. 3.  

Compared to the summation method, the 

exact GRV method did not have the group of 

candidates showing a downward GEBV bias, 

because the GRV method estimated RPG of 

those ancestors based on RPG of all the 

genotyped animals in the full single-step 

evaluation.  

 
Figure 4. Distribution of GEBV bias of all the 

candidates of the two weekly evaluation methods for 

trait no. 4.  

 

 

For the selection candidates of the weekly 

evaluation, GEBV differences between the 

exact GRV method and the full single-step 

evaluation were small but not non-existent. This 

may be contributed by several factors. Firstly, 

both weekly genomic evaluations assumed a 

single trait model, whereas a multi-trait model 

was used for all the 69 traits or indices in the 

full single-step evaluation. Secondly, the two 

weekly genomic evaluation methods estimated 

parental average of RPG effect for the selection 

candidates, while their RPG effects were 

estimated in the full single-step evaluation 

using all available genotypic and phenotypic 

data of all animals.  

The same procedure of the Interbull genomic 

reliability method can be followed for 

approximating genomic reliabilities for the 

weekly genomic evaluation as for the full 

single-step evaluation, except that conventional 

reliability values of all the animals can be 

calculated from effective daughter 

contributions of bulls and effective record 

contributions of cows, which have been 

obtained from the latest, full single-step 

evaluation, instead of processing original 

phenotypic data.  

 

Conclusions  

 

Two statistical methods were assessed for the 

weekly genomic evaluation of newly genotyped 

selection candidates, based on the effect 
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estimates of the single-step model from a latest, 

full single-step evaluation. As a validation of 

the weekly genomic evaluation methods, 

GEBV of young selection candidates born in the 

last year were compared to the latest, full single-

step evaluation containing those selection 

candidates. For all 69 traits or indices, GEBV of 

the selection candidates estimated using the two 

weekly genomic evaluation methods, the exact 

GRV and summation methods, were fully 

correlated with those from the single-step 

evaluation. Regression slopes of the single-step 

GEBV of the selection candidates on those of 

the weekly evaluation were all close to 1 for all 

the traits or indices. According to the 

distribution of GEBV bias to the single-step 

evaluation among the selection candidates, the 

exact GRV method resulted in equal GEBV as 

the full single-step evaluation. However, the 

summation method led to a downward bias for 

5% of candidates whose partial ancestors had no 

own genotypic data in the latest, full single-step 

evaluation. Whenever possible, the exact GRV 

method should be preferred to the summation 

method for routine weekly evaluations. Both 

statistical methods of the weekly genomic 

evaluation were computationally efficient and 

feasible for a genomic evaluation of newly 

genotyped animals of German Holsteins during 

weekend.  
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Abstract 

 

Crossbreeding exploits heterozygosity and is increasingly adopted in dairy cattle. However, genomic 

selection for crossbred animals is challenging due to difficulties in establishing suitable multi-breed 

reference populations and modelling missing pedigree information. This study aimed to investigate the 

benefits of multi-breed multi-trait single-step genomic evaluations that jointly analyse New Zealand 

data from two purebred populations (Holstein and Jersey) and a derived crossbred population (XBD). 

We also investigated the impact of modelling missing pedigree information using genetic groups (GG) 

or metafounders (MF). Pedigree (1.1M), genotypes (127K), and individual phenotypes for calving 

season days (deviation between planned and actual calving date, CSD; ~370K records) and 305-days 

milk yield (MY; ~538K records) were available for purebred and crossbred animals. Six scenarios were 

implemented: A) a single-step evaluation per breed, each using phenotypes of all breeds treated as a 

single trait, but only genotypes of the respective breed, and 255 GG; B) a joint evaluation using the 

genotypes of all breeds, with phenotypes and GG as in A; C) as B but grouping all GG into only 4 GG; 

D) as B but replacing all GG by MF; E) as B but replacing all GG by only 4 MF; F) as B but with 

phenotypes from different breeds treated as separate correlated traits. CSD and MY were jointly 

analysed in a multi-trait model in all scenarios. Validation statistics were computed for both purebred 

and XBD genotyped cows and bulls born in recent years. Scenarios using all purebred and XBD 

genotypes had higher accuracies than the scenario analysing each breed separately. Using all genotypes 

and modelling traits across breeds as different traits showed the highest accuracy among all scenarios 

for MY but the lowest for CSD. Reducing the number of GG gave similar results to using all GG. 

Moving from GG to MF had limited benefits. Overall, results showed that combining Holstein, Jersey, 

and the derived XBD data into multi-breed single-step evaluations can enhance the accuracy of genomic 

predictions for both purebred and crossbred animals. 

 

Key words: multi-trait, multi-breed, genomic predictions, single-step, crossbreeding, dairy cattle 

Introduction 

 

In dairy cattle, high emphasis on functional 

traits, such as fertility and health, and longevity-

related traits have contributed to an increase in 

the number of crossbred animals (Sørensen et 

al., 2008; Winkelman et al., 2015; VanRaden et 

al., 2020; Harris, 2022). Crossbreeding is 

increasingly adopted as it allows to take 

advantage of heterosis and breed 

complementary (Sørensen et al., 2008), next to 

reducing issues connected to inbreeding and 

loss of genetic diversity, which are increasing in 

different cattle breeds such as in Holstein-

Friesian populations (e.g., Doekes et al., 2018; 

Makanjuola et al., 2020; Ablondi et al., 2022). 

Single-step genomic prediction approaches 

allow combining pedigree, genomic, and 

phenotypic data into a single evaluation 

(Legarra et al., 2014). Multi-breed genomic 

evaluations that combine data from different 

populations and crossbred animals may allow 
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for more efficient use of collected data and the 

simultaneous prediction of genomic estimated 

breeding values (GEBVs) of both purebred and 

crossbred animals. However, genomic 

predictions including different populations and 

crossbred are challenging due to difficulties in 

establishing a suited reference population 

(Khansefid et al., 2020; van den berg et al., 

2020; Cesarani et al., 2022). Single Nucleotide 

Polymorphism (SNP) and Quantitative Trait 

Loci (QTL) effects may differ between 

purebred and crossbred animals due to 

differences in their genetic background, 

environmental conditions (which can lead to 

genotype-by-environment interactions), and 

differences in linkage disequilibrium between 

SNP and QTL (Vandenplas et al., 2016). Thus, 

designing and validating multi-breed genomic 

predictions is crucial to ensure that data from 

different populations are efficiently combined 

into a single-step approach. 

Multi-breed single-step evaluations combine 

genomic information from purebred and 

crossbred animals next to complex pedigree 

information in which individuals may have 

missing parental information. Unknown parents 

of individuals with missing parental 

information are assumed to come from the base 

population and therefore assumed to be 

unselected, unrelated, and having the same 

genetic level (Schaeffer, 2019). Due to 

selection, these assumptions are violated, 

especially when animals originate from 

different populations, countries, or breeds, as 

different genetic levels among individuals are 

expected. Genetic groups can be used in single-

step models to model differences in the genetic 

levels of unknown parents (Masuda et al., 

2022). An alternative approach to genetic 

groups is the use of metafounders, as proposed 

by (Legarra et al., 2015), which can also be 

implemented in multi-breed single-step 

evaluations. In addition to genetic groups, the 

concept of metafounders can model the 

relationships within and across different base 

populations of different breeds. 

In this study, we aimed to investigate the 

benefits of multi-breed multi-trait single-step 

genomic predictions that jointly analyse two 

purebred populations (Holstein and Jersey) and 

a derived crossbred population. In particular, 

we aimed to investigate the benefits of multi-

breed genomic evaluations for both purebred 

and crossbred animals and to investigate the 

impact of modelling missing pedigree 

information using genetic groups (GG) or 

metafounders (MF). 

 

Materials and Methods 

 

Data available 

Pedigree information was available for 

1,151,801 dairy cattle animals from New 

Zealand. The population included purebred 

animals (≥87.5% of breed composition) for 

Holstein (HOL) and Jersey (JER) populations, 

and a derived crossbred population (XBD). The 

XBD population was composed of animals 

defined as having at least 50% of their breed 

composition as HOL or JER, and <87.5% HOL 

or JER. The pedigree had a total of 255 GG 

defined based on the breed and the year of birth 

of the animal. 

 

Table 1. Pedigree size, number of phenotypes (for whole and partial datasets), number of genotypes, and number 

of validation animals per breed. 

Breed a Pedigree 

Phenotypes b 

(whole) 

Phenotypes 

(partial) Genotypes 

Validation 

animals 

CSD MY CSD MY Cows Bulls 

HOL 341,215 140,441 207,905 118,911 169,911 46,610 8,953 353 

JER 141,012 51,489 74,456 44,160 61,412 22,842 3,827 168 

XBD 395,976 177,713 255,357 146,389 202,515 57,852 13,713 129 

Other 273,598 - - - - - - - 

Total 1,151,801 369,643 537,718 309,460 433,838 127,304 26,493 650 
a HOL = Holstein, JER = Jersey, XBD = crossbred. b MY = Milk Yield, CSD = Calving Season days. 
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 Individual phenotypes were available for 

first parity cows on one reproduction and one 

production trait: Calving Season Days (CSD) 

and 305-day milk yield (MY), respectively. 

CSD is defined as the (positive or negative) 

deviation in the number of days from the 

planned start of calving date to the actual 

calving date for a given herd-year. The number 

of phenotypes available in each breed is 

reported in  

Table 1. For both traits, most of the recorded 

phenotypes were available on XBD animals 

(~48% of the total), followed by HOL (~38%) 

and JER (~14%). All cows had a record for MY, 

and ~68% of them had a record for CSD. 

 A total of 127,304 genotypes were available 

at 85,394 SNP density.  

Table 1 reports the number of genotypes 

available per breed. Overall, 45%, 37%, and 

18% of the genotypes were from XBD, HOL, 

and JER, respectively. 

 

Scenarios 

Six scenarios were investigated to implement 

multi-breed single-step genomic predictions 

including both purebred and crossbred animals. 

All scenarios used the full pedigree and always 

analysed CSD and MY jointly with a multi-trait 

approach. The first 3 scenarios used 255 GG 

and are described below: 

 SINGLE: three separate evaluations were 

conducted, each using the phenotypes of all 

breeds treated as a single trait, but only 

genotypes of the respective breed, i.e., only 

HOL, JER, or XBD. 

 ALL: a multi-breed evaluation using 

phenotypes and genotypes from all breeds 

jointly and in which phenotypes of different 

breeds are treated as a single trait. 

 MBMT: a multi-breed multi-trait evaluation 

using phenotypes and genotypes from all 

breeds jointly and in which phenotypes of 

different breeds are treated as different 

correlated traits. 

 

Additional scenarios were implemented to 

investigate the impact of MF and of reducing 

the number of GG or MF. The last 3 scenarios 

are as follows: 

 ALL_4GG: as ALL but replacing all GG by 

only 4 GG. The 4 GG were defined and 

assigned to individuals with unknown 

parents based on their breed composition 

and corresponded to HOL, JER, XBD, and 

OTHERS (for all other breeds). 

 ALL_255MF: as ALL but replacing GG by 

MF. 

 ALL_4MF: as ALL_4GG but replacing GG 

with MF. 

 

Model and software 

The following model was used: 

𝐲𝑖 ~ 𝐗𝑖𝐛𝑖 + 𝐙𝑖𝐮𝑖 + 𝐞𝑖, 

where 𝑖 is the trait (either CSD or MY), 𝐲𝑖 is the 

vector of observations for trait 𝑖, 𝐮𝑖 is the vector 

of random additive genetic effects for trait 𝑖, 

and 𝐞𝑖 is the vector of random residual effects 

for trait 𝑖. 𝐗𝑖 and 𝐙𝑖 are incidence matrices 

linking records of trait 𝑖 to fixed effects and 

additive genetic effects, respectively. Fixed 

effects included heterozygosity, recombination, 

inbreeding, age at first calving (only for CSD), 

herd-year-season at first calving, and age at 

second calving (only for MY). It was assumed 

that: 

 

𝑣𝑎𝑟 [
𝐮𝐶𝑆𝐷

𝐮𝑚𝑖𝑙𝑘
] = 𝐆 ⊗ 𝐀

= [
σ𝑢 𝐶𝑆𝐷

2 𝑆𝑦𝑚

σ𝑢 𝐶𝑆𝐷,𝑀𝑌
σ𝑢 MY

2 ] ⊗ 𝐀, 

 

where 𝐆 is the genetic co-variance matrix, 𝐀 is 

the numerator relationship matrix, σ𝑢 𝐶𝑆𝐷
2  and 

σ𝑢𝑀𝑌
2  are the additive genetic variances for CSD 

and MY, respectively, σ𝑢 𝐶𝑆𝐷,𝑚𝑖𝑙𝑘
 is the additive 

genetic covariance between CSD and MY, and 

⊗ indicates the Kronecker product. Residuals 

were assumed to be uncorrelated. 

In the MBMT scenario, phenotypes of 

different breeds were modelled as different 

correlated traits. Thus, the model was adapted 

as follows: 
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[
 
 
 
 
 
𝐲𝐻𝐶𝑆𝐷

𝐲𝐻𝑀𝑌

𝐲𝐽𝐶𝑆𝐷

𝐲𝐽𝑀𝑌

𝐲𝑋𝐶𝑆𝐷

𝐲𝑋𝑀𝑌 ]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝐗𝐻𝐶𝑆𝐷

𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝐗𝐻𝑀𝑌
𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝐗𝐽𝐶𝑆𝐷
𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝐗𝐽𝑀𝑌
𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝐗𝑋𝐶𝑆𝐷
𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝐗𝑋𝑀𝑌]
 
 
 
 
 
 

 

[
 
 
 
 
 
 
𝐛𝐻𝐶𝑆𝐷

𝐛𝐻𝑀𝑌

𝐛𝐽𝐶𝑆𝐷

𝐛𝐽𝑀𝑌

𝐛𝑋𝐶𝑆𝐷

𝐛𝑋𝑀𝑌 ]
 
 
 
 
 
 

 +

[
 
 
 
 
 
 
𝐙𝐻𝐶𝑆𝐷

𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝐙𝐻𝑀𝑌
𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝐙𝐽𝐶𝑆𝐷
𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝐙𝐽𝑀𝑌
𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝐙𝑋𝐶𝑆𝐷
𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝐙𝑋𝑀𝑌]
 
 
 
 
 
 

[
 
 
 
 
 
𝐮𝐻𝐶𝑆𝐷

𝐮𝐻𝑀𝑌

𝐮𝐽𝐶𝑆𝐷

𝐮𝐽𝑀𝑌

𝐮𝑋𝐶𝑆𝐷

𝐮𝑋𝑀𝑌 ]
 
 
 
 
 

+

[
 
 
 
 
 
𝐞𝐻𝐶𝑆𝐷

𝐞𝐻𝑀𝑌

𝐞𝐽𝐶𝑆𝐷

𝐞𝐽𝑀𝑌

𝐞𝑋𝐶𝑆𝐷

𝐞𝑋𝑀𝑌 ]
 
 
 
 
 

, 

 

and it was assumed that: 

𝑣𝑎𝑟 

[
 
 
 
 
 
 
 
 
𝐮𝐻𝐶𝑆𝐷

𝐮𝐻𝑀𝑌

𝐮𝐽𝐶𝑆𝐷

𝐮𝐽𝑀𝑌

𝐮𝑋𝐶𝑆𝐷

𝐮𝑋𝑀𝑌 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

𝜎𝑢 𝐻𝐶𝑆𝐷

2

𝜎𝑢 𝐻𝑀𝑌,𝐻𝐶𝑆𝐷
𝜎𝑢 𝐻𝑀𝑌

2 𝑆𝑦𝑚

𝜎𝑢 𝐽𝐶𝑆𝐷,𝐻𝐶𝑆𝐷
𝜎𝑢 𝐽𝐶𝑆𝐷,𝐻𝑀𝑌

𝜎𝑢 𝐽𝐶𝑆𝐷

2

𝜎𝑢 𝐽𝑀𝑌,𝐻𝐶𝑆𝐷
𝜎𝑢 𝐽𝑀𝑌,𝐻𝑀𝑌

𝜎𝑢 𝐽𝑀𝑌,𝐽𝐶𝑆𝐷
𝜎𝑢 𝐽𝑀𝑌

2

𝜎𝑢 𝑋𝐶𝑆𝐷,𝐻𝐶𝑆𝐷
𝜎𝑢 𝑋𝐶𝑆𝐷,𝐻𝑀𝑌

𝜎𝑢 𝑋𝐶𝑆𝐷,𝐽𝐶𝑆𝐷
𝜎𝑢 𝑋𝐶𝑆𝐷,𝐽𝑀𝑌

𝜎𝑢 𝑋𝐶𝑆𝐷

2

𝜎𝑢 𝑋𝑀𝑌,𝐻𝐶𝑆𝐷
𝜎𝑢𝑋𝑀𝑌,𝐻𝑀𝑌

𝜎𝑢 𝑋𝑀𝑌,𝐽𝐶𝑆𝐷
𝜎𝑢 𝑋𝑀𝑌,𝐽𝑀𝑌

𝜎𝑢 𝑋𝑀𝑌,𝑋𝐶𝑆𝐷
𝜎𝑢 𝑋𝑀𝑌

2
]
 
 
 
 
 
 
 
 

⊗A, 

 

where H, J, and X refer to HOL, JER, and XBD, 

respectively. All other terms are defined as 

above. Residuals were fitted using block-

diagonal variance matrices and were assumed to 

be uncorrelated across breeds. 

The same co-variance components were 

used for CSD and MY in all scenarios 

(heritability and genetic correlations between 

traits are reported in Table 2), except for the 

MBMT scenario in which pedigree-based co-

variance components were estimated using 

GIBBSF90+ (Misztal et al., 2002). The data for 

variance component estimation was prepared as 

follows to reduce the size of the analysed 

dataset: i) animals with phenotypes deviating 

more than 3 standard deviations from the mean 

of each breed were removed; ii) only 

phenotyped animals born from 2010 onwards, 

with both parents known, and belonging to a 

contemporary group (i.e., herd-year-season) 

with a size of at least 5 individuals were 

retained; iii) a pedigree depth of six generations 

from the retained phenotyped animals was used. 

The genetic and residual co-variances used in 

other scenarios were used as starting values. 

Gibbs sampling was run for two hundred 

thousand samples, 2,000 samples were 

discarded as burn-in, and every 150th sample 

was saved. POSTGIBBSF90 (Misztal et al., 

2002) was used to monitor convergence and to 

obtain estimates and standard errors. 

In all the above models, a single-step SNP-

BLUP (ssSNPBLUP) approach (Liu et al., 

2014) assuming 30% of the additive genetic 

variance due to residual polygenic effects was 

used. A J covariate was added as a fixed effect 

in the model to ensure the compatibility 

between pedigree and genomic information 

(Hsu et al., 2017), except for the two scenarios 

using MF (i.e., ALL_255MF and ALL_4MF). J 

covariates were computed as described by 

(Tribout et al., 2019). 

GEBVs were computed using the software 

MiXBLUP (Vandenplas et al., 2022). The 

computed GEBVs were rebased using HOL, 

JER and XBD animals born in 2000 with an 

available phenotype for MY as the base 

population. All validation results were obtained 

using the rebased GEBVs. 

 

Table 2. Heritability (diagonal) and genetic 

correlation (below diagonal) for CSD and MY. 

  CSD MY 

CSD 0.05  

MY 0.22 0.31 

 

Validation 

The Linear Regression (LR) validation method 

was used to compare the different scenarios 

implemented (Legarra and Reverter, 2018; 

Macedo et al., 2020). For each scenario, a 

“whole” and a “partial” evaluation were carried 

out. In the whole evaluation, GEBVs (𝑢𝑤) were 

obtained using all information (pedigree, 
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phenotypes, and genotypes). In the partial 

evaluation, GEBVs (𝑢𝑝) were obtained using 

less information, i.e., by removing the 

phenotypes of animals born in the last 6 years 

(corresponding to a cut-off in the year 2016) 

while maintaining the same pedigree and 

genotypes as in the whole evaluation. Table 1 

reports the number of phenotypes in the whole 

and the partial evaluations. 

In each scenario, the following estimators 

from the LR method were computed: 

 Level bias (∆̂𝑝): defined as the difference 

between the mean GEBV of the partial 

evaluations and the mean GEBV of the 

whole evaluation as: ∆̂𝑝= �̂�𝑝 − �̂�𝑤. In 

absence of level bias, ∆̂𝑝 is expected to be 0. 

Level bias was expressed in genetic standard 

deviations for easier interpretation (∆̂𝑝 �̂�𝑢⁄ ). 

 Dispersion bias (�̂�𝑝): defined as the slope of 

the regression of 𝑢𝑤 on 𝑢𝑝 and calculated as 

�̂�𝑝 = 
𝑐𝑜𝑣(�̂�𝑤,�̂�𝑝)

𝑣𝑎𝑟( �̂�𝑝)
. In absence of dispersion 

bias, the expected value of �̂�𝑝 is 1. Values of 

�̂�𝑝 < 1 indicate over-dispersion, while 

values of �̂�𝑝 > 1 indicate under-dispersion. 

Values of �̂�𝑝 within 15% from the expected 

value were considered as acceptable 

similarly to other studies (e.g., Tsuruta et al., 

2011; Bonifazi et al., 2022). 

 Accuracy of partial GEBV (𝑎𝑐�̂�𝑝): 

computed as 𝑎𝑐�̂�𝑝 = √
𝑐𝑜𝑣(�̂�𝑤,�̂�𝑝)

(1−�̅�) 𝜎𝑢
2 , where �̅� 

is the mean inbreeding coefficient of the 

validation group derived from pedigree and 

𝜎𝑢
2 is the additive genetic variance. 

LR validation statistics were obtained for 

two validation groups within each breed and 

defined as follows: 

 cows: genotyped cows phenotyped for MY 

and/or CSD and born after the cut-off. 

 bulls: genotyped bulls with at least 20 

daughters with phenotypes for MY and/or 

CSD born after the cut-off, and with no 

daughters with phenotypes for MY or CSD 

born before the cut-off. 

The estimators of the LR method were 

computed using the “compute_LR_stats” R 

function available in Bonifazi (2023). Standard 

errors (SE) of LR estimators were obtained 

using bootstrapping with replacement of 

individuals within each validation group. A 

total of 10,000 bootstrap samples were utilized 

for all analyses. 

 

Results & Discussion 

Hereafter, we first report results on the 

population structure and the relationship 

between the breeds analysed. We then present 

the validation results and discuss the findings of 

this study. 

 

Population structure and estimated genetic 

parameters 

Figure 1 reports the three principal components 

from a Principal Component Analysis (PCA) 

using genotypes from all three breeds. The PCA 

shows that HOL and JER clustered separately 

and that the XBD is an unstructured cross which 

is genetically linked to both purebred 

populations. This pattern was expected as the 

XBD population is derived from HOL and JER 

crossing (Khansefid et al., 2020). 

Table 4 reports estimated heritabilities and 

genetic correlations for the MBMT scenario. 

For CSD, estimated heritabilities were similar  

for all breeds (ranging from 0.03 to 0.04), 

while for MY they ranged from 0.24 for HOL 

to 0.27 for JER. For CSD, across-breed genetic 

correlations were the lowest between JER and 

other breeds (≤0.66), while a high genetic 

correlation (0.93) was estimated between XBD 

and HOL. For MY, across-breed genetic 

correlations were high, ranging from 0.82 

between JER and HOL to 0.96 between XBD 

and HOL. Within-breed across-traits genetic 

correlations ranged from 0.24 for JER to 0.46 

for XBD. Across-breed across-traits genetic 

correlations ranged from 0.34 for CSD in XBD 

and CSD in JER to 0.70 for MY in JER and 

CSD in XBD (Table 4). Across-breed across-

traits genetic correlations not significantly 

different from zero were estimated between 
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CSD in JER and MY in HOL, and between CSD 

in JER and MY in XBD. Overall, the estimated 

genetic correlations indicate that XBD is 

genetically closer to the HOL than to the JER 

for both CSD and MY. The closer genetic link 

between XBD and HOL than with JER was also 

reflected in the estimated Γ matrix representing 

the relationships within and between MF for the 

ALL_4MF scenario. A higher relationship was 

estimated between the XBD MF and the HOL 

MF than with the JER MF (Table 3). As 

expected, the OTHER MF showed the lowest 

relationships between MF since it included all 

other breeds. 

 

Validation results 

Level bias 

Overall, larger level bias was observed for CSD 

than MY and, for both traits, standard errors 

were larger for bulls than for cows (Table 5). 

For CSD, larger ∆̂𝑝 were observed for bulls 

compared to cows in all scenarios, with XBD 

bulls showing the largest ∆̂𝑝. Scenario SINGLE 

showed ∆̂𝑝 for CSD of -0.05 GSD and 0.00 

GSD on average across breeds for bulls and 

cows, respectively. Scenario ALL showed 

similar level bias to SINGLE: ∆̂𝑝 for CSD of -

0.04 GSD and 0.02 GSD on average across 

breeds for bulls and cows, respectively. 

Likewise, ALL_4MF showed similar bias to 

ALL: ∆̂𝑝 of -0.04 GSD and 0.01 GSD on 

average across breeds for bulls and cows, 

respectively. Finally, ∆̂𝑝 for CSD under the 

MTMB scenario was of -0.06 GSD and -0.01 

GSD on average across breeds for bulls and 

cows, respectively. 

For MY, no large differences were observed 

across the different scenarios for level bias 

(Table 5): on average across breeds, ∆̂𝑝 ranged 

between -0.04 GSD for cows for the 

ALL_255MF scenario to 0.02 GSD for bulls for 

the ALL_4GG scenario (results not shown). 

 

 

 

Figure 1. Plot of the first three principal components 

(PC). Colours indicate the breed associated with the 

genotype (HOL = Holstein, JER = Jersey, XBD = 

crossbred). 

 

 

Table 3. Estimated Γ matrix for the ALL_4MF 

scenario. 
 HOLa JER XBD OTHER 

HOL 0.93 0.78 0.83 0.57 

JER  0.72 0.75 0.54 

XBD   0.78 0.56 

OTHER    0.77 
a Four metafounders: HOL = Holstein, JER = Jersey, 

XBD = crossbred, OTHER = other breeds. 

 

 

 

 

 

Table 4. Estimated heritabilities (on the diagonal) and within- and across-breeds genetic correlations (lower 

diagonal) for CSD and MY (standard errors between brackets). 

  CSD b MY 

  HOLa JER XBD HOL JER XBD 

CSD 

HOL 0.03 (0.00)      

JER 0.59 (0.09) 0.04 (0.01)     

XBD 0.93 (0.03) 0.66 (0.06) 0.03 (0.00)    

MY 

HOL 0.41 (0.05) -0.02 (0.10) 0.47 (0.05) 0.24 (0.01)   

JER 0.55 (0.06) 0.24 (0.07) 0.70 (0.06) 0.82 (0.05) 0.27 (0.02)  

XBD 0.34 (0.04) -0.03 (0.10) 0.46 (0.04) 0.96 (0.01) 0.87 (0.03) 0.26 (0.01) 
a HOL = Holstein, JER = Jersey, XBD = crossbred. b CSD = Calving Season Days, MY = Milk Yield. 
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Dispersion bias 

Overall, CSD showed mostly over-

dispersion (�̂�𝑝 < 1 in all scenarios, except for 

JER bulls and cows) while MY showed both 

over- and under-dispersion (Table 5). For both 

CSD and MY, �̂�𝑝 were within the 15% 

acceptable range for all validation groups and 

scenarios, except for CSD-HOL bulls in the 

SINGLE scenario and for MY-XBD bulls in the 

MTMB scenario (Table 5). For both CSD and 

MY, cows showed less dispersion than bulls, 

with �̂�𝑝 closer to 1 on average across breeds and 

scenarios. Scenarios ALL_255MF and 

ALL_4GG showed similar dispersion bias to 

ALL (results not shown). Larger standard errors 

of �̂�𝑝 were observed for bulls compared to 

cows, likely due to the smaller number of 

validation animals available. 

For CSD, SINGLE showed the most 

dispersion across all scenarios: �̂�𝑝 of 0.90 and 

0.94 on average across breeds for bulls and 

cows, respectively. Scenario ALL showed less 

dispersion for CSD than SINGLE, with values 

closer to 1: �̂�𝑝 of 0.94 and 0.95 on average 

across breeds for bulls and cows, respectively. 

Scenario ALL_4MF showed the least 

dispersion for CSD among all scenarios 

analysed: �̂�𝑝 of 0.96 and 0.97 on average across 

breeds for bulls and cows, respectively. Finally, 

dispersion for CSD under the MTMB scenario 

was in between that of SINGLE and ALL: �̂�𝑝 of 

0.91 and 0.95 on average across breeds for bulls 

and cows, respectively. 

For MY, SINGLE and ALL gave overall 

similar results, with �̂�𝑝values ranging between 

0.99 and 1.01 on average across breeds for bulls 

and cows, respectively. Scenario ALL_4MF 

gave slightly higher dispersion than ALL for 

MY: �̂�𝑝 of 1.04 and 1.03 on average across 

breeds for bulls and cows, respectively. Finally, 

MTMB had the highest dispersion among all 

scenarios, albeit within the acceptable range: �̂�𝑝 

of 1.06 and 1.05 on average across breeds for 

bulls and cows, respectively. 

 

Accuracy of partial GEBV 

Overall, for both CSD and MY, higher 𝑎𝑐�̂�𝑝 

were obtained for HOL validation groups, 

followed by XBD and JER (Table 5). 

For CSD, 𝑎𝑐�̂�𝑝 in scenario SINGLE was 

0.49 and 0.44 on average across breeds for bulls 

and cows, respectively. Scenario ALL gave the 

highest accuracies for CSD: 𝑎𝑐�̂�𝑝 of 0.53 and 

0.49 on average across breeds for bulls and 

cows, respectively. MTMB showed the lowest 

accuracies for CSD among all scenarios: 𝑎𝑐�̂�𝑝 

of 0.44 and 0.42 on average across breeds for 

bulls and cows, respectively. Finally, accuracies 

for ALL_4MF were close to those of scenario 

ALL (Table 5). ALL_4GG and ALL_255MF 

scenarios gave similar accuracies as scenario 

ALL (results not shown). 

For MY, 𝑎𝑐�̂�𝑝 in scenario SINGLE was 0.44 

and 0.50 on average across breeds for bulls and 

cows, respectively. Scenario ALL gave higher 

accuracies than SINGLE for MY: 𝑎𝑐�̂�𝑝 of 0.48 

and 0.56 on average across breeds for bulls and 

cows, respectively. The MTMB scenario 

showed the highest accuracies for MY among 

all scenarios: 𝑎𝑐�̂�𝑝 on average across breeds of 

0.56 and of 0.63 for bulls and cows, 

respectively. Finally, similarly to CSD, 𝑎𝑐�̂�𝑝for 

MY for scenarios ALL_4MF, ALL_4GG and 

ALL_255MF were close to ALL (results not 

shown). 

 

Impact of moving from single-breed to multi-

breed evaluations 

Our results show that a combined multi-breed 

evaluation improves the accuracy of GEBVs 

compared to a single-breed evaluation. LR 

validation results showed increased 𝑎𝑐�̂�𝑝 when 

moving from single-breed genomic evaluations 

(scenario SINGLE) to multi-breed genomic 

evaluations, such as those of scenario ALL, for 

both CSD and MY and for both purebred and 

crossbred animals. The observed increase in 

𝑎𝑐�̂�𝑝 is likely due to the close genetic 

relationship among the three populations 

(Figure 1), which allows for (genomic) data 
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Table 5. Level bias in genetic standard deviations (∆̂𝑝), dispersion (�̂�𝑝), and accuracy of partial GEBVs (𝑎𝑐�̂�𝑝) for 

CSD and MY from validation cows and bulls. Standard errors between brackets. 

 CSD b MY 

Scenario c  Bulls   Cows   Bulls   Cows  

 HOL a JER XBD HOL JER XBD HOL JER XBD HOL JER XBD 

𝑎𝑐�̂�𝑝             

SINGLE 0.58 

(0.03) 

0.38 

(0.03) 

0.50 

(0.03) 

0.49 

(0.00) 

0.39 

(0.01) 

0.45 

(0.00) 

0.49 

(0.03) 

0.36 

(0.03) 

0.47 

(0.04) 

0.55 

(0.00) 

0.38 

(0.01) 

0.59 

(0.00) 

ALL 0.63 

(0.03) 

0.42 

(0.02) 

0.53 

(0.04) 

0.54 

(0.00) 

0.43 

(0.01) 

0.51 

(0.00) 

0.52 

(0.03) 

0.45 

(0.03) 

0.48 

(0.04) 

0.59 

(0.01) 

0.46 

(0.01) 

0.62 

(0.00) 

ALL_4MF 0.62 

(0.03) 

0.44 

(0.03) 

0.52 

(0.04) 

0.52 

(0.00) 

0.43 

(0.01) 

0.47 

(0.00) 

0.54 

(0.02) 

0.47 

(0.03) 

0.47 

(0.04) 

0.60 

(0.00) 

0.49 

(0.01) 

0.62 

(0.00) 

MBMT 0.52 

(0.02) 

0.30 

(0.02) 

0.49 

(0.04) 

0.46 

(0.00) 

0.32 

(0.00) 

0.47 

(0.00) 

0.59 

(0.03) 

0.55 

(0.04) 

0.55 

(0.05) 

0.65 

(0.01) 

0.55 

(0.01) 

0.70 

(0.00) 

�̂�𝑝             

SINGLE 0.84 

(0.04) 

0.94 

(0.08) 

0.91 

(0.08) 

0.90 

(0.01) 

0.99 

(0.01) 

0.93 

(0.01) 

0.87 

(0.06) 

1.03 

(0.10) 

1.06 

(0.10) 

1.01 

(0.01) 

0.99 

(0.02) 

1.01 

(0.01) 

ALL 0.87 

(0.04) 

1.03 

(0.06) 

0.92 

(0.08) 

0.91 

(0.01) 

1.01 

(0.01) 

0.94 

(0.01) 

0.91 

(0.06) 

0.96 

(0.07) 

1.11 

(0.11) 

1.01 

(0.01) 

0.99 

(0.01) 

1.02 

(0.01) 

ALL_4MF 0.90 

(0.04) 

1.04 

(0.06) 

0.93 

(0.08) 

0.92 

(0.01) 

1.02 

(0.01) 

0.95 

(0.01) 

1.00 

(0.05) 

1.01 

(0.07) 

1.11 

(0.11) 

1.03 

(0.01) 

1.01 

(0.01) 

1.03 

(0.01) 

MBMT 0.88 

(0.04) 

0.92 

(0.08) 

0.94 

(0.08) 

0.92 

(0.01) 

0.97 

(0.01) 

0.95 

(0.01) 

0.98 

(0.05) 

1.05 

(0.07) 

1.17 

(0.11) 

1.04 

(0.01) 

1.06 

(0.01) 

1.05 

(0.01) 

∆̂𝑝             

SINGLE -0.03 

(0.03) 

0.07 

(0.03) 

-0.20 

(0.04) 

0.02 

(0.00) 

0.02 

(0.00) 

-0.04 

(0.00) 

0.01 

(0.03) 

0.04 

(0.03) 

-0.03 

(0.04) 

0.00 

(0.01) 

0.02 

(0.01) 

-0.04 

(0.00) 

ALL -0.04 

(0.03) 

0.08 

(0.03) 

-0.17 

(0.04) 

0.03 

(0.00) 

0.04 

(0.00) 

-0.01 

(0.00) 

0.02 

(0.03) 

-0.02 

(0.03) 

0.00 

(0.04) 

-0.02 

(0.00) 

-0.02 

(0.01) 

-0.03 

(0.00) 

ALL_4MF -0.03 

(0.02) 

0.06 

(0.02) 

-0.13 

(0.03) 

0.01 

(0.00) 

0.02 

(0.00) 

-0.01 

(0.00) 

-0.02 

(0.02) 

0.00 

(0.02) 

0.01 

(0.03) 

-0.03 

(0.00) 

-0.01 

(0.00) 

-0.02 

(0.00) 

MBMT -0.06 

(0.03) 

0.03 

(0.03) 

-0.16 

(0.04) 

0.00 

(0.00) 

0.01 

(0.00) 

-0.04 

(0.00) 

-0.02 

(0.03) 

0.01 

(0.04) 

-0.02 

(0.05) 

-0.04 

(0.01) 

-0.01 

(0.01) 

-0.05 

(0.00) 
a HOL = Holstein, JER = Jersey, XBD = crossbred. b CSD = Calving Season Days, MY = Milk Yield. c SINGLE 

= separate single-breed evaluations using the phenotypes of all breeds treated as a single trait, but only genotypes 

of the respective breed; ALL = multi-breed evaluation using all phenotypes and genotypes from all breeds and 

treating phenotypes of different breeds as a single trait; MBMT = a multi-breed multi-trait evaluation using 

phenotypes and genotypes from all breeds jointly and treating phenotypes of different breeds as different correlated 

traits; ALL_4MF = as ALL, but using four metafounders. 
 

 collected on one breed to contribute valuable 

information for the prediction of GEBVs in 

other breeds. Finally, no consistent pattern 

across scenarios and traits was observed for 

level bias and dispersion bias when moving 

from single-breed to multi-breed genomic 

evaluations for both purebred and crossbred. 

The results of our study are in line with those 

of Khansefid et al. (2020) and Karaman et al. 

(2021), who reported increased accuracies for 

both purebred and crossbred animals when 

using a multi-breed reference population for 

genomic evaluations of both (small) purebred 

and crossbred populations. In contrast, Cesarani 

et al. (2022) reported a decrease in accuracy and 

an increase in inflation for breeds with a small 

reference population when included in a multi-

trait evaluation next to other purebred but 

numerically dominant breeds. This reduction in 

accuracy was not observed in our study, likely 

due to the sizeable (genomic) data collected on 

both purebred and crossbred individuals (Table 

1) and the inclusion of data from crossbred 

individuals in the multi-breed evaluation. 

The MTMB scenario treated the same trait 

in different breeds as different correlated traits 

and showed the lowest 𝑎𝑐�̂�𝑝 for CSD but the 

highest 𝑎𝑐�̂�𝑝 for MY (Table 5). These results 

could be related to the higher genetic 
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correlations between MY in different 

populations compared to CSD (Table 4). 

Genetic correlations influence the degree to 

which information recorded in one population 

will influence the GEBVs in another trait and 

population. The results of this study suggest that 

a MTMB scenario may perform better for traits 

showing high correlations between populations 

and highlight the importance of genetic 

correlations in determining the optimal scenario 

for implementing multi-breed genomic 

evaluations. Nonetheless, further testing and 

validation of the multi-breed multi-trait 

approach on other traits should be conducted. 

 

Impact of reducing the number of GG and 

implementation of MF 

We observed no impact in reducing the number 

of GG on the accuracy of validation animals. 

Having a large number of GG with potentially 

few animals in each group may impact the 

performance of genomic evaluations (ten Napel 

et al., 2022). The results of this study suggest 

that the number of GG could be reduced for the 

studied population without negatively 

impacting the GEBVs of animals in recent 

generations. This observed lack of impact was 

likely related to missing parental information 

being related to mostly animals in older 

generations, resulting in limited to no impact on 

younger animals. Moreover, animals with 

missing parental information were mostly 

related to other breeds than the three validated 

ones. Out of the total number of animals in the 

pedigree with missing parental information, 

19%, 6%, 23% and 52% were assigned to the 

HOL, JER, XBD, and “other breeds” GG, 

respectively. Therefore, reducing the number of 

GG did not have a large impact on the HOL, 

JER and XBD animals. Finally, results showed 

limited benefits in replacing GG with MF. 

 

Conclusions 

We implemented different scenarios to model 

data of two purebred and a derived crossbred 

population into a multi-breed single-step 

evaluation. First, moving from single-breed to 

multi-breed single-step evaluations improved 

the accuracy of genomic predictions for both 

purebred and crossbred animals. Multi-breed 

multi-trait evaluations that treated phenotypes 

of different breeds as different correlated traits 

showed the highest accuracy for MY but the 

lowest for CSD. Second, we observed no impact 

on the GEBVs of validation animals when 

reducing the number of GG in multi-breed 

evaluations likely due to missing parental 

information being mostly related to animals 

belonging to other breeds or older generations. 

Finally, there were limited benefits in replacing 

GG with MF. 
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Abstract 

 

The standard single-step genomic prediction assumes that all single nucleotide polymorphism (SNP) 

markers explain an equal amount of genetic variance. The true state may deviate from this assumption, 

and it has been suggested to consider SNP marker-specific weights when predicting genomic enhanced 

breeding values (GEBV). We hypothesized that the benefit may be more pronounced in low heritable 

traits and investigated this hypothesis using the udder health evaluations for Nordic Red (RDC) and 

Jersey (JER) dairy cattle. In the first step, we develop a standard single-step genomic prediction 

(ssGBLUP) model based on the currently used multiple-trait evaluation models, and estimated GEBVs. 

The models included four clinical mastitis (CM) traits, and five correlated traits, namely test-day somatic 

cell score (SCS) in 1st, 2nd, and 3rd lactations, fore udder attachment and udder depth, and describes all 

additive genetic effects of an animal by one covariance function. Then, we investigated three alternative 

approaches, where we applied SNP-marker specific weights. The three approaches for SNP-marker 

weighting were: 1) a nonlinear method similar to BayesA, 2) the classical formula (2pqû2), and 3) the 

mean of SNP weights for every 20 adjacent SNP markers calculated based on 2pqû2. To solve the models 

with SNP marker-specific weights, we applied the single-step SNPBLUP solver implemented in MiX99. 

We validated the models by forward validation where the last four years of the data were removed. The 

datasets for RDC and JER included 6.9 and 1.2 million animals of which 5.6 and 0.9 million cows had 

records, respectively. The number of genotyped animals was 125,789 and 64,777 for RDC and JER, 

respectively. We found a significant increase in prediction reliability for CM when applying SNP-

marker specific weights. For instance, applying the 2pqû2 weights compared to the standard ssGBLUP 

for SCS, the prediction reliability increased from 0.58 to 0.64 and from 0.61 to 0.56 for RDC and JER 

bulls, respectively. We found similar improvements in the prediction reliability for cows. In general, all 

weighing approaches improved prediction reliability, but the highest improvement was achieved by 

weighing the SNP-markers by 2pqû2. 

 

Key words: genomic prediction, SNP marker weights, single-step SNP-BLUP, udder health traits  

Introduction 

  

Clinical mastitis (CM) is the costliest disease 

affecting animal welfare and reducing 

profitability by lowering milk quality and 

quantity. Furthermore, it is a lowly heritable 

trait, which means it will take longer to 

genetically improve it. Fortunately, studies 

show that genomic selection can be especially 

beneficial for traits with high recording costs or 

traits with low heritability (Meuwissen et al., 

2001; Schaeffer, 2006). In addition, it is 

possible to improve prediction reliability by 

employing a single-step genomic prediction 
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(ssGBLUP) model which combines all 

information from genotyped and non-

genotyped animals (Christensen and Lund, 

2010). 

In a standard ssGBLUP model, the 

assumption is that all single nucleotide 

polymorphisms (SNP) are equally important in 

terms of the amount of genetic variance they 

explain. This may not be true as some SNPs are 

in the proximity of influential genes. Results of 

several studies indicate improvements in 

prediction reliability by applying SNP marker 

weights (Wang et al., 2012; Fragomeni et al., 

2019). Different formulas have been used to 

calculate SNP weights ranging from Nonlinear 

which is a BayesA-like procedure (VanRaden, 

2008) to square of marker effect size (Wang et 

al., 2012). There were some discrepancies 

between reports which may be due to the 

differences in the traits, population or breed, 

and weighing procedures between the studies. 

The objective of this study was to investigate 

the possibility of improving prediction 

reliability for CM through applying marker 

weighting in a single-step genomic prediction 

framework. 

 

Materials and Methods 

 

Data 

Records of udder health traits including CM, 

test-day somatic cell score (SCS) and two udder 

type traits namely fore udder attachment (UA) 

and udder depth (UD) from Nordic Red (RDC) 

and Jersey (JER) dairy cows collected since 

1990 in Denmark, Finland and Sweden were 

used. There were 74.5 and 17.1 million records 

for 5.6 and 0.9 million RDC and JER, 

respectively. The number of genotyped animals 

used in this study was 125,789 and 64,777 for 

RDC and JER, respectively. The number of 

SNP markers was 46,914 for RDC and 41,897 

for JER. 

Observations for CM were grouped into four 

classes (CM11, CM12, CM2 and CM3) based 

on the lactation number and the days in milk in 

which the disease occurred. Also, SCS records 

were grouped into three classes (SCS1, SCS2 

and SCS3) based on the lactation number. 

Statistical model 

The multi-trait model used in this study is the 

standard model currently used for the 

evaluation of udder health traits by Nordic 

Cattle Genetic Evaluation (NAV) and has been 

described in detail in Negussie et al. (2010). In 

brief, the model in matrix notation was: 

y = Xb + Tk + Faa + Fpp + e 

where y is the vector of observations for all nine 

traits; b is the vector of fixed effects; vector k 

contains random herd-year effects for CM, UA 

and UD and random herd-test-day effects for 

SCS; vector a has the animal additive genetic 

effects; vector p has the random animal non-

additive genetic effects and e is the random 

residual. The Fa and Fp matrices have the trait-

specific covariables from the covariance 

function. Covariance functions were used to 

model animal additive and non-additive genetic 

effects. 

Scenarios 

First, a standard ssGBLUP was implemented 

and the results were compared with those of 

weighted ssGBLUP. In a single-step evaluation, 

we need a relationship matrix that combines 

numerator relationship matrix (NRM) with 

genomic relation matrix (GRM) as follows: 

H-1 = A-1 + [
𝟎 𝟎
𝟎 𝐆−1 − 𝐀22

−1] 

 

where G is the GRM and was calculated as G = 

ZZ’ + C, where Z is a centered and scaled 

marker matrix and C = wA22 with w equal to the 

residual polygenic (RPG) proportion and A22 is 

the NRM of the genotyped individuals. The 

amount of RPG proportion was 0.10. 

Second scenario was to apply a Nonlinear 

formula (VanRaden, 2008) to weigh the 

markers as follows: 

𝐆𝑗 =
𝐙𝑗𝐖𝑗𝐙𝑗

′

∑ 2𝑝𝑖(1 − 𝑝𝑖)𝑚
𝑖=1
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where m is the number of markers and pi is 

allele frequency of marker i. Wj is a diagonal 

matrix containing the weights for eigenvalue 

trait j calculated by 1.25 

|û𝑗𝑖|

sd(û𝑗)
−2

, where |û𝑗𝑖| 

is the absolute value of the estimated SNP effect 

for marker i of the eigenvalue trait j and sd(ûj) 

is the standard deviation of all estimated SNP 

effects for eigenvalue trait j. 

In the third scenario, markers were weighted 

using the classical method (Falconer and 

Mackay, 1996), henceforth referred to as 2pqû2. 

In the last scenario, average weights of every 

20 adjacent markers calculated by the classical 

method were applied (20SNP_window).  

Validation 

To create a reduced dataset for the validation of 

Legarra and Reverter (2018), the last four years 

of observations were excluded. Breeding values 

were predicted using both the reduced and full 

datasets for each of the scenarios. Combined 

genomic enhanced breeding values (GEBV) for 

both CM and SCS were calculated using 

lactation weights as applied by NAV. 

Effective record contribution (ERC) for 

genotyped animals was calculated. Then, a bull 

could be a candidate if it had an ERC ≥ 2 using 

full data and that of zero using reduced data. 

Corresponding values were 0.9 and zero for 

cow candidates. All the analyses were 

implemented using the MiX99 program suite 

(Pitkänen et al., 2022). 

 

Results & Discussion 

Forward validation for CM 

Regression of GEBVs using the full dataset on 

those using the reduced dataset showed slightly 

lower bias (b0) for 2pqû2 compared to the other 

scenarios (Table 1). The only exception was the 

20SNP_window for RDC bull candidates. The 

standard ssGBLUP model yielded the lowest 

dispersion (b1).  

The reliability of predictions using standard 

ssGBLUP for RDC and JER bull candidates 

were 0.50 and 0.65, respectively. 

Corresponding values for RDC and JER cow 

candidates were 0.74 and 0.72, respectively. All 

marker weighting scenarios resulted in higher 

reliabilities (ranging from 0.5% to 13.8%) 

compared to the standard ssGBLUP, except for 

20SNP_window in RDC and JER bulls. The 

highest prediction reliability was obtained by 

weighting the markers by the classical formula, 

i.e., 2pqû2. 

 

 

Table 1. Results of forward validation of bull and cow (within parentheses) candidates for combined clinical 

mastitis using standard single-step procedure as well as different SNP weighting scenarios for Nordic Red (RDC) 

and Jersey (JER) dairy cattle. 

Breed Group;n Model b0 b1 R2 %gain* 

RDC 
Bull;86 

(Cow;8,440) 

standard ssGBLUP 0.002 

(0.005) 

0.75 

(0.87) 

0.50 

(0.74) 

 

Nonlinear 0.001 

(0.005) 

0.73 

(0.85) 

0.51 

(0.74) 

2.0 (1.1) 

2pqû2 0.001 

(0.003) 

0.68 

(0.79) 

0.57 

(0.78) 

13.8 (5.3) 

20SNP_window 0.0004 

(0.005) 

0.70 

(0.85) 

0.49 

(0.75) 

-1.6 (1.8) 

JER 
Bull;115 

(Cow;8,224) 

standard ssGBLUP 0.013 

(0.010) 

0.78 

(0.89) 

0.65 

(0.72) 

 

Nonlinear 0.015 

(0.012) 

0.77 

(0.88) 

0.66 

(0.73) 

0.5 (1.9) 

2pqû2 0.010 

(0.008) 

0.70 

(0.79) 

0.66 

(0.76) 

0.9 (5.3) 

20SNP_window 0.012 

(0.011) 

0.74 

(0.87) 

0.64 

(0.74) 

-2.4 (3.1) 

* Percent of gain in prediction reliability relative to standard single-step evaluation. 
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Table 2. Results of forward validation of bull and cow (within parentheses) candidates for combined SCS using 

standard single-step procedure as well as different SNP weighting scenarios for Nordic Red (RDC) and Jersey 

(JER) dairy cattle. 
Breed Group;n Model b0 b1 R2 %gain* 

RDC 
Bull;125 

(Cow;18,112) 

standard ssGBLUP 6.83 

(6.11) 

0.86 

(0.97) 

0.58 

(0.77) 

 

Nonlinear 7.40 

(6.84) 

0.83 

(0.94) 

0.60 

(0.78) 

2.6 (0.6) 

2pqû2 7.21 

(5.82) 

0.77 

(0.87) 

0.64 

(0.79) 

11.1 (2.3) 

20SNP_window 6.66 

(6.63) 

0.82 

(0.94) 

0.59 

(0.78) 

2.5 (1.0) 

JER 
Bull;119 

(Cow;6,537) 

standard ssGBLUP 8.17 

(8.43) 

0.81 

(0.97) 

0.61 

(0.79) 

 

Nonlinear 7.80 

(8.43) 

0.80 

(0.96) 

0.63 

(0.80) 

2.7 

(0.9) 

2pqû2 4.06 

(5.71) 

0.70 

(0.87) 

0.65 

(0.81) 

5.4 (2.8) 

20SNP_window 7.55 

(7.66) 

0.80 

(0.95) 

0.64 

(0.80) 

4.0 (1.3) 

* Percent of gain in prediction reliability relative to standard single-step evaluation. 

 

The gain in prediction reliability by marker 

weighting differed by breed and was more 

advantageous for RDC. This might be due to the 

differences in the population structure. 

 

Forward validation for SCS 

Results of forward validation for SCS are 

shown in Table 2. Similar to CM, the lowest 

bias was obtained for the 2pqû2 approach. 

Biases were higher for SCS (ranging from 4.06 

to 8.43) than for CM. 

The lowest and the highest dispersion were 

for the standard ssGBLUP and 2pqû2, 

respectively, which is in line with the results for 

CM. 

The reliability of predictions using standard 

ssGBLUP for RDC and JER bull candidates 

were 0.58 and 0.61, respectively. 

Corresponding values for RDC and JER cow 

candidates were 0.77 and 0.79, respectively. 

The amount of improvement in prediction 

reliability by applying marker weighting ranged 

from 0.6% to 11.1% for RDC and 0.9% to 5.4% 

in JER. Similarly, the 2pqû2 approach resulted 

in the highest gain in prediction reliability in 

both breeds compared to the other scenarios. 

Prediction reliability was on average higher for 

SCS than for CM. This was expected as the 

heritability of SCS was higher than that of CM.  

Conclusions 

 

This study was conducted to compare predicted 

breeding values by the standard single-step 

genomic model with weighted approaches by 

using records of udder health traits in two 

Nordic dairy breed populations. Results 

indicated that marker weighting is beneficial as 

improvements in bias and prediction reliability 

were observed for clinical mastitis and somatic 

cell score. The classical formula to weigh the 

markers resulted in the highest gain in 

prediction reliability and the lowest bias. 

However, the highest dispersion was obtained 

by applying this approach. It seems that by 

marker weighting we accept slightly lower 

precision in exchange for higher accuracy. 
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Abstract 

 

The multi-step method for genomic prediction has worked remarkably well for US dairy cattle, but 

intense genomic selection makes recent genetic trends difficult to estimate in pedigree-only based BLUP 

evaluations. Thus, the introduction of routine single-step GBLUP (ssGBLUP) is under study. The large 

size of US dairy cattle data precludes naïve approaches for genomic prediction. Here we present the 

technical choices and needs of an all-breed (6 breeds and all existing crosses), ssGBLUP applied to 

different sets of traits within trait groups such as fertility, livability and health data. For each trait group, 

first, we prune pedigree to animals with records and their ancestors, reducing the size of pedigree and 

improving memory use and convergence. The model includes only genotypes of animals in this pruned 

pedigree, and we predict the other animals later either using Parent Average (if not genotyped) or sum 

of SNP effects (if genotyped). The set of markers is the usual CDCB set with 78,964 markers and 

included autosomes and sex chromosomes. The method for ssGBLUP was G-matrix with Algorithm for 

Proven and Young (APY) with metafounders (MF). APY largely reduces computational needs whereas 

MF provides smooth solutions for unknown origins and automatic compatibility of pedigree and 

genomic relationships within and across breeds. The gamma matrix was constructed based on base allele 

frequencies across breeds and increases of inbreeding within breeds.  Core animals were chosen within 

breed, in a heuristic but complete and repeatable manner: genotyped sires with more than a certain 

number of daughters in records, and a deterministic subset of genotyped cows with records. This resulted 

in ~45K animals in the core and ~2M non-core animals for fertility evaluations. Still memory needs are 

large as G_APY inverse, stored in double precision, takes ~720 Gb. Thus, we used memory mapping 

(mmap) to assign memory to disk space. For the case of fertility (4 traits), computation of G-1_APY 

took 28h and 100 Gb of RAM using mmap. Solving MME took 22h, 120 Gb of RAM and 476 rounds 

of PCG. Genomic reliabilities took 120 Gb of RAM and 8h per trait. Backsolving for SNP solutions 

took negligible time and memory. Owing to the developments reported here, computations for ssGBLUP 

in this very large database can be done with reasonable time and memory. 

 

Key words: metafounders, memory mapping, pedigree, genomic  

Introduction 

  

Genomic predictions in dairy cattle started with 

quite simple multi-step methods consisting in 

traditional pedigree-based evaluations followed 

by genomic predictions based on de-regressed 

proofs of the reference population – those 

animals with genotypes and some sort of 

information from traditional BLUP. However, 

multi-step methods do not use all available 

information and, probably more important, 

traditional evaluations produce biased genetic 

trends. Single-step methods (either in SNP-

BLUP or GBLUP flavors) can instead use all 
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information to estimate unbiased trends and 

improve reliability.  

Therefore, national dairy cattle evaluations 

are gradually shifting to single-step methods. 

Single-step methods are complex for two 

reasons. First, the elementary values handled 

are orders of magnitude larger than pedigree-

based evaluations. For instance, a genetic 

evaluation with 1 million animals in pedigree 

uses a pedigree list of 3 million points. The 

same animals in a pure genomic evaluation 

would use 50 billion points: 50K (SNPs) times 

1 million (cows). The second reason for the 

complexity is the easy algebra but complex 

operations in the single-step methods.  

The US genetic evaluation system at Council 

on Dairy Cattle Breeding (CDCB) is very large, 

including roughly 60 million animals with 

records, 100 million animals in pedigree, more 

than 8 million animals genotyped and 50 traits 

grouped in different models. CDCB, AGIL 

(USDA) and University of Georgia are testing 

single-step methods using the blupf90 suite of 

programs. This led us to define technical 

options to avoid the use of very large resources 

(time, memory, disk space) or extensive 

reprogramming. We present these technical 

options here as they might be of interest for 

other practitioners.  

 

Materials and Methods 

 

Pruning pedigree and markers 

The CDCB evaluates several trait groups (yield, 

somatic cell score, livability, productive life, 

fertility, gestation length, health, residual feed 

intake (RFI), heifer livability, calving ease and 

type traits) including a total of 50 traits – see 

https://uscdcb.com/individual-traits/ . Residual 

feed intake is a Holstein-only evaluation; type 

traits are separate purebred evaluations; the rest 

are all-breed evaluations. The number of 

animals with phenotypes varies enormously 

from ~8K for residual feed intake to 40M for 

yield traits. There are at this moment (June 

2024) 9 million genotyped animals, all imputed 

to 79K SNPs. However not all this information 

is needed for the genomic evaluation itself. The 

CDCB receives pedigrees and genotypes for 

animals that are not directly related to the 

evaluations – because they are foreign animals 

or because they belong to herds that do not 

contribute information. They are related to 

records through pedigree, genotypes, or both. 

Consider pedigree first. The set of animals in 

records for yield (the trait with largest database) 

and its ancestors constitute 60M animals. The 

set of animals in records for residual feed intake 

(the trait with smallest database) and its 

ancestors constitute roughly 60K animals. 

Although in theory one could include all 100M 

animals in the Mixed Model Equations (MME) 

for all traits, this is clearly an overkill. 

Preliminary analyses using the blupf90 family 

showed that solving of the Mixed Model 

Equations with all 100M animals in pedigree 

needed stricter convergence criteria (as some 

animals are very distantly related to 

phenotypes) than the trimmed 60M pedigree. 

Therefore we trim the pedigree, solve the MME, 

and then predict the trimmed animals by 

pedigree relationships (Henderson, 1977). This 

is done via Parent Average from oldest to 

youngest in the trimmed animals. 

Then consider genotypes. One way of 

understanding single-step is that it improves 

pedigree relationships of non-genotyped 

animals via related genotyped animals. Thus, 

and contrary to pedigree BLUP, a young animal 

with no phenotype and no progeny with 

phenotype may contribute to improve the 

elements in H for its non-genotyped parent(s). 

However, it is commonly accepted that this 

improvement is very small. Thus, we decided to 

retain genotypes of animals directly related to 

phenotypes: animals with records and 

ancestors, reducing the number of genotypes 

from 9M to 2M for traits such as yield.  

In other words, first we built a pedigree 

consisting of animals in records and all 

ancestors; then, we extracted the genotypes of 

animals included in this subset pedigree. The 

GEBVs of the remaining animals can be 
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predicted based on SNP effects and pedigree 

predictions (e.g., Vandenplas et al., 2023). 

 

Metafounders 

To model missing parentship and different 

breeds levels we fit metafounders defined by 

breed, year of birth, and selection path. 

Metafounders give smoother estimates (Legarra 

and VanRaden, 2023) and compatibility with 

genomic relationships (Legarra et al., 2015). 

Within trait group, we defined a joining strategy 

that first compacts the definitions “forward” 

until first phenotypes appear (e.g. for health 

traits) and then “backwards” to achieve a 

minimum “pseudo-count of records in progeny” 

per level of metafounders. These results in 

varying numbers of metafounders levels per 

trait group, up to approximately 300 at most. 

The relationship matrix across metafounders 

was obtained using base allele frequencies 

estimated from old genotypes in the database, 

plus a strategy using increase of inbreeding for 

more recent ones (Legarra et al., 2024). A 

“heatmap” of metafounders relationships is in 

Figure 1. 

 

Using the algorithm for Proven and Young 

For these tests we decided to use the Algorithm 

for Proven and Young, so called APY, which 

uses a sparse representation, 𝐆𝐴𝑃𝑌
−1 , of the 

conditional covariances across individuals 

(Misztal et al., 2014; Misztal, 2016). It can also 

be seen as an approximate sparse inverse of the 

genomic relationship matrix. The APY 

algorithm has several advantages: it is fast and 

memory wise, easy to program. However, it 

requires the definition of a set of “core” animals 

representing the whole population. This was 

done using some ideas from Cesarani et al. 

(2022) and some new ones. We also wanted (1) 

to have both bulls and cows and (2) to avoid 

randomness, because it makes troubleshooting 

genetic evaluations more complex. The choice 

of core was done by breed as follows.  

 
Figure 1. Gamma relationship for metafounders, 

sorted by breed and pedigree path 

 

The genotypes that we used for large trait 

groups as fertility or yield consist in a very large 

number of Holsteins (almost 2M), a medium 

number of Jerseys (300K), a small number of 

crossbred animals (called “XX”) (50K) and 

smaller number (<10K) for each of Ayrshire, 

Brown Swiss and Guernsey. At this stage it is 

unclear if XX genotypes will be included in the 

possible “routine” single-step, but we did that to 

test the most complex case. Very old genotyped 

animals (<1990) were not chosen as core as they 

are not truly representative of their respective 

periods. For AY and GU, all animals were 

included as core. For BS and XX 5K animals 

were needed as core, and 15K for JE and HO. 

These numbers have been found in previous 

studies – see Cesarani et al. (2022). 

Then, within population: first, we first chose 

all genotyped sires with >100 daughters (Jersey, 

XX) or >500 (Holstein) with records. This left 

some spots to fill, that were filled with cows 

with records using a deterministic function 

module(anim_key,n) where anim_key is the 

unique integer used at CDCB for identification 

and n is a number to fill in the empty spots in 

the core. Table 1 gives an overview of the final 

numbers.  
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Table 1: number of animals and core genotypes for 

tests on livability 
Breed Genotypes Core 

needed 
Sires 

flagged 
Cows 

flagged 
Ayrshire 1,608 (all) 311 1175 
Brown 
Swiss 

9,560 5K 611 4313 

Guernsey 3,561 (all) 219 3258 
Holstein 1,669,795 15K 6890 8113 
Jersey 300,976 15K 3186 11883 
Crosses 56,528 5K 141 4616 

 

Memory mapping 

Even with APY, 𝐆𝐴𝑃𝑌
−1   stored in double 

precision requires ~700 GB for 45K animals in 

core and 2M animals in non-core. This is still 

less than the matrix of genotypes in double 

precision for the ~2M animals and 79K 

genotypes. This matrix is first formed by cross-

products of blocks with program preGSf90, 

blended (5% or 10%) with a residual polygenic 

relationship matrix 𝐀(Γ)22 based in pedigree, 

then inverted. Allele frequencies are fixed to 0.5 

as assumed by theory of metafounders. Then 

𝐆𝐴𝑃𝑌
−1  is used by program blup90iod3 (solving 

the MME) and accGS2f90 (accuracies as in 

Bermann et al., 2022a).  

The iterative method by Preconditioned 

Conjugate Gradients in blup90iod3 essentially 

consist in multiplications of the MME times a 

vector of solutions. This has a low cost for the 

pedigree + pedigree relationships part, which in 

addition can be easily solved by iteration on 

data algorithms. However, the contributions of 

𝐆𝐴𝑃𝑌
−1  to the MME is more expensive if handled 

in memory. To alleviate memory needs, we 

used the programming technique called 

memory mapping (mmap) 

(https://en.wikipedia.org/wiki/Mmap) which 

allows mapping memory to disk space. Using 

this technique, RAM is reduced to 120Gb 

instead of 700Gb. 

 

Backsolving for SNP solutions 

The SNP effects estimates are needed for 

Indirect Predictions of animals not included 

explicitly in the MME, and also for new animals 

arriving to the database in between full runs. 

The SNP effect estimates can be obtained 

backsolving from GEBVs of core animals 

obtained in the full run (Bermann, 2022b). This 

has low computation cost as the core animals 

are a reduced number and 𝐆𝑐𝑜𝑟𝑒,𝑐𝑜𝑟𝑒
−1  is already 

available as part of 𝐆𝐴𝑃𝑌
−1 . 

 

Rough timings and memory 

Here we give some crude numbers. We have 

made different tests across different servers, 

trait groups and options. The examples are for 

fertility traits: four traits, low heritability, with 

records dating back to 1960 – see Legarra and 

VanRaden (2023) for a more complete 

description. 

There are roughly 100M lactation records 

belonging to 40M animals, with different 

patterns of missing values and different models 

across traits. The pedigree including animals in 

records and ancestors contains 60M animals. Of 

these, 2M animals are genotyped and their 

genotypes included in the prediction, and of 

these, 45K constitute the core, in a manner 

similar to Table 1.  

We used 16 threads. Preparing 𝐆𝐴𝑃𝑌
−1  with 

preGSf90 took 16h and 720Gb of RAM or 28h 

and 120 Gb of RAM using mmap. For all the 

next operations we used mmap. Solving MME 

by blup90iod3 took 22h, 120 Gb of RAM and 

476 rounds of PCG. Genomic reliabilities using 

an approximation to the inverse of the MME 

(Bermann et al., 2002a) took 120 Gb of RAM 

and 8h per trait. Backsolving for SNP solutions 

took negligible time and memory. These 

numbers are very similar to Cesarani et al., 

2022. 

 

Conclusions 

 

Testing single-step forces to make explicit the 

choices and steps of the genetic evaluation 

systems and pipelines. The choices that we 

present here adapt easily to the diverse variety 

of information, traits and population at CDCB, 

while they should guarantee a fair, unbiased 

evaluation on time without using extensive 

computing resources.  
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Correct handling of missing pedigree and 

different breeds, e.g., using metafounder, is 

important for unbiased results. Choices of core 

and trimming pedigree are essential to save 

memory and computing time.  
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Abstract  

 

A genomic reliability method developed by the Interbull Working Group on Genomic Reliability 

Calculation approximated reliabilities of estimated genomic breeding values for the multi-step genomic 

model as well as the single-step genomic model. Several modifications and improvements have been 

made thereafter, with a main optimization of making the genomic reliability method feasible for large-

scale national genomic evaluations. The calculation of exact reliabilities of direct genomic values was 

proven to be computational demanding for large, genotyped populations. Therefore, this step of the 

original genomic reliability method, along with other steps, is no longer required in routine genomic 

evaluation but it is still needed when a genomic model or a major change in the national model is 

introduced. Consequently, two guidelines have been developed separately for the routine national 

single-step genomic evaluation and for deriving genomic effective daughter contribution gain via the 

Interbull GEBV Test. Detailed technical steps have been described in the new guidelines to assist the 

countries in applying the methods to the routine single-step evaluation and the derivation of the genomic 

effective daughter contribution gain parameter in a genomic validation. These guidelines should 

harmonize the calculation of genomic reliabilities and make the genomic reliabilities of marketed 

genomic bulls comparable across countries.  

 

Key words: genomic reliability, single-step model, genomic validation, dairy cattle evaluation  

Introduction  

For conventional evaluations without genomic 

information, accurate reliability calculation 

methods were developed and have been 

routinely used in dairy cattle evaluations, e.g. a 

single-trait reliability method by VanRaden and 

Wiggans (1991) for a repeatability animal 

model, and multi-trait reliability methods (Liu 

et al. 2002; Tier and Meyer 2004) for a multi-

trait animal model. For all types of genetic 

evaluation models, including a maternal-effect 

model for calving traits, fairly accurate and 

highly efficient reliability methods have been 

utilized for national dairy cattle evaluations.  

Soon after the introduction of genomic 

selection in 2008, diverse genomic reliability 

methods (Liu et al. 2010; Wiggans and 

VanRaden 2010) were developed to consider a 

bull reference population, which covered multi-

step genomic models as well as single-step 

genomic models (Misztal et al. 2013). To make 

national genomic reliabilities comparable 

across countries, an Interbull working group 

was set up in 2016 aiming to develop a standard 

genomic reliability (GREL) method for dairy 

cattle evaluations (Liu et al. 2017). The 

standardized GREL method by the working 

group was applicable for both multi-step and 

single-step models. However, at that time large-
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scale female animal genotyping just started in 

few countries and thus the number of genotyped 

animals was still manageable.  

The aims of this study were 1) to develop 

guidelines for routine genomic evaluations with 

millions of genotyped animals; 2) to address 

technical issues related to routine reliability 

calculation, and 3) to identify topics for future 

research and development projects.  

 

Interbull genomic reliability method for 

the single-step model   

 

Main Features of the Genomic Reliability 

Calculation Method    

The Interbull standardized genomic reliability 

method (Liu et al. 2017) has the following 

features:  

1) Keep using traditional reliability 

methods for the conventional part of the 

single-step model (SSM), including the 

calculation of effective daughter 

contribution (EDC) of bulls or cows 

according to the Interbull standardized 

methods, 

2) Genotype data are treated as a new 

source of information contributing to 

the total reliability,  

3) Calculate exact reliability values of 

direct genomic values (DGV) using all 

genotypic data of all genotyped 

animals, and  

4) Adjust theoretical genomic reliability 

level via a genomic validation test.  

Complex statistical models have been used for 

many trait groups when calculating the 

conventional part of reliability, e.g., a multi-

lactation random regression model for test-day 

traits, a maternal-effect model for calving traits, 

or a multi-parity multi-trait animal model for 

fertility traits. Young animals and all genotyped 

animals must be included in the step of 

calculating the conventional part of reliability. 

Having completed the conventional reliability 

calculation, a model containing a general mean 

and additive genetic effect is assumed to 

compute the genomic contribution to the total 

reliability. 

 In contrast to approximating genomic 

reliabilities of candidates based on genomic or 

pedigree relationship to reference animals (Liu 

et al. 2010; Wiggans and VanRaden 2010), 

exact DGV reliability values are calculated 

using all genotypic data of all animals, 

including those with own phenotypic data and 

young candidates via the software snp_blup_rel 

(Ben Zaabza et al. 2020a). A single-trait SNP 

BLUP model without a residual polygenic 

effect (RPG) was assumed here for the 

computation of the exact reliability values of 

DGV, being equal to genomic breeding values 

(GEBV) under the assumption of no RPG effect 

at this step. An overestimation of genomic 

reliability by ignoring the RPG effect will be 

accounted for in a later step of adjusting GREL 

via Interbull GEBV Test (Mäntysaari et al. 

2010).  

 

Need for A Downward Adjustment of the 

Theoretical Genomic Reliabilities for Large 

Genotyped Population  

The Interbull genomic reliability method was 

applied to the single-step evaluations of four 

test-day traits and 25 conformation traits in 

German Holstein (Liu et al. 2023). Phenotypic, 

genotypic and pedigree data stemmed from 

German Holstein official evaluation in April 

2023. Genotype data of 1,318,780 genotyped 

Holstein animals were evaluated jointly with 

264 million of test-day records or deregressed 

MACE proofs of 13,528,444 cows and bulls for 

each of the four test-day traits. For the 25 

conformation traits, the number of national 

cows and MACE bulls with own phenotypic 

data was 3,144,366. The size of reference 

population was 524,187 for the test-day trait 

protein yield and 386,062 for the conformation 

trait stature, respectively (See Table 1 in Liu et 

al. 2023). According to the exact DGV 

reliabilities of the genotyped Holstein AI bulls 

(Figures 5 and 6 in Liu et al. 2023), it was clear 

that the exact, theoretical DGV reliability for 1-

year-old genomic AI bulls born in 2022 was 

149



INTERBULL BULLETIN NO. 60. 20-21 May 2024, Bled, Slovenia 

 

 

way too high, with an average of 0.97 for milk 

yield and 0.83 for the conformation trait 

angularity which was recently introduced with 

a new trait definition and had much less data 

than all the other conformation traits. The 

extremely large reference population of the 

German Holstein led to the exceedingly high 

level of the exact, theoretical DGV reliability 

for the young genomic AI bulls of just 1 year 

old. With more animals genotyped, the level of 

theoretical DGV reliability will keep 

increasing. Therefore, a downward adjustment 

for the theoretical genomic reliabilities 

(VanRaden and O’Connell 2018) is, in general, 

needed for large, genotyped populations.  

 

Ignoring the Individual Variability in DGV 

Reliabilities for Large Genotyped Population  

In addition to the level of DGV reliabilities, 

variation in theoretical DGV reliabilities was 

investigated for the German Holstein animals 

(Liu et al. 2023). Standard deviations of the 

DGV reliabilities by birth year were plotted for 

all the genotyped German Holstein AI bulls 

(Figures 7 and 8 in Liu et al. 2023). Both graphs 

clearly showed that the standard deviation of 

DGV reliabilities was extremely small for the 

young genomic AI bulls without daughters, 

being as low as 0.005 for all the four test-day 

traits and about 0.01 for the conformation traits, 

indicating that the theoretical DGV reliabilities 

of the young animals had little variation among 

themselves, probably caused by the very large 

genotyped population and a fairly complete list 

of ancestor animals in the reference population 

for the young animals. These two graphs 

suggested a constant value of genomic EDC 

may give a satisfactory approximation of the 

exact, theoretical DGV reliabilities which 

usually required considerable computing time 

to calculate even with the highly efficient 

software snp_blup_rel (Ben Zaabza et al. 

2020a).  The simplification of the genomic 

reliability calculation makes it feasible for 

routine single-step evaluation of millions of 

genotyped animals.  

 

Results & Discussion  

 

As the number of genotyped animals increased 

over time e.g. by a large-scale female animal 

genotyping program and reached a high level 

for the German Holstein population, the 

variation in theoretical DGV reliabilities or total 

genomic reliabilities became smaller among the 

young, genotyped animals without own 

phenotypic data, also due to more complete 

ancestry in the genomic reference population 

for the young animals. The level of genomic 

reliabilities for the young animals was more 

important to ascertain than accounting for the 

individual variation in the DGV reliabilities. 

Therefore, a constant value of genomic EDC 

gain may be safely assumed for all the 

genotyped animals, which needs to be 

determined via a genomic validation study.  

Since the calculation of the exact, theoretical 

DGV reliabilities of the original genomic 

reliability method (Liu et al. 2017) took a 

considerably long time for the very large 

genotyped population like German Holstein and 

the consideration of individual DGV 

reliabilities became less important for the large 

genotyped population, the step of calculating 

theoretical DGV reliabilities via snp_blup_rel 

was moved from the routine single-step 

evaluation pipeline to the genomic validation 

test conducted usually with much less time 

pressure than the routine genomic evaluation. 

Therefore, two Guidelines were developed 

separately for the routine single-step evaluation 

and for the genomic validation test deriving the 

genomic EDC gain parameter (see Appendices 

for the two Guidelines). Both Guidelines were 

approved by the Interbull Steering Committee 

in April 2024.  

The standardized Interbull genomic 

reliability method was successfully 

implemented in all 10 trait groups of the 

German Holstein single-step evaluation  

according to the two Guidelines (see 

Appendices).  

 

 

150



INTERBULL BULLETIN NO. 60. 20-21 May 2024, Bled, Slovenia 

 

 

Technical Issues Related to Implementing the 

Guidelines on Genomic Reliabilities 

A Multi-Breed Genomic Evaluation Model 

Some countries or dairy populations may 

evaluate multiple dairy breeds jointly in a 

single-step evaluation, with some of the breeds 

having genotype data. For instance, Jersey and 

Holstein breeds would be evaluated together in 

a joint system, with both breeds having own 

genotypic data. Due to the vast difference in the 

size of reference populations of the two breeds, 

it is expected that young candidates of the 

Jersey breed would have lower genomic 

reliabilities than those of the Holstein breed. 

Regardless how the genotypic data are 

modelled for the two breeds, separate 

populations of genotyped animals and reference 

animals need to be defined according to the 

Guidelines (see Appendices). In addition, the 

adjustment step for genomic reliabilities must 

be conducted for each breed separately. 

Following all the steps of the two Guidelines, 

different levels of genomic reliabilities between 

the Jersey and Holstein candidates are ensured.  

 

Applicability to Small Genotyped or Reference 

Populations 

The step of adjusting genomic reliabilities of the 

Interbull GREL method plays a key role in 

determining a proper level of genomic 

reliabilities for young candidates.  Applicability 

of the GREL method is limited to whether the 

required Interbull GEBV Test (Sullivan 2024) 

can be conducted for a small population with a 

limited number of genotyped animals or 

reference animals, such as a small breed with a 

small number of genotyped animals or a new 

trait with a small number of reference animals. 

If enough validation bulls can be defined for the 

GEBV Test, then the GREL adjustment and 

derivation of the genomic EDC gain parameter 

can be done properly.  

 For new traits like dry matter intake that 

have no reasonable number of validation bulls 

available, further research is required to 

investigate how to use validation cows with low 

reliability for the GREL adjustment. If a 

genomic validation via forward prediction 

cannot be performed due to a small number of 

reference cows for a new trait like dry matter 

intake, new research will be needed to extend 

the GREL method for a different validation 

procedure such as cross-validation.  

 Some countries or populations may have 

trait groups containing sub-traits with similar 

heritability values and data structure, assuming 

the same GREL adjustment factor for all the 

sub-traits of the trait group might simplify the 

genomic reliability calculation steps under this 

circumstance.  

 

Frequency for Updating the Parameter of 

Genomic EDC Gain  

As stated above, the core parameter of genomic 

EDC gain is used in the routine genomic 

reliability calculation (see Guidelines I) and 

determined via the Interbull GEBV Test (see 

Guidelines II). Because the derivation of the 

genomic EDC gain parameter is linked to 

Interbull GEBV Test, an update of this 

parameter value needs to be done whenever a 

new GEBV Test is requested. According to the 

current validation rules by Interbull, the update 

will be mandatory when a new national 

evaluation model is implemented, major 

changes are introduced to a national evaluation, 

or a routine validation of every 2 years is called. 

The same phenotypic, genotypic and pedigree 

data are used for the derivation of the genomic 

EDC gain parameter as for the Interbull GEBV 

Test.  

 

Level of Genomic Reliabilities in Case of an 

Inflated Prediction  

A country or population may pass the Interbull 

GEBV Test for a given trait, even when an 

inflation of prediction exits, with a regression 

slope being evidently but not yet statistically 

significantly less than 1. A legitimate concern 

was raised, if the adjusted genomic reliabilities 

would be too high for this situation, as GEBV 

variance of the validation bulls in the truncated 

validation data set appeared to be too high.  
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With dependent variable being GEBV of a 

later full single-step evaluation, a linear 

regression test (Legarra and Reverter 2018) can 

be applied according to the Interbull GEBV 

Test (Sullivan 2024):  

 

  û𝐿 = 𝑏0 + 𝑏1 û𝐸 + 𝜖     [1] 

 

where û𝐿 and  û𝐸 represent GEBV of a 

validation bull from the later full evaluation and 

the early truncated evaluation, respectively; 𝑏0 

and 𝑏1 denote the intercept and slope of the 

regression line; and 𝜖 is a residual. Let r denote 

the correlation of two sets of GEBV for the 

validation bulls. For the simple linear 

regression model 1, the regression slope and 

correlation have the following relationship: 

 

  𝑏1 =  𝑟 √𝑣𝑎𝑟(û𝐿) √𝑣𝑎𝑟(û𝐸)⁄     [2]  

and  

  𝑣𝑎𝑟(û𝐿) =  
𝑏1

2

𝑟2  𝑣𝑎𝑟(û𝐸)      [3] 

 

According to the Interbull GREL method 

(Formular 11 in Liu et al. 2017), variance of the 

difference between the two sets of GEBV of the 

validation is needed for adjusting the theoretical 

genomic reliabilities. It can be shown that the 

variance of GEBV differences is: 

 

  𝑣𝑎𝑟(û𝐸  – û𝐿) 

      =  𝑣𝑎𝑟(û𝐿) − (2𝑏1 − 1)𝑣𝑎𝑟(û𝐸).   [4] 

 

The Interbull GREL method with an adjustment 

for genomic reliabilities uses 𝑣𝑎𝑟(û𝐸  – û𝐿) but 

not 𝑣𝑎𝑟(û𝐿) − 𝑣𝑎𝑟(û𝐸). The two variance 

terms are equal: 

 

 𝑣𝑎𝑟(û𝐸  – û𝐿) = 𝑣𝑎𝑟(û𝐿) − 𝑣𝑎𝑟(û𝐸)  [5] 

 

only when 𝑏1 = 1  for the case of no over- or 

underprediction.  

In case of an inflated prediction, 𝑏1 < 1 , we 

can show that: 

 

 𝑣𝑎𝑟(û𝐸  – û𝐿) > 𝑣𝑎𝑟(û𝐿) − 𝑣𝑎𝑟(û𝐸)   [6] 

which indicates that the expected average 

reliability of the early truncated evaluation 

(Formula 12 in Liu et al. 2017) is lower than the 

case of 𝑏1 = 1. 

 For the third case of an underprediction 𝑏1 >

1, we can see that 

 

 𝑣𝑎𝑟(û𝐸  – û𝐿) < 𝑣𝑎𝑟(û𝐿) − 𝑣𝑎𝑟(û𝐸)   [7] 

 

indicating that the expected average reliability 

of the early truncated evaluation of the 

validation bulls be higher than the scenario of  

𝑏1 = 1.  

 We can draw a conclusion that the genomic 

reliability adjustment method of the Interbull 

GREL method does not result in too high 

genomic reliabilities in case of an inflated 

prediction.  

 

Future Research Topics  

Most countries or populations apply multi-trait 

models for routine conventional or single-step 

evaluations. However, a simple univariate 

model with only additive genetic effects is 

assumed to model the genomic information by 

the Interbull GREL method (see the two 

Guidelines in Appendices). Logically, applying 

the multi-trait model to the genomic part of the 

Interbull GREL method should be envisioned. 

By assuming the multi-trait model at all steps of 

genomic reliability calculation, genomic 

reliabilities would be more consistent with the 

multi-trait GEBV of the single-step model.  

To ascertain the genomic EDC gain, a SNP 

BLUP model was assumed ignoring the RPG 

effect. Ben Zaabza et al. (2020b) extended the 

SNP BLUP model with the RPG effect added 

and developed a Monte Carlo sampling-based 

approach. New research will be needed to 

further improve the computational efficiency of 

the SNP BLUP model with the RPG effect.  

As shown in the two Guidelines (see 

Appendices I and II), many steps are required to 

be conducted to calculate accurate genomic 

reliabilities for all animals and particularly for 

young marketed genomic bulls whose genomic 

reliabilities must be comparable across 
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countries. Some of the steps may need to be 

merged to reduce the complexity of the genomic 

reliability method. The structure of left-hand-

side of mixed model equations of the single-step 

genomic model may be further explored to 

make the genomic reliabilities even more 

accurate.  

 

Conclusions  

 

The Interbull genomic reliability method was 

further optimized and modified to allow an 

efficient implementation for routine single-step 

evaluation with millions of genotyped animals. 

Several steps of the original genomic reliability 

method, which required considerable 

computing time for large, genotyped 

populations, were no longer required for the 

routine evaluation. Instead, those steps were 

taken out only for the purpose of deriving the 

parameter of genomic EDC gain via Interbull 

GEBV Test. Therefore, two separate guidelines 

were developed for the routine single-step 

evaluation and for the derivation of the core 

parameter of genomic reliability calculation. 

The step of adjusting genomic reliabilities via 

Interbull GEBV Test ensured a realistic level of 

genomic reliabilities, especially for young, 

genotyped animals. All countries or evaluation 

populations are encouraged to apply the 

Interbull standardized genomic reliability 

method according to the two Guidelines.   

 

Acknowledgments  

 

The German national genetic evaluation center 

vit is kindly thanked for supporting this project.  

 

References  

 

Ben Zaabza, H., E. A. Mäntysaari, and I. 

Strandén. 2020a. Snp_blup_rel: software for 

calculating individual animal SNP-BLUP 

model reliabilities. Agricultural and Food 

Science, 29:297-306. 

Ben Zaabza, H., Mäntysaari, E. M., and 

Strandén, I. 2020b. Using Monte Carlo 

method to include polygenic effects in 

calculation of SNP-BLUP model reliability. 

J. Dairy Sci. 103:5170-5182. 

Legarra, A., and Reverter, A. 2018. 

Semi‑parametric estimates of population 

accuracy and bias of predictions of breeding 

values and future phenotypes using the LR 

method Genet. Sel. Evol. 50:53. 

Liu, Z., F. Reinhardt, and R. Reents. 2002. The 

multiple trait effective daughter contribution 

method applied to approximate reliabilities 

of estimated breeding values of a random 

regression test day model for genetic 

evaluation in dairy cattle. Pages 553-556 in 

Proc. 7WCGALP, Communication #20–15, 

Montpellier, France. 

Liu, Z., Seefried, F., Reinhardt, F., and Reents, 

R. 2010 Approximating reliabilities of 

estimated direct genomic values. Interbull 

Bulletin 41:29-32. 

Liu, Z., VanRaden, P. M., Lidauer, M. H., 

Calus, M. P., Benhajali, H., Jorjani, H., and 

Ducrocq, V. 2017. Approximating genomic 

reliabilities for national genomic evaluation. 

Interbull Bulletin 51:75-85. 

Liu, Z., Alkhoder, H. and Reents, R. 2023. 

Application of the Interbull genomic 

reliability method for single-step 

evaluations of test-day and conformation 

traits in German Holstein. Interbull Bulletin 

59:150-157.  

Mäntysaari, E., Liu, Z., and VanRaden, P. M. 

2010. Interbull validation test for genomic 

evaluations. Interbull Bulletin 41:17-21.  

Misztal, I., Tsuruta, S.,  Aguilar, I., Legarra, A., 

VanRaden, P. M., and Lawlor, T. J. 2013. 

Methods to approximate reliabilities in 

single-step genomic evaluation. J. Dairy Sci. 

96:647–654.  

Sullivan, P. 2024. The new Interbull GEBV test 

software. 

https://interbull.org/ib/gebvtest_software  

Tier, B. and Meyer, K. 2004. Approximating 

prediction error covariances among additive 

genetic effects within animals in multiple-

153

https://interbull.org/ib/gebvtest_software


INTERBULL BULLETIN NO. 60. 20-21 May 2024, Bled, Slovenia 

 

 

trait and random regression models. J Anim 

Breed Genet. 121:77–89. 

VanRaden, P. M., and Wiggans, G. R. 1991. 

Derivation, calculation, and use of national 

animal model information. J. Dairy Sci. 

74:2737-2746. 

VanRaden, P. M., and O’Connell, J. R. 2018. 

Validating genomic reliabilities and gains 

from phenotypic updates. Interbull Bulletin 

53:22-26. 

Wiggans, G. R., and VanRaden, P. M. 2010. 

Improved reliability approximation for 

genomic evaluations in the United States. J. 

Dairy Sci., 93 (E-Suppl. 1) (2010), p. 533 

(Abstr.)  

 

  

154



INTERBULL BULLETIN NO. 60. 20-21 May 2024, Bled, Slovenia 

 

 

Appendix I:  

Guidelines for Approximating Genomic 

Reliabilities of the Single-Step Genomic 

Model 

A genomic reliability method (Liu et al., 2017) 

developed by the Interbull Working Group 

approximates reliabilities of estimated genomic 

breeding values (GEBV) for a multi-step or a 

single-step genomic model. Several 

modifications and improvements have been 

made thereafter. This document describes 

technical details of the calculation of genomic 

reliabilities (GREL) of the single-step genomic 

model.  

The Interbull GREL method assumes that 

Interbull member countries applies an accurate 

method to calculating pedigree-based 

conventional reliabilities, by ignoring genotype 

data, for either a single-trait repeatability model 

(VanRaden and Wiggans, 1991) or a multi-trait 

animal model (Liu et al. 2004; Tier and Meyer 

2004) such as a random regression test-day 

model for milk production traits or a maternal-

effect model for calving traits. Besides animals 

with own phenotypic records, genotyped 

animals without own phenotypic records must 

also be included in the calculation of the 

conventional reliabilities.  

 

The required data for approximating genomic 

reliabilities using the Interbull GREL method 

are: 

1) A pedigree file which is used for the 

single-step genomic evaluation of an 

evaluated trait or a linear index of 

evaluated traits. The pedigree file must 

be sorted from the oldest to the youngest 

animals (or in the opposite order) and 

should include both genotyped and 

ungenotyped animals, 

2) An estimate of the heritability (ℎ2) of 

the evaluated trait or index of interest,  

3) Pedigree-based conventional reliability 

values of all animals in the pedigree file, 

including genotyped animals without 

own phenotypic records, for the 

evaluated trait or index of the evaluated 

traits, and  

4) Genomic effective daughter 

contribution (EDC) gain (𝜑𝑐) for the 

evaluated trait or index of the evaluated 

traits, which was derived by the 

countries following the Interbull GREL 

procedure (see Appendix for the 

Guidelines for Deriving Genomic 

Effective Daughter Contribution Gain).  

 

The technical steps for calculating the final 

GREL for genotyped and ungenotyped animals 

are given below:  

1. Propagation of genomic information of the 

genotyped animals to their non-genotyped 

relatives  

In the propagation process the trait-specific 

constant of the genomic EDC gain 𝜑𝑐 is 

treated as weight on genotypic data for each 

of the genotyped animals to approximate 

genomic reliabilities of their non-

genotyped relatives. The propagation 

involves two steps (VanRaden and 

Wiggans, 1991; Liu et al. 2004): 1) 

accumulating progeny contribution by 

passing the genomic information 𝜑𝑐 of the 

genotyped animals to their non-genotyped 

ancestors through the pedigree from the 

youngest to oldest animals (while skipping 

genotyped ancestors), and 2) then 

collecting parental contribution by passing 

the genomic information from the oldest to 

youngest animals through the pedigree 

(while skipping genotyped progeny). 

Having completed these two steps of 

propagation through the pedigree, the i-th 

non-genotyped relative receives a 

reliability value, ℜ𝑖
𝑝𝑟𝑜𝑝𝑔

. According to the 

concept of genotype confidence (Eding, 

2022), ℜ𝑖
𝑝𝑟𝑜𝑝𝑔

 is then multiplied with  

 

  ℜ𝑐 =  
𝜑𝑐

𝜑𝑐+𝜆
         [1] 

 

where the variance ratio λ of the animal 

model is  𝜆 =
1−ℎ2

ℎ2  . Genomic EDC for the 

i-th non-genotyped relative is then 

converted from its reliability ℜ𝑖
𝑝𝑟𝑜𝑝𝑔

ℜ𝑐 as  
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  𝜑𝑖
𝑝𝑟𝑜𝑝𝑔

= 𝜆
ℜ𝑖

𝑝𝑟𝑜𝑝𝑔
ℜ𝑐

1−ℜ
𝑖
𝑝𝑟𝑜𝑝𝑔

ℜ𝑐
 .   [2]  

 

2. Combining the genomic reliability gain 

with the conventional reliability to obtain 

final genomic reliability value for all 

animals in the pedigree  

For a i-th animal included in the single-step 

genomic evaluation, its conventional 

reliability value ℜ𝑖
𝑐𝑜𝑛𝑣 is converted to EDC 

with: 

 

  𝜑𝑖
𝑐𝑜𝑛𝑣 = 𝜆

ℜ𝑖
𝑐𝑜𝑛𝑣

1−ℜ𝑖
𝑐𝑜𝑛𝑣      [3] 

 

If the animal is genotyped, then its total 

EDC contributed by both the conventional 

and genomic information is:  

 

  𝜑𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝜑𝑖

𝑐𝑜𝑛𝑣 + 𝜑𝑐    [4] 

 

Otherwise, a total EDC for the animal 

without genotype data is: 

 

  𝜑𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝜑𝑖

𝑐𝑜𝑛𝑣 + 𝜑𝑖
𝑝𝑟𝑜𝑝𝑔

  [5] 

 

The genomic reliability of the i-th animal 

contributed by phenotypic, pedigree and 

genomic data is then: 

 

  ℜ𝑖 =
𝜑𝑖

𝑡𝑜𝑡𝑎𝑙

𝜑𝑖
𝑡𝑜𝑡𝑎𝑙+𝜆

      [6] 

 

It is worth noting that the approximated 

genomic reliabilities depend on the genomic 

EDC gain 𝜑𝑐, which should be derived 

following the Guidelines for Deriving Genomic 

Effective Daughter Contribution Gain (see 

Appendix II) and be regularly updated, e.g.,  

when an Interbull member country implements 

the single-step model or introduces major 

changes to its national single-step genomic 

evaluation.  
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Appendix II:  

Guidelines for Deriving Genomic 

Effective Daughter Contribution Gain 

 

The Interbull genomic reliability method (Liu et 

al., 2017) has been optimised to make the 

genomic reliability calculation feasible for 

routine single-step genomic evaluations with 

millions of genotyped animals (see the 

Guidelines for Approximating Genomic 

Reliabilities of the Single-Step Model). A 

parameter, called hereafter genomic effective 

daughter contribution gain (𝜑𝑐) and required by 

the Interbull genomic reliability method, must 

be derived for every trait evaluated by the 

Interbull member countries.  

Conventional reliability values are assumed 

to be reasonably accurate using an accurate 

reliability method for a single-trait model like 

VanRaden and Wiggans (1991) and a multi-trait 

model like Liu et al. (2004) or Tier and Meyer 

(2004). 

Genomic breeding values (GEBV) of a 

single-step evaluation using the full phenotypic, 

genotypic and pedigree data as well as GEBV 

of an early single-step evaluation using a sub-

set of the phenotypic data are needed. 

According to VanRaden and O’Connell (2018), 

following data are required for deriving the 

genomic EDC gain parameter 𝜑𝑐:   

1) A pedigree file (PEDfull) that is used for 

a single-step evaluation using the full 

phenotypic and genotypic data. This 

pedigree file should also include 

genotyped animals without own 

phenotypic records;  

2) An extracted pedigree file containing 

only genotyped animals and their 

ancestors (PEDgeno); 

3) Heritability value (ℎ2) of the evaluated 

trait or a linear index of breeding values 

of evaluated traits and variance ratio of 

the animal model 𝜆 =
1−ℎ2

ℎ2 ;  

4) Conventional reliability values of all 

animals, including genotyped animals 

without own phenotypic records; 

5) A file containing effective daughter 

contribution (EDC) of genotyped bulls 

and/or effective record contribution 

(ERC) of genotyped cows. When a 

genotyped cow with phenotypic records 

and her sire are both genotyped, her 

sire’s EDC must be adjusted for her 

contribution to avoid a double counting 

of her own phenotype information. 

Interbull proposed an adjustment 

method for EDC of bulls and technical 

details of the EDC adjustment are given 

in Interbull (2018);  

6) A list of genotyped animals for the 

single-step evaluation; 

7) A file of allele frequencies for all SNP 

markers used in the genomic evaluation;  

8) A SNP genotype file for all the 

genotyped animals containing ID of the 

animals and genotype string of all the 

SNP markers; 

9) A list of validation bulls for Interbull 

GEBV test (Mäntysaari et al. 2010);  and 

10) GEBV of the validation bulls from the 

single-step evaluation with the full data 

set and from the early evaluation with 

the truncated subset of data.  

 

The technical steps for deriving the genomic 

EDC gain constant 𝜑𝑐 are given below. Steps 

1 to 5 must be run for both the full evaluation 

and the truncated, early evaluation.  

1. Computing reliabilities of direct genomic 

values (DGV) for all genotyped animals 

via software snp_blup_rel (Ben Zaabza et 

al. 2020) 

A SNP-BLUP model without a residual 

polygenic effect is assumed for 

computing reliability values of DGV or 

genomic breeding value estimates (GEBV 

= DGV), denoted as ℜ𝐷𝐺𝑉. The software 

snp_blup_rel reads heritability value of 

the trait, ERC values of the genotyped 

cows with own phenotypic data and 

adjusted EDC values of genotyped bulls 

with daughters, SNP genotypes of all the 

genotyped animals, and the corresponding 
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allele frequencies. Multiple single-traits 

can be evaluated jointly to reduce the total 

clock time. Reliabilities of DGV will be 

calculated for all the genotyped animals, 

including those without own phenotypic 

records. As an option, the inverse matrix 

of left-hand-side of the mixed model 

equation of the SNP BLUP model may be 

saved in a file for later use.  

2. Computing reliabilities of conventional 

EBV for all the genotyped animals  

Ignoring genotype data of the genotyped 

animals, reliabilities of conventional 

EBV, denoted as ℜ𝐴22, need to be 

approximated using the EDC / ERC of the 

genotyped bulls / cows and pedigree file 

for all the genotyped animals. The same 

genotyped animals with the same EDC or 

ERC values must be considered as in Step 

1 of calculating reliabilities of DGV. In 

addition, the smaller pedigree for the 

genotyped animals, PEDgeno, are used here 

for faster speed. 

   

3. Calculating theoretical genomic EDC 

gain for every genotyped animal 

For a genotyped animal i, its theoretical 

gain in genomic EDC can be calculated by 

comparing the reliabilities of DGV and 

conventional EBV: 

 

  𝜑𝑖 = 𝜆(
ℜ𝑖

𝐷𝐺𝑉

1−ℜ𝑖
𝐷𝐺𝑉 −

ℜ𝑖
𝐴22

1−ℜ𝑖
𝐴22).  [1] 

 

If 𝜑𝑖 < 0 for any reason, set 𝜑𝑖 = 0. For 

all the genotyped animals, average of their 

theoretical genomic EDC gain is denoted 

as �̅�.           [2] 

 

4. Propagating the genomic information 

from the genotyped animals to their non-

genotyped relatives  

Using the theoretical genomic EDC gain 

(𝜑𝑖) as input data of the genotyped 

animals, genomic reliabilities of their 

non-genotyped relatives can be computed 

by processing the full pedigree file, 

PEDfull, containing all animals with or 

without genotypic data. Firstly, progeny 

contribution to every animal is 

accumulated by processing the full 

pedigree from the youngest to oldest 

animals, and secondly parental 

contribution to the animal is collected by 

processing the full pedigree from the 

oldest to youngest animals. For a non-

genotyped relative i, its genomic 

reliability,  ℜ𝑖
𝑝𝑟𝑜𝑝𝑔

, contributed by its 

genotyped relatives after the two steps, is 

converted to EDC as:  

  𝜑𝑖
𝑝𝑟𝑜𝑝𝑔

=

 𝜆 ℜ𝑖
𝑝𝑟𝑜𝑝𝑔

ℜ̅ (1 − ℜ𝑖
𝑝𝑟𝑜𝑝𝑔

ℜ̅)⁄     [3] 

where  ℜ̅ =
�̅�

(�̅� + 𝜆)⁄  .  

 

5. Combining genomic with conventional 

reliabilities for all animals   

If animal i is genotyped, then its total 

theoretical EDC, 𝜑𝑖
𝑇_𝑡𝑜𝑡𝑎𝑙

, contributed by 

conventional and genomic information is 

calculated:  

 

  𝜑𝑖
𝑇_𝑡𝑜𝑡𝑎𝑙 = 𝜑𝑖

𝑐𝑜𝑛𝑣 + 𝜑𝑖    [4] 

 

where 𝜑𝑖
𝑐𝑜𝑛𝑣 represents the i-th animal’s 

EDC converted from its total, conventional 

reliability ℜ𝑖
𝑐𝑜𝑛𝑣: 

 

 𝜑𝑖
𝑐𝑜𝑛𝑣 = 𝜆 ℜ𝑖

𝑐𝑜𝑛𝑣 (1 − ℜ𝑖
𝑐𝑜𝑛𝑣)⁄  . [5] 

 

Similarly for a non-genotyped animal, its 

total theoretical EDC is: 

 

 𝜑𝑖
𝑇_𝑡𝑜𝑡𝑎𝑙 = 𝜑𝑖

𝑐𝑜𝑛𝑣 + 𝜑𝑖
𝑝𝑟𝑜𝑝𝑔

.   [6] 

 

A total theoretical genomic reliability is 

finally calculated by converting the total 

EDC: 

 

  ℜ𝑖
𝑇𝑡𝑜𝑡𝑎𝑙 = 𝜑𝑖

𝑇_𝑡𝑜𝑡𝑎𝑙 (𝜑𝑖
𝑇𝑡𝑜𝑡𝑎𝑙 + 𝜆)⁄  [7] 
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6. Deriving an adjustment factor for EDC 

using validation animals from Interbull 

GEBV test 

Based on the same validation bulls used in 

Interbull GEBV test (Mäntysaari et al. 

2010; Sullivan 2024), expected change in 

genomic reliability is calculated:  

 

      𝐸(Δℜ) = 𝑣𝑎𝑟(�̂�𝐿 − �̂�𝐸)/𝜎𝑢
2   [8] 

 

where �̂�𝐿 and �̂�𝐸 represent GEBV of the 

validation bulls from the later evaluation 

with full data set and the early evaluation 

with truncated data, respectively; and 𝜎𝑢
2  is 

additive genetic variance of the evaluated 

trait or the linear index of interest. Sire 

variance estimates provided in routine 

MACE evaluation by Interbull may be used 

here as the genetic variance of own country.  

 

Denote average genomic reliability values 

of the validation bulls from the later full 

evaluation ℜ̅𝐿, which is assumed to be 

reasonably accurately approximated due to 

daughter phenotypic information of the 

validation bulls. Average genomic 

reliability of the validation bulls in the 

early, truncated evaluation is expected to 

be: 

 

  𝐸(ℜ𝐸) = ℜ̅𝐿 −  𝐸(Δℜ)   [9] 

 

The expected average genomic reliability is 

then converted to EDC: 

 

  𝐸(𝜑𝐸) = 𝜆 𝐸(ℜ𝐸) (1 − 𝐸(ℜ𝐸))⁄    

            [10] 

 

Let ℜ𝑖_𝐸
𝑇_𝑡𝑜𝑡𝑎𝑙

 represent the theoretical 

genomic reliability of validation bull i from 

the early, truncated evaluation using 

Equation [7],  the average of the theoretical 

EDC for all the validation bulls is then: 

 

  �̅�𝐸 = 1

𝑛
 𝜆 ∑ (

ℜ𝑖_𝐸
𝑇_𝑡𝑜𝑡𝑎𝑙

1−ℜ𝑖_𝐸
𝑇_𝑡𝑜𝑡𝑎𝑙)

𝑛
1      [11] 

where n is the number of validation bulls.  

A ratio of the expected and theoretical 

EDC values is defined as an adjustment 

factor: 

 

  𝑓 =  𝐸(𝜑𝐸)/�̅�𝐸       [12] 

 

The EDC adjustment factor 𝑓 < 1  or 𝑓 >

1 indicates an overestimation or 

underestimation of genomic reliabilities 

from the early evaluation, respectively.  

 

7. Repeating Step 3 of calculating genomic 

EDC gain for all the genotyped animals  

For the genotyped animal i, its adjusted 

gain in genomic EDC can be calculated 

using their DGV and EBV reliabilities and 

the adjustment factor f : 

 

  𝜑𝑖
𝑎𝑑𝑗

= 𝜆 (
ℜ𝑖

𝐷𝐺𝑉

1−ℜ𝑖
𝐷𝐺𝑉 ∗ 𝑓 −

ℜ𝑖
𝐴22

1−ℜ𝑖
𝐴22). 

            [13] 

 

Average of the adjusted genomic EDC gain 

for the validation bulls can be used for 

genomic reliability calculation in routine 

single-step evaluation (see Guidelines for 

Approximating Genomic Reliabilities of the 

Single-Step Model):  

 

  𝜑𝑐 =  
1

𝑛
∑ 𝜑𝑖

𝑎𝑑𝑗𝑛
1 .      [14] 

 

The Interbull genomic reliability method is 

linked to the new Interbull GEBV test (Sullivan 

2024), i.e. countries need to develop a new 

adjustment factor for genomic EDC using 

Formula [8]. Every time a country is required to 

conduct a GEBV test for a particular trait, this 

country is automatically also required to 

perform the genomic reliability validation by 

deriving a new genomic EDC gain parameter 

for this trait.  
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Abstract 

 

In France, all dairy breeds and all traits have been evaluated using a Single-Step approach since April 

2022. Hence, polygenic evaluations are no longer used to select bulls in this country. Furthermore, 

polygenic evaluations are known to be biased due to genomic preselection. With the aim of providing 

to Interbull partners MACE proofs that are as unbiased and as close to the national EBVs used in 

France for the selection of bulls as possible, genomic-free Single-Step EBVs were computed and 

validated for their routine submission as proofs for MACE. Among the methods proposed by the 

Interbull working group for removing the genomic part from Single-Step EBVs, the most appropriate 

one for France was to run a BLUP evaluation using Single-Step YDs as phenotypes. Consequently, a 

novel pipeline was implemented to compute the genomic-free Single-Step EBVs for all traits 

(including milk production, fertility, longevity, calving, conformation, workability and udder health 

traits) and breeds (Brown Swiss, Simmental, Montbéliarde and Holstein). Then, genetic trends 

estimated using the EBVs resulting from a BLUP model were validated by means of the Interbull 

trend validation procedure based on the analysis of within-bull yearly daughter deviations. All the 

traits successfully passed validation tests. Genomic-free Single-Step EBVs revealed a genetic gain that 

was intermediate between polygenic EBVs and Single-Step EBVs. The correlations between MACE 

EBVs, based on polygenic or genomic-free Single-Step EBVs in Holstein ranged from 0.94 to 0.994 

depending on the trait. In conclusion, France successfully transitioned from providing polygenic EBVs 

to genomic-free Single-Step EBVs as proofs for MACE for all traits and breeds. 

 

Key words: genomic-free Single-Step EBVs, MACE, single-step  

Introduction  

 

The transition from polygenic and genomic 

evaluations to Single-Step evaluations has 

been a significant aera of focus for both 

research and evaluation centre teams in France 

since 2018. This was motivated by previous 

studies (Patry and Ducrocq, 2011), that had 

demonstrated biases in polygenic EBVs due to 

genomic preselection, whereas Single-Step 

evaluations are free from these biases (Legarra 

et al., 2014) 

Thanks to the successful development of a 

new genetic evaluation software that enables a 

SNP-BLUP Single-Step evaluation and the 

validation of all breed-trait evaluations, the 

French national genomic evaluations for all 

traits in dairy cattle moved to a Single-Step 

approach in April 2022 (Croué et al. 2022). In 

addition, Interbull GEBV tests were 

successfully passed the same year to 

participate to GMACE.  

Consequently, French EBVs provided to 

Interbull for Multiple Across Country 

Evaluation (MACE) are no longer employed to 

select bulls in French dairy cattle breeds 

(Croué et al. 2022), and sending polygenic 

EBVs to MACE is is not relevant anymore. 
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However, Single-Step EBVs cannot be used 

as input data for MACE, given that they 

include a genomic component whereas MACE 

is a strictly polygenic evaluation. This is why a 

solution had to be devised to send genomic-

free EBVs based on the national Single-Step 

evaluations. 

An Interbull working group proposed 

several methods to remove the genomic part 

from Single-Step EBVs and, hence, to obtain 

genomic-free Single-Step (GFSS) EBVs 

(Sullivan, 2021). One of the recommended 

methods is to run a pedigree based BLUP 

evaluation using pre-adjusted performances 

obtained from Single-Step evaluations as 

phenotypes. In our case, it was the most 

promising scientifically speaking and it 

represented a reasonable amount of work to 

implement and to maintain routinely. 

The use of GFSS EBVs instead of 

polygenic EBVs for MACE was the last 

challenge of the transition from polygenic and 

genomic evaluations to Single-Step 

evaluations for the French national 

evaluations. 

The objective of this paper is to present the 

first French experience of participation in 

MACE with GFSS EBVs. This was achieved 

by 1) developing a new pipeline to compute 

the GFSS EBVs, 2) validating estimated 

genetic trends using Interbull Trend Tests that 

are necessary to any participation to MACE, 

and 3) analyzing the impact of the transition 

from French national polygenic to GFSS EBVs 

in MACE on the MACE results. 

 

Materials and Methods  

 

Computation of genomic-free Single-Step 

EBVs 

We performed the same work for all breed-trait 

combinations involved in MACE, i.e. milk 

production, female fertility, longevity, calving, 

conformation, workability and udder health 

traits in 4 breeds (Brown Swiss, Simmental, 

Montbéliarde and Holstein). 

Among the methods proposed by the 

Interbull working group to compute GFSS 

EBVs, the most appropriate was to run a 

BLUP evaluation using Single-Step YDs as 

phenotypes.  

The current Single-Step French evaluation 

incorporates foreign Holstein and Brown-

Swiss bulls using MACE EBVs, with the 

objective of enhancing the reference 

evaluation. For this purpose, pseudo 

phenotypes of foreign bulls’ progeny are 

assessed thanks to deregressed MACE EBVs 

after the removal of French information. Only 

pseudo phenotypes of bulls with few domestic 

daughters with performances (in Holstein: less 

than 600 daughters) are used in the French 

routine Single Step. 

The Single-Step evaluation produces YDs 

for all animals. In order to avoid double-

counting, Single-Step YDs for foreign 

daughters are excluded from the BLUP 

evaluation. We consider YDs for domestic 

daughters to include only a negligeable amount 

of foreign information. 

   

Computation of genomic-free Single-Step 

EBVs for milk production, longevity, udder 

health, female fertility, conformation and 

workability traits 

For all traits except calving traits, Single-Step 

YDs were calculated as such: 

- performances were adjusted for all non-

genetic effects estimated from the 

routine Single-Step evaluation. If a 

given animal has only one phenotype, 

its adjusted performance is its YD 

- In the genetic evaluations with 

repeatable traits, the YD of each 

animal was the weighted average of 

adjusted performances 

More details about the non-genetic effects 

included in Single-Step models for each trait 

can be found on GenEval’s website (2024). 

An adjusted weight for each Single-Step 

YD was also calculated, as the sum of the 

adjusted weights of the performances 

considered in the YD. 
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 The pedigree based BLUP model used to 

estimate GFSS EBVs was:  

yi = byi + ai + εi (1) 
 

where yi is the Single-Step YD for animal i, 

byi is the fixed effect of the birth year of 

animal i, ai is the additive genetic effect for 

animal and εi ~N(0,vare/wi) is the residual, 

with wi the weight of yi. 

 

Computation of genomic-free Single-Step 

EBVs for calving traits 

Single-Step YDs for calving traits were 

computed correcting performances for all 

effects included in the Single-Step model, 

except for the genetic animal and maternal 

effects.  

 For these traits, the BLUP model used to 

estimate GFSS EBVs was as (1), with the 

addition of the maternal genetic effect of the 

dam j of animal i (mj).   

yi = byi + ai + mj + εi (2) 

 

Models (1) and (2) are univariate models, 

as are all Single-Step evaluation models in 

France for these traits. 

 

Validation of genetic trends  

Interbull trend validation procedures were used 

in order to validate GFSS EBVs so that they 

could then be provided as proofs for routine 

MACE runs.  

In the present study, Trend Test method II 

was chosen as reference method for most of 

traits (Boichard et al., 1995), as it is the most 

stringent of the Trend Test methods. Few traits 

could not be validated using Trend Test 

method II. In this case, they were validated 

with Trend Test method III. 

 

Investigation of the impact of transition from 

polygenic EBVs to genomic-free Single-Step 

EBVs on MACE EBVs of Holstein bulls 

The aim of this study was to analyze the 

impact of the transition from French polygenic 

to GFSS EBVs on the MACE EBVs of bulls, 

on the Holstein Breed only, so that we could 

have an idea of the consequences of this 

change on the national evaluation. 

 For this, we compared the output of MACE 

evaluations, depending on whether polygenic 

information or GFSS was used. We also 

looked at them in comparison to the routine 

Single-Step evaluation and the GFSS in order 

to compare genetic gain between these four 

evaluations. 

Overall, this work was based on 4 

categories of EBVs of Holstein bulls: 

- French Single-Step EBV (SSEBV) 

published by the French breed 

societies in August 2023;  

- French genomic-free Single-Step EBVs 

(GFSSEBV) sent to Interbull for the 

September 2023 test-run;  

- MACE EBVs (MACE EBV) based on 

polygenic French proofs and expressed 

in the French scale. These EBVs were 

performed by Interbull during the 

routine evaluation of August 2023; 

- MACE EBVs expressed in the French 

scale (SSMACE EBV) and based on 

French genomic-free Single-Step 

EBVs. These EBVs were performed 

by Interbull during the test run of 

September 2023.  

We considered six traits, in order to focus 

on a large panel of heritabilities: production 

traits (milk, protein and fat yield), somatic cell 

score, mastitis and heifer conception rate. 

In some parts of this study, two sub-

populations were considered: bulls with only 

domestic daughter information taken into 

account in the routine evaluation (FR) and 

bulls with foreign information included in the 

evaluation (FOR). As mentioned before, the 

FOR bulls have less than 600 domestic 

daughters (as only French performances are 

used for bulls with more domestic progeny). 

Several statistical analyses were conducted: 

genetic trends estimated with the four 

categories of EBVs, correlations and 

regressions of SSMACE on MACE EBVs for 

FOR animals, and reranking between MACE 
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Figure 1. Genetic trend for milk production in the FOR population 

and SSMACE, comparing the top100 bulls 

between the two rankings. 

The changes in genetic correlations 

between France and the other countries 

estimated by Interbull were also analyzed, but 

they are not reported in this article. 

 

Table 1: number of bulls considered in the impact 

study. 

Trait FR FOR 

Milk yield 16495 2532 

Protein yield 16883 2144 

Fat yield 16883 2144 

Somatic cell score 16140 2861 

Mastitis 8677 2714 

Heifer conception rate 13483 2127 

 

Results & Discussion  

 

Validation of genetic trends  

All traits, except cow conception, cow interval 

and locomotion in Holstein and longevity in 

Brown Swiss, successfully passed the genetic 

trend validations using Trend Test method II. 

For the four aforementioned traits, genetic 

trend was successfully validated by means of 

Trend Test method III. 

 

The validation of the estimated genetic 

trend in all populations and traits involved in 

the international evaluations represented the 

last step of an extensive validation process 

conducted in France for more than 5 years and 

involving research partners, GenEval and the 

users (AI industry and breed societies). This 

enabled the use of French GFSS EBVs in 

MACE since Decembre 2023. As a result, all 

French domestic proofs sent to Interbull for 

routine international evaluations are now 

derived from Single-Step evaluations, as 

domestic GEBVs calculated with the Single-

Step methodology have been included in 

GMACE since 2022. 

 

Impact of the transition from polygenic EBVs 

to genomic-free Single-Step EBVs on MACE 

results 

Genetic gain estimated with bulls in FOR for 

milk yield was lower with MACE EBV than 

with the SSEBV. Genomic-free evaluations 

(SSMACE and GFSS) had an intermediate 

genetic trend. These results indicate that the 

correction for genomic preselection in the 

genomic-free Single-Step evaluation is only  
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Table 2. Correlation between SSMACE EBVs and 

MACE EBVs and slope of the regression of 

SSMACE EBVs on MACE EBVs, in the FOR 

population.  

Trait Correlation Slope 

Milk yield 0.994 0.963 

Protein yield 0.996 0.951 

Fat yield 0.996 0.979 

Somatic cell score 0.994 1.025 

Mastitis 0.996 0.997 

Heifer conception rate 0.971 0.913 

 

 

partial, which is consistent with the 

conclusions of the Interbull working group 

dedicated to this topic (Sullivan, 2021). The 

same pattern was observed for protein and fat 

yield. For heifer conception rate and mastitis, 

the genetic trends for all evaluations are much 

lower, and more stable between evaluations, 

with no type of evaluation showing a clearly 

higher or lower genetic trend. 

The differences between MACE and 

SSMACE EBVs of bulls were limited (Table 

2), with regression slopes between 0.951 and 

1.025 and correlations above 0.994 for all traits 

except for heifer conception rate (above 0.97). 

This lower correlation might be due to the very 

low heritability of heifer conception rate 

(0.019) and the subsequent low reliability of 

EBVs. EBVs on this trait are more susceptible 

to vary due to a change in the evaluation  

approach and are the ones for which the 

removal of genomic information might be the 

most detrimental. 

Reranking was mostly moderate: for all 

traits except heifer conception rate, more than 

80% of the bulls in the top 100 bulls are 

common between ranking based on MACE or 

SSMACE EBVs (Table 3). Once again, we 

observed higher reranking for lower 

heritability traits, and especially for heifer 

conception rate.  

All these results indicate that some 

variations are expected between former MACE 

EBVs and new SSMACE EBVs, but that the 

magnitude of these changes is limited. 

 

Table 3. Reranking in the top100 bulls when 

ranking is based on MACE vs SSMACE EBVs. 

Trait Common1 In2 Out3 

Milk yield 91 / / 

Protein yield 90 0 1 

Fat yield 95 / / 

Somatic cell score 80 7 1 

Mastitis 87 1 1 

Heifer conception rate 77 8 2 
1: Number of bulls common in the two top100. 2: 

Number of French bulls getting in the top100 in 

SSMACE compared to MACE. 3: Number of 

French bulls getting out of the top100 in SSMACE 

compared to MACE. 

 

Therefore, the impact of the inclusion of 

SSMACE EBVs of foreign bulls included in 

the reference population used in the next 

French Single-Step evaluation is expected to 

be negligible. 

 

Conclusion 

 

For the past years, the transition from multi-

step genomic evaluations to Single-Step 

genomic evaluations has been one of the main 

challenges for French research teams, 

evaluation center, breeding companies and 

breed societies. 

In this paper, we presented a practical 

approach to estimate genomic-free Single-Step 

proofs, based on the recommendations of an 

Interbull working group (Sullivan, 2021). This 

approach is easy to implement at a national 

level and represents a reasonable amount of 

routine work to prepare the information needed 

for MACE evaluations. For all traits and 

breeds, the proofs produced by this approach 

passed the Interbull Trend Tests, most using 

the stringent method II. Consequently, the 

transition to Single-Step is now complete for 

dairy breeds, and, since December 2023, 

French proofs sent to MACE are based on 

Single-Step evaluations. 

The estimated genetic trends based on 

genomic-free Single-Step EBVs were 

intermediate between those estimated with 

polygenic and Single-Step evaluations. This 
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confirms that there is a correction for the 

genomic preselection bias using genomic-free 

Single-Step EBVs, but that it is only partial. 

MACE and SSMACE EBVs are highly 

correlated, with regression slopes close to one 

and rankings are mostly preserved, hence 

French breeders can expect only minor 

differences in the subsequent national 

SSEBVs. 
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Abstract 

 

Single-step genomic models use all available information on animals’ phenotype, genotype and 

pedigree. Nowadays, many countries aim towards implementing single-step models and replacing the 

existing conventional models for routine evaluation. Even in the area of genomic evaluation, the 

pedigree data has still a significant impact on estimated genomic breeding values, and therefore it is 

very important to obtain the most informative structure of the pedigree. The crucial aspect of the 

pedigree editing is handling missing parents information. Missing data can arise either due to truly 

missing parentage information, or due to the fact that not all generations are utilized. We focused on 

three scenarios for handling missing parents: 1) raw pedigree, where missing parents IDs were set to 

missing; 2) genetic groups, where missing parents in the raw pedigree were replaced by genetic groups 

based on year of birth, country of origin, and sex; 3) metafounders, which are created based on genetic 

groups and genomic information. The genomic breeding values for fat yield were estimated using the 

single-step test-day SNP-BLUP model implemented by the MiXBLUP software. The analysed data 

corresponds to the population of Polish Holstein Friesian cattle used for routine genetic evaluation. We 

compared the results of the validation obtained by the three pedigree handling approaches and observed 

that the best results of validation were achieved by the scenario with metafounders (3), followed by 

scenario fitting pedigree with genetic groups (2), and finally by the raw pedigree (1). The metafounders 

scenario uses most of the information including genotype data, therefore, it provides the best 

classification of unknown animals into groups, which improves validation results. 

 

Key words: single-step models, genetic groups, metafounders, validation

Introduction 

 

The structure of pedigree data is important for 

the routine genetic and genomic evaluations of 

dairy cattle (Bradford et al., 2019). To reduce 

the amount of missing data and the 

corresponding bias in the pedigree file, genetic 

groups (phantom parents) are used to divide the 

missing ancestors into different categories 

(Westell et al., 1988, Legarra et al., 2007). 

Nowadays, single-step genomic models are the 

models of choice of many countries that are 

working on implementing routine breeding 

value evaluation. The single-step model 

incorporates all available sources of 

information, i.e., phenotype, genotype, and 

pedigree.  

In this study, we focused on a single-

step random regression SNP-BLUP test-day 

model for fat yield and investigated three 

approaches to handle missing parents in a 

pedigree: 1) raw pedigree with missing parents 

IDs set to missing; 2) genetic groups with 

missing parents replaced by unrelated genetic 

groups, which are defined based on year of 

birth, sex, and country of origin; 3) 

metafounders with missing parents replaced by 

metafounders, which are genetic groups with 
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relationships estimated from genomic 

information of descendants. The goal of this 

study was to compare results of genetic trend 

validation, number of iterations required to 

estimate all solutions, and computing times of 

the single-step evaluations with the three 

different pedigree handling scenarios. We also 

compared the results of the conventional 

pedigree-based BLUP (single-trait random 

regression test-day BLUP) with or without 

genetic groups with the single-step random 

regression test-day SNP-BLUP.  

 

Materials and Methods 

 

The data set (Table 1) corresponds to the Polish 

national evaluation for fat yield from April 2024 

and contains 63,484,231 records of 3,701,610 

cows in full data set, and 58,441,242 records of 

3,224,577 cows in the truncated data set with 

the individuals born from 2019 removed. 

Genomic information from 46,118 SNPs was 

available for 182,143 animals. Pedigree 

information included 4,513,226 individuals and 

was extracted up to the third generation from 

animals with phenotypes or genotypes.  

 

Table 1: Number of animals in the analysed data set. 
Data Sex Number of 

animals 

Number of 

records 

Phenotype   

(fat yield) 

Cows 3,701,610 63,484,231 

Full data set 

58,441,242 

Truncated 

data set 

Genotype  Cows 113,171 182,143 

Bulls 68,972 

Pedigree  Cows 4,418,710 4,513,226 

Bulls 94,516 

 

Genetic groups were defined according to 

the year of birth, sex, and country of origin of 

the animals with at least one missing parent 

(Table 2). All animals born before 1961 were 

removed from the pedigree. About 70% of the 

animals included in the pedigree had both 

parents known. Briefly, each genetic group was 

associated with at least 20 animals. The genetic 

group -31 that corresponds to the birth year 

2010-2019, sex male, and country Poland was 

associated with most missing sires and assigned 

to 1,002,069 individuals. The largest number of 

missing dams was assigned the ‘-32’ group (that 

is, birth year 2010-2019, sex female and country 

Poland) and contains 174,954 individuals. 

 

Table 2: Genetic groups definition 

Country Year of birth Male  Female 

 <1960 -99 -99 

POL 1960-1969 -1 -2 

USA/CAN 1960-1969 -3 -4 

OTHERS 1960-1969 -5 -6 

POL 1970-1979 -7 -8 

USA/CAN 1970-1979 -9 -10 

OTHERS 1970-1979 -11 -12 

POL 1980-1989 -13 -14 

USA/CAN 1980-1989 -15 -16 

OTHERS 1980-1989 -17 -18 

POL 1990-1999 -19 -20 

USA/CAN 1990-1999 -21 -22 

OTHERS 1990-1999 -23 -24 

POL 2000-2009 -25 -26 

USA/CAN 2000-2009 -27 -28 

OTHERS 2000-2009 -29 -30 

POL 2010-2019 -31 -32 

USA/CAN 2010-2019 -33 -34 

OTHERS 2010-2019 -35 -36 

POL 2020-present -37 -38 

USA/CAN 2020-present -39 -40 

OTHERS 2020-present -41 -42 

 

The following single-step random regression 

SNP-BLUP test-day model (Liu et al., 2004) 

was applied: 

 

𝑦 = 𝑋ℎ + 𝑊𝑓 + 𝑉𝑝 + 𝑉𝑢 + 𝑒, 

 

where y contains cow’s test day fat yield records 

from the first three lactation, h is a vector of 

fixed effects of herd-test-date-parity-milking 

frequency, f is a vector of fixed lactation curve 

coefficients which was modelled by the 

Wilmink function (Liu et al., 2004), p is a vector 

of permanent environmental effects expressed 

as random regression coefficient coefficients of 

the Legendre polynomial, u is a random 

additive genetic effects also described by the 

random regression coefficients of the Legendre 

polynomials. 

GEBVtest method was chosen to perform 

the validation (Mäntysaari et al., 2010). It 

involves the preparation of two data sets, a full 

data set that includes all phenotypic data, and a 
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truncated data set that corresponds to the whole 

dataset with the latest 4 years of phenotypic data 

removed. Validation bulls were defined as bulls 

with daughters associated with records in the 

whole dataset but none in the truncated datasets. 

The validation bulls were selected based on 

the full data set based on the following criteria: 

born between 2015-2019, have over 20 

daughters with records. 

Validation results was prepared for three 

lactation and total EBV, which includes: 

𝑇𝑜𝑡𝑎𝑙 𝐸𝐵𝑉 = 0.5 ∗ 1𝑠𝑡 𝑙𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝐸𝐵𝑉  

+ 0.3 ∗  2𝑛𝑑 𝑙𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝐸𝐵𝑉

+ 0.2 ∗ 3𝑟𝑑 𝑙𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝐸𝐵𝑉 

Analyses were conducted using MiXBLUP 

3.0 (Vandenplas et al., 2022) 

 

Results & Discussion 

 

For 815 validation bulls, we prepared 

validation results. For pedigree BLUP with and 

without genetic groups, validation resulted in b1 

of 1.03 (Table 3) and 1.01 (Table 4), 

respectively. Using the single-step random 

regression SNP-BLUP test-day model without 

genetic groups resulted in b1 equal to 0.82 

(Table 5). After defining the genetic groups, b1 

increased to 0.92 (Table 6). Finally, considering 

metafounders in ssSNP-BLUP improved the 

validation performance that achieved a b11.05. 

Adding genotype information and using the 

single-step random regression SNP-BLUP test-

day model resulted in a decreased b1 of the 

validation. However, adding genetic groups and 

metafounders led to an increase of b1 (Figure 1). 

Expressed by the R2 value and correlation 

between GEBVs from the whole and truncated 

data sets, the same growing trend can be 

observed (Figure 2, Figure 3). For Pedigree 

BLUP without and with genetic groups and 

single-step random regression SNP-BLUP test-

day model without genetic groups, the values of 

R2 and correlation are similar, 0.43, 0.46, 0.45 

respectively for R2 and 0.66, 0.70, 0.67 for 

                                                           
1b0 - intercept 
2 b1 - slope 

correlation. They changed when genetic groups 

and then metafounders were included in the 

pedigree. The best results were obtained for the 

scenario with metafounders, yielding R2 of 0.73 

and correlation of 0.86, while for the scenario 

with genetic groups the R2  is  0.62 and 

correlation is 0.76. 

 

Table 3: Results of validation for pedigree BLUP 

without genetic groups. 

Bulls b0
[1]

 b1
[2]

 R2[3] corr.[4] 

1st lactation -21.928 0.984 0.420 0.648 

2nd lactation -26.448 1.045 0.444 0.667 

3rd lactation -31.238 1.092 0.448 0.670 

Total EBV -8.471 1.030 0.435 0.660 

 

 

Table 4: Results of validation for pedigree BLUP 

with genetic groups. 

Bulls b0 b1 R2 corr. 

1st lactation -23.766 0.969 0.473 0.688 

2nd lactation -29.896 1.024 0.492 0.702 

3rd lactation -33.439 1.060 0.492 0.701 

Total EBV -9.304 1.009 0.485 0.696 

 

 
Table 5: Results of validation for single-step random 

regression SNP-BLUP without genetic groups 

Bulls b0 b1 R2 corr. 

1st lactation -30.391 0.818 0.441 0.664 

2nd lactation -30.428 0.809 0.457 0.676 

3rd lactation -27.911 0.823 0.467 0.684 

Total EBV -9.990 0.815 0.450 0.670 

 

 
Table 6: Results of validation for single-step random 

regression SNP-BLUP with genetic groups 

Bulls b0 b1 R2 corr. 

1st lactation -19.690 0.934 0.621 0.788 

2nd lactation -18.783 0.907 0.613 0.783 

3rd lactation 16.873 0.907 0.614 0.784 

Total EBV -6.285 0.919 0.617 0.785 

 

 
Table 7: Results of validation for single-step random 

regression SNP-BLUP with metafounders. 

Bulls b0 b1 R2 corr. 

1st lactation -19.655 1.005 0.708 0.841 

2nd lactation -30.137 1.067 0.750 0.866 

3rd lactation -35.647 1.098 0.756 0.869 

Total EBV -8.774 1.046 0.733 0.856 

 

3 R2 -  coefficient of determination 
4 corr. - correlation 
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Figure 1. Validation regression coefficient (b1) for different scenarios. 

 

 
Figure 2. R2 for different scenarios. 

 

 

 
Figure 3. Pearson correlations between (genomic) estimated breeding value obtained from the whole and 

truncated datasets for different scenarios.
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Results & Discussion 

Models fitting a pedigree without genetic 

groups achieved much faster convergence with 

less iterations, and, obviously, the pedigree 

BLUP model converged faster than the SNP-

BLUP model when fitting the same pedigree. 

The difference between both pedigree BLUP 

scenarios is large. The scenario with genetic 

groups needed 83 minutes more and 2,007 

iterations more to get convergence. Similar 

situations were observed for the three single-

step scenarios. The scenario with genetic groups 

needed 210 minutes more and 2,353 iterations 

more to get convergence than scenario without 

genetic groups, while the scenario with 

metafounders resulted in an intermediate 

number of iterations and thus the elapsed time 

(Table 8). 

Table 8: Time and iteration per scenario 

Scenario Wall clock 

time (min) 

Number of 

iterations 

Pedigree BLUP 

without genetic 

groups 

55 273 

Pedigree BLUP 

with genetic groups 

137 2280 

ssRRTDM SNP-

BLUP without 

genetic groups  

154 949 

ssRRTDM SNP-

BLUP with genetic 

groups 

372 3302 

ssRRTDM SNP-

BLUP with 

metafounders 

283 2496 

Conclusions 

The use of alternatives to missing parents in 

the form of genetic groups or metafounders 

markedly improves the validation results. 

Particular improvements are seen in the single-

step random regression SNP-BLUP test-day 

model, where the use of genetic groups first and 

then metafounders improved the b1, yielded a 

model with the higher R2, and achieved higher 

correlation between GEBVS obtained from the 

whole and truncated datasets of validation bulls. 

The reason for this improvement may be the 

large amount of missing pedigree data for 

individuals born between 2010 and 2019, so the 

use of genetic groups and metafounders 

complements the missing information. The 

downside of using a more sophisticated 

pedigree architecture is the increased number of 

iterations and elapsed time until convergence. 
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Abstract 

 

In Poland, the current genetic evaluation of dairy cow survival is performed using Survival Kit with sire 

model. Genomic evaluation is implemented using a two-step approach. The Centre for Genetics of 

Polish Federation of Cattle Breeders and Dairy Farmers together with National Research Institute of 

Animal Production in Balice are currently undertaking the review of the Polish genetic evaluation 

system for all traits to implement single-step genomic evaluations using BLUPF90 family of programs. 

The goal of this research was to develop single-step evaluation of cow survival. The following 

approaches to defining cow survival phenotype were considered: 1) length of productive life in months 

form first calving to culling (with and without dry period included, continuous); 2) survival from one 

calving to the next (binary) implemented as either four-trait model (survival from 1st to 2nd, 2nd to 3rd, 3rd 

to 4th and 4th to 5th calving) or as a repeated records model (up to ten parities included); 3) survival to a 

given day in milk during lactation (binary) with lactations  divided into three parts based on when most 

culling for specific reasons occurs (1-74, 75-250, and >250 to next calving days in milk). This approach 

was implemented using a nine-trait model (first 3 lactations split into 3 periods each) or a three-trait 

repeated records model (each part of lactation as separate repeated records trait in up to ten parities); 4) 

random regression model with survival defined per month from first calving up to 72 months; 5) number 

of completed lactations (categorical treated as continuous); 6) number of days survived within each 

lactation (continuous). Variance components were estimated for all phenotypes, and alternative 

modeling approaches were tested, with a primary focus on assessing the feasibility of correcting for 

levels of milk production in the model. Next, the list of phenotypes of interest was narrowed down to 

options 1-3 listed above. For those phenotypes, both conventional pedigree-based evaluations and 

single-step evaluations were performed using BLUPF90 with the APY approach. Formal validation was 

carried out for all runs, including the Interbull trend test and Mendelian sampling test. This paper will 

present the results of the validation work which leads to the choice of the cow survival phenotype for 

single-step implementation. 

 

Key words: dairy, genetic evaluation, genetic parameters, single-step evaluation, survival 

 

Introduction 

 

In Poland, the current genetic evaluation of 

dairy cow survival is performed using Survival 

Kit with sire model (Ducrocq, 2005; Morek-

Kopec and Zarnecki, 2012). Genomic 

evaluation is implemented using a two-step 

approach. The Centre for Genetics of Polish 

Federation of Cattle Breeders and Dairy 

Farmers (PFHBiPM, CGEN) together with 

National Research Institute of Animal 

Production in Balice are currently undertaking 

the review of the Polish genetic evaluation 

system for all traits to implement single-step 

genomic evaluations using BLUPF90 family of 

programs (Aguilar, et al., 2018). Although 
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survival hazard model might be statistically 

superior for genetic evaluation (GE) of cow 

survival, its implementation in single step 

methodology is problematic and not available in 

BLUPF90 software. The goal of this research 

was therefore to develop and implement a single 

step evaluation of milking cow survival for 

Polish Holstein-Friesian population using 

BLUPF90 software. 

 

Materials and Methods 

 

Phenotypic data 

Phenotypic records were obtained from national 

database maintained by PFHBiPM. Data from 

1995 were included for Holstein-Friesian and 

Holstein-Friesian Red cows. Many versions of 

possible survival phenotype definitions were 

tested. In this paper the focus is on the five most 

promising options used in final testing and 

validation runs. 

 

Trait definitions 

Option 1 – Length of productive life defined as 

time in days from first calving to culling. It was 

modeled as linear trait. Pros of this option are 

that it is simple single trait model, the 

phenotype would be the closest to the currently 

evaluated one, heritability is reasonable. Cons: 

phenotype is only available after cow’s death. 

Abbreviation: prodlife. 

Options 2-5 use binary phenotypes modeled 

on an observable scale. 

Option 2 – Nine-trait model (MT-ML). 

Survival to a given DIM during lactation. Data 

from the first three lactations is used and each is 

split into periods of time representing culling 

for different reasons. Time periods were 

decided based on DIM at culling typical for 

main culling reasons (1-74, 75-249, 250-next 

calving). Dry period was included in the last 

period. This model was very similar to the one 

implemented in Germany (Taubert, et al., 

2017). Abbreviation: surv9.  

Option 3 – Four-trait model. Phenotype is 

defined as survival from one parity to the next 

(one calving to next calving), parities 1-2, 2-3, 

3-4, and 4-5 are considered. Abbreviation: 

surv15. 

Option 4 – Repeated records variation of 

Option 2. Each parity is split to the same three 

periods as in Option 2, but each period is 

modeled as repeated records. It results in a 

three-trait repeated records model. Up to ten 

parities are included. Abbreviation: prep. 

Option 5 – Repeated records variation of 

Option 3. Survival from one parity to the next is 

modeled as repeated records. It is a single trait 

model with up to ten parities included. 

Abbreviation: rep. 

 

Models 

In all the options phenotypes were modeled on 

the observable scale. Fixed effects included age 

at first or previous calving, contemporary group 

(herd-year-season of first/previous calving) and 

lactation number for repeated records model. 

Additional effects like the level of milk 

production were tested in earlier stages of the 

project but discarded. 

 

Variance components data 

For variance components estimation a subset of 

herds with larger size and data of higher and 

consistent quality was used. The dataset used 

included over 300,000 records for over 100,000 

cows from 160 herds collected across 10 years. 

Pedigree included over 250,000 individuals. 

Variance components were estimated using 

ASReml software (Gilmour et al., 2015). 

 

Genetic evaluation data 

Genetic evaluation runs were performed using 

all available data from 1995. Contemporary 

groups with less than 5 observations and no 

variation in phenotypes were excluded from the 

analysis. For Option 1 there were 2.2M records 

with phenotypic average of 35 months of 

productive life. For Options 2&3 there were 

2.4M of cows with records available. 

Phenotypic averages are presented in Table1. 

 For Options 4&5 there were 3.6M of cows 

with records. Phenotypic averages are presented 

in Table 2. 
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Table 1. Phenotypic averages for survival (to the 

next stage) phenotypes for Option 2&3. 

Parity 
Option 2 

Option 3 
DIM1-74 DIM75-249 DIM250+ 

1 0.92 0.90 0.82 0.76 

2 0.93 0.87 0.76 0.68 

3 0.89 0.83 0.71 0.61 

4 --- --- --- 0.55 

 

Table 2. Phenotypic averages for survival (to the 

next parity) phenotypes for Option 4&5. 

Parity 
Option 4 

Option 5 
DIM1-74 DIM75-249 DIM250+ 

1 0.95 0.93 0.85 0.79 

2 0.95 0.90 0.78 0.72 

3 0.93 0.87 0.74 0.64 

4 0.91 0.83 0.69 0.59 

5 0.89 0.80 0.65 0.53 

6 0.89 0.76 0.62 0.50 

7 0.89 0.73 0.58 0.46 

8 0.86 0.69 0.59 0.43 

9 0.84 0.65 0.52 0.39 

10 0.83 0.62 0.48 0.35 

 

All genetic evaluation runs were performed 

using BLUPF90 family of programs (Aguilar, 

et al., 2018). Pedigree based (conventional; 

PBLUP) evaluations were performed on all 

models as well as single step evaluations 

(SSBLUP) using APY approach (Misztal, et al., 

2014). 

 

Combining EBVs 

The EBVs from multiple trait models were 

combined into one EBV using the following 

weights: 1) Option 2 (nine-trait model) – 0.06, 

0.09, 0.15, 0.05, 0.075, 0.125, 0.09, 0.135, 

0.225; 2) Option 3 (four-trait model) – 0.3. 0.25, 

0.2, 0.25; 3) Option 4 (three-trait repeatability 

model) – 0.2, 0.3, 0.5. 

 

Validation methods 

In order to validate the five options, records 

from the last four years were removed from the 

validation datasets (2018-2022), while keeping 

the pedigree unchanged. The results from the 

truncated runs were used for three types of 

validation. 1) Legarra and Reverter (LR) 

validation method as described by Legarra and 

Reverter (2018); 2) Quintile analysis, where 

validation cows are classified into quintiles (5 

groups of equal size) based on EBVs from 

truncated runs. Validation phenotypes are then 

fit as dependent variables in model including 

quintile groups. Least square means solutions 

for those quintile groups are obtained. The 

differences between best and worse quintile 

groups are used to compare predictive abilities 

of the models with assumption that higher value 

of the difference means better prediction; 3) 

Interbull trend test III and Mendelian Sampling 

test.  

There were three focal groups used in LR 

validation. 1) “Young Sires” – bulls with no 

daughters in truncated data and minimum 25 

daughters in full data (N=679); 2) “Proven 

Sires” – bulls with 5-25 daughters in truncated 

data and minimum twice as many daughters in 

full data (N=196); 3) “Cows” – females with 

good quality phenotypes from large herds that 

calved first time in 2018 with phenotypes 

removed from truncated data (N=21,977). Only 

the “Cows” focal group was used for Quintile 

validation. 

Correlations between EBVs from the current 

official survival evaluation and tested 

approaches were also assessed as well as 

genetic trends. 

 

Results and Discussion 

 

Variance components 

The Heritability for Option 1 was estimated to 

be 0.12. Variance components obtained for 

Option 2 are presented in Table 3 (last page). 

Heritabilities for the nine-trait model were 

lower than for other options, but results in 

general align with those obtain in Germany for 

similar model (Taubert, et al., 2017). Variance 

components obtained for Option 3 are presented 

in Table 4. Heritabilities for the four-trait model 

were substantially higher than for nine-trait 

model. 

Heritabilities, genetic and residual correlations 

obtained for three-trait model (Option 4) are 

presented in Table 5. Permanent environmental 

variances were estimated to be very close to  
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Table 4. Heritabilities (diagonal) genetic 

correlations (above diagonal) and residual 

correlations (below diagonal) obtained for Option 3. 

Trait Surv12 Surv23 Surv34 Surv45 

Surv12 0.034 0.74 0.69 0.64 

Surv23 -0.09 0.046 0.78 0.71 

Surv34 -0.07 -0.12 0.040 0.79 

Surv45 -0.04 -0.09 -0.09 0.038 

 

Table 5. Heritabilities (diagonal) genetic 

correlations (above diagonal) and residual 

correlations (below diagonal) obtained for Option 4. 

Trait DIM1-74 DIM75-249 DIM250+ 

DIM1-74 0.012 0.84 0.79 

DIM75-249 0.07 0.013 0.74 

DIM250+ 0.05 0.06 0.026 

 

 

zero, therefore permanent environmental 

effects were excluded from genetic evaluation 

models and repeatabilities are not presented for 

repeated records models (Options 4&5). 

Also here, heritabilities for model where 

lactation is being split into parts are lower, 

especially for DIM 1-74 and DIM75-249. This 

might be due to the fact that most culling occurs 

in the last part of the lactation. 

The heritability for single trait repeatability 

model (Option 5) was estimated to be 0.040. 

 

Current vs new EBVs 

The correlations between EBVs from 5 options 

tested and current official EBVs published for 

longevity for chosen groups of focal cows and 

bulls are presented in Table 6 (last page). 

Single and three-trait repeatability models 

(Options 4&5) had the highest correlations with 

current official EBVs for longevity. 

 

Genetic trends  

Genetic trends for current official evaluation 

and for the five tested alternatives for bulls and 

cows are presented in Figure 1. As with 

correlations, single and three-trait repeatability 

models (Options 4&5) had the closest genetic 

trends to the current official EBVs for 

longevity. 

 
Figure 1. Genetic trends for current official EBVs 

(SURV_EBV & LONG_EBV) and for tested 

alternative Options 1-5 (prodlife_ebv, surv9_ebv, 

surv15_ebv, prep_ebv, rep_ebv) for bulls and cows. 

 

LR validation 

The results of the validation performed using 

the method of Legarra and Reverter are 

presented in Table 7. The values obtained for 

bias, slopes and accuracy are presented. All 

results are standardized to the same standard 

deviation of 1. Bias is the difference between 

mean EBVs obtained for full and truncated 

runs. The expectation of it is zero. A positive 

value means that animals with partial 

information are over evaluated. Slope is a linear 

regression of full on truncated EBVs. The 

expected value is one. Values lower than one 

mean that selected candidates are 

overestimated. Accuracy is calculated as 

correlation between EBVs from full and 

truncated runs. Values close to one indicate that 

truncated evaluation was as accurate as whole 

evaluation, but both evaluations could have low 

accuracy. 
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Table 7. Results for LR validation for pedigree based 

(PBLUP) and single step (SSBLUP) models for 

Option 1-5 for young sires (YoungS), proven sires 

(ProvenS) and cows. 

 PBLUP SSBLUP 

Group bias slope acc bias slope acc 

 surv9_ebv (Option 2) 

YoungS -0.012 1.011 0.606 0.163 0.819 0.814 

ProvenS 0.025 0.920 0.757 0.094 0.893 0.865 

Cows 0.029 0.953 0.782 0.095 0.907 0.846 

 surv15_ebv (Option 3) 

YoungS 0.061 0.892 0.570 0.181 0.783 0.806 

ProvenS 0.041 0.867 0.740 0.087 0.849 0.858 

Cows 0.038 0.909 0.759 0.087 0.887 0.834 

 prep_ebv (Option 4) 

YoungS -0.161 1.113 0.658 0.187 0.831 0.820 

ProvenS 0.149 1.028 0.738 0.285 0.905 0.838 

Cows 0.132 1.023 0.768 0.262 0.930 0.843 

 rep_ebv (Option 5) 

YoungS 0.271 1.017 0.631 0.004 0.852 0.818 

ProvenS 0.554 0.933 0.727 0.105 0.860 0.829 

Cows 0.535 0.930 0.751 0.078 0.896 0.831 

 prodlife_ebv (Option1) 

YoungS 0.263 0.397 0.468 0.518 0.449 0.828 

ProvenS 0.056 0.671 0.789 0.218 0.594 0.847 

Cows 0.069  0.719 0.768 0.233 0.643 0.820 

 

 

For pedigree based (conventional) models, 

bias was the lowest in nine-trait model (Option 

2), slopes were closest to one in three-trait 

repeatability model (Option 3), accuracy was 

the highest for Option 2 again.  

For single step models, bias was the lowest 

in single trait repeatability model (Option 5), 

slopes were closest to one in three-trait 

repeatability model (Option 3), accuracy was 

the highest for Option 2. 

The single trait model had slightly higher 

bias and slopes further from one than PBLUP 

models. However, all SSBLUP models resulted 

in higher accuracy than PBLUP models. With 

differences being largest for young sires, which 

is desired outcome. 

It is worth noticing that differences between 

models were not big and all models from 

Options 2-4 performed very well in this 

validation. 

Quintile validation 

In quintile style validation many different 

phenotypes (N=35) were evaluated. The 

advantage of this approach is that any 

phenotype can be used as dependent variable, 

also one that is completely independent from 

the phenotypes used to derive EBVs. Here only 

one example is presented (Figure 2) for 

probability of surviving from first to fourth 

calving. This phenotype was not used to derive 

any of the EBVs validated. 

 

 

 
Figure 2. Example result from quintile validation for 

Options 1-5. Probability of surviving from first to 

fourth calving. 

 

 

For this phenotype (as well as for many 

others, results not presented), the four-trait 

model (Option 3) showed the highest predictive 

ability. Validation shows substantial 

differences between the best and the worse EBV 

animals, for example difference between top 

and bottom 20% of cows based on surv15 

(Option 3) combined EBV for probability of 

survival from first to forth calving is 14.7%.  

In general, the differences between models 

were relatively small (for phenotype above, best 

EBV predictions differ by 14.7%, the worst 

differ by 12.5%) and satisfactory results were 

obtained for all tested options. Overall, the four-

trait model (Option 3) performed best, followed 

by nine-trait models (Option 2) and three-trait 

repeatability model (Option 4). 
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Interbull test 

All models except Option 4 (three-trait 

repeatability model) passed the Interbull trend 

test III. Number of bulls available for this test 

varied between traits from 142 to 215. All 

models except Option 5 (single trait 

repeatability model) failed Mendelian sampling 

test (Table 8). Options 2-4 failed for bulls only, 

while Option1 failed by a significantly higher 

margin for both sexes. 

 

Table 8. The results of Interbull Mendelian sampling 

test. 

Option Bulls Cows 

1 (prodlife) -13.4 -12.3 

2 (surv9) -5.9 1.0 

3 (surv15) -4.6 1.2 

4 (prep) -5.3 -1.2 

5 (rep) 0.0 2.0 

 

Run times 

Consideration was also given to the time it takes 

to run each model. Single trait models (Options 

1 & 5) took around 10 minutes for PBLUP and 

30-40 minutes for SSBLUP. Three- and four-

trait models needed less than one hour for 

PBLUP and almost 2 hours for SSBLUP. Nine-

trait model took the longest, over five hours for 

PBLUP and almost nine hours for SSBLUP. 

While differences in run times between 

different options are substantial, for none of the 

models they would be considered problematic 

for implementation. 

 

Conclusion 
 

Based on the presented results no one model 

was a clear winner. The only clear “no” would 

be Option 1 – Length of productive life. 

Although this was the only phenotype with 

normal distribution and heritability >0.1, the 

phenotype itself has more disadvantages. It 

takes the longest to collect phenotypes, because 

as long as cow remains in a herd her phenotype 

would be missing. The resulting EBVs from this 

option has the lowest correlation with current 

official evaluation for longevity and genetic 

trends deviated the most from current ones. 

Additionally, this model resulted in the poorest 

results for Interbull Mendelian sampling test 

and LR validation (especially slopes). 

For Options 2-5: 

 Based on comparisons with current official 

proofs for longevity, both correlations and 

genetic trends, both repeatability models 

performed better than Options 2 &3. 

 Based on LR validation a nine-trait model 

(Option 2) looked slightly better but 

followed closely by three-trait repeatability 

model (Option 4) and four-trait model 

(Option 3). 

 Based on quintile validation, the four-trait 

model performed best across many validated 

phenotypes. 

 Based on Interbull tests Option 4 (three-trait 

repeatability mode) should be discarded as it 

did not pass trend test III. Additionally, only 

the single trait repeatability model (Option 

5) passed Mendelian sampling test for both 

sexes. 

Based on the results presented in this paper no 

clear winner has been identified. However, 

based on further analysis and industry 

consultations, Option 3 – the four-trait model 

has been chosen as preferred for 

implementation for Polish dairy population. 
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Lactation 1 Lactation 2 Lactation 3 

DIM1-74 DIM75-294 DIM250+ DIM1-74 DIM75-294 DIM250+ DIM1-74 DIM75-294 DIM250+ 

1 2 3 4 5 6 7 8 9 

1 0.014 0.91 0.58 0.68 0.67 0.58 0.68 0.61 0.52 

2 0.05 0.010 0.75 0.75 0.75 0.63 0.65 0.65 0.68 

3 0.03 0.05 0.029 0.66 0.65 0.72 0.50 0.65 0.64 
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6 -0.02 -0.04 -0.19 -0.04 0.02 0.026 0.65 0.64 0.72 
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Table 6. Correlations between current official EBVs and the five tested Options. 

All bulls Available (young) bulls Cows 

Evaluation type Domestic MACE Domestic MACE Domestic 

Number of animals 19,568 36,099 621 777 2,490,297 

Average reliability 0.60 0.45 0.45 0.50 0.30 

prodlife (Option 1) 0.46 0.34 -0.15 -0.14 0.54 

surv9 (Option 2) 0.58 0.47 0.34 0.44 0.59 

surv15 (Option 3) 0.58 0.48 0.32 0.42 0.59 

prep (Option 4) 0.72 0.60 0.43 0.52 0.77 

rep (Option 5) 0.73 0.64 0.49 0.57 0.78 

178

https://doi.org/10.1186/s12711-018-0426-6
https://doi.org/10.1016/j.livsci.2012.06.022


INTERBULL BULLETIN NO. 60. 20-21 May 2024, Bled, Slovenia 

 

Genetic correlations: a parameter or a latent phenotype in genetic 

evaluations? 
B.C.D. Cuyabano1, P Croiseau1, F Shokor1,2, MR Motta3, S Aguerre1,4, and S Mattalia1,4

1INRAE – GABI, Université Paris Saclay, AgroParisTech, France 
2Eliance, UMT eBIS, France 

3University of Campinas, SP, Brazil 
4Idele, UMT eBIS, France 

Corresponding author: beatriz.castro-dias-cuyabano@inrae.fr  

Abstract 

Genetic correlations are relevant parameters in genetic evaluations, particularly when a breeding 

program aims to achieve genetic progress for multiple traits altogether. These correlations are usually 

estimated from a base population as one of the many parameters that define the distribution used to 

predict breeding values for the selection candidates. In such a fashion, genetic correlations are 

assumed to be identical for all selection candidates. However, with a preliminary study on the output 

predicted breeding values of sires with more than 500 daughters from the French Montbéliarde 

population, we observed that the genetic correlation among daughters from different sires may differ 

substantially, i.e., different sires expressed different genetic correlations between traits through their 

daughters. Thus, if genetic correlations are specific values inherent to each individual, they could be 

considered as a phenotype; in other words, genetic correlations may be the observable consequence of 

a concealed regulatory trait guiding the relationship between observable traits. For antagonistic traits 

(e.g. production and fertility in dairy cattle), it is reasonable to believe that individuals on the extremes 

of the trade-off distribution are likely to present a low breeding value for this concealed regulatory 

trait. However, due to our inability to directly measure this potential regulatory trait, it can be 

considered a latent phenotype. Although a method to consider such hypothesis that genetic 

correlations may be a latent phenotype is yet undefined, there is no doubt that such hypothesis has an 

impact on the medium to long-term perspectives of a breeding program, given its breeding goals. 

Hypothesizing that genetic correlations are latent phenotypes, simulations can then be used to assess 

the genetic progress for multiple traits of interest in a breeding program over many generations, as 

well as to assess the trajectory of genetic correlations between traits and the genetic progress of the 

latent regulatory phenotype driving such correlations. Such comprehension of the genetic progress for 

the latent phenotype is of particular relevance, since a regulatory trait is likely to impact more than 

only two antagonistic traits, but many of the traits selected for in a breeding program. 

Key words: correlated traits; multi-trait evaluation; physiological trait regulation; non-linear genetic 

correlation; genetic progress 

Introduction 

Genetic correlations (GC) are relevant 

parameters in genetic evaluations, particularly 

when a breeding program aims to achieve 

genetic progress for multiple traits altogether. 

These correlations are typically estimated from 

a base population as parameters from the joint 

distribution of the breeding values of the traits 

of interest, a distribution that is then used to 

predict the breeding values (BV) for the 

selection candidates (Patterson and Thompson, 

1971; Henderson et al., 1959; Henderson, 

1975). In such a fashion, GC are assumed to be 

identical for all evaluated individuals. In terms 

of statistical modelling, the assumption that 
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GC are population parameters, thus identical to 

all selection candidates, enables the 

implementation of the best linear unbiased 

prediction (BLUP) (Henderson, 1975) and 

Bayesian methods (Meuwissen et al., 2001; 

Gianola and van Kaam, 2008), widely used to 

predict BV in genetic evaluations. 

While the assumption that GC is a 

population parameter is of great value to 

describe the underlying genetic architecture 

that drive the relationship between traits, such 

assumption ignores potential physiological 

genetic effects in the regulation of multiple 

traits (Berry et al., 2016). A preliminary study 

on the output predicted BV of sires with more 

than 500 daughters from a dairy cattle 

population, showed that the GC among 

daughters from different sires may differ 

substantially, i.e., different sires may express 

different GC between traits through their 

daughters. 

Physiological traits may impact both 

positive and negatively correlated traits. Our 

study focused on the latter case, particularly on 

the classic antagonism between production and 

fertility traits in dairy cattle (Boichard and 

Manfredi, 1994; Hoekstra et al., 1994; 

Veerkamp et al., 2001), traits of great 

commercial interest for this production system. 

Our hypothesis is that, rather than a modelling 

parameter, GC may be the observable 

consequence of an underlying physiological 

trait, responsible to regulate the trade-off 

between production and fertility, and such 

regulatory trait is not directly measurable. 

Under this hypothesis that GC is a 

consequence of an underlying physiological 

trait, it is reasonable to believe that individuals 

on the extremes of a trade-off distribution (i.e. 

individuals who present a very high breeding 

value for production and a very low breeding 

value for fertility, or vice-versa) are likely to 

present a low breeding value for this concealed 

regulatory trait. Conversely, individuals on the 

center of a trade-off distribution, with average 

breeding values for both commercial traits, are 

likely to present a good regulatory capacity. 

Therefore, GC would be a measure inherent to 

each individual, representing their genetic 

capacity to regulate a trade-off. However, due 

to our inability to directly measure this 

potential regulatory trait, it can be considered 

as a latent phenotype, making it difficult to be 

evaluated and included in the unified index for 

the selection candidates. 

Rather than aiming on how to include the 

hypothesis that GC are latent phenotypes in a 

genetic evaluation, the objective of the present 

work was to compare the genetic progress of 

production and fertility traits in a simulated 

breeding program, with data simulated under 

the assumptions that GC was either a 

parameter or a latent phenotype. Simulations 

were performed for different scenarios of 

selection, and the consequences of these 

scenarios on the regulatory trait and on the 

observed GC between the measurable traits 

was also studied. 

Although the objective of our study was the 

discussion of the hypothesis that GC are latent 

phenotypes, without neither developing novel 

methods to evaluate antagonistic traits, nor 

proposing a manner to consider the possibility 

that GC are latent phenotypes in the unified 

index for the selection candidates, the 

discussion of this hypothesis is still relevant, 

since it sheds a light on the medium to long-

term consequences of breeding decisions on 

the genetic progress of traits of interest. 

Materials and Methods 

Preliminary study on real data 

The data set analyzed consisted of records 

from production (PROD) and fertility (FERT) 

traits from the French Montbéliarde 

population. PROD consisted of milk yield on 

first lactation corrected for 305 days, and 

FERT consisted of the cow conception rate at 

the first insemination after the beginning of the 

first lactation. Records on both traits were 

available for 806,159 cows, for which pedigree 

data with ~ 4 million animals were available. 

The phenotypes analyzed were recorded for 
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cows that began their first lactation between 

the years of 2002 and 2021. 

The model used for both the variance 

component estimation and the genetic 

evaluation was a two-trait model (PROD and 

FERT), with an overall mean, age, and herd-

year-season included as fixed effects for both 

traits; lactation length was included as a fixed 

effect only for PROD, and calving-

insemination interval, sexed semen, artificial 

insemination (AI) operator, and day of the 

week as fixed effects for FERT only; for both 

traits, the random additive genetic effect was 

included assuming a normal distribution with 

mean zero and variances  and 

for PROD and FERT respectively, and a 

covariance  between the two traits, such 

that was the nominal relationship matrix, 

and were the total additive 

genetic variances of PROD and FERT 

respectively, and  was the additive genetic 

covariance between the two traits evaluated; 

the random effect of the AI bull was included 

into the model for FERT only, assuming 

independence between the bulls and a normal 

distribution with mean zero and variance 

; finally, for both traits the random 

residuals were considered to be normally 

distributed with mean zero and a 

heterogeneous variance per herd-year group. 

Variance components were estimated using 

the residual maximum likelihood (REML), and 

the genetic evaluation was performed using the 

BLUP, to obtain the estimated breeding values 

(EBV) for all animals in the pedigree. After the 

evaluation model was performed, from the 

pedigree we subset 247 sires with more than 

500 daughters evaluated among those 806,159 

cows with records on both traits. For each of 

these sires, we calculated the mean EBV of 

their daughters for both PROD and FERT per 

year of their first lactation, and the GC 

between their daughters’ EBVs for PROD and 

FERT, over all the years, and separated by 

year of the daughters’ first lactation. This 

descriptive study per sire was performed to 

confirm the genetic progress for both traits 

(thus, selection for both PROD and FERT), 

and to verify whether different sires expressed 

different GC between the traits of interest, 

through their daughters. 

Simulation study 

Datasets were simulated to contemplate the 

two hypotheses we intended to discuss with 

this present study: (1) GC are statistical 

parameters modulating the genetic relationship 

between two traits; (2) GC are observable 

consequences from a latent physiological trait 

(RGLT) that regulates the genetic relationship 

between two traits. Under both hypotheses, 

PROD and FERT were simulated with 

heritabilities and 

respectively, and with a GC 

between them. The total phenotypic variances 

were 50 and 75 for PROD and FERT 

respectively. 

For the simulated datasets under each of the 

two hypotheses, a base population with 2,000 

individuals was simulated, with 50k SNPs 

allocated in 29 chromosomes, such that the 

number of SNPs per chromosome and the 

linkage disequilibrium (LD) pattern were 

adjusted to resemble the cattle genome. 

Genomic data simulations were performed 

in R language (R core team, 2018), using 

routines from the GenEval package 

(https://github.com/bcuyabano/GenEval), and 

correlated traits were simulated using self-

coded routines. All evaluations were also 

performed in R language. 

Selection scenarios with different weights 

for the two traits in the breeding goals were 

defined to evolve the population over many 

generations. For every simulated scenario, 

selection was performed on sires only, by 

selecting the top 20% bulls in agreement with 

the scenario’s breeding goal. The choice of 

selection of sires only was made so that the 

simulation resembled a dairy cattle breeding 

program. 

181

https://github.com/bcuyabano/GenEval


INTERBULL BULLETIN NO. 60. 20-21 May 2024, Bled, Slovenia 

Genetic correlation as parameter 

When GC was simulated as a parameter, its 

origin was purely quantitative. This means that 

part of the correlation was due to pleiotropic 

quantitative trait loci (QTL) for both PROD 

and FERT, and part of this correlation was due 

to different QTL for each trait, but that were in 

close proximity, such that these QTL were in a 

sufficient level of LD for GC to arise. For each 

trait, 3,000 out of the 50k simulated SNPs 

were assigned as QTL; 1,000 of these QTL 

were shared by both traits (pleiotropic); 1,000 

QTL were trait-specific, but in close proximity 

to those trait-specific from the other trait so 

that these QTL were in LD; 1,000 QTL were 

trait-specific and far enough from any QTL 

from the other trait, so that their between-trait 

effects were completely independent. Figure 1 

illustrates the described scheme of the QTL 

display on the simulated genome. 

Figure 1. Scheme of the QTL display on the 

simulated genome, indicating the QTL responsible 

for creating genetic correlation between PROD and 

FERT (pleiotropic QTL, and QTL in LD), and the 

QTL that created independent effects on each trait. 

For the simulation study under the 

hypothesis that GC was a parameter, the 

population was evolved over 40 generations 

under five different scenarios, one scenario in 

completely random mating, and four scenarios 

with selection of the top 20% bulls, with 

different weights for %PROD-%FERT in the 

breeding goal: (1) 100-0; (2) 90-10; (3) 80-20; 

and (4) 50-50. Each scenario was replicated 

100 times. 

Genetic correlation as a latent phenotype 

When GC was simulated as a latent phenotype, 

we initially simulated RGLT was with 

heritability , and then both PROD 

and FERT were simulated to have a concave 

parabolic relationship with RGLT, following 

the simulation method in Shokor et al. 2024. 

Figures 2 and 3 illustrate the relationship 

between the simulated BV for the three traits. 

For the simulation study under the 

hypothesis that GC was a latent phenotype, the 

population was evolved over 50 generations 

under three selection scenarios of the top 20% 

bulls, with different weights for %PROD-

%FERT-%RGLT in the breeding goal: (1) 

100-0-0; (2) 80-20-0; and (3) 80-10-10. Each 

scenario was replicated 1,000 times. 

Figure 2. Scatterplots of the BV, denoted as g, 

simulated for the three traits when the genetic 

correlation between PROD and FERT was the 

consequence of a latent phenotype. The full black 

line in all the panels indicate the mean relationship 

between the pairs of traits. 

Figure 3. 3D scatterplot of the BV (colored dots, 

with the gradient red-yellow-blue representing 

negative-zero-positive values for RGLT), denoted 

as g, simulated for the three traits when the genetic 

correlation between PROD and FERT was the 

consequence of a latent phenotype. The gray dots 

are the projection of the simulated BV for PROD 

and FERT only, which are the observable traits. 

The full black line indicates the mean relationship 

between PROD and FERT, perceived as a linear 

correlation. 
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Results & Discussion 

Descriptive results on real data 

On the group of 247 subset sires, we could 

observe a clear pattern of genetic progress 

from 2002 for PROD, and from 2009 for 

FERT, as shown in Figure 4. Although FERT 

has been included in the breeding goals for the 

French Montbéliarde population in 2001, at 

this moment this breeding goal was defined 

mostly for the AI sires. Therefore, the genetic 

progress is not immediately perceived. Given 

the low heritability of FERT and considering 

the generation interval needed for a change in 

breeding goals to take effect, it not surprising 

that the clear pattern of genetic progress arises 

from 2009. Moreover, to further explain the 

trajectory of the genetic progress for FERT, it 

is only from 2006 that females began to be 

more systematically selected for fertility traits. 

Figure 4. Yearly mean breeding values of PROD 

and FERT from 2002 until 2021, for the daughters 

of 247 sires with more than 500 daughters 

evaluated, all with both traits recorded. 

With respect to the sire-specific GC 

between PROD and FERT, from Figure 5 we 

can observe that their values range from -0.3 to 

0.3, a great dispersion around the GC of 0.051 

estimated by REML. This dispersion is 

observed both on the sire-specific GC 

disregarding their daughters’ year of birth and 

taking the year into account. When observing 

the distributions of the sire-specific GC per 

their daughters’ year of birth, we observed that 

this distribution changes most visibly from 

2009. From the year 2002 until 2008, sire-

specific GC were on average negative, with a 

mean of -0.055. From 2009 on, these mean 

shifts to approach zero, and finally become 

mildly positive, with a mean of 0.063. 

Based on our knowledge of the historical 

breeding goals for the French Montbéliarde 

population in the period from 2002 to 2021, 

and the observed response in genetic progress 

for PROD and FERT, it is then of no surprise 

that visible changes in the distribution of the 

sire-specific GC arise from 2009, as shown in 

Figure 5. 

The great dispersion of the sire-specific GC 

between PROD and FERT suggests that 

considering these correlations as a static 

parameter may not reflect the true nature of 

what drives the relationship between PROD 

and FERT. 

Figure 5. Histogram of the sire-specific genetic 

correlations (GC) between PROD and FERT, for 

247 sires with more than 500 daughters evaluated, 

all with both traits recorded. 

Genetic progress and genetic correlation on 

simulated data 

The different assumptions of what causes GC 

between the antagonistic traits have a 

remarkably different impact on the trajectory 

of GC over generations for populations under 

selection. 

When GC was simulated as a parameter, 

different selection scenarios generally 

presented significantly different outcomes. 

Under this hypothesis, a single-trait selection 

resulted in an attenuation of GC, i.e., the 

negative GC evolved towards zero as 

generations progressed, as shown in Figure 6. 

Although we solely present the trajectory of 
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the GC for single-trait selection on PROD, the 

exact same trajectory was observed when 

selection was performed for FERT only. 

Still under the hypothesis that GC is a 

parameter, with the exception of the scenario 

90%PROD-10%FERT, for which GC 

remained stable around its original value, 

selection scenarios for both PROD and FERT 

inevitably lead to an intensification of GC, i.e., 

the negative GC evolved to a farther more 

negative value as generations progressed, as 

shown in Figure 6. Moreover, the greater the 

equilibrium in the breeding goal between the 

two antagonistic traits, the faster this 

intensification of GC was observed. 

Although the observed results in Figure 6 

were initially surprising, these trends were 

statistically supported when we performed the 

calculus on the expected GC for the truncated 

bivariate normal distribution to select 

progressively increasing values for both means 

(calculus not shown), and can be explained in 

terms of loss of genetic diversity, assuming 

that the hypothesis that GC is a parameter is 

true, i.e., that GC arises uniquely due to QTL 

effects. Nonetheless, questions remained about 

whether the observed trends in the simulated 

data were biologically sound, specially when 

compared to the results observed with the real 

data, as presented in Figures 4 and 5. This, 

combined with research in bovine physiology 

(Berry et al., 2016) lead us to hypothesize that 

genetic correlations may be a latent phenotype, 

or in other words, the observable consequence 

of a concealed physiological trait, responsible 

to regulate the trade-off between the antagonist 

traits. 

When GC was simulated as the 

consequence of a latent phenotype, as shown 

in Figure 7, we observed that the different 

selection scenarios did not present the great 

differences as previously observed in Figure 6. 

In fact, in the short to medium term (up to 

approximately generation 15), the trajectory of 

GC was statistically the same for all selection 

scenarios. During the first 15 generations 

Figure 6. Trajectory of GC between PROD and 

FERT over 40 generations of populations under 

selection according to the five simulated scenarios 

of breeding goals (%PROD-%FERT). The full lines 

in the plot represent the mean GC observed with 

100 replicates of each scenario, and the shaded area 

around the mean GC represent their 95% 

confidence interval. 

under selection, the negative GC tended to be 

attenuated. 

From generation 15 on, the overall trend of 

GC under selection for a single trait differs 

from that of selection for both traits. While 

under all simulated selection scenarios the GC 

reached a peak of attenuation, and then 

presented a trend of slow re-intensification, 

this trend seemed to be temporary when 

selection was performed for more than one 

trait, with GC reaching an apparent 

stabilization in its trend, from generation 30. 

When selection was performed for a single 

trait (in our simulations, PROD), the trend of 

re-intensification seemed constant throughout 

all generations after generation 15. These 

results presented in Figure 7 suggest that, 

although initially any breeding goal for a 

breeding program will lead to the attenuation 

of GC, in the long-term, single-trait selection 

will inevitably lead to stronger negative GC, 

compared to multi-trait selection. 

To conclude the discussion with respect to 

the trends observed for the GC over 

generations in the simulated populations under 

different selection scenarios, the contrasting 

results from the two hypotheses considered to 
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Figure 7. Trajectory of GC between PROD and 

FERT over 50 generations of populations under 

selection according to the three simulated scenarios 

of breeding goals (%PROD-%FERT-%RGLT). The 

full lines in the plot represent the mean GC 

observed with 1,000 replicates of each scenario, 

and the shaded area around the mean GC represent 

their 95% confidence interval. 

simulate correlated traits presented in Figures 

6 and 7, when compared to the results 

observed in real data, gives us information to 

support the hypothesis that GC is a 

consequence of a latent phenotype. 

Finally, we evaluated the genetic progress 

achieved with the different selection scenarios, 

when GC was simulated under the hypothesis 

that they are a consequence of a latent 

phenotype. The results presented in Figure 8 

show that, as expected, after 50 generations the 

average BV for production was mildly lower 

when multi-trait selection was in place. Since 

breeding goals for multi-trait selection kept a 

weight of 80% for production, although 

significant, the difference in PROD between 

the simulated scenarios was small. Therefore, 

the inclusion of FERT and RGLT did not 

largely decrease PROD. On the other hand, the 

inclusion of FERT alone, or FERT+RGLT to 

the breeding goal resulted in great changes to 

the average BV for these two traits, compared 

to the scenario in which selection was 

performed uniquely for PROD. 

It was interesting to observe that, in the 

scenario for which selection was performed for 

PROD and FERT (without RGLT), the dual 

selection did impact positively the genetic 

progress of RGLT. Although not surprising, 

this result is reassuring that, if GC are the 

observed consequence of a latent physiological 

trait, selection for the observable traits is 

indirectly selecting for the latent trait. 

To conclude the discussion with respect to 

the genetic progress, a final remark has to be 

done with respect to the selection including the 

latent physiological trait (RGLT) responsible 

to regulate the trade-off between PROD and 

FERT. If RGLT can be measured either 

directly or indirectly, and the included in the 

breeding goals, the genetic progress of this 

trait is relevant, counterbalancing the mild loss 

in genetic progress for the other traits of 

commercial interest (in the simulation PROD 

and FERT). The great genetic progress in 

RGLT due to its inclusion in the breeding goal 

has an importance, because such trait is very 

likely to have an influence in many other traits 

of commercial interest, beyond PROD and 

FERT. Thus, including RGLT in the breeding 

goals is expected to improve many of the traits 

considered in a real breeding program, which 

are far more traits than PROD and FERT. 

Figure 8. Genetic progress per generation, for 

PROD, FERT, and RGLT over 50 generations of 

populations under selection according to the three 

simulated scenarios of breeding goals (color-coded 

as in Figure 7, i.e. blue: 100%PROD-0%FERT-

0%RGLT; green 80%PROD-20%FERT-0%RGLT; 

red 80%PROD-10%FERT-10%RGLT). The full 

lines in the plot represent the mean breeding values 

observed with 1,000 replicates of each scenario, 

and the shaded area around the mean GC represent 

their 95% confidence interval. 

Conclusions 

This work had the objective open a discussion 

about the nature of genetic correlations 

between traits. We evoked two hypothesis, one 

that assumes genetic correlations as a 

parameter driving the genetic architecture of 

correlated traits, and another that assumes that 

genetic correlations are the observable 
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consequence of a latent physiological trait 

responsible to balance the expression of 

measurable traits. Using simulations of 

breeding schemes considering different 

breeding goals under these two hypotheses, 

and comparing our simulated medium to long-

term results with observations in real data, we 

believe that our study provides information to 

support the hypothesis that GC are a 

consequence of a latent phenotype. This 

hypothesis is relevant to define breeding 

objectives, since a regulatory trait may impact 

not two, but many traits altogether. Last but 

not least, although our study focused on the 

antagonism between production and fertility 

traits, the concept that genetic correlations may 

be the consequence of a latent phenotype can 

be extended to many other traits. 
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Abstract  

 

Incorporation of external breeding values in an evaluation is a convenient way to increase the 

information underlying the breeding values from a national evaluation. This provides improved 

estimates of breeding values of animals with mostly or wholly foreign pedigrees. In genomic analyses 

external breeding values can be used to increase the reference population. In this paper we present the 

approach to incorporating foreign or external breeding values taken for the Dutch-Flemish genetic 

evaluation. It consists of 1) deregression of external breeding values, removing national information to 

arrive at the deregressed proof containing foreign information only and 2) transformation of the 

deregressed proof to pseudo-observation records that can be used as ‘own observations’ in the routine 

evaluation. Solutions are presented for linear single animal effects models, correlated animal effects 

models and random regression models. Results are shown of a validating procedure in a random 

regression test day model for milk production. 

 

Key words: External breeding values, deregression, genomic evaluation  

 

Introduction 

  

Incorporation of external breeding values in an 

evaluation is a convenient way to increase the 

information underlying the breeding values 

from a national evaluation. This provides 

improved estimates of breeding values of 

animals with mostly or wholly foreign 

pedigrees. In genomic analyses external 

breeding values can be used to increase the 

reference population. In this paper we present 

the approach to incorporate foreign or external 

breeding values taken for the Dutch-Flemish 

genetic evaluation.  

 

Materials and Methods 

 

The method to incorporate foreign or external 

BV in routine evaluations consists of 1) 

deregression of external breeding values, 

removing national information to arrive at the 

deregressed proof containing foreign 

information only and 2) transformation of the 

deregressed proof to pseudo-observation  

 

records that can be used as ‘own observations’ 

in the routine evaluation. 

 

Deregression 

The method of deregression is based on the 

work by Pitkänen et al. (2019). It requires the 

following components: 

 

1. A VanRaden (2009) deregressed proof 

of the external breeding value (DRPX) 

with corresponding expected record 

contribution (ERCX) 

2. A VanRaden deregressed proof of the 

national breeding value DRPN with 

corresponding ERCN 

 

Note that for a trait the expected daughter 

contributions EDC and ERC are proportional, 

such that ERC = k*EDC and k = (1 – h2)/(4 – 

h2). The relative weight of components does 

not change by using either ERC or EDC to 

deregress. 

 

187



INTERBULL BULLETIN NO. 60. 20-21 May 2024, Bled, Slovenia 

The target DRP to include in genetic 

evaluations is then obtained through: 

ERC =  (ERCX – ERCN) 

DRP = [ DRPX * ERCX – DRPN*ERCN] / ERC 

The reliability of the DRP can be obtained 

by back transforming ERC. Foreign 

information of a bull is included in the 

evaluation if the reliability of the DRP is at 

least 0.10. 

Transformation 

To derive the correct transformation function it 

is necessary to distinguish between 1) m input 

traits, 2) k analyzed traits and 3) n target traits, 

where 1) input traits are the traits for which a 

BV or DRP are available, 2) analyzed traits are 

the traits actually in the evaluation and 3) 

target traits are the traits for which a pseudo-

observation is desired. Usually two or all three 

trait categories are identical, but particularly in 

the case of random regression models this may 

not be the case. For example, in a milk 

production test day model, the input traits are 

cumulative 305 day BV, the analyzed traits are 

the polynomial variables shaping the 

production curve and the target traits are 

observations of milk production on a particular 

day in lactation. 

General form 

The general form of the transformation 

function is: 

o = Tb

Where o is a vector with n desired pseudo-

observations or target traits, b is a m size 

vector with input DRP/BV and T is the n × m 

transformation matrix derived from the genetic 

covariance matrix used in the evaluation. 

The transformation matrix T is obtained 

through: 

T = DCV-1

Where V is a m × m genetic (co)variance 

matrix of m input traits and C is a k × m matrix 

with covariance between m input traits and k 

analyzed traits. The n × k matrix D links 

analyzed traits with target traits.  

To obtain C and V a m × k matrix F is 

constructed linking input traits to analyzed 

traits. Both C and V are obtained using F 

through: 

C = GF’ 

V = FGF’ 

Where G is the genetic (co)variance matrix 

for analyzed traits. This is usually the matrix 

used as parameter in genetic evaluations. 

The explicit form of the complete 

transformation matrix is: 

T = (DGF’)∙(FGF’)-1 

Linear trait breeding value 

The most trivial of cases is when input, 

analyzed and target traits are identical. In that 

case F = I and D = I. If F = I, then T 

necessarily also is equal to I, reducing the 

transformation function to: 

o = Tb = Ib = b

If the input trait is an index of underlying 

traits, for which pseudo-observations are 

required (with analyzed and target traits 

identical), we construct a 1 x n matrix F = w, 

where w is a vector with index weights of the 

analyzed traits. For instance, if the input trait is 

an index of three underlying traits with index 

weights, such that: 

C = GF’ = Gw = c 

V = FGF’ = wGw’ = v 

Since analyzed and target traits are identical 

D = I and can be omitted, reducing the 

transformation matrix T to a vector: 

o = Tb = (CV-1)b = bc/v
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The above can be readily extended to 

include multiple traits by extending F with 

lines for every index trait to be included.  

 

Random regression breeding values 

The proper construction of transformation 

matrix T in random regression model is 

illustrated using a milk production test day 

model as an example. 

Assume a milk production RR model with 

3 lactations and 5 Legendre polynomials for 15 

analyzed traits in total. The input DRP are 

based on cumulative 305 day BV. Target traits 

are (expected) milk productions on day 60 of 

lactation for each lactation. Assume 

furthermore that G is ordered traits within 

polynomial (e.g. poly1(lac1…lac5), 

poly2(lac1…lac5), etc.). Additionally, we 

assume the presence of a c x l matrix L with l 

Legendre coefficients for each day in a 

lactation curve of c days in length. In this 

example L = L5:420.  

The transformation matrices F and D are of 

the following form: 

 

F = s ⊗ I3 

D = t ⊗ I3 

 

Where s is a vector with cumulative 

Legendre coefficients ∑ L5:305  and t is a vector 

with Legendre coefficients for DIM = 60, L60 

and ⊗ denotes the Kronecker product of s/t 

and identity matrix I of size equal to the 

number of lactations. 

These F and D are then used to construct T 

to provide pseudo-observations at DIM=60 

corresponding to the DRP based on 305 day 

BV. 

 

Weight or ERC of pseudo-observations 

To accurately account for the reliability of the 

input DRP, weights must be calculated for the 

observations on the target traits. These can be 

obtained by transformation of the single trait 

ERC into corresponding multi trait ERC. 

This cannot be done analytically, but a 

simple iterative procedure to obtain MT-ERC 

from ST-ERC is the following: 

 

Reliability function 

A vector with reliabilities b is a function of 

ℜ(Y, G, F), which calculates reliabilities 

according to the MT-ERC matrix Y (Liu et al. 

2001), using genetic covariance matrix G and 

matrix F, where F is as before. The function is 

as follows: 

 

1) Gt = G[I - (¼YG + I)-1] 

2) b = diag(F’GtF)/(diag(F’GF), where b 

is now a vector with reliabilities for 

each trait, corresponding to 

observations enumerated in Y, on the 

diagonal. In this instance the operator / 

denotes element-by-element division. 

 

Deriving multi-trait ERC from single trait ERC 

Let O be a diagonal matrix with ERC. With 

function ℜ in place we can iterate on O until 

some convergence conditions are met. Let b be 

the matrix with DRP reliabilities and bi the 

reliabilities from the ERC iterated on (Oi). 

Since O corresponds to number of repeated 

observation records we assume values on the 

diagonal of Oi are integer values. 

 

1) Calculate Yi = 4(OiD)’R-1D 

2) Calculate bi = ℜ(Yi, G, F) 

3) Calculate t = (bi – b) 

4) Calculate convergence c = (t’t)/(b’b) 

5) Compare bi with b  

6) If bi(x) < b(x) – r : Oi+1(x,x) = Oi(x,x) +1 

7) If bi(x) > b(x) + r : Oi+1(x,x) = Oi (x,x) -1 

(with a certain minimum value, e.g. 1) 

8) Repeat until c reaches a threshold value 

e or O stops changing: Oi+1 - Oi = 0. 

A theshold value can be e = n*r2/(b’b), 

where n is the number of elements in b and r is 

the maximum allowed error on bi described 

above.  
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Validation of the transformation procedure 

We applied the procedure described above to 

the MACE breeding values of a set of 54,194 

Eurogenomic bulls for milk, fat and protein 

and incorporated the resulting pseudo 

observations in a full conventional milk 

production evaluation. Input MACE BV were 

from the Aug. 2023 Interbull evaluation. The 

full conventional evaluation was based on data 

for the Dutch/Flemish Dec. 2023 genetic 

evaluation. Pseudo-observations were fitted as 

own observations with a separate herd-testday-

class. Apart from a random animal effect no 

other fixed or random effects were fitted. 

From the evaluation we selected bulls 

without national information present in the 

data, only data from DRP, and compared the 

input Interbull BV to the BV estimated in the 

full conventional evaluation.  

Results & Discussion 

The results are presented in Table 1. 

Correlations between input BV and output BV 

were high (~0,99) with comparable standard 

deviations. 

Table 1. Number of selected bulls, standard 

deviations and correlation r of input (MACE) and 

output EBV for milk production traits.  

Bulls were selected which did not have daughter 

data present in the evaluation, only DRP based on 

MACE BV. 

The procedure outlined above provides a 

generalized and relatively convenient method 

of transforming deregressed proofs into 

pseudo-observations that can be used in a 

genetic evaluation directly. It precludes the 

need for the definition of correlated pseudo-

traits and the redefinition of the statistical 

modelling of the evaluation. 

The method relies on two matrices, F and 

possibly D, which must be constructed 

explicitly to carry out the transformation. If 

these are correctly defined in relation to input 

traits, analyzed traits and target traits, the 

construction of T is straightforward and the 

transformation of large numbers of DRP or 

EBV is a relatively simple and fast process. 

Conclusions 

A generalized approach to derive pseudo-

observations from deregressed proofs was 

presented. The pseudo-observations thus 

obtained can be used in a genetic evaluation 

directly, as observations on existing traits, 

without the need for the definition of 

additional correlated pseudo-traits. The method 

is applicable to a variety of models and types 

of DRP. 
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Abstract 

The concepts considering for unknown parents are crucial in improving genetic evaluations in animal 

breeding by accounting for genetic differences within base populations. This study builds on a previous 

simulation study for the German-Austrian-Czech Fleckvieh population, presenting results that compare 

metafounders (MF) and unknown parent groups (UPG) for single-step genomic best linear unbiased 

prediction, and includes detailed analyses for scaling variance components when using MF. The results 

show that in both settings with complete and incomplete pedigree, evaluations using MF show the best 

bias and dispersion results, with minimal impact from incomplete pedigree information. In contrast, 

evaluations without UPG or MF and evaluations where UPG were incorporated via Quaas-Pollak-

transformation in the pedigree-based and genomic relationship matrix (UPG_fullQP) exhibit substantial 

overestimation and overdispersion, emphasizing the importance of accurate relationship modeling in 

genetic evaluations. This study found that estimating variance components using MF and scaling 

variance components lead to the same heritability. However, using adapted variance components results 

in moderate overestimation and slight overdispersion of GEBV. The validation method based on the 

linear regression method could not detect the significant overestimation and overdispersion in 

UPG_fullQP. This means that commonly used validation methods tend to underestimate the advantages 

of MF in populations with numerous unknown pedigrees, highlighting challenges in model optimization 

for handling unknown parents. 

Key words: ssGBLUP, unknown parents, metafounder, simulation, dairy cattle 

Introduction 

Thompson (1979) and Quaas (1988) published 

the concept of unknown parent groups (UPG) to 

account for genetic differences within 

subgroups of base populations, incorporating 

animals with missing parents and diverse 

genetic backgrounds into genetic evaluations. 

UPGs can have non-zero means but are 

assumed to be non-inbred and unrelated, similar 

to the base population. For single-step genomic 

best linear unbiased prediction (ssGBLUP) 

Legarra et al. (2015) extended this concept and 

introduced metafounder (MF), which can model 

relationships within and across subpopulations. 

ssGBLUP uses an integrated relationship 

matrix (H), combining the pedigree-based (A) 

and genomic (G) relationship matrices. Ideally, 

both matrices should refer to the same base 

population (Christensen, 2012), though this is 

often not the case in cattle populations without 

adjustments. Methods to align G with A include 

those by VanRaden (2008), Vitezica et al. 

(2011), and Christensen (2012). MF is 

addressing this alignment by adapting A to 

match G. 

In the German-Austrian-Czech Fleckvieh 

population, the first ssGBLUP genomic 

evaluation was published in April 2021 

(Himmelbauer et al., 2021), using 15 UPGs for 

most fitness traits. MF is considered the gold 
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standard for ssGBLUP implementations (Meyer 

et al., 2018). Therefore, it is likely to be one of 

the next development steps in the national 

genomic evaluation system. 

A small preliminary study for the case 

without unknown parents has already been 

published in Himmelbauer et al. (2023a). The 

detailed results based on a simulated cattle 

population based on two base populations, 

several scenarios and different pedigree settings 

were published in Himmelbauer et al. (2024). 

The results presented in this paper are in part a 

small selection from Himmelbauer et al. (2024) 

supplemented by more detailed analyses for 

scaling the variance components. 

Materials and Methods 

Simulating metafounders 

The fundamental methodology employed for 

simulating the population is analogous to that 

described in Himmelbauer et al. (2024). The 

procedure begins by dividing the founder 

population into two subpopulations, with each 

subsequently selected independently. The 

populations are then reunited, forming the basis 

of the pedigree. From this point onwards, the 

pedigree is recorded, while the heritability (h2) 

for the trait under selection is set to 0.3. 

Subsequently, a period of 30 years was 

simulated with selection based on PBLUP, 

followed by an 8-year period of selection based 

on ssGBLUP. Figure 1 provides a schematic 

representation of the simulation process. 

Dataset 

The entire simulation documented all pedigree 

information, phenotypes, genotypes, and TBV 

for all animals across all years. This data was 

used to create the study's dataset, described in 

detail by Himmelbauer et al. (2024) as "low 

pedigree completeness." In the simulation, all 

females with offspring had phenotypes. To 

mimic routine datasets, 90% of the phenotypes 

from the first 15 generations were randomly 

deleted. Additionally, 75% of males and 30% of 

females born in the last eight years were 

randomly genotyped. The final dataset includes 

approximately 154,500 phenotypes, 143,400 

genotypes, and a total of around 1,105,500 

animals in the pedigree. 

Figure 1. Schematic overview of the simulation 

process. 

A reduced dataset was created for validation, 

using the same animals and genotypes but 

excluding the phenotypes from the last three 

years. Specifically, the phenotypes of all 

females born in years 32, 33, and 34 were 

excluded, resulting in 133,500 phenotypes in 

the reduced dataset. 

For most analyses, some animals are 

assumed to have unknown sires and/or dams. 

The proportions of missing parents are 7.5% for 

sires and 10% for dams and are consistent 

across all birth years. Animals with unknown 

parents are randomly selected, but the potential 

for genomic parentage verification was 

considered, such that parents that can be 

identified with certainty (genotyped sires and 

dams of genotyped animals) or with a high 

probability (e.g., genotyped dam's sires of 

genotyped animals) are not deleted. This 

approach reflects practical scenarios and 

prevents double counting in genetic evaluations 

(Pimentel et al., 2022). 
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Pedigree settings 

Two pedigree settings were tested, resulting in 

different classifications of unknown parents as 

UPG or MF. 

 

Full pedigree 

This setting uses the complete pedigree with no 

missing parents, except for animals born in year 

0, forming the pedigree base. Base animals are 

assigned to their true subpopulations (purebred 

A or B), forming two UPG or MF. 

 

True missing pedigree 

This setting simulates unknown parents 

according to the previously described 

procedure. UPG or MF classification is based 

on subpopulation (purebred A, B, or crossbred 

AB), sex (missing sire or dam), and year of birth 

(grouped in five-year intervals). Since the full 

pedigree is known, true subpopulation and year 

of birth for missing parents are used. 

 

Genetic evaluations 

In order to test different methods of accounting 

for unknown parents, a series of genetic 

evaluations were conducted for the two 

pedigree settings. To calculate the estimated 

linear regression validation statistics (LR) 

(Legarra and Reverter, 2018), all evaluations 

were also computed for the truncated datasets. 

Except for the evaluation with scaled variances, 

we used the simulated genetic variance 

(𝜎𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑
2 = 0.3) and for all evaluations, true 

base allele frequencies were used to construct 

the genomic relationship matrix. 

All evaluations were conducted using 

MiX99 (MiX99 Development Team, 2019). 

The G matrix for ssGBLUP was prepared as in 

Himmelbauer et al. (2023b) using the HGINV 

program (Strandén and Mäntysaari, 2020), 

based on VanRaden's method 1 (VanRaden, 

2008) and the approach for Proven and Young 

(Misztal et al., 2014a). For evaluations using the 

MF approach, base allele frequencies were set 

to 0.5, as outlined by Legarra et al. (2015). 

 

1) ssGBLUP without UPG (no_UPG): 

An ssGBLUP was used to estimate GEBV 

without UPGs. All unknown parents were set to 

0, assigning them to a single base population. 

 

2) ssGBLUP with UPG in A (UPG_alteredQP): 

This ssGBLUP used UPGs in the pedigree, 

modeled as random. UPGs were included in the 

inverse pedigree relationship matrix (𝐴−1) and 

the inverse pedigree relationship matrix for 

genotyped animals (𝐴22
−1), but not in the inverse 

genomic relationship matrix (𝐺−1). This 

approach follows Masuda et al. (2018, 2022) 

and Strandén et al. (2022). 

 

3) ssGBLUP with UPG in H (UPG_fullQP): 

This method also used UPG and QP 

transformation was applied to 𝐴−1, 𝐴22
−1 and 

𝐺−1 as described in (Misztal et al., 2013). 

 

4) ssGBLUP with MF and true Γ (MF_true): 

In this ssGBLUP, unknown parents were 

represented by MF, with relationships defined 

by the true Γ. The variance-covariance matrix 

for breeding values was 

𝑣𝑎𝑟(𝑢) = 𝐻Γ ∙ 𝜎𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑
2 , 

where 𝜎𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑
2  is 0.3 and 𝐻Γ is the combined 

relationship matrix as described in Legarra et al. 

(2015). 

 

5) ssGBLUP with MF, true Γ and scaled 

variances (MF_sc): 

This evaluation is similar to MF_true, but with 

scaled variance components according to 

Legarra et al. (2015). The additive genetic 

variance was scaled using: 

𝜎𝑟𝑒𝑙𝑎𝑡𝑒𝑑
2 ≈

𝜎𝑢𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑
2

1 + 
𝑑𝑖𝑎𝑔(𝜞)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

2 − �̅�

 

(Legarra et al., 2015). The variance-covariance 

matrix for breeding values was then  

𝑣𝑎𝑟(𝑢) = 𝐻Γ ∙ 𝜎𝑟𝑒𝑙𝑎𝑡𝑒𝑑
2 . 

 

Estimation of variance components 

The variance components were estimated using 

AIREML (Misztal et al., 2014b). The data used 
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correspond to those used for the "full pedigree" 

pedigree setting, i.e., a complete pedigree with 

two base populations and all phenotypes that 

were also used for all test runs analyzed. 

Genotypes were not used in the variance 

component estimation. 

Two different approaches were tested. On 

the one hand, the variance components were 

estimated in the case that the relationships 

between the two base populations (Γ) were not 

taken into account, and on the other hand with 

consideration of (Γ) in the creation of A. In 

addition, the results from the first approach 

were scaled using the scaling method of Legarra 

et al. (2015) and compared with those results 

from the second approach. 

 

Analyzing results 

All comparisons are based on 10 repetitions of 

the previously described simulation. 

 

True validation statistics: 

Two measures, bias and dispersion, are used to 

compare the different evaluations. These are 

calculated using the youngest animals with 

genotypes born in the last year of the 

simulation, totaling 14,672 animals. 

Bias, the mean difference between (G)EBV and 

TBV, is calculated as  

𝑏 = 𝐸𝐵𝑉̅̅ ̅̅ ̅̅ − 𝑇𝐵𝑉̅̅ ̅̅ ̅̅  

Positive bias values indicate overestimation. 

Given that the genetic standard deviation for the 

trait is 1, the bias can be interpreted as genetic 

standard deviations. 

Dispersion is measured by the regression 

coefficient 𝑏1 from the regression: 

𝑇𝐵𝑉 = 𝑏0 + 𝑏1 ∙ 𝐸𝐵𝑉 + 𝑒 

where 𝑏0 is the intercept, 𝑏1 the regression 

coefficient and 𝑒 the residuals. 

 

Estimated validation statistics using linear 

regression (LR) method: 

To obtain validation statistics, (G)EBV for 

certain validation animals based on a full 

dataset are compared with those from a reduced 

dataset. Two validation groups were defined: a 

male group (around 530 genotyped bulls born 

between years 30-32) and a female group 

(around 12,400 genotyped females born 

between years 32-34). Bulls in the male group 

have no daughters with records in the reduced 

dataset but at least 20 daughters in the full 

dataset. Cows in the female group have no 

phenotypes in the reduced dataset but have 

records in the full dataset. 

Based on Himmelbauer et al. (2023b), the 

LR method accurately estimates bias, 

dispersion, and validation reliability (Legarra 

and Reverter, 2018; Macedo et al., 2020). Bias, 

the mean difference of GEBV between reduced 

and full datasets, is calculated as: 

𝑏 = 𝐺𝐸𝐵𝑉𝑟
̅̅ ̅̅ ̅̅ ̅̅ − 𝐺𝐸𝐵𝑉𝑓

̅̅ ̅̅ ̅̅ ̅̅ ̅ 

A bias of 0 indicates unbiased (G)EBV. 

Positive values indicate overestimation, and 

negative values indicate underestimation. 

Dispersion is calculated as: 

𝑏1 =
cov(𝐺𝐸𝐵𝑉𝑓 , 𝐺𝐸𝐵𝑉𝑟)

var(𝐺𝐸𝐵𝑉𝑟)
. 

If 𝑏1 = 1, there is no over- or 

underdispersion, 𝑏1 < 1 indicates 

overdispersion, and 𝑏1 > 1 indicates 

underdispersion. 

Reliability is calculated as: 

𝑟2 =
cov(𝐺𝐸𝐵𝑉𝑓 , 𝐺𝐸𝐵𝑉𝑟)

𝜎𝑔
2 , 

where 𝜎𝑔
2 is the true genetic variance in the 

validation group. 

These statistics were calculated for both 

male and female animals across all pedigree 

settings, and genetic evaluations, and are based 

on 10 replicates. 

 

Results & Discussion 

 

Bias and dispersion 

Figure 2 presents bias and dispersion results for 

the two pedigree settings and different 

evaluations. Regarding bias in the full pedigree 

setting, no_UPG, UPG_alteredQP, and 

UPG_fullQP show a slight overestimation of 

around 0.04 genetic standard deviations, with 

UPG_fullQP slightly higher at 0.07. MF with 
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true Γ underestimates by approximately 0.02 

genetic standard deviations, while scaled 

variance components overestimate by 0.03 

genetic standard deviations. In the true missing 

pedigree setting, no_UPG and UPG_fullQP 

exhibit substantial overestimation of 0.24 and 

0.40 genetic standard deviations, respectively. 

MF evaluations show slight underestimation, 

with minimal impact from incomplete pedigree 

information. 

Similar trends apply to dispersion (Figure 2, 

second row). In the full pedigree setting 

evaluations no_UPG, UPG_alteredQP, and 

UPG_fullQP show similar results regarding 

dispersion of around 0.96. MF_true and MF_est 

perform best with a regression coefficient of 

1.00. However, scaling variance components 

with MF slightly worsens dispersion. In the true 

missing pedigree setting UPG_alteredQP 

maintains a similar dispersion level of 0.96, 

while no_UPG decreases to 0.93 due to 

incomplete pedigree data. UPG_fullQP shows 

the most significant impact, decreasing 

dispersion coefficients from 0.96 (full pedigree) 

to 0.74 (true missing pedigree). MF evaluations 

show consistent dispersion values, with 

MF_true at 1.00 and MF_sc at 0.97 for the true 

missing pedigree setting. 

The evaluation using MF and true Γ shows 

the best bias and dispersion results in both 

pedigree settings, aligning with Bradford et al. 

(2019). Clear differences are observed in 

evaluations with and without UPG. The upward 

bias in no_UPG, along with overdispersion, 

arises because relationships in A, which only 

considers known relationships, do not match 

those in G, where all genomic relationships are 

fully considered. 

UPG_fullQP exhibits significant bias and 

overdispersion due to double-counting when 

UPG is considered in G, despite G's complete 

genomic relationships. Similar issues have been 

identified in other studies (Bradford et al., 2019; 

Masuda et al., 2021; Meyer, 2021). 

UPG_alteredQP yields results similar to those 

with a complete pedigree because G accurately 

accounts for relationships and is unaffected by 

incomplete pedigrees.  

All results presented here are also part of the 

study published by Himmelbauer et al. (2024). 

Beside a more detailed discussion of the 

presented results, in Himmelbauer et al. (2024) 

a comparison of these results with the results of 

a second scenario with less unknown parents, 

two additional pedigree settings and two 

additional genetic evaluations are presented. 

 

 
Figure 2. Comparison of true validation statistics 

(bias, dispersion) for 2 pedigree settings and 5 

evaluation methods. The error bars in the plot show 

the range from minimum to maximum and the “x” 

show the means over 10 repetitions. 

 

Scaling or estimating variance components 

This study demonstrated that scaled variance 

components, compared to non-scaled ones, tend 

to result in a moderate overestimation rather 

than slight underestimation of GEBV. In terms 

of dispersion, scaled variance components have 

a negative effect, causing slight overdispersion. 

Similar effects were observed in a scenario with 

a complete pedigree and only two MF 

(Himmelbauer et al., 2023a). The effects of 

scaled variance components in this study are 

comparable, but to a lesser extent, with those 

reported by Himmelbauer et al. (2023b) in a 
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scenario with excessively too high heritability. 

This suggests that scaling may lead to a slightly 

too high heritability estimate. 

Variance component estimation was 

performed to analyze this aspect in detail. Using 

A (pedigree relatedness without considering 

metafounder) it was possible to accurately 

estimate the simulated heritability (h²) (Table 1 

without MF/Γ). However, using AΓ (pedigree 

relationship matrix considering MF 

relationships) resulted in an average h² of 

0.3887, significantly higher than the simulated 

h². Yet, this h² corresponds closely to the scaled 

value calculated using the formula from Legarra 

et al. (2015), shown in Table 1 (scaled) as 

0.3854. These analyses confirm that the scaling 

method of Legarra et al. (2015) works well and 

yields nearly identical results as estimating 

variance components with MF relationships. 

However, why the scaled h² provides slightly 

poorer validation results compared to unscaled 

h² remains unresolved. 

Additional analyses in Himmelbauer et al., 

(2024) indicated that scaled variance 

components appear to influence the GEBV of 

the animals themselves but not the estimation of 

the MF effects. 

 

Table 1: Results of variance component estimation 

with and without using MF and scaling variances. 

without MF/Γ 

 
genetic 

variance 

residual 

variance 
h2 

mean 1.0663 2.3891 0.3088 

min 0.9625 2.1878 0.2708 

max 1.1142 2.6268 0.3224 

with MF/Γ 

 
genetic 

variance 

residual 

variance 
h2 

mean 1.5212 2.3941 0.3887 

min 1.3761 2.1918 0.3435 

max 1.5941 2.6303 0.4045 

scaled 

 
genetic 

variance 

residual 

variance 
h2 

mean 1.4970 2.3891 0.3854 

min 1.3565 2.1878 0.3405 

max 1.5644 2.6268 0.4006 

 

Estimated validation statistics using LR 

method 

Figure 3 displays the results of validation using 

the LR method for both pedigree settings and all 

genetic evaluations. Reliability shows minor 

variations among genetic evaluations, with 

those using MF performing slightly less 

effectively compared to other ssGBLUP 

evaluations. Notably, the validation does 

neither detect the full extent of the significant 

overestimation of no_UPG and UPG_fullQP, 

nor the extent of the pronounced overdispersion 

of UPG_fullQP in settings with incomplete 

pedigree. Validation statistics reveal no 

substantial differences between full and missing 

pedigree settings. In terms of bias, MF_true  

 

 
Figure 3. Comparison of estimated validation 

statistics (reliability, bias, dispersion) based on the 

LR method for 2 pedigree settings and 5 evaluation 

methods. The error bars in the plot show the range 

from minimum to maximum and the “x” and “o” 

show the means over 10 repetitions. 
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exhibits slight downward bias compared to 

other evaluations. However, regarding 

dispersion, both MF_true and MF_sc show a 

regression coefficient close to 1.00 across both 

pedigree settings, while no_UPG and 

UPG_alteredQP demonstrate slightly worse but 

still quite good results based on this validation. 

The main conclusion is that also with this 

validation method evaluations using MF 

generally perform very well or at least better 

compared to other evaluation methods. 

However, differences in validation statistics are 

notably smaller than with true validation 

statistics. It is important to note that the 

significant bias and dispersion observed with 

UPG_fullQP is not detected by LR validation 

statistics. Such methods can only detect bias 

and dispersion if these issues are corrected in 

evaluations using complete datasets 

(Himmelbauer et al., 2023b). This is not the 

case here, as GEBV from UPG_fullQP appear 

nearly unbiased. 

In summary, in populations with numerous 

unknown pedigrees, commonly used validation 

methods tend to underestimate the advantages 

of MF compared to other evaluations. This 

emphasizes the challenge of identifying an 

optimal model for dealing with unknown 

parents in practice. 

 

Conclusions 

 

In conclusion, the findings of this study indicate 

that MF has a positive effect on reducing bias 

and dispersion. The study highlights the 

potential of significant bias and dispersion 

when UPG is considered in an incorrect 

manner. Furthermore, the scaling of variance 

components was found to have a small 

detrimental effect on true validation statistics, 

rather than an enhancing one. The study also 

shows that the method of scaling variance 

components proposed by Legarra et al. (2015) 

leads to similar results as those obtained by 

estimating variance components using 

metafounder. Finally, the study identified 

limitations in the use of the LR method for 

assessing the effectiveness of MF in this 

context. These findings emphasize some of the 

challenges and outcomes associated with 

implementing MF in dairy cattle populations. 
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Abstract 

With the need to establish a standardized method to validate genomic estimated breeding values 

(GEBV) to meet the requirements for marketing the semen of young bulls in Europe, the Interbull Centre 

has routinely added new features to the GEBVtest software. In 2023, the United States (US) conducted 

a GEBV validation and reported that large population breeds and traits with high heritability were more 

stable, whereas smaller populations and complex traits often failed due to various reasons. In addition, 

the use of Truncated MACE (TMACE)-based genomic evaluations was recommended to verify if this 

model would outperform 4-year-old official results. A new version of the GEBVtest software will 

become the standard for GEBV validation in 2024. The new version includes bootstrapping to improve 

and expand significance, with better tests for slopes, validation accuracy, and bias and does not allow 

bulls with GEBV foreign proof to be included as candidates. In this study, GEBV validation was 

performed using the newest version of the GEBVtest software while validating truncated domestic plus 

TMACE instead of using official US predictions from 4 years ago and applied to US dairy cattle 

populations. Nine traits were tested and GEBV from August 2023 were used as the full dataset, whereas 

TMACE-based GEBV were used as the truncated dataset. A TMACE-based model can accommodate 

model or data changes over time as well as a validation on traits that were not even implemented four 

years ago such as mastitis for more breeds implemented in 2020 and 2022 in the US. In general, the 

inclusion of TMACE improved results for all breeds. For Holstein, all traits passed validation except for 

one trait that failed with a slope (b1) of 1.31 (>1.2). The b1 standard error was 0.02, which confirms an 

underestimation of this trait. In smaller breeds, a few other traits failed validation due to a b1 < 0.8, but 

showed clear improvement of the b1 by including TMACE. Finally, the smallest breeds showed several 

inconclusive passes and fewer failures compared to a previous study. The results may be due to the 

complexity of traits and the small number of candidate bulls. The use of TMACE-based genomic 

evaluations improves the validation test and is a tool to be considered as standard when performing 

GEBV validation, especially for smaller breeds. 

Key words: bootstrapping, foreign information, model change, reference population 

Introduction 

With the need to establish a standardized 

method to validate genomic estimated breeding 

values (GEBV), the Interbull Centre in 

Uppsala, Sweden, https://interbull.org/index, 

has developed and routinely improved the 

GEBVtest software (Interbull, 2021; 

Mäntysaari et al., 2011). Recognizing that 

standardized software may be the easiest and 

most practical way to validate GEBV, the 

United States of America (US) conducted a 

genomic validation in 2023 using the software 

proposed by the Interbull working group. The 

software incorporated new features such as 

different validation targets, base adjustments, 

and a larger birth year window for candidate 

bulls (Mota et al., 2023a). 

 It was reported by Mota et al. (2023a) that 

large population breeds and traits with high 
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heritability were more stable, whereas smaller 

populations and complex traits often failed due 

to various reasons, such as the small number of 

candidate bulls, the slope (b1) being more or 

less than expected from the standard error 

(S.E.), the b1 upper biological limit being higher 

than 1.20, and the prediction accuracy (R2) of 

parent average (PA) exceeding the GEBV with 

small sample sizes. 

 In addition, the use of extra regressions to 

assist other tests (VanRaden, 2021) and 

Truncated MACE (TMACE)-based genomic 

evaluations was recommended to verify if this 

model would outperform validation results 

using 4-year-old official breeding values. 

TMACE is a relatively new voluntary base 

service introduced by Interbull Centre, 

scheduled annually in October. This service 

aims to supply validation inputs for countries 

that include foreign bulls without domestic 

daughters in their reference population. It 

follows the same logic as conventional MACE 

but requires countries to use the current 

conventional model with the most recent four 

years of data truncated. The truncated EBV are 

then submitted to Interbull for a TMACE 

evaluation (Jorjani and Dürr, 2011). The use of 

a TMACE-based model in countries that blend 

their domestic with international evaluations, 

allows for accommodating model or data 

changes over time, in any and all countries 

participating in MACE and TMACE, as well as 

validating traits that were not implemented four 

years ago where neither domestic estimated 

breeding values (EBV) nor GEBV were 

available. In the US, this is the case for traits 

such as clinical mastitis in the Jersey and Brown 

Swiss breeds, which were implemented in 2020 

and 2022, respectively (Norman et al., 2020; 

Mota et al., 2021; CDCB Connection, 2022; 

CDCB Connection, 2023; Mota et al., 2023b). 

 A year later, Interbull developed a new 

version of the GEBVtest software (gebvtest.py) 

that will become the official validation standard 

in December 2024. This new version adds 

bootstrapping to improve and expand 

significance testing, with better tests for slopes, 

validation accuracy, and bias. In addition, the 

software automatically excludes bulls from the 

validation group if they have type of proof = 24 

in the truncated data, which denotes GEBV that 

included performance records of foreign 

daughters. This new edit prevents countries 

from using foreign bulls that are already 

progeny-proven in the truncated data, with no 

domestic daughters within the country but 

having daughters worldwide. If the genomic 

evaluation includes MACE data, as was the case 

of this study, the GEBV will include all 

daughters, both foreign and domestic. 

Moreover, if a wider birth year window is used 

to add more validation bulls with smaller data 

sets, it could become a more significant issue 

that the bulls with foreign daughters only from 

four years ago should be excluded from the 

validation test group, as will be the case with 

this new edit. 

 Therefore, a genomic validation was 

performed using the newest version of the 

GEBVtest software, validating truncated 

domestic plus TMACE instead of using official 

US predictions from 4 years ago, and applied to 

US dairy cattle populations.  

 

Materials and Methods 

 

To provide updated results on the US dairy 

cattle populations, a genomic validation was 

conducted using the gebvtest.py software 

version gebvtest_2023C2.py. A new version 

gebvtest_2024A.py is under testing and will 

likely become the official version. 

The genomic prediction datasets in US dairy 

cattle populations were GEBV extracted from 

the August 2023 genomic evaluation (full 

dataset), which included MACE input, and 

truncated GEBV to the year of 2019 plus 

TMACE input (truncated dataset). 

In this study, five breeds were evaluated: 

Holstein (HOL), Jersey (JER), Brown Swiss 

(BSW), Red Dairy Cattle (RDC), and Guernsey 

(GUE). Nine traits were tested: milk yield 

(MIL), fat yield (FAT), protein yield (PRO), 

longevity (DLO), somatic cell score (SCS), 

clinical mastitis (MAS), heifer conception rate 

(HCO), cow conception (CC1), and calving 
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interval (INT). All breeds were evaluated for all 

nine traits with one exception: MAS was only 

tested in HOL, JER, and BSW since the US had 

no evaluations for this trait for the RDC and 

GUE breeds. 

In addition to using bootstrapping and the 

exclusion of bulls with GEBV foreign proof, the 

following parameters were applied as in Mota 

et al. (2023a): (1) Predicted deregressed GEBV 

(dGEBV) were used rather than the 

conventional deregressed EBV (dEBV) or 

daughter yield deviations (DYD). Validating 

using later GEBV is easier for the public to 

understand and allows national evaluations that 

have adopted single-step methods to apply the 

validation straightforwardly (VanRaden, 2021). 

This was done by using the option “--target 

DGEBV” from the software; (2) Base 

adjustments were applied to the GEBV and not 

EBV as conventionally done by using the 

option “--baseadj GEBV”. The minimum birth 

year used was 2015, which reflects the current 

year of data (2023) minus eight years, as 

recommended by Interbull; (3) Foreign bulls 

were included as candidate bulls to increase the 

validation group size for the small breeds only: 

BSW, GUE, and RDC. 

The criteria for candidate bulls are reported 

in Interbull (2021) and Mota et al. (2023a). The 

number of candidates bulls ranged from 9 to 

3,277 depending upon the trait and breed 

evaluated (Table 1). 

 

Results & Discussion 

 

In general, the inclusion of TMACE improved 

results for all breeds (Table 1) compared to the 

results reported by Mota et al. (2023a) when 

official GEBV from August 2018 were used as 

truncated data. One of the main reasons for 

better US genomic validation results in the 

present study is that both the US and Canada 

participated in TMACE simultaneously. 

 For the HOL breed, a PASS was observed 

for all traits except HCO. This trait failed due to 

a b1 of 1.31, higher than the upper biological 

limit (1.20). The b1 standard error was 0.02, 

which confirms an underestimation of this trait. 

An important point to highlight is the trait 

MAS. As seen in Table 1, with the use of the 

TMACE methodology, a PASS was observed, 

whereas Mota et al. (2023a) reported a FAIL 

using official GEBV from 4 years prior due to 

the b1 being higher than the biological limit. 

This is because model and data ingestion 

differences (Gaddis et al., 2020) between full 

and truncated GEBV used as input by Mota et 

al. (2023a) were overcome by the use of the 

TMACE methodology. In addition, the use of 

TMACE provided a less biased PA prediction 

(10% vs. 17%) and a b1 within the biological 

interval of 0.80 and 1.20 (1.08 vs. 1.30). 

Another example of the benefits of TMACE is 

if the same data is used in this study as full but 

replaced the truncated data with official GEBV 

from 4 years ago (i.e., 2019), a FAIL for MAS 

continues to be observed (Table 2). After the 

implementation of MAS, the model was 

changed, and there was a significant effort to 

include much more data for this trait, which 

clearly impacted GEBV predictions over time. 

Therefore, current GEBV and those from four 

years ago are not directly comparable (Mota et 

al., 2023a).  

 The JER breed passed for most traits except 

the fertility traits of CC1 and INT (Table 1). 

There was a clear improvement in b1 with the 

inclusion of TMACE compared to results 

reported by Mota et al. (2023a), as shown in 

Table 2. However, it was still not enough to pass 

the validation test due to high standard error. 

Fertility traits are under significant work to 

improve their predictions. As with HOL, MAS 

is again a noteworthy trait. This is because 

MAS evaluations for JER were implemented 

after 2018 (Norman et al., 2020; Mota et al., 

2021), the year of the GEBV predictions used 

by Mota et al. (2023a) as truncated data input. 

Therefore, while Mota et al. (2023a) were not 

able to genetically validate this trait, the use of 

TMACE methodology allowed us to do so for 

this breed and trait combination, accounting for 

the current model in use and all data and model 

changes over time. 
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Table 1. GEBV Validation results for the five breeds evaluated in this study: Holstein, Jersey, Brown Swiss, Red 

Dairy Cattle and Guernsey

Holstein 

Trait Bulls b1 ±S.E. 
R2  

GEBV 
R2  

EBV Pass 

MIL 2,767 1.08±0.01 68 36 Yes 

FAT 2,767 1.07±0.01 74 48 Yes 

PRO 2,767 1.03±0.01 70 44 Yes 

DLO 2,509 1.18±0.02 65 43 Yes 

SCS 2,731 1.09±0.01 75 36 Yes 

MAS 1,738 1.08±0.03 50 10 Yes 

HCO 3,277 1.32±0.02 53 20 No 

CC1 3,277 1.10±0.02 68 31 Yes 

INT 3,277 1.03±0.01 65 27 Yes 

Jersey 

Trait Bulls b1 ±S.E. 
R2  

GEBV 
R2  

EBV Pass 

MIL 486 1.07±0.03 79 51 Yes 

FAT 486 1.05±0.03 75 44 Yes 

PRO 486 1.02±0.03 76 51 Yes 

DLO 435 0.86±0.05 41 36 Yes 

SCS 481 1.09±0.04 63 37 Yes 

MAS 222 0.81±0.15 13 12 Yes 

HCO 516 0.98±0.08 27 10 Yes 

CC1 445 0.83±0.05 40 28 No 

INT 480 0.81±0.04 45 32 No 

Brown Swiss 

Trait Bulls b1 ±S.E. 
R2  

GEBV 
R2  

EBV Pass 

MIL 71 0.86±0.07 66 46 Yes 

FAT 71 0.77±0.08 54 31 No 

PRO 71 0.82±0.08 60 45 Yes 

DLO 63 0.73±0.15 33 18 hSE 

SCS 69 0.74±0.10 39 32 No 

MAS NA 

HCO 75 1.04±0.20 22 6 Yes 

CC1 63 0.93±0.13 35 27 Yes 

INT 71 0.84±0.11 43 31 Yes 

Red Dairy Cattle 

Trait Bulls b1 ±S.E. 
R2  

GEBV 
R2  

EBV Pass 

MIL 18 0.68±0.15 43 43 hSE 

FAT 18 0.83±0.22 55 57 Yes 

PRO 18 0.75±0.16 52 53 hSE 

DLO 9 0.59±1.19 5 13 hSE 

SCS 18 0.90±0.51 16 30 Yes 

MAS NA 

HCO 16 2.18±0.84 30 5 hSE 

CC1 16 -0.21±0.8 1 4 hSE 

INT 17 -0.04±0.5 4 0.1 No 

Guernsey 

Trait Bulls b1 ±S.E. 
R2  

GEBV 
R2  

EBV Pass 

MIL 16 0.87±0.25 35 8 Yes 

FAT 16 0.31±0.33 5 4 hSE 

PRO 16 0.08±0.54 0.3 0.1 hSE 

DLO NA 

SCS 16 1.79±0.59 41 22 hSE 

MAS NA 

HCO NA 

CC1 12 2.19±0.58 68 77 No 

INT 16 1.87±0.31 70 52 No 

 
MIL: milk yield; FAT: fat yield; PRO: protein yield; DLO: 

longevity; SCS: somatic cell score; MAS: clinical mastitis; 

HCO: heifer conception rate; CCR: cow recycling; INT: 

calving interval; hSE: high standard error; EBV/GEBV R2 

are expressed in %. 
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Table 2. Comparison of three genomic validation 

scenarios (S) using different truncated data as input 

Brown Swiss - INT 

S Bulls b1 ±S.E. 
R2  

GEBV 

R2  

EBV 
Pass 

S1 88 0.64±0.16 16 27 No 

S2 77 1.30±0.19 40 40 hSE 

S3 71 0.84±0.11 43 31 Yes 

Jersey - INT 

S1 588 0.79±0.03 47 31 No 

S2 500 0.71±0.04 32 32 No 

S3 480 0.81±0.04 45 32 No 

Holstein - MAS 

S1 2,379 1.30±0.03 40 17 No 

S2 1,548 0.60±0.05 9 10 No 

S3 1,738 1.08±0.03 50 10 Yes 

Jersey - MAS 

S1 NA 

S2 NA 

S3 222 0.81±0.15 13 12 Yes 

S1: 2022-2018 official GEBV; S2: 2023-2019 

official GEBV; S3: 2023 official GEBV and 2019 

truncated MACE; INT: calving interval; MAS: 

clinical mastitis; hSE: high standard error. 
 

The BSW breed had a FAIL for FAT and 

SCS due to a b1 < 0.8, an inconclusive PASS 

test for PRO, but also with a b1 < 0.8, and a 

PASS was observed for the other traits (Table 

1). The S.E. of b1 were much larger than those 

observed for the aforementioned larger breeds 

HOL and JER. This is likely linked to the much 

smaller number of candidate bulls and the fact 

that more than 50% of the BSW reference 

population in the US is composed of foreign 

bulls, primarily from Switzerland and France 

(Mota et al., 2023b). These foreign bulls likely 

have daughters outside the US earlier than 

within the country. So, even if the effective 

daughter contribution (EDC) in the US is equal 

to zero when truncating the data, this is not true 

worldwide, making these bulls ineligible as 

candidate bulls.  

 As seen in Table 1, there are no results for 

MAS for the BSW breed. This is because there 

were no bulls to validate MAS at this time. 

However, if there were candidate bulls, this trait 

would have been validated using the TMACE 

methodology, even if it is a trait recently 

implemented by the Council on Dairy Cattle 

Breeding (CDCB), i.e., in 2022 (CDCB 

Connection, 2022; CDCB Connection, 2023; 

Mota et al., 2023b). 

 Finally, the smaller breeds RDC and GUE 

showed several inconclusive passes and far 

fewer failures compared to the results reported 

by Mota et al. (2023a), as shown in Table 1. 

These results may be due to the complexity of 

traits and the small number of candidate bulls. 

 For RDC, a PASS was observed for FAT 

and SCS, even though the R-squared for the 

GEBV is smaller than for PA. This indicates a 

high S.E. for the R2 test and it cannot be 

concluded that the R2 is significantly lower with 

the GEBV (P > .05). Numerical differences are 

often due to sampling bias, making the R2 too 

high for the PA, and the (lower) R2 for GEBV 

is actually more reasonable. A FAIL in this case 

is likely an unreliable decision because the 

small sample inflation of R2 for PA are ignored 

and combined with a reasonable alignment of 

model R2 with truncated GEBV and the 

corresponding genomic reliabilities. With the 

new software, the R2 test is still applied as 

additional information, but it causes an overall 

FAIL in the GEBV test if the R2 is significantly 

lower (P < .05) for the GEBV than it is for the 

PA.  

 The GUE results here were very similar to 

RDC with several inconclusive passes, mostly 

due to the small number of candidate bulls 

(Table 1). DLO and HCO had no bulls to apply 

a genomic validation for GUE, whereas MAS is 

not implemented for either of these breeds, 

RDC and GUE. 

 Significance testing of the validation slope 

parameter was theoretically improved with the 

implementation of bootstrapping in the updated 

validation test software.  In practice, the 
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bootstrap tests were very similar to t-test results 

applied in earlier versions of the software (e.g. 

Mantysaari et al, 2011), as verified by both 

Canada (Table 3) and similarly by USA in the 

present study.  Several new tests were also 

added which make use of the full posterior 

probability distributions now available from 

bootstrap samples.  For example, the software 

now includes new significance tests for bias in 

top young genomic bulls specifically, for the 

average bias across all young genomic bulls, 

and additionally the new tests described earlier 

for significance of R2 improvements due to 

genomics. 

 In summary, the use of TMACE-based 

genomic evaluations improves the validation 

test and is a tool to be considered as standard 

when performing genomic validation, 

especially for smaller breed populations. 

 

Table 3. Estimated t-values based on bootstrap 

samples (Boot.) versus the standard t-test, for n traits 

by breed in Canadian research data described by 

Sullivan (2023) 

Breed Value Mean SD Min Max 

RDC 

n=32 

Boot. 

t-test 

-0.47 

-0.56 

1.43 

1.54 

-3.7 

-4.1 

2.4 

2.7 

JER 

n=30 

Boot. 

t-test 

-0.58 

-0.63 

1.89 

1.93 

-5.6 

-5.3 

3.4 

3.3 

HOL 

n=36 

Boot. 

t-test 

-1.31 

-1.58 

6.55 

7.05 

-18.0 

-18.1 

9.1 

9.5 

 

Conclusions 

  

 Countries must ensure they use candidate 

bulls with no daughters, domestic or foreign, 

from four years ago. The tests continued to fail 

for smaller breeds and less heritable traits due 

to b1 underestimation, the biological interval 

being between 0.80 and 1.20, and/or not enough 

bulls to validate. As in CAN, bootstrapping 

provided trivial differences to the results. 

TMACE resulted in a fairer test, and countries 

are strongly encouraged to use Truncated 

MACE service when performing GEBV 

validation, especially those with small 

populations. Finally, for maximum benefit, it is 

recommended that groups of countries share 

their genotypes to all participate in TMACE 

simultaneously. 
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Abstract 

The Performance Recording, Evaluation and Publication (PREP) database is an online platform developed 

by Interbull Centre under the umbrella of the Centre’s activities as the European Union Reference Centre 

(EURC) for Zootechnics, specifically designed for breed associations and National Genetic Evaluation 

Centres in order to submit and share descriptive information for a broad range of breeds and traits for both 

dairy and beef cattle. The main purposes of PREP include transparency, comparison and harmonization of 

information collected and used at the national level. To date, there are different electronic forms available 

to collect descriptive information for both dairy and beef cattle regarding conventional genetic evaluation 

for several trait groups. Next steps would be to expand PREP, so to be able to also collect descriptive 

information for genomic information. To do this, different approaches, and their level of pros and cons, 

were considered leading to identify a slightly different form’s structure, compared to the one currently 

applied for conventional evaluations, as the most convenient for recording genomic information. The new 

form’s structure will have all breeds and trait groups in one form, rather than having different forms per 

trait groups, as specific general traits’ information regarding, for example, trait definition, method of 

recording, heritability etc. will be already available in the dedicated conventional forms. Moreover, the 

selected approach will allow to copy/paste information across different breeds/trait groups, which often do 

appear to be very similar (if not identical) when dealing with genomic evaluations. In summary, the new 

electronic genomic form will be considered as the general form for users  to provide descriptive information 

related to their national genomic evaluations.’ 

Key words: PREP, harmonization, genomic form, national genomic evaluation, EURC 

Introduction 

The Performance Recording, Evaluation and 

Publication database (PREP) was developed, and 

is hosted, at the Interbull Centre within the 

context of the Centre’s function as the European 

Union Reference Centre (EURC) for Zootechnics 

(Bovine breeding) with the aim of promoting 

transparency of methodologies applied, and easier 

comparisons of best practices (via a standardized 

set of options available for each question), all in 

all leading to harmonization and/or improvement 

of the methods of performance testing and/or 

genetic evaluation applied. 

Regarding traits’ harmonization, trait 

correlations play an important role in the quality 

of the estimations for international evaluations. 

On the other hand, harmonization of traits helps 

to improve correlations in order to achieve more 

accurate international and national evaluations. In 

this regard, extracting and reviewing information 

for each individual trait from PREP can lead the 

given correlated traits to International Committee 

for Animal Recording (ICAR)-Interbull 

guidelines in order to improve the across-country 

compatibility of traits. To date, the ICAR-

Interbull guideline for trait harmonization has 

been published for Calving traits in 2022 

(https://interbull.org/ib/eu_detailed_technical

_reports), and Fertility traits harmonization has 

been approved in 2024 and will be included in the 

ICAR-Interbull guideline in the near future. 
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PREP is an online platform available for all 

breed societies and National Genetic Evaluation 

Centres (NGECs) beyond their direct 

involvement with any of the international 

evaluations currently offered by Interbull Centre. 

Benefits of  PREP 

PREP has several benefits over document-based 

records:  

a) Provides easier harmonization and

standardization of information by comparing 

evaluation methods, trait definitions etc. across 

countries, breeds and traits in an easier and more 

efficient way  

b) Represents a common database accessible

to all cattle breeding organisations and third 

parties (both inside and outside Europe) including 

NGECs, researchers and competent authorities 

regardless of their direct involvement in any of 

the  Interbull Centre’s International  evaluations 

for dairy (Interbull) and/or beef (Interbeef)  

c) Collected information is freely available to

the world wide web, either by directly accessing 

of specific country-breed-trait forms or through 

ad-hoc query options that can be easily defined by 

the user under “Submission” and “Data queries” 

tabs. 

Current and upcoming forms on PREP 

Several conventional genetic forms are at the 

moment available within PREP for different trait 

groups, both for dairy and beef cattle 

(http://prep.interbull.org). Available forms cover 

trait groups such as production, calving, female 

fertility and conformation traits for dairy cattle 

and adjusted weaning weight, calving and carcass 

traits for beef cattle. Throughout the course of this 

year, PREP will be expanded with new  forms  for 

udder health, longevity and workability  traits for 

dairy cattle. 

In addition to the above-mentioned forms, 

PREP also includes an “Other traits” form, aimed 

at collecting information regarding a wide range 

of traits and breeds recorded at the national level 

but not yet evaluated internationally. The 

relevance of such information is twofold: 1) 

Provide an overview of novel traits recorded in 

different countries and the status of their 

evaluation: implemented or still in a research 

phase; evaluated via a conventional or a genomic 

model (single step or two-step approach). 2) 

Explore the opportunity to identify new traits 

suitable for international evaluations, and the 

related challenges (i.e. new phenotype recording) 

for such traits. Examples of traits currently 

collected through  the “Other traits” form are 

claw health, metabolic diseases (such as milk 

fever, clinical and sub-clinical ketosis), gestation 

length, and feed efficiency. 

Overview of the structure of the current 

forms 

Each of the conventional electronic forms 

currently available in PREP covers a specific trait 

group. Each form is made up by four different 

sections, with the first (and main) section 

allowing to select the different breeds/traits 

(within the specific trait group) the form will deal 

with, as shown in Figure 1. 

The second section collects all general 

information regarding each trait selected. This 

section includes information referring to, for 

example, trait definition, method of recording, 

trait heritability, genetic variance, and data edits, 

as shown in Figure 2. Each set of questions is 

equipped with a list of standardized options that 

can be chosen from. 
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Figure 1: Section related to breed trait combinations of the current conventional form on PREP 

Figure 2: Section related to the general information for each individual trait of the current conventional form on PREP 

Figure 3: Section related to the evaluations and statistical models of the current conventional forms on PREP 

The third section collects information 

regarding  the evaluation methods and statistical 

models applied. After choosing the type  of 

evaluation (national or international), questions 

regarding this section will focus for example on 

the model applied (i.e. Multi-breed (MB) or 

Multi-trait (MT), BLUP or Animal model), fixed 

and random effects used and publication criteria. 

An example of this section is shown in Figure 3. 

Database’s tools will allow the user to copy and 

paste (and modify) the answers provided to one 

type of evaluation/breed to the others available 

within the same form.  

The fourth and last section collects 

information regarding the scientific base, such as 

the scientific references that have been used for 

reliability or validation methodologies, as shown 

in Figure 4. 

Figure 4: Section related to the scientific references of 

the current conventional form on PREP  

Collecting  genomic information via PREP 

To complete the collection of descriptive 

information, specific forms need to be created in 

order to also collect information regarding 

genomic evaluations. Several approaches have 

been considered by the Interbull Centre. The 

approach described in this paper was the one 

found as the most efficient for collecting general 

genomic information in PREP. 
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Structure of the general genomic form 

The structure of the genomic form remains similar 

to the current conventional form, but with 

questions and type of answers being more 

genomic-oriented. The new genomic form will 

consist of three main sections:  

a) Genomic information: such as SNP-chip

used, method for imputation and reference 

population.  

b) Genomic methods and models: for example

single-step genomic evaluation (ssGBLUP), 

bayesian or polygenic models.  

c) Genomic reliability and system validation:

including publication criteria, genomic reference 

base, scientific base etc. will also be part of the 

genomic form. 

The new genomic form will therefore have one 

section less compared to the conventional form: 

the section reporting general information 

regarding the trait definition, method of 

performance recording, data edits, heritability 

etc., in fact, will not be part of the new genomic 

form as such information will already have been 

provided within the related conventional (genetic) 

form and will therefore already be available in 

PREP.  

Another main difference will be within section 

1: While in the conventional form section 1 will 

allow users to select breeds and individual traits, 

within the trait group the form was referring to 

(i.e. production, conformation, calving), section 1 

of the genomic form will allow selecting breed-

trait group combinations. This means there will 

be only one form for all available breed-trait 

group combinations (Figure 5).  

Advantages of the general genomic form 

The chosen approach has several advantages: It 

would be  more efficient and easier for users to 

fill in only one form; as the trait-specific 

information has previously been provided in the 

PREP conventional forms, there is no need for 

repeating the same information for each trait or 

trait group. All information provided for one 

breed-trait group can be easily and rapidly copied 

across the remaining breed-trait groups selected. 

For example, information provided for production 

traits could be copied to calving or female fertility 

traits, or from Holstein to Jersey breed 

(https://interbull.org/ib/prep_user_manual), as 

shown in Figure 6. Should the copied information 

need some adjustments to make them fit properly 

the specific breed-trait groups they have been 

pasted into, such information can be easily 

modified. For example, if the definition of the 

reference population differs between the Holstein 

and Jersey breed, the information can be edited as 

shown in Figure 7. 

Figure 5: Structure of the proposed genomic form on PREP 
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Figure 6: Feature for copying information among different breed-trait-groups in the proposed general genomic form. 

Figure 7: Feature for editing information for different breed-trait-groups in the proposed general genomic form. 

Conclusion 

PREP is an online platform with many benefits 

not only for Interbull users but also for breed 

organizations, NGECs, universities, students and 

other third parties, regardless of their involvement 

in international evaluations. Free access to the 

submitted data via Submission and Data query 

tabs makes it efficient and user-friendly to browse 

and look up information for different traits and 

breeds for both dairy and beef cattle. The 

development of a genomic information form is the 

next milestone in the development of the PREP 

database.  A general genomic form with all trait 

groups in one form will make it easier for users 

and organizations to provide genomic 

information in one go, without the need to repeat 

the information already provided for  each trait 

within the genetic form. The feature for copying 

and editing the information across different 

breeds and trait groups makes the genomic form 

more efficient. In order to fully benefit from all 

advantages of the new genomic form, users 

would still require to fill in all trait-specific 

information available within the conventional 

forms. 
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Abstract 

New Zealand Animal Evaluation Limited (NZAEL) is considering a transition from their pedigree-based 

genetic evaluation system to a single-step genomic evaluation system, both of which use BOLT and 

Helical software. Central to the successful implementation of this system is a robust validation process 

that ensures the reliability of genomic breeding values (GEBVs) compared to current traditional 

estimated breeding values (EBVs). To accomplish this task, NZAEL and AbacusBio began a 

collaborative project to design an automated validation pipeline and accompanying R Shiny application. 

The objective was to create a tool that efficiently assesses the performance of the new genomic 

evaluation system across more than 30 traits, focusing on flexibility, minimal user intervention, and 

applicability to various stakeholder needs. The design process began with a facilitated workshop aimed 

at defining the project’s scope. Key outcomes included the identification of critical validation analyses 

and metrics, criteria for evaluating (G)EBV performance, and the selection of relevant focal groups for 

the initial validation. This approach prioritized the needs of preliminary stakeholders, while also 

considering the broader interests of the New Zealand dairy sector. A significant aspect of the project 

was differentiating between 'routine' validation analyses, which would be directly integrated into the 

application, and 'exploratory' analyses, which required additional resources. This distinction allowed for 

a more focused development effort and a clearer understanding of the project's deliverables. The result 

of this collaboration was a validation application that streamlines the identification of problems and 

communication with stakeholders. Our experience underscores the importance of a user-centric design 

process in developing scientific tools, highlighting the need for clear communication, stakeholder 

engagement, and flexibility in project management.  

Key words: dairy, model validation, genomic evaluation, New Zealand 

Introduction 

NZAEL is considering transitioning from their 

pedigree-based genetic evaluation system to a 

single-step genomic evaluation system, both of 

which use BOLT and Helical software (Garrick 

et al., 2018). This includes the introduction of a 

strict filtering process to ensure that only high-

quality data enters the genetic evaluation. 

Central to the successful implementation of this 

system is a robust validation process that 

ensures the reliability of GEBVs compared to 

current traditional EBVs. To accomplish this 

task, AbacusBio was asked to develop a system 

for validating the models. 

While the scientific literature extensively 

covers various validation methodologies such 

as bootstrapping (Weller et al., 2003), linear 

regression models (Legarra and Reverter, 

2018), and bias estimation (Hickey et al., 2008), 

less attention has been paid to the practical 

implementation of these methods. In our 

experience, validation serves dual purposes: 

development and communication. From a 

development perspective, the aim is to refine a 

genetic evaluation model to ensure it produces 

the best predictions of genetic merit available 
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within the constraints of available data and 

resources. Validation results are used to fine-

tune model parameters and the pre-processing 

of data extracts. On the other hand, 

communication through validation seeks to gain 

the approval of key decision-makers, 

facilitating adoption of the new system and 

building trust among stakeholders.  

In scenarios where a considerable financial 

commitment has been made and the evaluations 

are likely to face scrutiny, it becomes especially 

beneficial to engage an independent third party 

for the validation. Engaging an independent 

validator not only supports efficient 

development, by ensuring comprehensive and 

unbiased evaluations, but also facilitates high 

quality communication among stakeholders. 

Independent expertise is also useful for building 

in-house capability with fresh perspectives, for 

validation systems that are complex and 

extensive, and when an objective confirmation 

of model performance is crucial for improving 

stakeholder confidence. 

 

Materials and Methods  

 

Planning workshop 

A planning workshop was organized to build a 

consensus around the intended design. A key 

objective was to narrow the scope of the project 

by distinguishing ‘routine’ validation tests – 

i.e., those essential for initial screenings of the 

model – from ‘exploratory’ analyses, which 

delve deeper into specific issues as they arise. 

The primary focus was on the project team’s 

own needs as a key stakeholder, ensuring clarity 

and relevance in the validation process without 

being prematurely influenced by broader 

stakeholder requirements.  

Nominal Group Technique is a group 

process used to explore problems, generate 

solutions, and assist with decision-making 

(Delbecq and Van de Ven, 1971). Applying this 

framework in the validation workshop allowed 

us to systematically explore diverse opinions 

and leverage the scientific expertise within the 

project team. Participants were asked to 

individually consider key questions before the 

meeting (e.g., ‘How will we know the new 

EBVs are better than the old EBVs?’), submit 

their answers anonymously, and then engage in 

a structured review of all responses during the 

workshop. This facilitated consensus-building 

by allowing participants to see both 

commonalities and outlier opinions. This 

approach encouraged convergence towards a 

group norm but also allowed space for 

discussing and integrating divergent views 

effectively.  

Once the group had agreed on the EBV 

characteristics which would be targeted for 

assessment, a similar approach was taken to 

explore the metrics and analyses which could be 

investigated. Participants were asked to 

individually list their preferred analyses, before 

collating the responses as a group and 

categorizing the results. This allowed common 

themes to emerge from the data rather than to 

be defined a priori, reducing the risk of being 

unduly influenced by the facilitator’s personal 

biases. The group then discussed the ’trigger 

points’ for exploratory analysis, establishing the 

criteria by which each test result would be 

considered a failure. This must be done before 

conducting the validation to avoid the 

temptation to ‘change the goalposts’ to suit the 

results. A similar process was undertaken to 

explore the population subsets of interest (i.e., 

focal groups such as young genomic bulls or 

validation heifers). 

Finally, a group prioritization exercise 

invited participants to cast votes for their 

preferred metrics and analyses. This was 

essential due to the scope of the validation; it 

would not have been possible to implement 

every desired test or analysis with the limited 

resources available to the project team, and 

within the project deadline.  

This resulted in a detailed plan outlining the 

key EBV characteristics, metrics and analyses, 

and focal groups required to assess the new 

NZAEL 3.5 models. This was an essential step 

towards determining whether the new genomic 
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EBVs would represent an improvement over the 

current pedigree evaluations. 

 

Validation pipeline development 

Once the plan was drafted, we needed a 

validation pipeline that could undertake the 

specified analyses. The development of the 

pipeline centered on the need for robust, 

automated processes that could handle the high 

volume of data inherent in a national genomic 

evaluation including pedigree information for 

34.5 million cattle. The pipeline was developed 

in R and designed to seamlessly integrate with 

the output files produced by Helical, using the 

aws.s3 and data.table packages. This ensured 

that data could be directly fed into the validation 

processes without manual intervention. The 

data files required for the validation pipeline are 

shown in Table 1. 

 

Table 1: Data used in the validation pipeline 

Data  Description 

Animal 

information 

Pedigree file including animal 

ID, dam and sire IDs, sex, birth 

year and breed 

Phenotypes  Files containing phenotype and 

fixed effect data for each trait  

(Daughter) 

yield 

deviations 

Files containing the (D)YD data 

produced for each trait from 

models run on all available data 

Full EBVs EBVs and reliabilities for each 

animal, produced from models 

run on all available data 

Truncated 

EBVs 

EBVs and reliabilities for each 

animal, produced from models 

run on training datasets 

excluding the most recent 4 years 

of data. 

 

Although the pipeline can ingest high 

throughput data for analysis, it produces 

memory-efficient outputs such as plots, tables, 

and summary statistics. The modular nature of 

the pipeline ensures that plot generation is 

separate from the components for analysis, 

allowing changes to be made to the display of 

data without needing the entire pipeline to be re-

run.  

 

 

R Shiny application  

Comparing three models across five key 

characteristics, each with approximately five 

metrics, over eight breed categories and for 

more than 30 traits would require the project 

team to assess over 18,000 plots, figures, and 

tables. This represented a significant mental 

overhead for the project team, who were split 

across multiple geographic locations and had 

differing levels of familiarity with the R 

programming language. 

To facilitate the process, we developed an R 

Shiny application with a strong focus on user 

experience, aiming to provide a clear, intuitive 

interface for users to interact with the validation 

data. A list of key features is shown in Table 2. 

 

Table 2: Key features of the R Shiny validation app 

Feature Description 

Validation-

specific tabs 

Each key EBV characteristic has 

a dedicated tab, aligning with the 

validation design. 

Overview 

summary 

Dynamic heatmaps use color 

gradients (red to blue) to 

summarize the validation results 

for each trait, highlighting the 

best model for each breed and 

metric. 

Dropdown 

selection 

Users can select different traits 

and focal groups to compare via 

dropdown boxes. 

Version 

control 

A changelog button provides 

updates on the app’s version and 

recent changes, ensuring that 

users are informed of 

modifications. 

Security User credentials are required for 

login. The app also has two 

display modes, with a cleaner 

version for external stakeholders. 

Accessibility The app is globally accessible 

through a secure server, 

administrated by AbacusBio. 

Performance The app contains minimal on-

the-fly analyses, relying on 

summarized outputs. This makes 

it highly responsive, allowing 

reviewers to make quick 

comparisons between traits, 

metrics, and focal groups. 
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Results and Discussion  

 

Overview 

At this stage, the validation pipeline and R 

Shiny application have been successfully used 

to compare pedigree and genomic evaluation 

models across 30 traits. The initial EBV 

characteristics identified by the project team as 

essential for assessment are shown in Table 3. 

The metrics and analyses used to investigate 

these are also shown.  

A detailed explanation of all metrics and 

analyses is outside the scope of this paper. 

However, in general, a forward prediction 

approach was used, where (G)EBVs from data 

truncated by four years were used to predict 

daughter performances (Mäntysaari et al., 

2010) or (G)EBVs produced from the full 

dataset (Legarra & Reverter, 2018). 

 

Table 3: Key EBV characteristics assessed, along 

with the analyses 

EBV 

characteristic 

Metrics and analyses 

Sense-making Genetic trends (means and 

standard deviations)1 

Breed differences (violin plots)1 

Table of summary statistics (count, 

mean, median, standard 

deviation)1 

Predictive 

ability 

Regression of adjusted phenotypes 

(YDs and DYDs)2 on truncated 

EBVs (intercept, slope, and 

correlation/accuracy) 

Quintile analysis (difference 

between the adjusted phenotypic 

performance of the top and bottom 

20% of animals, ranked on their 

parent average EBVs) 

Stability Regression of full EBVs on 

truncated EBVs (slope and 

correlation/accuracy) 

Bias Difference between whole EBVs 

and truncated EBVs (mean bias) 

Interbull 

suitability 

Interbull trend tests 2-4 (DYD 

trend, EBV trend accounting for 

new daughters, Mendelian 

Sampling variance trend) 
1For each model, separated by breed and sex 
2Yield deviations (YDs) and daughter yield 

deviations (DYDs) 

 

This validation process confirmed the 

superior performance of the NZAEL 3.5 

genomic models for most traits, while for 

others, it identified areas of improvement. In 

these cases, the process was then used to 

confirm that adjustments to the model and data 

processing had the intended positive outcomes.  

The robust validation design and wide range 

of analyses performed helped improve the 

project team’s confidence in the performance of 

the NZAEL 3.5 genomic models. This 

increased confidence informed 

communications when seeking internal funding 

approval and presenting the project to external 

stakeholders. 

The R Shiny application was also shared 

with international reviewers, providing an 

additional layer of objective and scientific 

expertise to the validation. Positive feedback on 

the application was provided by the reviewers, 

who commented on its ease of use, the inclusion 

of heatmap summaries, and the convenience of 

switching between different traits and focal 

groups. Where appropriate, we incorporated 

several reviewer suggestions directly into the 

application design, further improving the 

validation process. 

 

Key learnings and challenges 

It was essential to start the validation project 

with a plan. However, as with any complex task, 

the team made early decisions which were then 

reassessed after improving our understanding of 

the process. By reporting these decisions here, 

we hope to assist other readers in their own 

validations. 

For example, the validation initially focused 

upon the use of yield deviations (YDs) and 

daughter yield deviations (DYDs) rather than 

raw phenotypes to assess the predictive ability 

of the EBVs. This was a practical decision to 

avoid the need to incorporate trait-specific fixed 

effects into the validation pipeline and worked 

well for most traits. However, due to the 

differences in data pre-processing between the 

models, and the fact that YDs are products of 

the models that we were assessing, it was 
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difficult to know which set of YDs was to be 

used for validating three different models. For 

this reason, it became necessary to undertake 

exploratory analysis to validate the YDs for 

some traits, which may have been avoided by 

focusing on the raw phenotypes from the start 

of the project. 

  We also needed a highly disciplined 

approach to development, to avoid 

incorporating unnecessary features into the 

application or pipeline. It was essential to keep 

referring to the plan and to remind the project 

team of the distinction between ‘routine’ and 

‘exploratory’ analysis, to avoid a continually 

expanding codebase and overly complicated 

user interface. In some cases, findings from the 

exploratory analysis needed to be incorporated 

into the core pipeline; these two concepts lie 

upon a continuum, and it can be difficult to 

know where one ends and the other begins. 

However, gentle resistance to design 

suggestions originating from stakeholders who 

are not part of the target audience is almost 

always a useful general guideline. 

Finally, careful specification of file names, 

missing values, and column names was also 

needed to ensure that model results would be 

compatible with the pipeline. This required 

clear communication between the modelling 

and validation groups. A good understanding of 

data pre-processing and model specifications 

was essential, both to focus our attention on 

trait-specific areas of interest, and to interpret 

anomalies in the results. 

 

Conclusions  

 

This project demonstrates the utility of a 

comprehensive, independent validation 

application developed by NZAEL and 

AbacusBio, aimed at enhancing the credibility 

and acceptance of genomic breeding values in 

the New Zealand dairy industry. By integrating 

an automated validation pipeline with an R 

Shiny application, the project exemplifies a 

more structured and transparent approach to 

evaluating genomic predictions. 

The project also highlights the importance of 

clear communication and collaborative 

planning in validating genomic models. By 

distinguishing between routine and exploratory 

analyses and defining the target audience for the 

validation, our approach concentrates resources 

on areas of critical importance to the project.  
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Abstract 

 

The aim of this research was to develop and validate a method that integrates estimates of single 

nucleotide polymorphism (SNP) effects and the associated prediction error (co)variance (PECs) matrix 

from a genomic evaluation into a single-step SNP Best Linear Unbiased Prediction (ssSNPBLUP) 

evaluation. As the PEC matrix is a dense matrix, the developed method was also tested with two different 

chromosome-wise matrices (that is, ignoring off-diagonal elements among chromosomes), and with a 

prediction error variance matrix (that is, ignoring all off-diagonal elements of the PEC matrix). Using 

simulated data from two dairy cattle populations with a genetic correlation between their traits of 0.80, 

we compared the genomic enhanced breeding values (GEBVs) predicted by the different integration 

methods to those of a joint ssSNPBLUP evaluation of both populations. The developed method, using 

the whole PEC matrix, resulted in GEBVs for selection candidates highly correlated and consistent with 

those from the joint ssSNPBLUP evaluation. Ignoring off-diagonal elements among chromosomes 

resulted in similar accurate results, but ignoring all PECs resulted in biased GEBVs in comparison to 

those of the joint evaluation. Therefore, an accurate integration of estimates of SNP effects and the 

associated PEC matrix into a single-step genomic evaluation is feasible and accurate when PEC of SNP 

effects within chromosomes are at least considered. The developed method can be readily implemented 

in existing software that support ssSNPBLUP models and can be adapted for single-step genomic BLUP 

models, though further research is needed to address potential computational challenges with these 

models. 

 

Key words: ssSNPBLUP, SNP effects, integration, Prediction Error Covariance

Introduction 

 

For genomic evaluation in dairy cattle, single-

step genomic models have emerged as the 

models of choice. A major advantage of these 

genomic prediction approaches is that they 

simultaneously analyze phenotypic and 

pedigree information of genotyped and non-

genotyped animals with Single Nucleotide 

Polymorphism (SNP) genomic information of 

genotyped animals (Legarra et al., 2014). 

Although the prediction of genomic enhanced 

breeding values (GEBVs) is the principal goal 

of the different equivalent single-step genomic 

evaluations, estimates of SNP effects can also 

be obtained for all of them, either 

simultaneously with the GEBV prediction (e.g., 

Fernando et al., 2014; Liu et al., 2014) or 

indirectly by back-solving GEBVs (e.g., 

Lourenco et al., 2015). Models that directly 

predict GEBVs and SNP effects as random 

effects will hereafter be referred to as single-

step SNP Best Linear Unbiased Prediction 

(ssSNPBLUP), while models that predict only 

GEBVs will hereafter be referred to as single-

step GBLUP (ssGBLUP). 

The exchange of genetic material among 

populations necessitates the comparison and 

combination of genetic and genomic 

evaluations across populations for animals of 
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interest. In dairy cattle, these needs have been 

addressed through meta-analysis approaches. 

These include, among others, the Multiple 

Across-Country Evaluation (MACE; Schaeffer, 

1994), which combines individual-based 

pseudo-data of sires obtained from national 

genetic evaluations, the Genomic MACE 

(GMACE; VanRaden and Sullivan, 2010), 

which combines individual-based pseudo-data 

of sires derived from national genomic 

evaluations, and, more recently, the SNPMACE 

approaches (e.g., Jighly et al., 2022; 

Kärkkäinen et al., 2024; Vandenplas et al., 

2018), which combine SNP-based pseudo-data 

obtained from genomic evaluations. These 

meta-analyses facilitate the combination of 

genetic and genomic evaluations across 

multiple populations and an optimal use of all 

available across-country information in each 

population. 

The increasing adoption of single-step 

genomic models for routine evaluations, along 

with the implementation of meta-analyses such 

as SNPMACE, may result in an increased 

exchange of estimates of SNP effects and their 

associated measures of precision, potentially 

replacing the exchange of individual-level 

pseudo-data (e.g., computed from (G)EBVs). 

This potential increased exchange of estimates 

of SNP effects and their associated measures of 

precision creates a need for methods that can 

accurately integrate them into national single-

step genomic evaluations.  

The objective of this research was to develop 

and validate a method that integrates external 

estimates of SNP effects and their associated 

measures of precision into a ssSNPBLUP 

evaluation. Our method was validated using 

simulated data from two dairy cattle 

populations. Results demonstrate that the 

developed method enables accurate integration 

of estimates of SNP effects into a single-step 

genomic evaluation. 

 

Materials and Methods 

 

To develop a method that integrates estimates 

of SNP effects and their associated measures of 

precision into a ssSNPBLUP evaluation, we 

consider two populations, respectively A and B, 

both associated with animals phenotyped and/or 

genotyped at identical SNP loci. We first 

describe in this section a population-specific 

ssSNPBLUP evaluation based on mixed model 

equations (MME) proposed by Liu et al. (2014). 

Second, we describe a joint ssSNPBLUP 

evaluation that simultaneously analyzes 

phenotypes and genotypes from both 

populations. Third, we describe a method to 

integrate estimates of SNP effects of population 

B into a ssSNPBLUP evaluation of population 

A, assuming an exact prediction error 

covariance (PEC) matrix is available for 

population B. Finally, we outline four 

approximations of the PEC matrix. In the 

second part of this section, we present the 

simulations used to validate these different 

methods. 

 

Population-specific ssSNPBLUP 

 

A standard univariate mixed model for a single-

step genomic evaluation for population 𝑖 (𝑖 =

𝐴, 𝐵) can be written as: 

𝐲𝑖 = 𝐗𝑖𝐛𝑖
∗ + 𝐖𝑖𝐮𝑖

∗ + 𝐞𝑖
∗,                       (1) 

where 𝐲𝑖 is the vector of records for population 

i, 𝐛𝑖
∗ is the vector of fixed effects, 𝐮𝑖

∗ =

[𝐮𝑛,𝑖
∗′ 𝐮𝑔,𝑖

∗′ ]
′
 is the vector of additive genetic 

effects for non-genotyped (n) and genotyped (g) 

animals, respectively, and 𝐞𝑖
∗ is the vector of 

residuals. The matrices 𝐗𝑖 and 𝐖𝑖 are incidence 

matrices relating records to the corresponding 

effects. 

Additive genetic effects of the genotyped 

animals, 𝐮𝑔,𝑖
∗ , for population i can be 

decomposed as 𝐮𝑔,𝑖
∗ = 𝐚𝑔,𝑖

∗ + 𝐙𝑖𝐠𝑖
∗, where 𝐚𝑔,𝑖

∗  is 

the vector of the residual polygenic (RPG) 

effects, 𝐠𝑖
∗ is the vector of SNP effects, and 𝐙𝑖 

is the centered matrix of SNP genotypes (coded 

as 0 for one homozygous genotype, 1 for the 

heterozygous genotype, or 2 for the alternate 

homozygous genotype). We assume a 
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multivariate normal (MVN) distribution for the 

additive genetic effects 𝐮𝑖
∗ and the SNP effects 

𝐠𝑖
∗, with a mean equal to zero and a covariance 

matrix 𝐇𝑖
∗𝜎𝑢,𝑖

2  with 𝐇𝑖
∗ being the covariance 

structure matrix and 𝜎𝑢,𝑖
2  being the additive 

genetic variance for population i. Finally, we 

assume that 𝑣𝑎𝑟(𝐞𝑖) = 𝐈𝜎𝑒,𝑖
2  where 𝐈 is an 

identity matrix, and 𝜎𝑒,𝑖
2  is the residual variance 

for population i. 

The inverse of 𝐇𝑖
∗ for population i, 𝐇𝑖

∗−1, is 

equal to (Liu et al., 2014): 

𝐇𝑖
∗−1

=

[
 
 
 
 
𝐀𝑖

𝑛𝑛 𝐀𝑖
𝑛𝑔

𝟎

𝐀𝑖
𝑔𝑛

𝐀𝑖
𝑔𝑔

+
1 − 𝑤

𝑤
𝐀𝑔𝑔,𝑖

−1 −
1

𝑤
𝐀𝑔𝑔,𝑖

−1 𝐙𝑖

𝟎 −
1

𝑤
𝐙𝑖

′𝐀𝑔𝑔,𝑖 
−1 𝐊𝑖

∗
]
 
 
 
 

 

where 𝐀𝑖
−1 = [

𝐀𝑖
𝑛𝑛 𝐀𝑖

𝑛𝑔

𝐀𝑖
𝑔𝑛

𝐀𝑖
𝑔𝑔] is the inverse of the 

pedigree relationship matrix partitioned 

between non-genotyped and genotyped 

animals, 𝐀𝑔𝑔,𝑖 is the pedigree relationship 

matrix among genotyped animals, 𝑤 is the 

proportion of variance (due to additive genetic 

effects) considered as RPG effects,  and 𝐊𝑖
∗ =

1

𝑤
𝐙𝑖

′𝐀𝑔𝑔,𝑖
−1 𝐙𝑖 +

1

1−𝑤
𝐁−1 with 𝐁−1 =

𝐈2∑𝑝𝑗(1 − 𝑝𝑗) and 𝑝𝑗 being the allele 

frequency of the j-th SNP.  

It is worth noting that these assumptions lead 

to the following MVN distribution for the SNP 

effects for population i, 𝐠𝑖: 

𝐠𝑖~ 𝑀𝑉𝑁(𝟎, 𝐁𝜎𝑔,𝑖
2 ) 

with 𝜎𝑔,𝑖
2 = (1 − 𝑤)𝜎𝑢,𝑖

2 . 

 

Joint single-step genomic evaluation 

 

A standard bivariate mixed model for the joint 

analysis of the phenotypic, genomic, and 

pedigree datasets of both populations A and B 

can be written as: 

[
𝐲𝐴

𝐲𝐵
] = [

𝐗𝐴 𝟎
𝟎 𝐗𝐵

] [
𝐛𝐴

𝐛𝐵
] + [

𝐖𝐴 𝟎
𝟎 𝐖𝐵

] [
𝐮𝐴

𝐮𝐵
] +

[
𝐞𝐴

𝐞𝐵
]                                                          (2) 

where 𝐛𝑖 (𝑖 = 𝐴, 𝐵) are the vectors of 

population-specific fixed effects, 𝐮𝑖 =

[𝐮𝑛,𝑖
′ 𝐮𝑔,𝑖

′
]
′
 are the vectors of population-

specific additive genetic effects for non-

genotyped and genotyped animals, and 𝐞𝑖 are 

the vectors of population-specific residuals. 

Similarly to the population-specific model 

(1), we assume a MNV distribution for the 

additive genetic effects with mean zero and a 

covariance matrix equal to 𝐇𝐽⨂𝐆𝐽, where the 

additive genetic covariance matrix 𝐆𝐽 is equal 

to 𝐆𝐽 = [
𝜎𝑢,𝐴

2 𝜎𝑢,𝐴𝐵

𝜎𝑢,𝐴𝐵 𝜎𝑢,𝐵
2 ], with 𝜎𝑢,𝐴𝐵 being the 

additive genetic covariance between 

populations A and B. The inverse of 𝐇𝐽 is 

computed as for the population-specific 𝐇𝑖
∗−1 

using pedigree and genotype datasets of both 

populations. Similarly, we also assume a MVN 

distribution for the residuals, that is 

[
𝐞A

𝐞B
] ~ 𝑀𝑉𝑁 ([

𝟎
𝟎
] , [

𝐈𝜎𝑒,𝐴
2 𝟎

𝟎 𝐈𝜎𝑒,𝐵
2 ]). 

 

Integration of estimates of SNP effects 

 

To develop a method that integrates estimates 

of SNP effects into ssSNPBLUP, we assume 

that the estimates of SNP effects and the 

associated PEC matrix of population B are 

known without approximation and are 

expressed on the same scale as the trait of 

population A. Furthermore, we assume that all 

SNP genotype matrices, i.e., 𝐙𝐴, 𝐙𝐵, and 𝐙𝐽 , 

were centered with the same allele frequencies. 

The integration of estimates of SNP effects 

from population B into the single-step genomic 

evaluation of population A can be achieved 

through a method analogous to that proposed by 

Gianola and Fernando (1986) for integrating 

external estimated breeding values (EBVs) and 

the associated PEC into internal genetic 

evaluations. Therefore, our method relies on the 

alteration of the mean and covariance matrix of 

the MVN distribution for SNP effects of 

population A, using the estimates of SNP effects 

�̂�𝐵,𝐴
∗  and the associated PEC matrix, 𝚫𝐵,𝐴

∗ 𝜎𝑔,𝐴
2 , 
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obtained from a genomic evaluation of 

population B and expressed on the scale of the 

trait of population A, that is 

[𝐠𝐴|�̂�𝐵,𝐴
∗ , 𝚫𝐵,𝐴

∗ 𝜎𝑔,𝐴
2 ]~ 𝑀𝑉𝑁(�̂�𝐵,𝐴

∗ , 𝚫𝐵,𝐴
∗ 𝜎𝑔,𝐴

2 ). 

After some algebra, and ignoring fixed 

effects for readability, the ssSNPBLUP MME 

with an integration of estimates of SNP effects 

of population B can be written as follows: 

 

 

[

𝐖𝑛,𝐴
′ 𝐖𝑛,𝐴𝜎𝑒,𝐴

−2 + 𝐇11𝜎𝑢,𝐴
−2 𝐇12𝜎𝑢,𝐴

−2 𝟎

𝐇21𝜎𝑢,𝐴
−2 𝐖𝑔,𝐴

′ 𝐖𝑔,𝐴𝜎𝑒,𝐴
−2 + 𝐇22𝜎𝑢,𝐴

−2 𝐇23𝜎𝑢,𝐴
−2

𝟎 𝐇32𝜎𝑢,𝐴
−2 𝐇33𝜎𝑢,𝐴

−2

] [

𝐮𝑛,𝐴

𝐮𝑔,𝐴

𝐠𝐴

] = [

𝐖𝑛,𝐴
′ 𝐲𝑛,𝐴

𝐖𝑔,𝐴
′ 𝐲𝑔,𝐴

𝟎

]𝜎𝑒,𝐴
−2 +

𝐇𝐴,𝐵
∗−1𝜎𝑢,𝐴

−2 [
−(𝐀𝐴

𝑛𝑛)−1𝐀𝐴
𝑛𝑔

𝐙𝐴
′

𝐙𝐴
′

𝐈

] �̂�𝐵,𝐴
∗ ,  

with 𝐇𝐴,𝐵
∗−1 = [

𝐇11 𝐇12 𝐇13

𝐇21 𝐇22 𝐇23

𝐇31 𝐇32 𝐇33

] =

[
 
 
 
𝐀𝐴

𝑛𝑛 𝐀𝐴
𝑛𝑔

𝟎

𝐀𝐴
𝑔𝑛

𝐀𝐴
𝑔𝑔

+
1−𝑤

𝑤
𝐀𝑔𝑔,𝐴

−1 −
1

𝑤
𝐀𝑔𝑔,𝐴

−1 𝐙𝐴

𝟎 −
1

𝑤
𝐙𝐴

′ 𝐀𝑔𝑔,𝐴 
−1 𝐊𝐴,𝐵

∗
]
 
 
 

, 

and with 𝐊𝐴,𝐵
∗ =

1

𝑤
𝐙𝐴

′ 𝐀𝑔𝑔,𝐴
−1 𝐙𝐴 +

1

1−𝑤
𝚫𝐵,𝐴

∗−1. 

It is worth noting that the only difference 

between 𝐊𝐴
∗  in the MME without integration 

and 𝐊𝐴,𝐵
∗  in the MME with integration is the 

replacement of the diagonal matrix 𝐁−1 by the 

dense matrix 𝚫𝐵,𝐴
∗−1. 

 

Approximation of the PEC matrix 

 

In practice, computing the PEC matrix of �̂�𝐵,𝐴
∗ , 

𝚫𝐵,𝐴
∗ 𝜎𝑔,𝐴

2 , can be computationally challenging 

as it requires the inversion of the coefficient 

matrix of the MME. Therefore, the PEC matrix 

must be approximated. In this study, without 

loss of generality, we assume that the genomic 

evaluation of population B is a single-step 

genomic evaluation, and we approximate the 

PEC matrix 𝚫𝐵,𝐴
∗ 𝜎𝑔,𝐴

2  by applying steps 1-3 of 

Gao et al. (2023) to a bivariate single-step 

genomic evaluation for both populations A and 

B, while considering only the phenotypic and 

SNP genotype datasets of population B. 

Considering the parameters of population A in 

this bivariate approach allow us to approximate 

the PEC matrix of population B expressed on 

the scale of population A. 

Briefly, as a first step and in the context of 

this study, the approach consists of computing 

reliabilities for a bivariate pedigree-based 

BLUP for all animals in population B for the 

traits of both populations A and B. Second, 

deregressed equivalent record contributions 

(ERCs) for the genotyped animals in population 

B and for trait A are computed by reversing the 

method of Tier and Meyer (2004). Third, a 

coefficient matrix of a univariate SNPBLUP is 

constructed using all genotypes of population B, 

the residual and additive genetic variances of 

population A, and the deregressed ERCs of the 

genotyped animals in population B. Finally, an 

approximation of the PEC matrix 𝚫𝐵,𝐴
∗ 𝜎𝑔,𝐴

2  

associated with SNP effects in population B for 

the trait A, denoted by �̃�𝐵,𝐴
∗ 𝜎𝑔,𝐴

2 , is obtained by 

inverting the SNPBLUP coefficient matrix. 

This approach for approximating the PEC 

matrix is computationally feasible, even for 

large-scale genomic evaluations, as shown by 

Gao et al. (2023). 

Additional approximations could be needed 

as the properties of the PEC matrix could lead 

to additional computational challenges when 

solving the single-step genomic evaluations. 

Indeed, it is a dense square matrix of size equal 

the number of SNPs multiplied by the number 

of traits, and these characteristics can make 

handling of the inverse of the PEC matrix in an 

iterative solver prohibitively demanding. To 

address these issues, we propose below three 
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approximations, assuming that �̃�𝐵,𝐴
∗ 𝜎𝑔,𝐴

2  is 

available.  

The first approximation of 𝚫𝐵,𝐴
∗−1𝜎𝑔,𝐴

−2 

involves ignoring off-diagonal elements among 

chromosomes of �̃�𝐵,𝐴
∗ , which corresponds to 

inverting each block of �̃�𝐵,𝐴
∗   associated with a 

chromosome separately. This approximation 

results in 𝚫𝐵,𝐴
∗−1𝜎𝑔,𝐴

−2 ≈

(𝑏𝑙𝑜𝑐𝑘_𝑑𝑖𝑎𝑔(�̃�𝐵,𝐴
∗ ))

−1
𝜎𝑔,𝐴

−2 with 

𝑏𝑙𝑜𝑐𝑘_𝑑𝑖𝑎𝑔(. ) denoting a chromosome-wise 

block diagonal matrix. 

The second approximation of 𝚫𝐵,𝐴
∗−1𝜎𝑔,𝐴

−2 

involves ignoring off-diagonal elements among 

chromosomes after the inversion of �̃�𝐵,𝐴
∗ , which 

results in 𝚫𝐵,𝐴
∗−1𝜎𝑔,𝐴

−2 ≈ 𝑏𝑙𝑜𝑐𝑘_𝑑𝑖𝑎𝑔(�̃�𝐵,𝐴
∗−1)𝜎𝑔,𝐴

−2. 

This block matrix 𝑏𝑙𝑜𝑐𝑘_𝑑𝑖𝑎𝑔(�̃�𝐵,𝐴
∗−1)𝜎𝑔,𝐴

−2 

corresponds to the SNPBLUP coefficient 

matrix used to compute �̃�𝐵,𝐴
∗  after absorbing the 

fixed effects and ignoring its off-diagonal 

elements. 

The third approximation of 𝚫𝐵,𝐴
∗−1𝜎𝑔,𝐴

−2 

involves ignoring all off-diagonal elements of 

�̃�𝐵,𝐴
∗ , which corresponds to inverting only the 

prediction error variances (PEV) of �̂�𝐵,𝐴
∗ , and 

results in 𝚫𝐵,𝐴
∗−1𝜎𝑔,𝐴

−2 ≈ (𝑑𝑖𝑎𝑔(�̃�𝐵,𝐴
∗ ))

−1
𝜎𝑔,𝐴

−2. 

 

Simulations 

 

Two dairy cattle populations originating from 

the same breed were simulated following the 

procedure of Bonifazi et al. (2023a). Each 

population had simulated data on one trait with 

a heritability assumed to be equal to 0.30 in both 

populations. The genetic correlation between 

populations was assumed to be equal to 0.80. 

Briefly, about 2,000 QTLs were simulated to be 

randomly distributed across 30 chromosomes of 

1 Morgan length each, and QTL effects were 

sampled from a Gaussian distribution. Each 

population was independently selected for 20 

generations. In each population, 15,000 

individuals were simulated per generation. 

Within each population and generation, 40 sires 

and 3,000 dams were selected to produce 

offspring for the next generation. Selection was 

first at random from generation 1 to generation 

9, followed by a truncated selection based on 

within-population pedigree-based genetic 

evaluation. Pedigree and phenotypic 

information were assumed to be recorded from 

generation 7 and generation 10, respectively. 

The SNP genotypes included about 45,000 

SNPs after quality control, and were assumed to 

be available for animals from generation 15 to 

generation 20 for both populations. 

Connectedness between the two populations 

was simulated by exchanging each generation 

the eight sires with the highest EBVs in each 

population throughout the last five generations. 

Each scenario was replicated 10 times. The 

simulation was performed using the R-package 

MoBPS (Pook et al., 2021), and pedigree-based 

genetic evaluations were performed with the 

software MiXBLUP (Vandenplas et al., 2022). 

 

Analysis 

 

Using the simulated datasets, the aim was to 

validate the integration of estimates of SNP 

effects in population B into a ssSNPBLUP 

evaluation in population A, and to test the 

different approximations of the PEC matrix 

𝚫𝐵,𝐴
∗ 𝜎𝑔,𝐴

2 .  

For each replicate, datasets analyzed with 

ssSNPBLUP were built as follows. For 

population A, 60,000 phenotypes were 

randomly sampled for animals from generation 

10 to 19. In addition, SNP genotypes for 7,000 

animals were randomly sampled from 

generation 17 to 20. All the genotyped animals 

of generation 20 in population A were 

considered as selection candidates. For 

population B, all the 165,000 animals from 

generation 10 to 20 were associated with a 

phenotype, and all the 75,000 animals from 

generation 16 to 20 were associated also with a 

SNP genotype. Finally, the SNP genotypes of 

the exchanged sires were added to the genotype 

dataset of each population. 
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Using the datasets of both populations A and 

B, the following analyses were performed: 

a) a joint ssSNPBLUP evaluation based on 

model (2) and using all datasets of both 

populations A and B; 

b) a joint ssSNPBLUP evaluation based on 

model (2) but using genotype and 

phenotypic datasets of population B 

only. This evaluation is equivalent to a 

population B ssSNPBLUP evaluation 

based on the model (1), except that it 

provides also  estimates of SNP effects 

of population B expressed on the scale 

of the trait of population A, �̂�𝐵,𝐴
∗ , and the 

associated approximated PEC matrix 

�̃�𝐵,𝐴
∗ 𝜎𝑔,𝐴

2  computed as detailed in the 

section “Approximation of the PEC 

matrix”, which are used in analyses d) 

to g) below; 

c) a population A ssSNPBLUP evaluation 

based on the model (1) and using 

genotypes and phenotypes of population 

A only; 

d) same as in c), but also integrating the 

population B information summarized 

by �̂�𝐵,𝐴
∗ , and �̃�𝐵,𝐴

∗ 𝜎𝑔,𝐴
2 ; 

e) the same as d) but by using 

(𝑏𝑙𝑜𝑐𝑘_𝑑𝑖𝑎𝑔(�̃�𝐵,𝐴
∗ ))

−1
 instead of 

�̃�𝐵,𝐴
∗ ; 

f) the same as d) but by using 

𝑏𝑙𝑜𝑐𝑘_𝑑𝑖𝑎𝑔(�̃�𝐵,𝐴
∗−1) instead of �̃�𝐵,𝐴

∗ ; 

g) the same as d) but by using 

(𝑑𝑖𝑎𝑔(�̃�𝐵,𝐴
∗ ))

−1
 instead of �̃�𝐵,𝐴

∗ . 

All evaluations were performed with the 

software MiXBLUP (Vandenplas et al., 2022). 

Without loss of generality, the pedigree of both 

populations was used in all evaluations. 

Furthermore, we assumed that the variance 

components were known and equal to the 

simulated variance components, and that the 

proportion 𝑤 for RPG effects was assumed to 

be equal to 0.30. Finally, all genotypes in both 

populations were centered with the same allele 

frequencies. Therefore, a regression effect 

(often called J-factor; e.g., Strandén et al., 

2022) that makes the GEBVs independent of the 

allele frequencies used for centering was fitted 

for each evaluation. 

To evaluate the accuracy of the integration 

of estimates of SNP effects in ssSNPBLUP, we 

compared the GEBVs of all population A 

selection candidates obtained with the different 

population A ssSNPBLUP evaluations (i.e., 

analyses c) to g) above). The joint ssSNPBLUP 

evaluation was used as reference, because it 

analyses simultaneously all data from both 

populations A and B.  

The metrics computed for comparing the 

joint evaluation with the population A 

evaluations were: (i) Pearson correlations (r) 

between joint GEBVs and GEBVs without or 

with integration, (ii) regression coefficients (b1) 

of joint GEBVs on GEBVs without or with 

integration, and (iii) root mean square errors 

(RMSE) of GEBVs without or with integration, 

defined as the square root of the mean of the 

squared differences between joint GEBVs and 

GEBVs without or with integration, and 

expressed in genetic standard deviation (SD) 

units. An accurate and consistent integration 

will result in Pearson correlation and regression 

coefficient equal to 1 and in RMSE equal to 0. 

 

Results & Discussion 

 

Integration with the complete PEC matrix 

 

Based on our results, the developed method 

enables integration of estimates of SNP effects 

and the associated PEC matrix from a genomic 

evaluation into a single-step SNPBLUP. Table 

1 compares joint GEBVs to GEBVs without or 

with integration for selection candidates in 

population A. The integration of estimates SNP 

effects with the approximated PEC matrix 

�̃�𝐵,𝐴
∗ 𝜎𝑔,𝐴

2  resulted to almost the same GEBVs 

for the selection candidates as with the joint 

ssSNPBLUP, as shown by average correlations 

and regression coefficients close to 1 (that is, 

0.98 and 0.97, respectively), and RMSE close 

to 0 (that is, 0.10 genetic SDs). For comparison, 

the average Pearson correlation between joint 
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GEBVs and GEBVs without integration was 

0.74, the average regression coefficient was 

0.78, and the average RMSE was 0.40 genetic 

SDs (Table 1). 

 

Table 1. Comparison of joint GEBVs to GEBVs 

without or with integration for selection candidates 

in population A. Results are averaged across the 10 

replicates (SE between brackets)1. 

Evaluation R b1 RMSE 

Pop. A 

 

0.739 

(0.019) 

0.781 

(0.034) 

0.404 

(0.017) 

PEC 

  

0.982 

(0.001) 

0.973 

(0.004) 

0.104 

(0. 004) 

Chromosome-

wise PEC (v1)2 

0.989 

(0.001) 

0.951 

(0.005) 

0.086 

(0.004) 

Chromosome-

wise PEC (v2)3 

0.989 

(0.001) 

0.977 

(0.004) 

0.080 

(0. 004) 

PEV 

 

0.981 

(0.002) 

0.904 

(0.005) 

0.123 

(0.004) 
1 r = Pearson correlation between joint GEBVs and 

GEBVs without or with integration; b1 = regression 

coefficient of joint GEBVs on GEBVs without or 

with integration; RMSE = root mean squared error 

of GEBVs without or with integration (in genetic 

standard deviation units). 
2 Off-diagonal elements among chromosomes 

ignored before inversion. 
3 Off-diagonal elements among chromosomes 

ignored after inversion. 

 

Non-unity Pearson correlations and 

regression coefficients, as well as non-zero 

RMSE, for the integration of SNP effects using 

the approximated PEC matrix �̃�𝐵,𝐴
∗ 𝜎𝑔,𝐴

2  could be 

explained by two approximations. First, 

differences between joint GEBVs and GEBVs 

with integration can be explained by the fact 

that the PEC matrices were approximated. 

Although our results show that our approach 

based on Gao et al. (2023) still results in an 

accurate integration of SNP effects, other 

approaches have been proposed in the literature 

(e.g., Jighly et al., 2022; Vandenplas et al., 

2018), and should be also investigated in the 

context of single-step evaluations. Second, 

differences between joint GEBVs and GEBVs 

with integration can be explained by the fact 

that the contributions of the RPG effects to the 

additive genetic effects in the genomic 

evaluation of the population B are not integrated 

in the ssSNPBLUP evaluation of the population 

A. Future research is needed to explore the 

impact of ignoring the RPG effects in the 

developed procedure and to extend it for 

integrating RPG effects if needed. 

 

Integration with chromosome-wise PEC and 

PEV matrices 

 

Integrations based on chromosome-wise PEC 

matrices (that is, (𝑏𝑙𝑜𝑐𝑘_𝑑𝑖𝑎𝑔(�̃�𝐵,𝐴
∗ ))

−1
𝜎𝑔,𝐴

−2 

and 𝑏𝑙𝑜𝑐𝑘_𝑑𝑖𝑎𝑔(�̃�𝐵,𝐴
∗−1)𝜎𝑔,𝐴

−2) resulted in 

accurate and consistent GEBVs, similarly to  

the integration based on the approximated PEC 

matrix �̃�𝐵,𝐴
∗ 𝜎𝑔,𝐴

2 , as shown in Table 1. Both 

versions of chromosome-wise PEC matrices 

resulted in metrics similar to those using �̃�𝐵,𝐴
∗  

(that is, average Pearson correlations of 0.99, 

average regression coefficients higher than 0.95 

and RMSE between 0.8 and 0.9 genetic SDs). 

These results suggest that the integration of 

estimates of SNP effects into a ssSNPBLUP 

evaluation can be performed without the whole 

PEC matrix. This is an appealing result because 

considering the whole PEC matrix in a multi-

trait context could be challenging as it is a dense 

square matrix, and ignoring off-diagonal 

elements among chromosomes results in a 

relatively sparse block-diagonal matrix that can 

be easily handled with current computers.  

Finally, the integration based on PEV only 

resulted in highly accurate, but biased, GEBVs, 

as shown by an average Pearson correlation of 

0.98 and an average regression coefficient of 

0.90. These results agree with those obtained by 

Vandenplas et al. (2018) in the context of 

SNPBLUP evaluations. 

 

Implementation of the developed method 

 

Implementing our developed method in existing 

software should be straightforward for those 

that already support a ssSNPBLUP model. 

First, the inverse of the (co)variance matrix of 

SNP effects must be replaced by the inverse of 

the (chromosome-wise) PEC matrix in the 
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coefficient matrix of the ssSNPBLUP MME. 

Second, the right-hand-side of the ssSNPBLUP 

MME requires the addition of a vector equal to 

the multiplication of 𝐇𝐴,𝐵
∗−1 with a vector that 

includes imputed DGVs for non-genotyped 

animals (−(𝐀𝐴
𝑛𝑛)−1𝐀𝐴

𝑛𝑔
𝐙𝐴

′ �̂�𝐵,𝐴
∗ ), direct 

genomic values (DGVs) for genotyped animals 

(𝐙𝐴
′ �̂�𝐵,𝐴

∗ ), and the estimates of SNP effects of 

population B (�̂�𝐵,𝐴
∗ ). By implementing these 

changes, existing software can efficiently 

integrate estimates of SNP effects obtained 

from a foreign genomic evaluation. 

 Our developed method can be also extended 

to ssGBLUP. As explained by Vandenplas et al. 

(2023), the absorption of the equations of SNP 

effects of the ssSNPBLUP MME result in the 

ssGBLUP MME based on the Woodbury matrix 

identity applied to the inverse of the genomic 

relationship matrix. Applying the same strategy 

to MME (3) results in the following MME: 

[
𝐖𝑛,𝐴

′ 𝐖𝑛,𝐴𝜎𝑒,𝐴
−2 + 𝐇𝑔

11𝜎𝑢,𝐴
−2 𝐇𝑔

12𝜎𝑢,𝐴
−2

𝐇𝑔
21𝜎𝑢,𝐴

−2 𝐖𝑔,𝐴
′ 𝐖𝑔,𝐴𝜎𝑒,𝐴

−2 + 𝐇𝑔
22𝜎𝑢,𝐴

−2] [
𝐮𝑛,𝐴

𝐮𝑔,𝐴
] = [

𝐖𝑛,𝐴
′ 𝐲𝑛,𝐴

𝐖𝑔,𝐴
′ 𝐲𝑔,𝐴

] 𝜎𝑒,𝐴
−2 +

𝐇𝑔
∗−1𝜎𝑢,𝐴

−2 [
−(𝐀𝐴

𝑛𝑛)−1𝐀𝐴
𝑛𝑔

𝐙𝐴
′

𝐙𝐴
′ ] �̂�𝐵,𝐴

∗ , 

with 𝐇𝑔
∗−1 = [

𝐇𝑔
11 𝐇𝑔

12

𝐇𝑔
21 𝐇𝑔

22] =

[
𝐀𝐴

𝑛𝑛 𝐀𝐴
𝑛𝑔

𝐀𝐴
𝑔𝑛

𝐀𝐴
𝑔𝑔

− 𝐀𝑔𝑔,𝐴
−1 + 𝐆𝐴,𝐵

∗−1] 

where the inverse of the genomic relationship 

matrix 𝐆𝐴,𝐵
∗  is equal to 𝐆𝐴,𝐵

∗−1 = ((1 −

𝑤)𝐙𝐴𝚫𝐵,𝐴
∗ 𝐙𝐴

′ + 𝑤𝐀𝑔𝑔,𝐴 )
−1

. 

It is worth noting that the form of 𝐆𝐴,𝐵
∗  has 

the same form as the genomic relationship 

matrix of ssGBLUP with residual polygenic 

effects (Christensen and Lund, 2010), except 

that the diagonal matrix 𝐁 is replaced by 𝚫𝐵,𝐴
∗ . 

However, replacing 𝐁 by 𝚫𝐵,𝐴
∗  for computing 

𝐆𝐴,𝐵
∗−1 might lead to computational challenges as 

𝚫𝐵,𝐴
∗  is a dense square matrix of size equal to 

the number of SNPs multiplied by the number 

of traits in multi-trait evaluations. Further 

research to efficiently implement our method in 

ssGBLUP is therefore needed. 

 

Potential uses of the developed method 

 

Our analyses demonstrate that the integration of 

estimates of SNP effects and the associated PEC 

into a single-step genomic evaluation can be 

performed accurately. Because our developed 

method does not depend on the form of the 

genomic evaluation that provides the estimates 

of SNP effects, it is expected that similar results 

will be obtained with estimates of SNP effects 

computed, e.g., with a SNPMACE approach 

(Kärkkäinen et al., 2024; Liu and Goddard, 

2018). Therefore, our developed method can be 

used by national organizations to integrate 

estimates of SNP effects computed by an 

international genomic evaluation into their 

national single-step genomic evaluation. As 

such, our method is an alternative to procedures 

that integrate pseudo-data computed from 

(G)EBVs into genetic evaluations (e.g., 

VanRaden et al., 2014; Bonifazi et al., 2023b) 

Our developed method was tested under 

simple assumptions, such as datasets from only 

two populations, genotypes at the same SNP 

loci, same allele frequencies in all evaluations, 

and PEC matrices of population B available on 

the scale the trait of population A. These 

assumptions can be easily ignored by using or 

extending procedures developed in the context 

of SNPMACE (e.g., Jighly et al., 2022; 

Kärkkäinen et al., 2024; Vandenplas et al., 

2018). 

 

Conclusions 

 

In this study, we developed a method that 

accurately integrates estimates of SNP effects 

and the associated PEC matrix into a single-step 

genomic evaluation. Our results demonstrates 

that the developed method yields GEBVs 

highly consistent with those of a joint single-

step genomic evaluations when the whole PEC 
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matrix was used. Using chromosome-wise PEC 

matrices provided similarly accurate results, 

allowing for computationally efficient 

implementations in large-scale multi-trait 

single-step genomic evaluations. 

 

Acknowledgments 

 

The use of the HPC cluster has been made 

possible by the Regio Deal Foodvalley (through 

Shared Research Facilities Wageningen UR). 

Jeremie Vandenplas thanks Zengting Liu and 

Esa Mäntysaari for fruitful discussions. 

 

References 

 

Bonifazi, R., Neufeld, G.M., Pook, T., 

Vandenplas, J., and Calus, M.P.L. 2023a. 

Using genomic data to estimate genetic 

correlations between countries with 

different levels of connectedness. Interbull 

Bull., 59: 1–10. 

Bonifazi, R., Calus, M.P.L., ten Napel, J., 

Veerkamp, R.F., Biffani, S., Cassandro, M., 

Savoia, S., and Vandenplas, J. 2023b. 

Integration of beef cattle international 

pedigree and genomic estimated breeding 

values into national evaluations, with an 

application to the Italian Limousin 

population. Genet. Sel. Evol. 55:41. 

Christensen, O.F., and Lund M.S. 2010. 

Genomic prediction when some animals are 

not genotyped. Genet. Sel. Evol. 42:2. 

Fernando, R.L., Dekkers, J.C. and Garrick D.J. 

2014. A class of Bayesian methods to 

combine large numbers of genotyped and 

non-genotyped animals for whole-genome 

analyses. Genet. Sel. Evol. 46:50. 

Gao, H., Kudinov, A.A., Taskinen, M., 

Pitkänen, T.J., Lidauer, M.H., Mäntysaari, 

E.A., and Strandén I. 2023. A 

computationally efficient method for 

approximating reliabilities in large-scale 

single-step genomic prediction. Genet. Sel. 

Evol. 55:1. 

Gianola, D., and Fernando R.L. 1986. Bayesian 

methods in animal breeding theory. J. Anim. 

Sci. 63:217–244. 

Jighly, A., Benhajali, H., Liu, Z., and Goddard 

M.E. 2022. MetaGS: an accurate method to 

impute and combine SNP effects across 

populations using summary statistics. Genet. 

Sel. Evol. 54:37. 

Kärkkäinen, H., Vargas, N., Lidauer, M., 

Mäntysaari, E.A., and EG SNP MACE 

working group. 2024. Multitrait across 

country genomic evaluations for 

EuroGenomics countries. Presentation at 

Interbull Open Meeting 2024, Bled, 

Slovenia. 

https://interbull.org/static/web/5_7_Karkkai

nen_Interbull2024.pdf   

Legarra, A., Christensen, O.F., Aguilar, I., and 

I. Misztal. 2014. Single step, a general 

approach for genomic selection. Livest. Sci. 

166:54–65. 

Liu, Z., Goddard, M. , Reinhardt, F., and 

Reents, R. 2014. A single-step genomic 

model with direct estimation of marker 

effects. J. Dairy Sci. 97:5833–5850. 

Liu, Z., and Goddard, M.E. 2018. A SNP 

MACE model for international genomic 

evaluation: technical challenges and 

possible solutions. Page 11.393 in 

Proceedings of the 11th World Congress on 

Genetics Applied to Livestock Production, 

Auckland, New Zealand. 

Lourenco, D.A.L., Misztal, I., Tsuruta, S., 

Fragomeni, B., Aguilar, I., Masuda, Y., and 

Moser, D. 2015. Direct and indirect genomic 

evaluations in beef cattle. Interbull Bull. 

49:80-84. 

Pook, T., Büttgen, L., Ganesan, A., Ha, N.-T., 

and Simianer, H. 2021. MoBPSweb: A web-

based framework to simulate and compare 

breeding programs. G3 Bethesda Md. 

11:jkab023.  

Schaeffer, L.R. 1994. Multiple-country 

comparison of dairy sires. J. Dairy Sci. 

77:2671–2678. 

 

 

226

https://interbull.org/static/web/5_7_Karkkainen_Interbull2024.pdf
https://interbull.org/static/web/5_7_Karkkainen_Interbull2024.pdf


INTERBULL BULLETIN NO. 60. 20-21 May 2024, Bled, Slovenia 

Strandén, I., Aamand, G.P., and Mäntysaari, 

E.A. 2022. Single-step genomic BLUP with 

genetic groups and automatic adjustment for 

allele coding. Genet. Sel. Evol. 54:38. 

Tier, B., and Meyer, K. 2004. Approximating 

prediction error covariances among additive 

genetic effects within animals in multiple-

trait and random regression models. J. Anim. 

Breed. Genet. 121:77–89. 

Vandenplas, J., Calus, M.P.L., and Gorjanc, G. 

2018. Genomic Prediction Using Individual-

Level Data and Summary Statistics from 

Multiple Populations. Genetics 210:53–69. 

Vandenplas, J., Veerkamp, R. F., Calus, M. P. 

L., Lidauer, M. H., Strandén, I., Taskinen, 

M., Schrauf, M., and ten Napel, J. 2022. 

MiXBLUP 3.0 - Software for large genomic 

evaluations in animal breeding programs. 

Pages 1498-1501 in Proceedings of the 12th 

World Congress on Genetics Applied to 

Livestock Production, Rotterdam, 

Auckland, The Netherlands. 

Vandenplas, J., ten Napel, J., Darbaghshahi, 

S.N. , Evans, R., Calus, M.P.L., Veerkamp, 

R., Cromie, A., Mäntysaari, E.A., and 

Strandén, I. 2023. Efficient large-scale 

single-step evaluations and indirect genomic 

prediction of genotyped selection 

candidates. Genet. Sel. Evol. 55:37. 

VanRaden, P.M., and Sullivan, P.G.. 2010. 

International genomic evaluation methods 

for dairy cattle. Genet. Sel. Evol. 42:7. 

VanRaden, P.M., Tooker, M.E., Wright, J.R., 

Sun, C., and Hutchison, J.L. 2014. 

Comparison of single-trait to multi-trait 

national evaluations for yield, health, and 

fertility. J. Dairy Sci. 97:7952-7962. 

227


	Interbull_Bulletin_front_cover template
	1-Session1_Guinan-1939
	2-Session1_Lawlor_1943
	3-Session1_Pitkänen_1932
	4-Session1_Stephen-1952.
	5-Session1_Vankaam_1916
	6-Session1_Vanraden_1919
	7-Session1-Wu-1923
	8-Session2_Galluzzo_1936
	9-Session2_Heise-1942
	10_Session2_Jamrozik_1933
	11-Session2_Jenko_1918
	12-Session2_Stephensen_1927
	13-Session2_Vargas-1929
	14_session3_Bakke_1934
	15_session3_Gengeler_Atashi_1938
	16_session3_Kempe_1935
	17_session3_Manzanilla-Pech_1944_R1
	18_session3_Meijer_1926
	19_session3_Schrauf_1949
	20_session3_Tarekegn_1940
	20_session3_Tarekegn_1940_B
	21_Session4_Alkhoder_1930
	22_Session4_Bonifazi_1946
	23_session4_Chegini_1922
	24_session4_Legarra-1924
	25_session4_Liu_1931_R1
	26_session4_Rostellato_1928
	27_session4_Slomian_1937
	28_session5_Stachowicz_1951
	29_session5_Cuyabano_1941
	30_session5_Eding_1915
	31_session5_Himmelbauer_1925
	33_session5_Mota_1917
	34_session5_Nazari_1947
	35_session5_Ooi_1950
	36_session5_Vandenplas_1945



