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Abstract 

A total of 10 traits for three trait groups of claw health, metabolic diseases and calving were included in a 
new research run performed in October 2024 with the aim to expand the multiple across-country evaluation 
(MACE) portfolio. The traits in each trait group were as follows: digital dermatitis (dde), interdigital 
dermatitis (idd), interdigital hyperplasia (idh), sole hemorrhage (soh), sole ulcer (sou) and white line disease 
(wld) for claw health; clinical ketosis (cke), sub-clinical ketosis (sck) and milk fever (mfe) for metabolic 
diseases and direct gestation length (ges) for calving trait group. Although a total of 13 countries provided 
data for the six different breeds evaluated internationally, the research run could be performed only for four 
breeds (Holstein (HOL), Brown Swiss (BSW), Red Dairy Cattle (RDC) and Jersey (JER)) as only one 
country did provide data for Guernsey (GUE) and Simmental (SIM). The research results for across-country 
correlations, international EBVs and reliabilities were all promising for all evaluated traits. Gestation length 
was included in the Interbull May 2025 test run and subsequently in the official August 2025 routine run as 
the fifth trait in the MACE calving trait group alongside direct and maternal calving ease and still birth 
traits. The implementation of claw health and metabolic diseases traits in the MACE portfolio is currently 
pending a slightly higher participation rate from countries and it is therefore aimed to happen in the near 
future.  
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Introduction 

In accordance with the Interbull new traits’ 
pipeline introduced in 2021, countries were 
requested to fill in the Performance Recording, 
Evaluation and Publication database (PREPdb) 
(Interbull Centre, 2025), reporting information on 
any potential new traits that could be of interest 
for an international evaluation. The collected 
information included definitions of the trait, the 
availability of a standard International Committee 
of Animal Recording (ICAR) definition, the type 
of service, recording methods, etc. After 
reviewing the information, three main trait groups 
stood out, namely gestation length, metabolic 
diseases and claw health trait groups.  

The results were presented during the 2024 
Interbull Business Meeting, Bled, Slovenia, 
where it was sensed an urgency from the 
participating countries to have Interbull Centre 
performing a research run on such traits. Thus, a 
data call deadline for the above-mentioned trait 
groups was set to October 31, 2024, via the 
Interbull Data Exchange Area (IDEA)-new traits. 
By the end of the deadline, 13 countries submitted 
data for six breeds (Figure 1).  

In total, 10 traits were included in the research 
run. Three and six traits were included in 
metabolic disease and claw health trait groups, 
respectively, while gestation length was assigned 
as the fifth trait of the calving trait group (Table 
1). 
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Table 1. List of the new trait(s) for each trait group along with the abbreviations included in the MACE research run. 
 

Trait group Trait 

Metabolic disease 
( META) 

Clinical ketosis (cke) 
Sub- clinical ketosis (sck) 

Milk fever (mfe) 

Claw health 
(CLAW) 

Digital dermatitis (dde) 
Interdigital dermatitis (idd) 

Interdigital hyperplasia (idh) 
Sole hemorrhage (soh) 

Sole ulcer (sou) 
White line disease (wld) 

Calving 
(CALV) Gestation length (ges) 

Materials and Methods 

After the data submission deadline, and a 
preliminary screening of the data to identify the 
eligible breed-trait combinations, the MACE 
pipeline was applied. MACE started at the 
Interbull Centre to estimate and assess the across- 
country correlations, breeding values (EBVs) and 
reliability correlations between the national 
evaluations and the MACE research run     
Across-country correlation estimations 
The data from 13 countries and for four breeds of 
HOL, JER, BSW and RDC for the three new trait 
groups were used to estimate the across-country 
correlations, based on the number of common 
bulls between the pair of countries. The default 
setting for the bulls’ inclusion was to have a 
minimum of 10 daughters in 10 herds for all the 
new traits. All bulls born since 1970 were 
included in the analysis. The Restricted 
Maximum Likelihood (REML) procedure was 
used. No subset was applied for HOL-traits, as the 
computing time was within the expected range 
due to the fact that the number of countries for the 
new traits was limited (the highest was eight 
countries for ges). 

The Interbull post- processing procedure 
(https://interbull.org/ib/rg_procedure) was 
applied; all countries were assigned in one 
group/window of correlations defined as follows:  

• Final correlations were estimated by 
applying a 10% percentile used for the 
minimum correlation 

• The maximum was set to 0.99  
•  The median was calculated as: Median 

[10%;0.99]  
One important step in the post-processing 

procedure is to assess the magnitude of the   
Correlation used in previous run (as there was NO 
previous run, it was set to 0.85) 

• Magnitude of changes tested was 
considered major for all traits meaning 
that the applied weight on the final 
correlation was equal to 0 (equation 
displayed below). 

• HOL correlations and common bulls 
were used as weighting factors for all 
other breeds  

The windowed correlation was then calculated 
as follows: 

𝑐𝑐𝑐𝑐𝑐𝑐rwin =
(mincb*groupmedianvalue+cbcou1,2*corrcou1,2)

mincb+ cbcou1,2
 

where cb is the number of common bulls 
between country 1 and 2. 

Then, the Corrwin were first bended to ensure 
that the matrix was all positive definite, and 
weighted against the previous correlations and the 
magnitude of the changes made by countries. In 
the next step, the results from the preceding step 
and the previously used correlations are combined 
into a weighted average to avoid large changes in 
correlations between consecutive test runs,  
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Figure 1. Breeds and countries participated for each trait and trait groups. Red ones show the breed-trait   combinations 
which were submitted by only one country and were not included in the MACE research run. 

 
weighted by the number of common bulls.  The 
final correlation was calculated as follows: 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝒘𝒘 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

1 + 𝒘𝒘
 

 Where w is the magnitude of changes as 0 = 
big change (in our case), 1=small and 2 = no 
change. If there are no changes in the national 
evaluations for the two countries, then the new 
processed correlation is not expected to deviate 
much from the previous one. However, if one of 
the countries has introduced changes in its 
national evaluations, it is expected that the genetic 
correlation between them would change as well. 
It is also expected that an increase in the number 

of common bulls would yield a more precise 
estimate of the genetic correlation, and in this 
case, less weight is given to the previous  

 
correlations. This is achieved by decreasing the 
weight on the previous correlations, 
proportionally to the increase in number of 
common bulls 
(https://interbull.org/ib/rg_procedure). 

Finally, the updated (co)variance matrix is 
bended using the bending procedure described by 
(Jorjani et al., 2003). 
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Estimated Breeding Values (EBVs) calculation 
Once all the correlation values were checked to be 
in the expected range the evaluation moved 
towards the estimation of the international EBVs. 
In this step, the correlation between national and 
international (MACE) EBVs, along with the 
reliability was estimated and compared. 
 
Results and Discussion 
 
Challenges: a) Change in directions of scales 
After checking all the initial correlation estimates, 
some directions of scales for some countries, 
traits, and breeds changed as presented in Table 
2, due to some results being on the negative scale. 
 
Challenges: b) Gestation length 
After the initial across-country correlation 
estimations for ges, two countries, ITA and 
CHE, had the lowest correlations with the other 
countries. 
 
Table 2. Changes in direction of scale for the affected 
country, breed,trait with negative across-countries 
correlation estimations. 

1 United States of America (USA), the Netherlands (NLD), 
Switzerland (CHE), Italy (ITA), Norway (NOR) 
 

In order to understand the root cause of the 
problem, Interbull Centre initiated an extensive 
exchange of information with the two countries 
involved until it came out that what those 
countries had submitted was maternal gestation 
length while all the other participating countries 
had provided the direct trait. ITA and CHE were 
then asked to submit direct gestation and after 
receiving the new data and re-estimating the 
across-country correlation the values became 
high and in line with other countries (Table 4). 
 
Correlation estimation 
All the minimum and median values applied to 
post-process the correlations for all breeds-traits 
are shown in Table 3. 
 
Direct gestation length (ges) 
Across-country correlation for direct gestation 
length for HOL breed is shown in Table 4. An 
example of number of common bulls and 
common ¾ sib groups only for HOL breed is 
presented in Table 5. Correlation estimates for 
RDC, JER and BSW breeds are reported in Table 
6, 7 and 8, respectively. The correlation estimates 
ranged from 0.90 between ITA and Czech 
Republic (CZE) to 0.995 between USA and Japan 
(JPN) for the HOL breed. For the RDC breed 
there were four countries and the lowest and 
highest values were as 0.961 between NOR and 
New Zealand (NZL) and 0.982 between NOR and 
USA, respectively.      

For JER breed that included three countries, 
correlation ranged from 0.953 to 0.983 between 
NZL, USA and AUS, USA respectively. The 
range for across-country correlation estimates for 
BSW breed including three countries ranged from 
0.966 and 0.980 for AUS, CHE and AUS, USA 
accordingly. 

 
 

 

 

Breed(s) Trait(s) Country1 
Change in 

Direction of 
scale 

HOL, 
BSW, 

JER, RDC 

ges 

USA T+  T- 

HOL NLD B+ B- 

HOL, 
BSW CHE B+ B- 

HOL ITA B+ B- 

RDC cke, sck 
and mfe NOR B+ B- 
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Table 3. Minimum and Median values used for the post-processing correlation estimations for all breeds and new 
traits. 

 
 Table 4. Correlation estimation for the ges in the HOL breed. 

Country1 AUS CHE CZE ITA JPN NLD NZL USA 
AUS 1 

       

CHE 0.978 1 
      

CZE 0.901 0.926 1 
     

ITA 0.954 0.952 0.900 1 
    

JPN 0.986 0.982 0.901 0.956 1 
   

NLD 0.989 0.986 0.915 0.959 0.989 1 
  

NZL 0.979 0.959 0.901 0.929 0.969 0.975 1 
 

USA 0.985 0.981 0.902 0.962 0.995 0.993 0.974 1 
1 Australia (AUS), Switzerland (CHE), Czech Republic(CZE), Italy (ITA), Japan (JPN), the Netherlands (NLD), New 
Zealand (NZL), United States of America (USA) 

Table 5. Number of common bulls (below diagonal) and the common 3/4 sib groups (above diagonal) for the ges and 
HOL breed. 

Country AUS CHE CZE ITA JPN NLD NZL USA 
AUS 0 320 579 854 590 823 778 1083 
CHE 271 0 333 536 374 541 270 677 
CZE 431 227 0 1568 917 1573 703 1846 
ITA 673 444 1186 0 1325 1928 957 3103 
JPN 511 284 625 935 0 1020 528 1923 
NLD 691 488 1322 1396 765 0 1228 2248 
NZL 716 227 520 716 397 1016 0 1206 
USA 1092 580 1530 2385 1586 1725 1086 0 

 

Table 6. Correlation estimation for the ges in the RDC 
breed. 

RDC-ges AUS NOR NZL USA 
AUS 1    
NOR 0.971 1   
NZL 0.970 0.961 1  
USA 0.979 0.982 0.966 1 

 

Table 7. Correlation estimation for the ges in the JER 
breed. 

JER-ges AUS NZL USA 

AUS 1   

NZL 0.963 1  

USA 0.983 0.953 1 

Breed-Trait Min (10% 
percentile) 

Median 
(10%,0.99) Breed-Trait Min (10% 

percentile) 
Median 

(10%,0.99) 
 HOL-ges 0.90 0.94 HOL-idd 0.77 0.88 
BSW-ges 0.96 0.98 HOL-idh 0.35 0.67 
JER-ges 0.95 0.97 HOL-soh 0.59 0.79 
RDC-ges 0.96 0.97 HOL-sou 0.73 0.86 
HOL-cke 0.56 0.78 HOL-wld 0.63 0.81 
HOL-sck 0.56 0.77 RDC-dde 0.79 0.89 
HOL-mfe 0.44 0.72 RDC-idd 0.79 0.89 
RDC-cke 0.54 0.77 RDC-idh 0.60 0.80 
RDC-sck 0.45 0.72 RDC-soh 0.81 0.90 
RDC-mfe 0.59 0.79 RDC-sou 0.91 0.95 
HOL-dde 0.78 0.89 RDC-wld 0.95 0.97 
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Table 8. Correlation estimation for the ges in the BSW 
breed. 

BSW-ges AUS CHE USA 
AUS 1 

  

CHE 0.966 1 
 

USA 0.980 0.974 1 
 
Claw health 
Across-country correlation estimations range for 
six claw health traits and for the two breeds of 
HOL and RDC are shown in Tables 9 and10. The 
highest value for the HOL breed was 0.928 for 
dde between NLD and Poland (POL) and the 
lowest estimate was 0.356 for idh between Spain 
(ESP)-NLD (Table 9). 

For the RDC breed, the highest and the 
lowest correlations were estimated as 0.953 and 
0.619 for wld and idh, respectively, between the 
two countries of NLD and Denmark-Finland-
Sweden (DFS) (Table 10).   
 
Table 9. Summary statistics for correlation estimation 
for the all six claw health traits in the HOL breed. 

Traits Breed Min Mean Max 

dde HOL 0.79 
(CZE,DFS) 0.86 0.928 

(NLD,POL) 

idd HOL 
0.772 
(ESP1-
NLD) 

0.81 0.88 
(ESP-DFS) 

idh HOL 0.356 
 (ESP-NLD) 0.59 0.881 

 (DEU-DFS) 

soh HOL 
0.593 

(DEU1-
NLD) 

0.69 0.828  
(DFS-NLD) 

sou HOL 0.732  
(ESP-NLD) 0.79 0.853  

(ESP- DFS) 

wld HOL 0.633 (DEU 
–ESP) 0.71 0.8  

(DEU-DFS) 
1 Spain (ESP), Germany (DEU) 

Metabolic Diseases 
For HOL and RDC breeds, the summary statistics 
for across-country correlation estimates are 
presented in Table 11. For the HOL breed the 
correlation estimations ranged between 0.444 (for 
mfe and Germany (DEU)-USA)) and 0.946 (sck 
and DFS-ITA). The highest and lowest across-
country correlation estimates ranged between 
0.493 and 0.605 for sck and mfe, respectively, for 

the RDC breed and the two countries of NLD and 
DFS (Table 11). 

Table 10. Summary statistics for correlation estimation 
for the all six claw health traits in the RDC breed. 

Traits Breed Min Mean Max 

dde RDC (DFS1-
NOR) _ 0.799 

idd RDC (DFS-NOR) _ 0.799 
idh RDC (DFS-NOR) _ 0.619 
soh RDC (DFS-NOR) _ 0.821 
sou RDC (DFS-NOR) _ 0.917 
wld RDC (DFS-NOR) _ 0.953 

 1 Denmark- Finland- Sweden (DFS) 

Table 11. Summary statistics for correlation estimation 
for the all three metabolic diseases traits in HOL and 
RDC breeds. 

Traits Breed Min Me
an Max 

cke HOL 0.563 
(DEU-USA) 0.63 0.709 

(DEU-NLD) 

sck HOL 0.565 
(CHE-ITA) 0.73 0.946 

(DFS-ITA) 

mfe HOL 
0.444 
(DEU- 
USA) 

0.55 0.695 
(DEU-NLD) 

Cke RDC NOR-DFS - 0.558 
Sck RDC NOR-DFS - 0.493 
mfe RDC NOR-DFS - 0.605 

 
EBVs and reliability correlation estimations; 
National vs International (MACE) evaluations 
 
Direct gestation length 
All the EBVs and reliability correlation 
estimations between the national and 
International (MACE) evaluations for ges and all 
breeds are presented in Figure 2-3. For the HOL 
breed, the highest EBV correlation was 1 for JPN 
and for the rest of the countries, the EBVs 
correlation were above 0.983 (Figure 2). For the 
RDC breed, the highest correlation is for NOR (1) 
and NZL (0.999) (Figure 3). For BSW and JER 
breeds the highest values are 0.999 for CHE and 
1 for NZL, respectively (Figure 3). 
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Claw Health 
For claw health traits, the EBV correlations 
between national and MACE evaluation, were 
quite high with the lowest being estimated for dde 
in the HOL breed with value of 0.9 for CZE. The 

highest value was 0.997 for idh and wld in NLD 
(Figure 4). For the RDC breed and having only 
two countries of NOR and DFS, the minimum 
value was estimated as 0.991 for wld in NOR and 
the highest value was estimated as 0.999 for NZL. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Correlations of EBVs and reliability estimates between national and International (MACE) evaluations for 
ges in the HOL breed. 

 

 

 

 

  

 

 

 

 

 

  

 

Figure 3. Correlations of EBVs and reliability estimates between national and International (MACE) evaluations for 
ges in RDC, BSW and JER breeds. 
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Metabolic disease 
Table 12 presents the EBVs and Reliability 
correlation estimates for all three metabolic 
diseases traits in the HOL breed. For the HOL  
breed the EBVs correlations ranged from 0.924 
 (NLD-mfe) to 0.998 (NLD-sck; DFS-mfe). For 
the RDC breed and having only two countries of  
NOR and DFS the EBVs correlation estimations 
were 1 between these two countries. 
 
May MACE test run(2505t) results- Direct 
gestation length (ges) 
According to the new MACE service schedule, 
introduced in 2025, an extra MACE test run was  
conducted in May 2025.  

 
 
 

Six countries participated for direct gestation 
length. The list of countries and breeds is 
presented in Figure 5. In general, the correlation 
estimations were similar to the research run 
estimates. The correlation of EBVs and reliability 
estimates between National and MACE May test 
run 2025 (2505t) evaluations was promising; 
Moreover, EBVs and reliability correlation 
estimations between May test run (2505t) and 
research run were also similar and promising. 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Correlations of EBVs and reliability estimations between national and International (MACE) evaluations for 
all claw health traits in the HOL breed. 
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Table 12. EBVs’ and reliability correlation estimates 
between National and International (MACE) 
evaluations for metabolic diseases traits in the HOL 
breed. 

 Correlation Reliability 

Trait Breed Min Max Min Max 

cke 

HOL 

0.925 
(NLD) 

0.997 
(USA) 

0.868 
(NLD) 

0.994 
(USA) 

sck 
0.965 
(ITA) 

0.998 
(NLD) 

0.732 
(ITA) 

0.986 
(CHE, 
NLD) 

mfe 
0.924 
(NLD) 

0.998 
(DFS) 

0.843 
(NLD) 

0.996 
(DFS) 

 

 
Figure 5. List of the countries and breeds, participated 
for “ges” in MACE May test run 2025. 

Conclusion 

To conclude, the new traits’ MACE research run 
showed promising results which led to the official 
May test run 2025 for “ges” trait and its 
subsequent inclusion in the official 2025, August 
MACE evaluation.  

Moreover, the research run results for 
metabolic and claw health traits have also shown 
the feasibility to include such trait groups in the 
current MACE portfolio. The offering of an 
official test run for those two trait groups would 
require a bit higher participation rate from the 
MACE countries/organizations and it is therefore 
aimed to happen in the near future. Interbull 

Centre will continue reviewing the new 
information provided by the participating 
countries in the PREPdb so as to timely identify 
any new other traits/trait groups that could be 
suitable for an international evaluation. In order 
to do that, Interbull Centre would gladly renew 
the invitation to all countries/organizations to 
continue to fill in the PREPdb “other traits” 
electronic form. More also can be an inclusion of 
more new traits and Interbull services for the new 
traits, such as GMACE and Intergenomics. 
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Abstract 
 
A genomic evaluation for calf health traits was developed for the Holstein breed in Canada effective August 
2025. The new Calf Health index aims to increase resistance to the two most prevalent calf diseases on 
Canadian farms, respiratory problems (RESP) and diarrhea (DIAR). Producer-recorded respiratory 
problems and diarrhea health events recorded in the first 180d and 60d, respectively, of a heifer calf’s life, 
are used in the genetic evaluation. RESP and DIAR, coded as binary traits, are used in a two-trait linear 
animal model considering a fixed year-season effect and random herd-year-season, animal, and residual 
effects for both traits. Genetic parameters were estimated by the MC EM REML method using 310 662 calf 
records from 1 179 herds. Heritability estimates were 0.05 for RESP and 0.04 for DIAR, with a genetic 
correlation of 0.53 between the traits. A Single-step genomic evaluation was implemented using the MiX99 
software. A June 2025 evaluation test run had 355 355 records for RESP and 144 495 for DIAR, collected 
from 1 442 Canadian herds from 2007 to 2025. There were 74 013 calves with health records that were 
genotyped and a total of 119 715 genotyped animals in the reference population. The overall prevalence for 
RESP and DIAR was 19.5% and 21.1%, respectively. The Calf Health index combines genomic estimated 
breeding values for RESP and DIAR at equal weightings. Calf Health evaluations are published as a relative 
breeding value, with a mean of 100 and standard deviation of 5 for base bulls, where higher values represent 
greater resistance to calf health diseases. No genetic trend was observed and only weak relationships with 
other routinely evaluated traits were present. From a sire comparison analysis, clear differences were found 
when comparing high and low RBV sires in terms of daughter disease rates, highlighting the potential of 
the evaluation. Genetic selection for improved calf health is a valuable tool for animal welfare, lifetime 
animal production, and overall herd profitability. 
 
Key words: Calf health, diarrhea, respiratory problems, single-step, genomic evaluation 
 
Introduction 
 
In recent years, genetic and genomic evaluations 
of dairy cattle have begun to prioritize animal 
health. In Canada, national genomic evaluations 
for dairy cattle now contain various health-related 
traits, including mastitis resistance, metabolic 
diseases, hoof lesions, and fertility disorders 
(Jamrozik et al., 2013, Jamrozik et al., 2016, 
Malchiodi et al., 2020, Jamrozik et al., 2021). To 
date, only traits related to the mature cow have 
been included. However, recent studies have 

shown the potential for improving calf health 
through genetic selection, with heritabilities 
ranging between 0.02 to 0.24 (Gonzalez-Peña et 
al., 2019; Lynch et al., 2024a). The two major calf 
disease classes are respiratory problems (RESP) 
and diarrhea (DIAR). Both diseases can be caused 
by several pathogens which makes control of the 
diseases difficult on farms. Prevalence rates of 
RESP are typically reported between 12 and 22%, 
while DIAR ranged from 23 to 44% (Windeyer et 
al., 2014, Urie et al., 2018, USDA, 2018; 
Gonzalez-Peña et al., 2019). Furthermore, RESP 
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and DIAR account for roughly 75% of 
preweaning mortality, highlighting the impact of 
calf disease on dairy farms (NAHMS, 2007, 
Murray, 2011). 

To address this, Lactanet Canada (Guelph, 
ON) has developed a new genomic evaluation for 
both RESP and DIAR, as part of a new calf health 
index, officially released in August 2025 for the 
Holstein breed. The objectives of this study were 
to describe the current impact of calf diseases on 
Canadian farms, the methodology of the genomic 
evaluation, and highlight the differences in sire 
performance.  
 
Materials and Methods 
 
Data and Trait Definitions 
A detailed examination of the calf health (CH) 
recording and traits in Canadian Holsteins can be 
found in Lynch et al. (2024b). Calf disease data 
are recorded by Canadian dairy producers on a 
voluntary basis since 2007. The ‘healthy’ herd 
mates were determined using herd inventory data. 
The two calf disease traits with sufficient records 
were RESP and DIAR. Only Holstein records for 
female calves were considered for genetic 
evaluations. RESP and DIAR are expressed as 
binary traits where 0 represents no case and 1 
represents at least one disease case occurring 
within the defined timeframe. For RESP the first 
180d of life is considered while birth to 60d is 
used for DIAR. To ensure accurate and 
continuous data recording within individual 
herds, at least 2 recorded cases for a given disease 
were required within the dataset, with a minimum 
of 4 months between the 1st and the last record for 
a trait. Also, a minimum disease frequency of 1% 
within a herd-birth year was required. 

Using the above criteria, data used in the June 
2025 evaluation included 378 587 total records, 
with 355 355 and 144 495 for RESP and DIAR, 
respectively. A total of 121 263 records had 
values for both traits.   
 

Model 
The model is a two-trait linear animal model for 
RESP and DIAR. The same model is used for 
both traits, considering the fixed effect of year-
season and random effects of herd-year-season 
(HYS), animal additive genetic, and residual. In 
matrix notation, the model can be written as: 

 
y = Xb + Z1h + Z2a + e, 

 
where y is a vector of observations (binary RESP 
and DIAR traits), b is a vector of the fixed effect, 
h is a vector of HYS effects, a is a vector of 
animal additive genetic effects, e is a vector of 
residuals, and X, Z1, and Z2, are the respective 
incidence matrices. Random effects were 
assumed to be normally distributed, with means 
equal to zero. 

Model assumptions are that: v(h) = I ⊗ HYS, 
I is an identity matrix and HYS is the covariance 
(2x2) matrix for HYS effects, v(a) = H ⊗ G, H is 
a combined pedigree-genotype relationship 
matrix, G is the additive genetic covariance, v(e) 
= R, R is a diagonal  matrix of residual effects. 

 
Genetic Parameters 
Co-variance components and genetic parameters 
were estimated by MC-EM-REML as 
implemented in MiX99 (MiX99 Development 
Team, 2017) using a 2024 data extract including 
310 662 records from 1 179 herds. The edits 
described above were also applied to the genetic 
parameter estimation dataset. The same model as 
described for genetic evaluation purposes above 
was used, but the combined pedigree-genomic 
relationship matrix H was replaced by an additive 
relationship matrix A.  

 
Genomic Evaluation 
A two-trait component-wise Single-Step 
GTABLUP method (Mantysaari et al., 2017) was 
implemented at Lactanet Canada using MiX99 
and related software (MiX99 Development Team, 
2017), with the assumption that 80% of the total 
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genetic variance was explained by SNP effects. 
The June 2025 data included 119 715 genotyped 
animals, of which 74 013 were genotyped females 
with phenotypes and 8 570 were genotyped sires 
with phenotyped daughters. Animals are 
genotyped either with 50K SNP panel or a low-
density panel and imputed to 50K using F-Impute 
(Sargolzaei al., 2014). Groups for unknown 
parents are not included in the model. The SNP 
effects, to be used for calculating Genomic 
Estimated Breeding Values (GEBV) for 
genotyped animals not included in the single-step 
core analysis, are estimated from the GEBV of 
reference animals (as in Lourenco et al., 2015).  

Reliability of GEBV is approximated by a 
weighted (80:20) average of Direct Genomic 
Value (DGV) and animal model reliabilities 
(Sullivan et al., 2005). The DGV reliabilities are 
calculated using SNP prediction error co-
variances with the SNP-BLUP-REL software 
(Luke, Finland). Animal model reliabilities are 
calculated with the EDC and reliability software 
of Sullivan (2023). 
 
Relative Breeding Values 
The CH index combines the two individual RESP 
and DIAR traits at equal weighting. The index and 
the individual traits are published. The 
evaluations are expressed as Relative Breeding 
Values (RBV) with a mean of 100 and SD of 5 for 
base bulls that for April 2025 are those born 2010-
2019 and with an ‘official’ status. A higher RBV 
value means a greater resistance to calf health 
diseases. Sire evaluations are defined as ‘official’ 
for RESP and DIAR when they have at least 20 
phenotyped daughters from 5 herds for the 
respective trait and a minimum reliability of 70%. 
Sires are official for CH when they are official for 
both contributing traits. 
 
Sire Comparison Validation 
To investigate the difference in performance of 
top and bottom performing sires, a random cross-
validation study was conducted. For each trait, 

official sires with at least 30 phenotyped 
daughters were included in the analysis. 
Randomly half of each sire’s phenotyped 
daughters had their phenotype changed to 
missing, while the remaining half were used to 
predict sires’ RBV. Sires were then ranked 
according to their RBV. The daughters with their 
phenotype set to missing for the evaluation were 
used to determine the sires’ daughter disease rate 
for both the calf diseases, therefore acting as an 
independent sample. Sires with an RBV greater 
than 110 and lower than 90 were then compared 
based on their percentage of disease daughters for 
each calf disease. This process was repeated five 
times and averaged across iterations to get an 
accurate representation of sire performance across 
different sample groups. 

 
Results and Discussion 
 
Incidence Rates 
Incidence rates across years for RESP and DIAR 
are shown in Figure 1. On average, the incidence 
rates for RESP and DIAR were 19.5% and 21.1%, 
respectively, which were similar to values 
reported in the literature (Lynch et al. 2024a). 
Greater fluctuation has been seen in DIAR 
incidence rates, whereas RESP has remained 
relatively stable. This fluctuation may be due to 
several factors, including changes in herds 
reporting information and quality of reporting 
over time.  

 
Figure 1: Incidence rates across years for Respiratory 
Problems (dotted line) and Diarrhea (solid line). 
Genetic Parameters 
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Heritability and genetic and phenotypic 
correlation estimates for RESP and DIAR are 
shown in Table 1. The heritabilities for RESP and 
DIAR were 0.054 and 0.044, respectively. 
Estimates were similar to those reported in the 
literature for calf disease traits and other health 
related traits in the Canadian Holstein population 
(Lynch et al. 2024a, Jamrozik et al., 2013, 
Jamrozik et al., 2016, Malchiodi et al., 2017, 
Jamrozik et al., 2021).   

 
Table 1: Heritabilities with standard error in 
parentheses, genetic correlations (above diagonal), and 
phenotypic correlations (below) diagonal for 
Respiratory Problems (RESP) and Diarrhea (DIAR).  

 RESP DIAR 

RESP  0.054 (0.010) 0.53 
DIAR  0.13 0.044 (0.013) 

 
Genomic Evaluations 
In the June 2025 preliminary evaluation run there 
were 1 393 Holstein sires with an official CH 
evaluation. The RBV for CH evaluation ranged 
from 78 to 114 for this group and averaged 100. 
The average reliability was 87% and ranged from 
72 to 99% for official sires. The average 
reliability of genotyped, young Holstein bulls 
without daughter records that were identified as 
being controlled by an AI organization (N=3 744) 
was 70%. 

Proof correlations were estimated between CH 
index, RESP and DIAR and other routinely 
evaluated traits in Canada using 937 Holstein 
sires born since 2010 with an official LPI and CH 
index. The proof correlation between RESP and 
DIAR was 0.39, which is similar but slightly 
lower than the genetic correlation estimate. This 
highlights some difference in the two traits and 
that the CH index is useful to make effective 
progress in both traits, since the proof correlation 
for RESP and DIAR with CH is 0.83 and 0.84, 
respectively. For other routinely evaluated traits, 
little to no correlations were found. No proof 
correlations above |0.20| were found between CH 
and RESP for any other trait currently being 

evaluated. For DIAR, the only proof correlations 
stronger than 0.20 were for Calving Ability 
(-0.20) and Calving Ease of daughters at first and 
later calvings (-0.21 and -0.20, respectively). 
Direct selection on the CH index is therefore 
important to make progress in the calf health traits 
analyzed.  
 

Figure 2: Genetic trend for Holstein females with 
records for Respiratory Problems (dotted line) 
Diarrhea (solid line). 
 

The genetic trend for CH in females with 
records in the evaluation is shown in Figure 2. 
The genetic trend has been relatively flat since the 
onset of trait recording. Since there is little to no 
relationship with other traits under selection in the 
Canadian Holstein population, this is expected.  
 
Sire Comparison 
On average, daughters born to sires with an RBV 
less than 90 were 1.8 times more likely to exhibit 
DIAR compared to daughters born to sires with 
an RBV greater than 110, while for RESP they 
were 1.3 times more likely. These differences 
help highlight the difference in sire performance 
and show the potential of the evaluation to help 
improve the health of young dairy calves. These 
results are in line with a similar approach 
conducted by Lynch et al. (2024b). 
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Conclusions 
 
Genetic improvement of Calf Health is highly 
valuable as it impacts replacement loss, lifetime 
performance, animal welfare, and overall 
profitability. The first genomic evaluations for the 
Calf Health index and the contributing traits, 
DIAR and RESP, were published in August 2025 
by Lactanet for the Canadian Holstein breed. The 
introduction of the CH index in the Canadian 
national selection index LPI within its Health and 
Welfare subindex is scheduled for April 2026.  
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Abstract  
 
Healthy calves are important to the productivity and welfare of dairy herds. They are potential herd 
replacements as well as a source of livestock trading income. Further, healthy calves are important to 
the continuous improvement of animal welfare that is valued by farmers and consumers. In our dataset 
of ~20,000 calves with health records, the prevalence of stillbirth, preweaning mortality and scours 
was 4%, 2% and 6% respectively suggesting that there are opportunities to improve calf health. The 
aim of this study was to estimate variance components for novel calf traits and gather the perspectives 
of farmers about the relative importance of these traits. Univariate linear models that included a 
genomic relationship matrix were used to estimate variance components for stillbirth, preweaning 
mortality, scours, respiratory disease and calf vitality where heritability (h2) estimates ranged from 1% 
to 11% depending on the trait. Calf vitality is a new, subjectively-scored trait where farmers describe 
calves on a scale from A (vigorous) to E (dead). The models included herd-year-season, sex, parity 
group and calving ease as fixed effects and these were found to be significant for most breed and trait 
combinations. Our survey found that calf traits were valued by farmers similarly to cow survival. They 
preferred new traits to be published separately, rather than in multi-trait indexes. As genetic variation 
in several calf health traits was measured and the value to farmers has been tested, we conclude that 
there is an opportunity to introduce new traits into routine evaluations that target genetic gain for calf 
health.   
 
Key words: Calf health, stillbirth, vitality, breeding values  
 
Introduction  
  
Healthy calves are an important part of a dairy 
herd’s natural cycle. Heifer calves become 
replacements that enable a herd to sustain or 
grow its size. Replacement heifers are costly to 
rear. In fact, Boulton et al. (2017) reported that 
it takes 1.5 lactations to repay the costs 
associated with the heifer rearing period. As 
morbidity increases, the costs associated with 
extra labour and treatments are expected to rise.  
As mortality rises, the total costs are spread over 
fewer surviving animals. There are economic, 
productivity and welfare benefits arising from 
healthier calves.  

Compared to cow health traits, the genetic 
contribution to improved calf health and lower 

mortality is a relatively new area of research but 
it is a logical progression to the successful 
genetic improvement of traits like udder health 
(Abdelsayed et al., 2017) and fertility (Ooi et 
al., 2023) in cows and the number of stillborn 
calves (Cole et al., 2007).  

This paper reports variance components for 
calf health traits and industry perspectives about 
trait expression and their relative importance for 
breeding purposes.  
 
Materials and Methods  
 
Health records for 19,824 calves were collected 
from ~50 Australian dairy herds as previously 
described by the authors (Axford et al., 2025a). 
Calf health events and deaths were coded as 
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binary traits for analysis as 0 or 100 for each 
trait, where sick or dead was coded as 0 and 
healthy was 100. The traits were stillbirth (SB) 
(dead at birth or shortly thereafter), pre-
weaning mortality (PWM) (born alive but died 
before weaning, estimated to be day 84), Health 
(presence of any health event), Scours (presence 
of any diarrhea event), Resp (presence of any 
respiratory disease). Vitality was a subjectively 
scored trait with 5 levels where A was a 
vigorous calf, B was a good calf, C was an 
average calf, D was a dull calf that lacked 
vigour and E was a dead calf.  

Genetic parameters were estimated using 
univariate linear animal models that included a 
genomic relationship matrix (GRM) and fixed 
effects in ASReml 4.2 (Gilmour et al., 2022). 
The fixed effects were calving ease (CE) with 3 
levels (no assistance, slight assistance and 
moderate/high assistance), dam parity at 
calving where parity was divided into 2 levels 
(parity 1 and parity 2+), sex of the calf and Herd 
Year Season (HYS) where season was divided 
into 2 levels (1 is January-June, and 2 is July-
December). Calving ease was dropped in Jersey 
models because there were few cases of 
dystocia recorded in the dataset. Due to data 
limitations, direct-effect models were used. 
Mating data for dams and further detailed calf 
phenotypes were unavailable so gestation 
length, birth weight and colostrum were not 
included in the model. Animals were used in the 
EBV predictions if they were genotyped, sire by 
a recorded, AI sire and there was a minimum of 
5 records in the HYS.  

The general form of the model used to 
estimate variance components and genomic 
breeding values for each trait was as follows: 

  
𝑦𝑦=𝑋𝑋𝑋𝑋+𝑍𝑍𝑍𝑍+𝑒𝑒 

 
where y is the vector of the phenotypic records 
for each trait (SB, PWM, Health, Scours, Resp, 
Vitality); b is the vector of the fixed effects 
including HYS, parity group, CE for Holstein 
only, and sex; u is the vector of the random 
additive genetic effect and e is the vector of 

random residual effects; X and Z are design 
matrices that relate phenotypes to their 
corresponding fixed effects (b) and random 
additive genetic effects (u). It is assumed that  
 

𝑣𝑣𝑣𝑣𝑣𝑣(𝑢𝑢)=𝐺𝐺𝐺𝐺𝐺𝐺𝜎𝜎𝑢𝑢2, 𝑣𝑣𝑣𝑣𝑣𝑣(𝑒𝑒)=𝐼𝐼𝜎𝜎𝑒𝑒2  
 
where 𝜎𝜎𝑢𝑢2 is the additive genetic variance, 𝜎𝜎𝑒𝑒2 is 
the residual variance, and I is an identity matrix. 

This model was expanded to include two 
traits and was used to check the genetic 
correlation between calf traits of interest. 
Further, to test the relationship with cow traits, 
approximate genetic correlations were 
calculated using Peason correlations and then 
adjusted for reliabilities as we described earlier 
(Axford et al., 2025a). 

The reliability of prediction for all traits was 
calculated using the standard errors of EBV, as 
follows:  

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟=1- 
𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖
𝜎𝜎𝑢𝑢2

 

where, PEVi is the prediction error variance 
(squared error of the EBVi for animal i in the 
pedigree) and 𝜎𝜎𝑢𝑢2 is the estimated genetic 
variance in the prediction model. 
 To gather the perspectives of farmers and 
service providers about the importance of calf 
traits in breeding programs, an online survey 
was conducted between October 2023 and June 
2024 using SurveyMonkey 
(https://uk.surveymonkey.com/). Respondents 
were asked about their business and herd 
demographics, calf record keeping, trait 
preferences and opinions about the expression 
of genetic traits. A total of 109 responses were 
received, of which 66% were farmers with 
further demographic details available in Axford 
et al. (2025b). 
 
Results & Discussion  
 
Disease prevalence 
Table 1 reports the prevalence of morbidity and 
mortality for Holstein and Jersey calves. The 
prevalence of SB was lower (4% compared to 
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almost 7%) to our earlier Australian study of a 
larger national dataset (Axford et al., 2024) and 
the prevalence of PWM was similar (~2%). 
This dataset was more recent (calves born 2020-
2023) and involved farmers that agreed to 
participate in this calf research who may 
prioritise calf health and recording which could 
explain the lower mortality rate. As expected, 
scours was the most commonly recorded 
disease, followed by respiratory disease. Few 
cases of other health events were recorded, for 
example miscellaneous (96 cases), deformities 
(26 cases), and pink eye (20 cases). Stillbirth 
explained five times more deaths than scours 
and respiratory disease combined, suggesting 
that this was a major calf welfare issue on 
participating dairy farms.  

The novel trait of calf vitality had fewer 
records (n=3,651) as roughly half of the herds 
routinely recorded this trait. Twenty-one 
percent of recorded calves were scored as A - 
“vigorous”, 28% B - “good”, 26% C – 
“average”, 6% D – “dull”, and 19% E – “dead”. 
Many herds (40%) only recorded vitality scores 
for dead calves which explains the high 
percentage of “E” scores in the dataset. 

 
Table 1: Across herd prevalence of morbidity and 
mortality in Holstein and Jersey calves, expressed 
as a percent. 

 
Holstein 

(n=11,182) 
Jersey 

(n=949) 

 

Overall 
mean % 

(SE) 

Overall 
mean % 

(SE) 
Pre-Weaning 
Mortality 

2.0 
(0.1) 

2.7 
(0.5) 

Respiratory 
disease (lived 
and died) 

0.4 
(0.1) 

0.1 
(0.1) 

Respiratory 
disease (died) 

0.1 
(0.0) 

0.0 
(0.0) 

Scours (lived 
and died) 

5.9 
(0.2) 

4.8 
(0.7) 

Scours (died) 1.0 
(0.1) 

1.5 
(0.4) 

Stillbirth 4.1 
(0.2) 

4.8 
(0.7) 

 
 
Genetic parameters 

After editing to include animals with a 
genotype, recorded AI sire and at least 5 records 
per HYS, there were 7,504-10,513 records for 
Scours, SB and PWM. HYS were removed if 
the Vitality records included only calves scored 
as E – “dead” leaving 1,693 Vitality records 
remaining. The heritability ranged between 1-
11% depending on the trait. Either low disease 
prevalence, smaller sample size or a 
combination of the two meant that variance 
components for Jersey cattle could not be 
estimated.  
 
Table 2:  Genetic variance (VarG), phenotypic 
variance (VarP), and heritability (h²) estimates for 
calf health traits in Holstein cattle from univariate 
linear models. 

Trait 
 

VarG  
(SE) 

VarP  
(SE) 

h2  
(SE) 

Holstein    

PWM 0.43 
(0.38) 

76.91 
(1.07) 

0.01 
(0.01) 

Scours 17.48 
(4.05) 

390.25 
(6.44) 

0.04 
(0.01) 

Stillbirth 5.68 
(2.07) 

230.86 
(3.59) 

0.03 
(0.01) 

Vitality 44.66 
(15.16) 

392.69 
(13.82) 

0.11 
(0.04) 

 
Stillbirth, as the major cause of early life 

mortality, had a heritability estimate of 4% (for 
the direct effect). At least in Holstein cattle, 
selecting for calving ease contributes to lower 
stillbirth rates as the genetic correlation is 
favourable (0.7 between stillbirth direct and 
calving ease, Axford et al., 2024). However, 
other significant effects, such as parity, are 
uncontrollable as there will always be heifer 
calvings. Therefore, adding stillbirth into sire 
selection protocols is an important step in 
improving calf welfare. 

Calf scours was the most prevalent disease 
reported in this study and others (Neupane et al., 
2021, Urie et al., 2018). As is common for 
health traits, including mastitis (Abdelsayed et 
al., 2017), the proportion of variance explained 
by genetics is low. In our case, the heritability 
of scours was 4% and this was similar to a 
recent Canadian study (4-6%, Lynch et al., 
2024).  The mean sire EBV for scours was 0.05 
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(±1.86 SD) as shown in Figure 1 and mean 
reliability was 0.27 (±0.11 SD).  
 

 
Figure 1. Distribution of EBV for scours in Holstein 
sires 

 
Scours is a major contributor to PWM. 

About half of the calves that were born alive but 
died before weaning were recorded as having 
died from scours in this study. Interestingly, the 
genetic correlation between the two was only 
0.18. PWM had a very low heritability estimate 
of only 1% in this study, which is lower than the 
9% reported by Zhang et al. (2022) with a 
similar model. Despite significant efforts to 
obtain a dataset of sufficient size, traits with low 
prevalence are especially challenging in genetic 
analysis and emphasise the need for more 
systematic approaches to data recording, at 
scale, such as automatic milk feeders and calf 
health sensors.  

Vitality was an experimental trait that is 
thought to reflect both health and behavioural 
characteristics and the interaction between the 
two. For example, a calf that is highly motivated 
to drink more milk may achieve higher intakes 
that promote good health. Despite having the 
least records, the heritability estimate for 
vitality was highest (11%). It is likely that the 
multiple levels partially explain the higher 
heritability compared to the remaining calf 
traits. There was a moderate relationship 
between vitality and scours (genetic correlation 
0.46) suggesting that the trait of vitality is 

capturing different information compared to 
scours alone. There were no significant genetic 
correlations between vitality and traits of the 
cow, such as Cow Survival, Likeability (another 
subjectively scored trait) and the Balanced 
Performance Index (BPI, national breeding 
index). 

 
Survey 
From this research, it is clear that genetic 
variation from calf health traits can be measured 
and EBVs could be incorporated into routine 
genetic evaluation. However, the availability of 
EBVs is not enough to instigate practice-change 
on-farm. As genetic selection decisions are the 
domain of farmers, their opinions are important. 
On a preference scale of 1-5 where 5 was most 
important, the mean score ranged between 3.5 
(±1.1) for heifer survival from weaning to first 
calving and 3.8 (±1.1) for calf health, as shown 
in Figure 2. These scores were lower than 
production traits but higher than scores for new 
traits such as feed saved and heat tolerance. Calf 
trait scores were similar to traits that are 
included in BPI, such as cow survival, mastitis 
and type traits.  

With regard to the expression of calf traits, 
respondents preferred that calf traits were 
presented so that higher ABVs reflect healthier 
calves (88%) and preferred traits to be presented 
separately rather than in a multi-trait index. We 
suggest that the preference for single trait 
presentation is related to the desire for 
transparency when new traits are first released. 
   
Conclusions  
 
The genetic selection for calf traits is a natural 
extension to the highly successful genetic 
improvement of traits affecting the productive 
life of cows. Like many other health traits, the 
calf traits we studied are characterised by low 
heritability yet are highly valued by farmers. 
There are opportunities to improve the welfare 
of calves and lower the costs associated with 
rearing replacements by adding calf health traits 
to routine genetic evaluations. 
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Figure 2. Weighted mean scores (bars) and standard error (whiskers) for calf (yellow) and cow (blue) 
trait preferences where 5 is most important and 1 is least important. Bars with no common letters identify 
scores that are significantly different (p<0.05).   
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Abstract 
 
The Nordic (Denmark, Finland, Sweden) General Health (GH) evaluation model was introduced in 2008 
and significantly revised between 2017 and 2019. The current GH index includes reproductive disorders, 
feet and leg disorders, clinical ketosis, and other metabolic diseases recorded as veterinary treatments. 
Acetone and β-hydroxybutyrate (BHB) measurements from milk mid-infrared (MIR) spectra are used 
as correlated traits in mixed model equations and supplied primarily from Danish herds. Although the 
collection of Swedish acetone and BHB measurements began in 2018, this data has not yet been 
incorporated into official evaluations. Furthermore, new Finnish measurements are available only for 
BHB and predicted from MIR using a different equation than those used in Denmark and Sweden.  

Swedish BHB and acetone, along with Finnish BHB data, were integrated into the official Nordic 
evaluation pipeline. Genetic correlations between Finnish and Swedish/Danish BHB were estimated at 
around 0.8. Genetic parameters were newly estimated for Holstein, Red Dairy Cattle (RDC), and Jersey 
breeds. The largest changes in heritability and genetic correlations between clinical and subclinical 
ketosis were observed for RDC and Jersey. Correspondingly, the largest changes in breeding values 
were observed for RDC and JER Nordic AI bulls. The updated model is planned to be implemented in 
November 2025. 
 
Key words: BHB, Nordic Dairy Cattle Evaluation, Metabolic disorders, Variance component 

Introduction  
 
Metabolic disorders are commonly observed 
conditions in high-yielding dairy cattle, 
affecting health, productivity, and economics of 
a herd. Ketosis and subclinical ketosis are 
considered as the most prevalent metabolic 
disorders in dairy cows (Eduardo and 
Barrientos-Blanco, 2024). Joint selection for 
resistance to clinical ketosis in Denmark, 
Finland, and Sweden (DFS) began in 2008 
when the first General Health (GH) model and 
index were developed (Johansson et al., 2008). 
In 2017, the GH model was enhanced by 
inclusion of milk biomarker traits β-

hydroxybutyrate (BHB) and acetone (ACE) to 
perform selection against subclinical ketosis 
(Rius-Villarasa et al., 2018).  

Biomarkers show a strong correlation with 
clinical ketosis and other metabolic diseases. In 
DFS, BHB and ACE indexes are not summands 
of the GH index and only used as correlated 
traits in the mix model equation. Phenotypes are 
measured using mid-infrared (MIR) milk 
spectra during the first 60 days of lactation. In 
the current workflow, biomarker data primary 
originates from Denmark; data from Finland is 
a fixed data set collected between 2016 and 
2019, and there is no data from Sweden. Due to 
limited data for Red Dairy Cattle (RDC) and 
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Jersey (JER) available for variance component 
(VC) estimation, parameters were derived from 
the Holstein breed (HOL). 

The aims of the current project were: 1) 
inclusion of Swedish BHB and ACE, and 
Finnish BHB data into the Nordic GH model; 2) 
estimation of genetic parameters for BHB and 
ACE in RDC and JER; 3) investigation of 
differences of the BHB and ACE phenotypes 
between countries. 
 
Materials and Methods  
 
Data 
The Nordic GH model includes five treatment 
traits and two biomarker traits (Table 1). 
Treatment data was previously described in 
Rius-Villarasa et al. (2018) and include 
veterinary records for early and late 
reproductive disorders (ERP and LRP), feet and 
legs disorders (FL), clinical ketosis (KET), and 
other metabolic diseases (OMB). Biomarker 
data (BHB and ACE) were based on mid-
infrared spectra analyzed by Foss MilkoScan 
(MilkoScan FT+, Foss Electric A/S, Hillerød, 
Denmark). For Denmark (DNK) and Sweden 
(SWE) BHB and ACE concentrations in milk 
were predicted from the spectra using the Foss 
prediction equation. For Finland (FIN) BHB 
concentrations in blood were predicted from the 
spectra using the approach shown in Kostensalo 
et al. (2023). Subset of FIN cows (n=134,232) 
had BHB phenotypes predicted using both the 
Foss and Kostensalo et al. (2023); however, 
BHB from the Foss predictions were not used in 
the estimation of genetic parameters or breeding 
values.  
 
Table 1: Number of cows with records by trait and 
breed. 

Trait* HOL RDC JER 
erp1 7802789 4366832 668042 
lrp1 7712623 4326174 655709 
fl1 7712623 4326174 655709 
ket1 7712623 4326174 655709 
omb1 7712623 4326174 655709 
bhb1 1422300 181433 252271 
ace1 1422300 181433 252271 
    

erp2 5531607 3166152 462345 
lrp2 5463053 3132902 454798 
fl2 5463053 3132902 454798 
ket2 5463053 3132902 454798 
omb2 5463053 3132902 454798 
bhb2 1121718 147311 200307 
ace2 1121718 147311 200307 
    
erp3 3488821 1992511 307564 
lrp3 3435200 1966113 301615 
fl3 3435200 1966113 301615 
ket3 3435200 1966113 301615 
omb3 3435200 1966113 301615 
bhb3 789610 101109 142485 
ace3 789610 101109 142485 

*erp – early reproductive disorder; lrp – late 
reproductive disorder; fl – feet and legs disorders; 
ket – clinical ketosis; omb – other metabolic disease; 
bhb – β-hydroxybutyrate; ace – acetone. 
 
Data for variance component estimation 
For the estimation of genetic parameters subsets 
with highly reliable bulls were used. The 
subsets were defined as bulls with ≥ 50 
daughters in ≥ 25 herds for HOL, and ≥ 25 
daughters in ≥ 10 herds for RDC and JER. For 
BHB and ACE, records from DNK collected 
from 2019 onwards were used. Genetic 
parameters for KET, OMB, BHB, and ACE 
were calculated using breed x country specific 
combinations. Data from DNK were used for 
HOL and JER breeds, while SWE data were 
used for RDC (Table 2). 
 
Table 2: Number of sires and cows by trait and breed 
used for 12 trait VCE. 

Trait* 
HOL RDC JER 

sires cows** sires cows** sires cows** 
bhb1 546 493 295 69 162 109 
ace1 546 493 295 69 162 109 
ket1 528 414 295 65 153 89 
omb1 528 414 295 65 153 89 
       
bhb2 515 307 283 35 150 64 
ace2 515 307 283 35 150 64 
ket2 459 229 277 32 130 46 
omb2 459 229 277 32 130 46 
       
bhb3 447 169 238 17 126 33 
ace3 447 169 238 17 126 33 
ket3 383 116 230 14 110 21 
omb3 383 116 230 14 110 21 
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*erp – early reproductive disorder; lrp – late 
reproductive disorder; fl – feet and legs disorders; 
ket – clinical ketosis; omb – other metabolic disease; 
bhb – β-hydroxybutyrate; ace – acetone 
**Cows are in thousands (*1000) 
 
Mixed model equation 
The following mixed model equations were 
applied for veterinary treatments and 
biomarkers: 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 + 𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 + 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 + 𝑢𝑢𝑙𝑙 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
and 
 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 + 𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 + 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 + 𝐿𝐿1𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

+ 𝐿𝐿2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑙𝑙 + 𝑝𝑝𝑝𝑝𝑚𝑚
+ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

 
Where, 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 were individual 
observations for veterinary treatments and 
metabolic biomarkers, respectively. Fixed 
effects were: 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 – the country-herd-year, 
𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 – the country-calving-age; 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 – the 
country-heard-month. 𝐿𝐿1𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 
𝐿𝐿2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 were regression for lactation stage 
modelled as a first and second order Legendre 
polynomial. Random effects 𝑝𝑝𝑝𝑝𝑚𝑚 and 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 were 
permanent environment and residual effects, 
respectively. Random effect 𝑢𝑢𝑙𝑙 is the animal 
effect in the breeding value estimation and sire 
effect in the variance component estimation.  
 
Variance component estimation 
Variance component estimation was performed 
using sire model and DMUv6. r.5.6 software 
(Madsen and Jensen, 2024) in two setups: 1) to 
estimate genetic correlations between countries 
and establish adjustment factors (κ) for BHB 
and ACE where each country-parity 
combination was treated as a separate trait; 2) to 
estimate new parameters for routine use, a 12-
trait model including BHB, ACE, KET, and 
OMB in parities 1-3 was used. Newly estimated 
parameters for BHB and ACE (6x6 block) were 
used to replace current routine estimates. Newly 
estimated covariances between BHB[ACE] and 
OMB, and between BHB[ACE] and KET were 

used to update routine covariances. The matrix 
bending procedure (Jorjani et al., 2003) was 
applied to make the 21 trait (co)variance matrix 
positive definite.  
 
Biomarkers data adjustment 
Prior to breeding value evaluation BHB and 
ACE records were multiplied by country-parity 
specific κ calculated as: 

κ =  �4𝜎𝜎𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑
2 /4𝜎𝜎𝑠𝑠_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

2  

Where 𝜎𝜎𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑
2  is sire genetic variance in desired 

breed-country-parity strata, and 𝜎𝜎𝑠𝑠_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
2  is sire 

genetic variance in observed breed-country-
parity strata. For HOL and JER the variance was 
estimated based on DNK data, and for RDC 
variance was estimated based on SWE data. 
Because sire variance was not possible to 
estimate for FIN and SWE JER, variance 
(𝜎𝜎𝑠𝑠_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

2 ) was approximated by parity using 
following formula: 

𝜎𝜎𝑠𝑠_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
2 =  �

𝜎𝜎𝑠𝑠_𝐷𝐷𝐷𝐷𝐷𝐷
2

𝜎𝜎𝑝𝑝_𝐷𝐷𝐷𝐷𝐷𝐷
2 � ∗  𝜎𝜎𝑝𝑝_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

2 , 

where 𝜎𝜎𝑠𝑠_𝐷𝐷𝐷𝐷𝐷𝐷
2  is a sire variance in DNK data, 

𝜎𝜎𝑝𝑝_𝐷𝐷𝐷𝐷𝐷𝐷
2  is a phenotypic (data) variance in DNK 

data, and 𝜎𝜎𝑝𝑝_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
2  is a phenotypic (data) 

variance in FIN or SWE. 
 
Results & Discussion 
 
Biomarker data difference 
Inter-country genetic correlations of BHB and 
ACE in parity 1 for HOL and RDC are shown 
in Table 3. The average genetic correlation 
between FIN and the other countries was 0.84. 
A similar correlation (0.81) was obtained from 
regression of FIN cows phenotypes predicted 
using the Foss vs Kostensalo et al. (2023) 
approach (Figure 1).  
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Table 3: Inter-country genetic correlations for BHB 
and ACE in parity 1 

Countries HOL RDC 
BHB 

SWE x DNK 0.95 0.97 
FIN x SWE 0.86 0.88 
FIN x DNK 0.84 0.79 

 ACE* 
SWE x DNK 0.95 0.97 

*No ACE data available for Finland 
 

 
Figure 1. Scatter Plot and Linear Regression of first 
parity mean BHB phenotypes of daughters of HOL 
bulls with >50 daughters. 
 

The correlation between milk and blood 
BHB concentration was expectedly high. 
However, FIN BHB trait is similar, but not 
identical to DNK and SWE. The scale 
difference in the phenotype was handled by data 
adjustment factor (κ). As BHB and ACE are not 
summand of the GH index it was decided to use 
blended-origin trait.  
 
Genetic parameters 
Newly estimated heritability, genetic and 
permanent environment correlations for BHB 
and ACE are presented in Table 4. For HOL the 
heritability was slightly lower for BHB 
(average: 0.04) and slightly higher (average: 
0.01) for ACE compared to current routine 
estimates. Changes in correlations ranged from 
-0.10 to 0.14. For RDC the heritability 
increased for both BHB and ACE, with a range 
from 0.01 to 0.06. Overall heritability in RDC 
was estimated to be higher than in other breeds. 
Genetic correlation between BHB and ACE, 
and between parities, also increased by 0.01-

0.33. For JER the heritability increased for both 
BHB and ACE, with an average of 0.03. 
Genetic and permanent environment 
correlations increased in the range of 0.02 to 
0.37. Overall changes for HOL were concluded 
to be limited, but sufficient and positively 
accepted for RDC and JER.  

Genetic correlations between biomarkers 
and metabolic traits are shown in Table 5. For 
HOL, the largest difference compared to 
currently used parameters were observed for the 
BHB x KET and ACE x OMB combinations, 
with decreases of 0.16 and 0.17, respectively. 
For JER, a slight increase (0.13) was observed 
for the BHB x OMB correlation. A large 
decrease in correlation was observed in RDC 
for BHB x OMB and ACE x OMB pairs - 0.15 
and 0.36, respectively. Although the decrease in 
correlation is unfavorable, it is important to note 
that the RDC parameters were previously 
approximated from HOL, whereas they are now 
directly estimated.  
 
Table 4. Heritability, genetic and permanent 
environment correlation in BHB and ACE parity 1-
3. 

   Holstein   
Traits BHB1 ACE1 BHB2 ACE2 BHB3 ACE3 
BHB1 0.08* 0.88 0.85 0.72 0.78 0.66 
ACE1 0.53 0.05 0.73 0.80 0.67 0.70 
BHB2 0.00 0.00 0.09 0.89 0.95 0.86 
ACE2 0.00 0.00 0.60 0.05 0.87 0.94 
BHB3 0.00 0.00 0.00 0.00 0.08 0.92 
ACE3 0.00 0.00 0.00 0.00 0.62 0.04 
       
   Red Dairy Cattle  
Traits BHB1 ACE1 BHB2 ACE2 BHB3 ACE3 
BHB1 0.14 0.89 0.93 0.81 0.90 0.85 
ACE1 0.68 0.09 0.83 0.89 0.77 0.87 
BHB2 0.00 0.00 0.14 0.90 0.93 0.88 
ACE2 0.00 0.00 0.71 0.09 0.80 0.91 
BHB3 0.00 0.00 0.00 0.00 0.13 0.92 
ACE3 0.00 0.00 0.00 0.00 0.72 0.09 
       
   Jersey   
Traits BHB1 ACE1 BHB2 ACE2 BHB3 ACE3 
BHB1 0.08 0.93 0.86 0.62 0.81 0.54 
ACE1 0.56 0.05 0.82 0.74 0.79 0.69 
BHB2 0.00 0.00 0.09 0.84 0.94 0.73 
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ACE2 0.00 0.00 0.60 0.04 0.81 0.87 
BHB3 0.00 0.00 0.00 0.00 0.08 0.84 
ACE3 0.00 0.00 0.00 0.00 0.65 0.04 

*Diagonal – heritability, upper triangle – genetic 
correlation, lower triangle – permanent environment 
correlation. 
 
Table 5. Genetic correlations between biomarker 
(BHB and ACE) and metabolic traits (KET) in first 
lactation. 

Breed HOL RDC JER 
Traits BHB ACE BHB ACE BHB ACE 
KET 0.56 0.59 0.63 0.63 0.64 0.67 
OMB 0.47 0.48 0.31 0.26 0.46 0.47 

 
Breeding value. 
Impact of the new genetic parameters and added 
biomarker data on EBVs is presented through; 
1) Correlation of the current and new sub-
indexes (Figure 2, 4 & 6), and 2) Reranking of 
sub-indexes (Figure 3, 5 & 7) in Nordic AI bulls 
with ≥20 daughters.  

Correlation was high (>0.95) and reranking 
was limited for HOL bulls born after 2015. The 
largest changes were observed for BHB, ACE, 
KET, and OMB traits. For this group of traits, 
low correlation (<0.95) and a mean reranking > 
1 index unit were observed for bulls born 2010-
2014, due to the absence of BHB and ACE data 
before 2018 (historic Dannish BHB and ACE 
data was discarded from the data).  
 

 
Figure 2. Correlation of current and new GH 
(sub)indexes in HOL AI bulls with ≥ 20 daughters. 
 

 
Figure 3. Mean index difference between current and 
new GH model in HOL AI bulls with ≥ 20 
daughters. 
 

In RDC, the correlation was below 0.90 for 
BHB and ACE across all year classes. For OMB 
and KET, the correlation declined from 2016 
onwards which can be explained by a gap in 
SWE treatment data recording during 2023-
2025 and absence of ACE records in FIN data. 
The main sources of RDC data were SWE and 
FIN. High reranking (> 1 index unit) was 
observed in the BHB and ACE subindexes of 
bulls born before 2015. 
 

 
Figure 4. Correlation of current and new GH 
(sub)indexes in RDC AI bulls with ≥ 20 daughters. 
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Figure 5. Mean index difference between current and 
new GH model in RDC AI bulls with ≥ 20 
daughters. 
 

For JER, the correlation between current and 
new models for BHB and ACE was below 0.9 
in bulls born between 2010-2013. The 
correlation below 0.95 was also observed for 
KET. The highest reranking was seen in BHB, 
ACE, OMB, KET, and LRP. Presumably, the 
LRP trait was influenced through its correlation 
with OMB and KET. The maximum observed 
mean reranking was 2 index units.  
 

 
Figure 6. Correlation of current and new GH 
(sub)indexes in JER AI bulls with ≥ 20 daughters. 
 

 
Figure 7. Mean index difference between current and 
new GH model in JER AI bulls with ≥ 20 daughters. 
 

Correlation and reranking patterns were as 
expected. Stepwise changes to the model 
showed that the largest effect was caused by 
new genetic parameters and changes in data 
structure. 
 
Conclusions  
 
The inclusion of Swedish BHB and ACE 
records has expanded data set, especially for 
RDC breed. Genetic parameters for RDC and 
JER were based on direct estimation rather than 
approximation and better align with the data. 
The new parameters caused greater reranking in 
RDC and JER than in HOL. Aceton records for 
RDC will be predominantly based on SWE 
data, as FIN has stopped ACE recording.  

The updated GH index will be available to 
Nordic farmers starting in November 2025. The 
presence of national data is expected to increase 
trust from Swedish farmers towards the GH 
index. 
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Abstract 

 

Twinning in Holstein cattle is unfavorably linked to calving difficulties, abortions, milk production 

and reduced calf survival. The twinning rate in the Italian Holstein population is 2.2% and appears 

relatively stable over time; however, this figure does not account for early abortions and thus it is 

underestimated. This study aimed to establish a routine genetic evaluation of twinning rate in the 

aforementioned population. The phenotype of interest was the type of calving (0 = singleton; 1 = 

twins). The statistical model employed included, as random, herd-year of conception, permanent 

environmental effect and the cow’s additive genetic effect. Fixed effects comprised year-season of 

conception, herd, synchronization protocol (classified into three categories: yes, partial or no), days in 

milk class and parity-age-year of conception. The dataset included 11,329,160 records after filtering, 

with age at calving restricted to 18-77 months and parity limited to maximum three. Only fixed effects 

levels comprising at least 100 observations were retained. The minimum number of contemporaries 

was set to 10. Data editing was loop-based to simultaneously meet all the described restrictions. 

Genetic parameters were estimated on a sample of 500 randomly selected herds using 

THRGIBBS1F90 software. Posterior mean of heritability for twinning rate was 1%. To validate the 

accuracy and stability of the predictions a genomic validation was conducted. Genomic validation 

yielded a dispersion of 0.94 and validation reliability of 0.18. This study has laid the foundation for the 

implementation of a routine genetic evaluation of twinning rate in the Italian Holstein breed. 

 

Key words:  twinning, dairy cattle, genomic selection, codominance, model validation, genetic 

parameters

Introduction 

 

Twinning in cattle can result from either 

monozygotic or dizygotic embryos. 

Monozygotic (identical) twins arise when a 

single fertilized egg splits into two embryos, 

whereas dizygotic (fraternal) twins originate 

from the fertilization of two separate eggs by 

two different sperm cells. In the Holstein 

breed, the vast majority of twins are dizygotic, 

originating from multiple ovulations and 

separate fertilizations. The most likely cause of 

twinning is the codominance of multiple 

dominant follicles, which is often associated 

with low progesterone (P4) concentrations 

during the follicular waves (Martins et al, 

2018). This hormonal environment alters the 

secretion patterns of follicle-stimulating 

hormone (FSH), promoting the simultaneous 

development of multiple dominant follicles. 

Multiple pregnancies increase the risk of 

reproductive and metabolic disorders, 

stillbirth, freemartinism and early pregnancy 

loss: the estimated cost of a twin pregnancy 

ranges from $59 to $161 (Cabrera et al, 2021). 

In the light of the above, the aim of this 

study was to implement twinning rate (TWI) 

into the routine genetic and genomic 

evaluation system for Italian Holsteins. 
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Materials and Methods 

 

Data editing 

Data after edits consisted of 12M records of 

calving events from 1987 onwards. Maximum 

parity order was set to three and the following 

ranges of age at calving within parity order 

were defined: 18-41 moths (parity one), 30-59 

(parity two) and 42-77 (parity three). The days 

in milk (DIM) range at conception was 21-305 

while the gestation length range was 240-315 

days. The minimum number of contemporaries 

for herd-year of conception was 10. The 

minimum number of observations per level of 

fixed effect was 100. All the criteria were 

assured to be met with a loop-based approach. 

The classification of synchronization protocol 

application was derived from the weekly 

distribution of inseminations in each herd 

during each period, considering 2010 as lower 

cutoff year. When more than 75% of 

inseminations occurred on a specific day of the 

week, it was assumed that synchronization was 

applied to the entire herd. If the percentage 

ranged between 35% and 75%, partial 

application of the protocol was assumed. 

Below 35%, it was considered that no 

synchronization was applied. Farm sizes and 

time trends within farms were taken into 

account to enhance classification accuracy. 

Each group corresponds to different 

synchronization strategies and, consequently, 

to different expected effects on the phenotype. 

Pedigree was traced back to 3 generations. 

 

Statistical model 

A single trait repeatability linear animal model 

was used, with twinning (TWI) as dependent 

variable. Following a previous study on the 

Italian Holstein breed (Katende et al, 2025), it 

was possible to apply a linear model with the 

cow as the additive genetic effect. The choice 

of a linear model did not result in significant  

differences compared to the theoretically more 

appropriate threshold model. 

 The direct effect, that of the sire, was found to 

be negligible and was therefore not included in 

the model. 

The model was the following: 

 

TWI𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝 = ℎ𝑦𝑖 + 𝑆𝑗∗𝑌𝑘 + Hl + 𝐷𝐼𝑀𝑙 + 

𝐴𝐺𝐸𝐶_𝑃𝐴𝑅m∗𝑌𝑘 + SYNCn + 𝑎𝑜 + 𝑝𝑒o + 𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝 

 

with TWI𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝 as the pth binary 

(singleton/twin) phenotypic observation of 

twin calving. Fixed effects were 𝑆𝑗∗𝑌𝑘 as the 

crossed effect of season j by year k of 

conception, Hl as herd of conception, 𝐷𝐼𝑀𝑙 as 

the lth days in milk at conception class (10 

classes of 30 days), 𝐴𝐺𝐸𝐶_𝑃𝐴𝑅m∗𝑌𝑘 as the 

mth age at calving by parity class (9 classes: 3 

age at calving classes for every parity class) by 

year k. Random effects were ℎ𝑦𝑖 as the ith 

contemporary group for herd-year of 

conception, 𝑎𝑜 as the additive genetic effect of 

the oth cow, 𝑝𝑒o as the permanent 

environmental effect of the oth cow and 

𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝 as the residual of observation p. 

 

Variance components estimation, genetic and 

genomic evaluation, approximate genetic 

correlations 

Variance components estimation was 

performed with the software THRGIBBS1F90 

(Misztal et al, 2002) on a sample of 635,026 

animals (500 herds). Convergence was 

assessed with R package BOA, Bayesian 

output analysis (Smith, 2007). Conventional 

estimated breeding values (EBVs) were 

estimated with MiX99 software (MiX99 

development team, 2015). Genomic evaluation 

was performed with a SNPBLUP model using 

GS3 software (Legarra et al, 2011). For 

estimated deregressed proofs (EDPs), the 

method from Degano et al (2016) was applied. 

A conventional quality control was applied to 

SNP data. For the imputation process, 

PedImpute software was used (Nicolazzi et al, 

2013). Approximate genetic correlations were 

calculated as Pearson correlation coefficients 
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between genomic estimated breeding values 

(GEBVs) of 3,200 heifers born in 2025. 

 

Conventional, genomic and phenotypic 

validation 

Genomic validation was performed as 

described in Finocchiaro et al (2012) and 

Galluzzo et al (2022). Briefly, two datasets 

were used for EBVs estimation: one full (with 

records up to 2504 run) and one reduced (with 

a 4-years back cutoff date). For both sets of 

EBVs, EDPs were calculated and used as 

pseudo-phenotypes for SNP effects estimation. 

Bulls with daughters in the full datasets but 

without in the reduced one were selected as 

validation bulls. Finally, a linear regression 

with EDPs of validation bulls from the full run 

as dependent variable and their direct genomic 

values (DGVs) from the reduced run as the 

independent one was fitted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters considered were the dispersion 

coefficient and the reliability of the linear 

regression model (validation reliability). To 

assess the validity of predictions at phenotype 

level, a sample of 1,168 females with 

phenotypes in the full run but not in the 

reduced run was selected. Their DGVs from 

the reduced run were standardized, and the 

average phenotype was evaluated for each 

standardized category.   

 

Results & Discussion 

 

The average frequency of twinning across the 

entire dataset was 2.2%, in agreement with the 

literature (Kirkpatrick et al., 2025). The 

twinning rate in the Italian Holstein population 

is estimated at 2.2% It has remained fairly 

constant over time; however, this value is 

likely underestimated as it does not include 

early abortions. The posterior mean of 

heritability was estimated at 0.01 (posterior 

standard deviation: 0.001), which falls within 

the ranges reported in the literature 

(Kirkpatrick et al., 2025; Lett et al., 2018; 

Katende et al., 2025; Hüneke et al., 2025).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This result confirms the potential for 

selection on this trait, despite the challenges 

posed by its low magnitude. GEBVs are 

expressed with a mean of 100 and a standard 

deviation of 5, with values above 100 referring 

to animals with lower genetic potential for 

twinning (and therefore considered favorable). 

The trend of GEBVs, reported in Figure 1, 

Figure 1.  Bulls’ genetic trend by birth year. GEBV=average GEBV. 
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displayed a decline until the last 10 years, 

during which a reversal was observed, likely 

linked to improvements in traits related to 

female fertility. A similar trend was identified 

by Kirkpatrick (2025). Indeed, genetic 

selection for reducing twinning rate in dairy  

cattle may be desirable, provided it does not 

lead to undesirable correlated responses in  

other economically important traits. Twin  

 

births in dairy cattle are typically associated 

with negative outcomes, such as impaired 

reproductive performance and decreased calf 

survival.  

The approximate genetic correlations are 

depicted in Figure 2: for all traits related to 

fertility and milk quality, correlations were low 

but favorable. Regarding milk yield, a slight 

negative correlation was detected, probably 

due to a faster metabolism leading to more 

rapid degradation of P4. 

The genomic validation resulted in a 

dispersion coefficient of 0.94, indicating a 

negligible overestimation of the DGV and 

confirming the accuracy and stability of both 

the statistical model and the genetic evaluation 

procedure. The validation reliability resulted 

0.18. 

Phenotypic validation, represented in 

Figure 3, confirms the accuracy of the 

predictions in relation to future phenotypes. 

Indeed, when considering only the groups with 

a sufficient number of observations to ensure a 

reliable mean (ranging from -2 to +1 standard 

deviations from the mean), we observe that  

higher genetic indices are associated with more 

favorable future phenotypes. 

 

Conclusions     

   

In conclusion, this study increased the 

knowledge about the genetic aspects of TWI in 

the Italian Holstein population and revealed 

the possibility to genetically improve the breed 

for this trait. Moreover, it confirmed the 

stability of the applied model and its ability to 

predict future phenotypes through genomic 

evaluation. Moreover, it confirmed the stability 

of the applied model and the ability of 

genomic evaluation to predict future 

phenotypes, thus providing solid decision-

making support for the selection of breeding 

animals both at the AI center and farm level. A 

routine genetic evaluation of TWI will be soon 

implemented in Italy for the Italian Holstein 

breed. 

Figure 2.  Approximate genetic correlations for TWI. Mkg=milk yield, fpc=fat percentage, ppc=protein 

percentage, cc2=interval first-last insemination cows, crc=cow recycling, cc1=conception rate cows, 

hco=conception rate heifers, dlo=direct longevity. 
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Figure 3. Average full-run phenotype (Twinning 

rate - full run) and standardized DGV (STD_DGV - 

reduced run) for females lacking phenotypes in the 

reduced run. 
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Abstract 
 
Breeding programs rely on selection of individuals through their breeding values to simultaneously 
improve multiple traits of commercial value. In order to adequately select candidates to breed for a next 
generation, the genetic relationships between traits are considered in the selection index that summarizes 
all the traits for each selection candidate. The methods deployed in genetic evaluations rely strongly in 
gaussian distributions describing the data, and consider the genetic relationships between traits in the 
form of genetic correlations determining the joint distribution of breeding values from different traits. 
In this manner, genetic correlations are treated as parameters, estimated on a base population for 
reference. However, genetic correlations depend on the involved traits’ architecture, thus depending on 
the genotype presented by each individual, and therefore, different individuals may present different 
potential for genetic correlations. Moreover, different potential for genetic correlations may partially 
represent a latent physiological trait responsible to balance the phenotypic expression of the measurable 
production traits. In practice, individual-specific genetic correlations (iSGC) can be obtained for 
individuals with many phenotyped descendants, as the expressed genetic correlation between the 
estimated breeding values among their offspring. Since the expressed iSGC depends on the involved 
traits’ genetic architecture, part of an individual’s iSGC can be transmitted to the offspring. In order to 
study the heritability of iSGC, two-trait genetic evaluations were performed on every pairwise 
combination of five traits from a French Holstein dairy cattle population: milk and protein yield (MY 
and PY), milking speed (MSPD), somatic cell score (SCS), and conception rate (CR). The iSGC between 
every pair of the five traits were obtained for ~1200 bulls with more than 500 phenotyped daughters in 
this population, and these iSGC were each evaluated as a phenotype with a single-trait model. This study 
confirmed the hypothesis that genetic correlations, when expressed as iSGC, are heritable parameters, 
with significant heritabilities ranging from 0.11 (iSGC between SCS and CR) to 0.51 (iSGC between 
PY and SCS). 
 
Key words: Selection index, Multi-trait genetic evaluation, Genetic trade-off, Dairy cattle, Latent 
phenotype, Physiological traits 
 
Introduction 
 
Breeding programs aim to select for multiple 
commercial traits, in order to achieve genetic 
progress for all of them. Many of these traits are 
genetically correlated, and a negative 
correlation means that an antagonism between 
two traits exists. In dairy cattle, the genetic 
trade-off often lies between production and 
either fertility or health traits (Boichard & 
Manfredi, 1994; Pryce et al., 1997; Rauw et al., 
1998; Roxström et al., 2001; Windig et al., 

2006). Therefore, in order to avoid that 
selection for one trait is detrimental to the other 
(Hazel et al., 1994), selection must account for 
these negative correlations. This is typically 
done through a selection index, i.e., a linear 
combination of traits, whose weights are 
defined by, among other information, the 
genetic correlations between the traits involved 
(Hazel, 1943; Hazel et al., 1994; Miglior et al., 
2017). 

Genetic correlations between traits are 
considered a populational parameter that 
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defines the joint normal distribution imposed to 
the breeding values in genetic evaluations. 
However, in this manner, genetic correlations 
are assumed equal to all individuals, an 
assumption that ignores the fact that different 
individuals may present different physiological 
trade-off regulation between traits (Berry et al., 
2016; Cuyabano et al., 2024). This hypothesis 
has been revisited by Cuyabano et al. (2024), 
who, in a study of the trade-off between 
production and fertility in the French 
Montbéliarde population, have shown that 
different sires could express different genetic 
correlations through their daughters, between 
these traits. 

Because the study of Cuyabano et al. (2024) 
had only 247 sires with enough daughters 
evaluated so that reliable genetic correlations 
could be obtained at the individual level (i.e. for 
each sire), no further inferences could be drawn, 
with respect to the genetic background of these 
individual-specific genetic correlations (iSGC). 

This current study hypothesized that if the 
different genetic correlations expressed by 
different sires are simply a feature of 
recombination and different allele frequencies 
in different family lines, then none or very weak 
heritabilities are expected to be observed for the 
iSGC. However, if the iSGC represent, even if 
only partially, a latent physiological phenotype, 
non-zero heritabilities should be observed for 
the iSGC. 

To support this hypothesis that non-zero 
heritabilities associated to the iSGC may 
suggest their representation of a latent 
physiological phenotype, simulations were 
deployed. Breeding values were simulated for 
multiple traits, with their genetic correlations 
solely due to pleiotropic QTL and linkage 
disequilibrium between non-pleiotropic sites, in 
order to show that when no physiological trait 
was involved in the differences between genetic 
correlations, no heritability was captured by the 
iSGC. 

For the real data analysis, this current study 
up-scaled the work from Cuyabano et al. 
(2024),  by calculating iSGC for 1161 sires from 

a French Holstein dairy cattle population, 
between each pair of five traits of commercial 
interest (milk and protein yield, milking speed, 
cow conception rate, and somatic cell score). 
Heritabilities were then estimated for the iSGC, 
under the hypothesis that non-zero estimates 
suggest the representation of a latent 
phenotyped through the iSGC. 
 
Materials and Methods 
 
Bi-variate genetic evaluation model 
Two-trait animal models were deployed for the 
genetic evaluations in this study, given by: 
 

� 
𝑦𝑦1
𝑦𝑦2 �= � 

𝑔𝑔1
𝑔𝑔2 �+ � 

𝜀𝜀1
𝜀𝜀2 �,      (1) 

 
in which 𝑦𝑦1 and 𝑦𝑦2 are the vectors of 
phenotypes for traits 1 and 2 respectively; 𝑔𝑔1 ∼
𝑁𝑁(0,𝐴𝐴𝜎𝜎𝑔𝑔1

2 ) and 𝑔𝑔2 ∼ 𝑁𝑁(0,𝐴𝐴𝜎𝜎𝑔𝑔2
2 ) are the 

vectors of breeding values for these two traits, 
with 𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔1,𝑔𝑔2)=𝐴𝐴𝜎𝜎𝑔𝑔12, such that 𝐴𝐴 is the 
pedigree relationship matrix; 𝜎𝜎𝑔𝑔1

2  and 𝜎𝜎𝑔𝑔2
2  are the 

additive genetic variances, and 𝜎𝜎𝑔𝑔12 is the 
genetic covariance between the two traits; 𝜀𝜀1 ∼
𝑁𝑁(0, 𝐼𝐼𝑛𝑛𝜎𝜎𝜀𝜀1

2 ) and 𝜀𝜀2 ∼ 𝑁𝑁(0, 𝐼𝐼𝑛𝑛𝜎𝜎𝜀𝜀2
2 ) are the 

random residuals, with 𝐶𝐶𝐶𝐶𝐶𝐶(𝜀𝜀1, 𝜀𝜀2)=𝐼𝐼𝑛𝑛𝜎𝜎𝜀𝜀12; 𝜎𝜎𝜀𝜀1
2  

and 𝜎𝜎𝜀𝜀2
2  are the residual variances, and 𝜎𝜎𝜀𝜀12 is 

the residual covariance. 
The genetic evaluation model in equation (1) 

was implemented under a Bayesian framework, 
using the GIBBS3F90 module from the 
BLUPF90 family of (Misztal et al., 2018), with 
the software’s default prior distributions for the 
breeding values and (co)variance parameters. A 
total of 300,000 samples were generated, with 
the first 100,000 discarded as burn-in. On the 
remaining 200,000 samples, a thinning 
parameter of 200 iterations was applied, 
resulting in 1000 effective samples used to 
compute the estimated breeding values (EBV) 
and (co)variance parameters. To assist 
convergence of the (co)variance parameters, 
initial values were provided, using the current 
genetic (co)variances used for these five traits 
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in the French national genetic evaluation. 
Convergence was assessed visually through 
plots of the 1000 effective samples for the 
genetic (co)variances. 

Heritabilities (ℎ12 and ℎ22) and genetic 
correlations (𝜌𝜌12) between the traits were 
obtained from the estimated (co)variance 
parameters, as: 

 

ℎ̂12=
𝜎̂𝜎𝑔𝑔1
2

𝜎̂𝜎𝑔𝑔1
2 +𝜎̂𝜎𝜀𝜀1

2  and ℎ̂22=
𝜎̂𝜎𝑔𝑔2
2

𝜎̂𝜎𝑔𝑔2
2 +𝜎̂𝜎𝜀𝜀2

2 ,    (2) 

𝜌𝜌12=
𝜎̂𝜎𝑔𝑔12
𝜎̂𝜎𝑔𝑔1𝜎̂𝜎𝑔𝑔2

.         (3) 

 
Real data 
The dairy cattle data used for the present study 
was from the French Holstein population. The 
bi-variate genetic evaluations were 
implemented for every pair of the following five 
traits: milk and protein yield (MY and PY), 
milking speed (MSPD), somatic cell score 
(SCS), and cow conception rate (CR), measured 
as artificial insemination’s success/failure on 
lactating cows (i.e. heifers excluded). The 
phenotypes entered for the evaluations 
performed in this study were in the form of yield 
deviations (YD), issued from the French 
national genetic evaluation, which evaluates 
MY, PY, SCS as 305-day phenotypes corrected 
for the duration; performance records comprise 
all lactations records per cow, and the model 
accounts for the repeatability (i.e., for the 
permanent environment of the cow). A total of 
4,501,624 cows born between 1991-2020 had 
YD deviations available for all five traits, with 
a pedigree file containing a total of 8,275,018 
animals that traced back three generations from 
the cows with performances. 
 
Simulated data 
The simulated data consisted of ten replicates of 
populations with a founder population followed 
by 30 generations under selection. Generations 
were non-overlapping, each with 1000 
individuals, among them 200 males and 800 
females. Selection was performed at each 
generation for the top 20% males, based on a 

selection index build from their true simulated 
breeding values, assuming equal weights for all 
simulated traits. Pedigree information was kept 
for the simulated populations. 

Five traits were simulated with additive 
effects associated to them, and genetic 
correlations were solely due to pleiotropic QTL 
and linkage disequilibrium (LD) between non-
pleiotropic sites. To simulate these traits, 1675 
SNP genotypes, already in LD from the founder 
population (average LD of 0.15 in this 
population), were simulated to serve as 
quantitative trait loci (QTL). At each population 
replicate, a random subset of 75 SNPs were 
assigned as pleiotropic QTL across all five 
traits, five random subsets of 25 SNPs each 
were assigned as pleiotropic QTL across four 
traits, ten random subsets of 50 SNPs each were 
assigned as pleiotropic QTL across three traits, 
and ten random subsets of 90 SNPs each were 
assigned as pleiotropic QTL across two traits. 
The remaining 75 SNPs were finally split in five 
groups of 15, to be assigned as QTL exclusive 
to each one of the five traits. This distribution 
of the QTL per trait is presented in the Venn 
diagram in Figure 1. 
 

 
Figure 1. Venn Diagram describing the number of 
QTL shared among the five simulated traits. 
 

Finally, QTL-effects were simulated, 
correlated between traits, so that the breeding 
values at the founder population presented 
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genetic correlations matching those obtained 
for the traits studied in the French Holstein 
dairy cattle population. The additive genetic 
variances of the simulated breeding values were 
set to 10 × ℎ2, with the heritabilities being 
those obtained for the real traits evaluated from 
the French Holstein dairy cattle data. 
 
Individual-specific genetic correlations and 
their heritability estimates 
For both the real and simulated data, individual-
specific genetic correlations (iSGC) were 
calculated for sires, in order to evaluate how 
much differences in genetic correlations were 
expressed by different sires. 

For the real data, iSGCs were calculated for 
all pairs of the five traits, evaluated with the bi-
variate genetic evaluations models given by 
equation (1). Following the proposed by 
Cuyabano et al. (2024), sires with more than 
500 daughters evaluated were selected, so that 
reliable genetic correlations could be obtained 
at the individual level, based on the daughters’ 
EBVs. A minor change was made to calculate 
the iSGC, compared to how it was done by 
Cuyabano et al. (2024), who obtained the iSGC 
per sire by correlating the EBVs from their 
daughters. Here, prior to calculating the 
correlations between the daughters’ EBVs from 
different traits, half of the dam’s EBVs were 
subtracted from their daughters, so that on 
average, the iSGC comprised only sire 
information. Thus, for each sire 𝑠𝑠 and for any 
pair of traits 1 and 2, their 𝑖𝑖-𝑡𝑡ℎ daughter’s 
breeding values were corrected as: 

𝑔𝑔1𝑖𝑖,𝑠𝑠=𝑔𝑔1𝑖𝑖-
𝑔𝑔1{𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑖𝑖}

2
,      (4) 

𝑔𝑔2𝑖𝑖,𝑠𝑠=𝑔𝑔2𝑖𝑖-
𝑔𝑔2{𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑖𝑖}

2
,      (5) 

for every 𝑖𝑖=1, … ,𝑛𝑛𝑠𝑠. Finally, for each sire 𝑠𝑠: 

𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝑠𝑠=
∑ �𝑔𝑔1𝑖𝑖,𝑠𝑠-𝑔𝑔1,𝑠𝑠��𝑔𝑔2𝑖𝑖,𝑠𝑠-𝑔𝑔2,𝑠𝑠�
𝑛𝑛𝑠𝑠
𝑖𝑖=1

(𝑛𝑛𝑠𝑠-1)𝜎̂𝜎𝑔𝑔𝑠𝑠1𝜎̂𝜎𝑔𝑔𝑠𝑠2
,   (6) 

such that 𝑔𝑔1,𝑠𝑠=
∑ 𝑔𝑔1𝑖𝑖,𝑠𝑠
𝑛𝑛𝑠𝑠
𝑖𝑖=1
𝑛𝑛𝑠𝑠

 and 𝑔𝑔2,𝑠𝑠=
∑ 𝑔𝑔2𝑖𝑖,𝑠𝑠
𝑛𝑛𝑠𝑠
𝑖𝑖=1
𝑛𝑛𝑠𝑠

 are 

the mean daughters’ corrected EBVs, and their 

variance are 𝜎𝜎𝑔𝑔𝑠𝑠1
2 =

∑ �𝑔𝑔1𝑖𝑖,𝑠𝑠-𝑔𝑔1,𝑠𝑠�
2𝑛𝑛𝑠𝑠

𝑖𝑖=1

𝑛𝑛𝑠𝑠-1
 and 

𝜎𝜎𝑔𝑔𝑠𝑠2
2 =

∑ �𝑔𝑔2𝑖𝑖,𝑠𝑠-𝑔𝑔2,𝑠𝑠�
2𝑛𝑛𝑠𝑠

𝑖𝑖=1

𝑛𝑛𝑠𝑠-1
. 

For the simulated data, iSGCs were 
calculated for all pairs of the five traits, only for 
the selected sires in the simulation routine. 
Since the simulations provided genotypes and 
the true simulated QTL effects, instead of using 
daughters’ information, for each sire 𝑠𝑠, 500 
gametes were simulated, at which QTL effects 
were applied. Thus, for each sire 𝑠𝑠 and for any 
pair of traits 1 and 2, the additive genetic values 
of the 𝑖𝑖-𝑡𝑡ℎ gamete was given by: 
𝛾𝛾1𝑖𝑖,𝑠𝑠=∑ 𝑋𝑋𝑖𝑖𝛼𝛼1𝑗𝑗1675

𝑗𝑗=1 ,       (7) 
𝛾𝛾2𝑖𝑖,𝑠𝑠=∑ 𝑋𝑋𝑖𝑖𝛼𝛼2𝑗𝑗1675

𝑗𝑗=1 ,       (8) 
for every 𝑖𝑖=1, … ,500, such that 𝛼𝛼1𝑗𝑗’s and 𝛼𝛼2𝑗𝑗’s 
are the QTL effects (set as zero if the 𝑗𝑗-𝑡𝑡ℎ SNP 
is not a QTL for each of the traits). Finally, for 
each simulated sire 𝑠𝑠: 

𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝑠𝑠(∼)=
∑ �𝛾𝛾1𝑖𝑖,𝑠𝑠-𝛾𝛾1,𝑠𝑠��𝛾𝛾2𝑖𝑖,𝑠𝑠-𝛾𝛾2,𝑠𝑠�
500
𝑖𝑖=1

(499)𝜎̂𝜎𝛾𝛾𝑠𝑠1𝜎̂𝜎𝛾𝛾𝑠𝑠2
,  (9) 

such that 𝛾𝛾1,𝑠𝑠=
∑ 𝛾𝛾1𝑖𝑖,𝑠𝑠500
𝑖𝑖=1
500

 and 𝛾𝛾2,𝑠𝑠=
∑ 𝛾𝛾2𝑖𝑖,𝑠𝑠500
𝑖𝑖=1
500

 are 
the mean additive genetic values of the gametes, 

and their variance are 𝜎𝜎𝑔𝑔𝑠𝑠1
2 =

∑ �𝛾𝛾1𝑖𝑖,𝑠𝑠-𝛾𝛾1,𝑠𝑠�
2500

𝑖𝑖=1

499
 and 

𝜎𝜎𝑔𝑔𝑠𝑠2
2 =

∑ �𝛾𝛾2𝑖𝑖,𝑠𝑠-𝛾𝛾2,𝑠𝑠�
2500

𝑖𝑖=1

499
. 

Heritability estimates were obtained for the 
iSGCs, by treating them as a phenotype in a 
variance component estimation routine, using 
the pedigree relationship matrix for both the real 
and the simulated data, tracing back four 
generations from the sires. For the simulated 
data, heritability estimates were also obtained 
using a genomic relationship matrix 
(VanRaden, 2008) built from the simulated 
SNP-genotypes. The following model was used 
to estimate variance components: 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖=1𝑛𝑛𝜇𝜇+𝑔𝑔+𝑒𝑒,      (10) 
in which 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the vector of iSGCs obtained 
for the 𝑛𝑛 sires, between any two traits; 𝜇𝜇 is the 
overall mean; 𝑔𝑔 ∼ 𝑁𝑁(0,𝐴𝐴𝜎𝜎𝑔𝑔(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

2 ) is the vector 
of breeding values associated to the iSGC, 𝐴𝐴 is 
the pedigree relationship matrix (replaced by 
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the genomic relationship matrix 𝐺𝐺, for the 
simulated data), and 𝜎𝜎𝑔𝑔(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

2  is the additive 
genetic variance associated to the iSGC; and 
𝑒𝑒 ∼ 𝑁𝑁(0, 𝐼𝐼𝑛𝑛𝜎𝜎𝑒𝑒(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

2 ) is the vector of random 
residuals, and 𝜎𝜎𝑒𝑒(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

2  is the residual variance. 
Variance components for the iSGC were 

estimated through the residual maximum 
likelihood (REML; Patterson & Thompson, 
1971), using the REMLF90 module from the 
BLUPF90 family of programs (Misztal et al., 
2018). Finally, heritabilities of the iSGC were 
given by: 

ℎ̂2=
𝜎̂𝜎𝑔𝑔(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
2

𝜎̂𝜎𝑔𝑔(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
2 +𝜎̂𝜎𝑒𝑒(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

2 .       (11) 

 
Results & Discussion 
 
Genetic parameters on real data 
Heritability and genetic correlation estimates 
were obtained from the genetic parameters of 
the bi-variate genetic evaluations, for every pair 
of the five traits studied from the French 
Holstein dairy cattle population, and their 
values are presented in Table 1. These values 
agreed with those used for the French national 
genetic evaluation, as expected, and also agreed 
with reported heritabilities and genetic 
correlations between these traits. Finally, these 
values presented in Table 1 were the ones used 
as parameters to generate the breeding values 
for the simulated data, with genetic variances 
equal to 10 × ℎ2. 
 
Table 1: Estimated heritabilities (diagonal bold 
values) and genetic correlations (upper triangle of 
the table) between the five traits studied in the 
French Holstein dairy cattle population. Values in 
gray indicate an estimate that was not statistically 
different from zero (significance level of 0.05). 

 MY PY MSP
D 

SCS CR 

MY 0.22 0.78 -0.06 -0.04 -0.15 
PY --- 0.38 -0.07 -0.01 -0.20 

MSP
D 

--- --- 0.24 0.31 -0.04 

SCS --- --- --- 0.13 -0.26 
CR --- --- --- --- 0.01 

 
 

Distribution of the individual-specific genetic 
correlations on real and simulated data 
Figures 2-5 present the distributions, in the form 
of density curves, of the iSGC obtained between 
the five traits studied, both on real and 
simulated data, indicating that different sires 
did present different potential for genetic 
correlations, expressed through their offspring. 

The mean iSGCs on the real data presented 
bigger differences from the estimated genetic 
correlations with the Gibbs sampler, presented 
in Table 1 and indicated with dots at the x-axes 
of the plots, than the mean iSGCs on the 
simulated data. This could be due to the fact 
that, on real data, iSGCs were obtained for a 
subset of sires that had at least 500 daughters 
evaluated, rather than for all sires, potentially 
indicating a different mean iSGC for these elite 
sires, with respect to the whole population. 
 

 
Figure 2. Distribution of the iSGC obtained across 
the pairs of the three production traits (MY, PY, and 
MSPD), on both real and simulated data. 
 

 
Figure 3. Distribution of the iSGC obtained between 
the production traits (MY, PY, and MSPD) and the 
health trait (SCS), on both real and simulated data. 
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Interestingly, on the real data, the overall 
iSGC between MY and CR and between PY and 
CR were less negative for the elite sires than the 
estimated genetic correlations between these 
traits, as shown in Figure 4. Conversely, the 
overall iSGC between MY and SCS and 
between PY and SCS were rather more negative 
(i.e. a stronger trade-off between these traits) for 
these elite sires than the estimated genetic 
correlations between these traits, as shown in 
Figure 3. If the hypothesis that iSGCs express a 
latent physiological trait holds, even if at least 
partially, these results suggest that selection is 
favoring a physiological trait that allows a better 
management of the trade-off between 
production and fertility, however in the 
detriment of the trade-off between production 
and health indicators. Nonetheless, it is 
important to note that a strengthening of the 
trade-off between traits does not mean that the  

 
Figure 4. Distribution of the iSGC obtained between 
the production traits (MY, PY, and MSPD) and the 
fertility trait (CR), on both real and simulated data. 

 
Figure 5. Distribution of the iSGC obtained between 
the health and fertility traits (SCS and CR), on both 
real and simulated data. 
 
 

traits themselves are not achieving genetic 
progress. 
 
Heritabilities of the individual-specific genetic 
correlations on real and simulated data 
Heritabilities were estimated for the iSGC, by 
treating them as a phenotype, as in the model 
presented in equation (10). These heritabilities 
were estimated for the iSGC obtained for both 
the real and simulated data. The goal of 
comparing these heritabilities of the iSGC on 
real data, to those of the iSGC on simulated data 
with the same genetic parameters, was to show 
that when no latent trait was associated to the 
differences between genetic correlations in a 
population, no heritabilities would be captured. 

The estimated heritabilities are presented in 
Table 2, being the presented values for the 
heritabilities of iSGCs obtained on simulated 
data (lower triangle of Table 2), the obtained 
using the pedigree relationship matrix, since 
their values were not statistically different from 
the obtained with the genomic relationship 
matrix (significance level of 0.05). All these 
heritabilities of the iSGC on simulated data 
were not statistically different from zero 
(significance level of 0.05), indicating that 
neither family relationships, nor allele 
frequencies and LD patterns were enough to 
outline a genetic determinism for the different 
iSGC expressed by different sires. 

With respect to the heritabilities of the iSGC 
on real data (upper triangle of Table 2), their 
values were significantly different from zero 
(significance level of 0.05), with the exception 
of the heritability of iSGC between MSPD and 
CR. Particularly, heritabilities of the iSGC 
between the two main production traits (MY 
and PY), between these main production traits 
and the health trait (SCS), and between these 
main production traits and the fertility trait 
(CR), were moderately high for dairy cattle 
traits, ranging from 0.38 to 0.51. These 
heritabilities suggest a reasonable level of 
genetic determinism associated to the different 
iSGC expressed by different sires, and these 
heritabilities could be due to the genetic 
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correlations at the individual level expressing, 
at least partially, a latent physiological trait. 
 
Table 2: Heritability estimates for the iSGC obtained 
on the real data (upper triangle of the table), and for 
the iSGC obtained on the simulated data (lower 
triangle of the table). Values in gray indicate an 
estimate that was not statistically different from zero 
(significance level of 0.05). 

 MY PY MSP
D 

SCS CR 

MY --- 0.45 0.16 0.45 0.46 
PY 0.03 --- 0.17 0.51 0.38 

MSP
D 

0.02 0.02 --- 0.23 0.05 

SCS 0.02 0.02 0.02 --- 0.11 
CR 0.02 0.03 0.03 0.02 --- 

 
Conclusions 
 
Genetic correlations, while treated as a 
parameter common to all individuals in genetic 
evaluations and selection indexes, may present 
different values across individuals in a 
population. By obtaining individual-specific 
genetic correlations for sires from a French 
Holstein dairy cattle population, this study has 
shown that indeed, different individuals present 
different patterns in their genetic correlations 
between five traits of interest. Moreover, 
individual-specific genetic correlations are 
heritable, suggesting that these parameters may 
be part of the expressions of a non-measurable 
(or latent) physiological trait. When it comes to 
traits that present a negative genetic correlation, 
the findings from this study may assist to select 
individuals better apt to manage the trade-off 
between traits. However, it remains a question 
of research, how to adequately and optimally 
use individual-specific genetic correlations and 
their heritability in a breeding program. 
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Abstract 
 
In April 2025, Centre for Genetics of Polish Federation of Cattle Breeders and Dairy Farmers (CGen) 
implemented single-step genomic evaluation for Polish Holstein-Friesian population. The process of 
implementing the new evaluation system started in December 2024 when CGen became the official 
provider of dairy genetic evaluations in Poland calculating selection indexes based on breeding values 
estimated by the National Institute of Animal Production in Balice using a two-step approach. To 
increase the accuracy of breeding value estimations, CGen developed single-step pipelines using 
BLUPF90 family of programs. In January 2025 conventional EBVs for all traits were submitted for 
Interbull test run and successfully passed the evaluation. Next, the results of genomic evaluations were 
submitted for GEBV test and also passed for all traits. In April 2025 single-step evaluation results were 
officially published for the industry. In this paper we share the experience from the work undertaken to 
implement the single-step approach in Poland. The changes to the genetic evaluation models are 
highlighted. The methodology implemented for the integration of external information (MACE proofs) 
in single-step evaluations is discussed and results presented. Technical aspects of implementation are 
also discussed including model running times for individual traits. Highlights from the validation work 
undertaken are also included. The most noticeable impact on genetic evaluation results of the transition 
from the two-step evaluation system to the single-step method was increase in reliabilities. For example, 
for production traits, reliability increased by 12 percentage points for bulls and 10 percentage points for 
cows. The most significant improvement was observed for longevity, with a reliability increase of 40 
percentage points for bulls and 35 percentage points for cows. The new system also demonstrated 
substantial improvement in the correlation between Polish and international breeding values, as 
estimated by the Interbull Centre. The most noticeable improvement was for longevity, where 
correlation increases with some countries reached 46 percentage points. 
 
Key words: genetic evaluation, genomic parameters, single-step evaluation, dairy 
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Introduction 
 
The implementation of the single-step genetic 
evaluation in Poland was a significant project 
undertaken by several organizations, led by the 
Centre for Genetics of the Polish Federation of 
Cattle Breeders and Dairy Farmers (CGen) and 
supported by the National Research Institute of 
Animal Production in Balice, Poznan 
University of Life Sciences, Krakow 
Agricultural University, Wroclaw University of 
Life Sciences, and AbacusBio Ltd. This 
initiative aimed to transition from a two-step to 
a single-step genomic evaluation system for 
Holstein-Friesian cattle, using the BLUPF90 
family of programs (Aguilar et al., 2018). The 
take-over of the routine genetic evaluation by 
CGen followed the European trend in which 
breeders' associations are taking responsibility 
for the national evaluations. Similar changes 
were implemented in France, Netherlands, or 
Germany. The final change of the evaluation 
unit was accepted by the Ministry of 
Agriculture in December 2024, and the 
implementation of the new system took place in 
April 2025 after a successful validation at the 
Interbull Centre. 

The transition to a single-stage system 
included: implementing BLUPF90 family of 
programs, change in definition of fertility traits 
and longevity, changes in models used to 
evaluate some traits e.g. production and 
conformation, but also introducing new traits 
(digital dermatitis (DD), bone quality, and 
interval from 1st to last insemination. One of the 
main issues was integration of external breeding 
values i.e. MACE proofs as bulls’ pseudo-
phenotypes. In this paper we show the results of 
implementing the single-step genomic 
evaluation based on a few selected from all the 
47 traits included in the Polish national genetic 
evaluation system. 
 
Materials and Methods 
 
The population of Polish Holstein-Frisian cows 
are under routine recording, performed by 

Polish Federation of Cattle Breeders and Dairy 
Farmers (PFHBiPM). The database contained 
over 4M cows with phenotypes. The number of 
records varied between traits, for example the 
data set for production traits had over 76M 
records and for DD 270K. The 3-5 generations 
of pedigree, depending on the trait, included in 
the analyses was created based on own 
herdbook data and integrated with Interbull and 
EuroGenomics pedigree data including 6M 
animals. More than 240K genotypes were used 
in the analyses which comprised of genotypes 
of Polish cows and bulls supplemented by 
EuroGenomics’ data and data from other 
international exchanges.  
 
Models 
We employed a range of animal models 
depending on the analyzed trait. In the case of 
production traits, we employed multi-lactation 
random regression test-day models with 
lactation curve modelled with Legendre 
Polynomials. Calving traits were multi-
lactation models with maternal effect. Type 
traits were analyzed using multi-trait models 
with correlated traits connected in blocks. For 
fertility traits, longevity and digital dermatitis 
we used single trait multi-lactation models. 
Workability traits were analyzed with single-
trait animal models. 
 
Software 
The variance components and breeding values 
were estimated using BLUPF90 family of 
programs. The variance components were 
estimated using Gibbs sampling algorithm with 
GIBBSF90+, BLUP90IOD3 to solve mixed 
models and ACCF90GS3 to approximate 
reliability including genomic information. The 
genomic runs utilized APY (Algorithm for 
Proven and Young) algorithm for genomic 
evaluations (Misztal et. al., 2014, Misztal, 
2016). The core for the APY consisted of 18K 
animals, which is related to the number of 
independent chromosome segments 
(haplotypes) in bovine, this number of core 
animals allowed to capture 99% of genetic 
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variation (Pocrnic et al., 2016). The list of the 
core animals was created using a strategy that 
prioritized animals from the reference 
population common across seven different trait 
groups. A "reference list" was first built by 
randomly sampling animals present in the most 
trait groups, with special consideration for key 
traits like digital dermatitis, conformation and 
fertility. This list was then supplemented with a 
selection of the most popular insemination bulls 
to finalize the sample. 
 
MACE Integration 
MACE breeding values obtained from the 
Interbull Centre were used as bulls’ pseudo-
phenotypes in order to integrate international 
breeding values in the national genomic 
evaluation following Bonifazi et al. (2023). In 
short, the international and national breeding 
values for bulls were de-regressed using their 
reliability. Then the national de-regressed 
proofs were used to remove the contribution of 
Polish cows to the MACE proofs. The MACE 
proofs were used only if they were more 
accurate than the national proofs. The converted 
MACE proofs were weighted using their 
reliability and included in the data as bulls’ 
phenotypes. All bulls were assigned to one 
contemporary group to account for differences 
in the average level between phenotypes and the 
de-regressed proofs. In the case of random-
regression models, we additionally converted 
the de-regressed proofs such that they were on 
the level of the test-day records instead of the 
full lactation EBV using Eding (2024) 
approach. 
 
EBV Standardization 
The final breeding values were standardized 
using the rolling base population that consists of 
cows with phenotypes born 10 years before the 
evaluation and will be updated on a yearly basis. 
All traits except milk production traits are 
expressed on a scale with the mean of 100 and 
SD of 10. 
 

Results and Discussion 
 
Selection of traits for comparison 
To show the outcomes of implementing single-
step evaluation system in Poland we present 
results for a few selected traits only. We 
selected: milk yield, longevity, and digital 
dermatitis (DD). Milk yield was included due to 
its extensive history in Polish genetic 
evaluation, having undergone moderate 
modifications (comparing to changes in other 
trait groups) regarding data filtering and model 
in new system. This provides a stable baseline 
for comparison. The heritability for milk yield 
was estimated at the level of 0.37. Longevity 
was chosen as a trait with a substantial period of 
being included in the evaluation in Poland and 
a comprehensive phenotypic data set. Notably, 
the current evaluation for longevity has 
undergone a complete revision, including 
changes in trait definition, data filtering and 
variance components estimation (Stachowicz et 
al., 2024). The heritability level for longevity 
was estimated to be 0.16. The third trait, digital 
dermatitis, represents a recent addition to the 
genetic evaluation with breeding value 
evaluation started in 2024. Phenotypic data for 
DD have been incorporated into the evaluation 
system since 2018. It represents low heritable 
traits with a heritability of 0.07. 
 
EBV correlations with previous system 
The introduction of the new single-step system 
caused significant re-ranking of animals. 
Correlation between indexes from previous and 
new system ranged from 0.83 to 0.96 depending 
on focal group of animals. In the top 200 
ranking bulls only 96 were in common between 
the two systems and only 66 females. 
Correlations for production traits were the 
highest, ranging from 0.88 for protein to 0.94 
for fat. The larger changes were observed for 
longevity and fertility with correlations of 0.6 
and 0.5, respectively. 
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MACE Integration results 
Correlation between domestic pedigree-based 
(conventional) evaluations and international 
proofs for bulls with daughters in Poland for 
milk production was 0.99. The same correlation 
for international bulls without daughters in 
Poland was 0.79. The inclusion of MACE 
proofs in single-step evaluation resulted in an 
increase in the correlation with MACE proofs to 
0.98. For longevity the corresponding value 
increased from 0.72 to 0.96, respectively.  
 
Genetic correlations with other countries 
For production traits the correlations between 
countries from previous and current system are 
high and stable, at approximately 0.9 for milk 
yield (ranged from 0.87-0.9). The lowest 
correlation was obtained between Poland and 
New Zealand 0.66 for both current and previous 
systems. This means that the changes 
introduced did not significantly impact the 
results obtained in Poland and are consistent 
with the evaluation obtained in other countries. 
For traits where significant changes were made 
in the definition, model, or data editing, such as 
longevity, the improvement in correlation is 
significant, ranging from approximately 0.2 to 
0.45. The highest increase was observed 
between Poland and counties: USA, Germany, 
DFS and Spain. This means that the changes 
introduced positively influenced the estimated 
breeding value results.  

Digital dermatitis is a new trait evaluated in 
Poland since April 2024. Based on results from 
the Interbull research run for new traits Poland 
received very high correlations for digital 
dermatitis with six other countries participating 
in the study, with the highest correlation being 
0.93 with the Netherlands. These results 
confirm that the breeding value estimated in 
Poland is consistent with those estimated in 
other countries. 

 
Reliability 
A notable observation in the current genomic 
evaluation system is an increase in reliability, 
particularly for genotyped animals and 

reference population. This improvement is 
evident in both male and female. For milk yield, 
the average increase in reliability was 10 and 12 
percentage points for bulls and cows, 
respectively, when comparing the previous two-
step evaluation system to the current single-step 
approach. In the case of longevity, this increase 
in reliability is substantial, averaging 40 
percentage points for bulls and approximately 
35 percentage points for females. As 
mentioned, digital dermatitis has not previously 
undergone a two-step evaluation, which makes 
it impossible to directly compare the reliability 
of both systems. However, Figure 1 illustrates 
the distribution of genomic breeding value 
reliability for females derived from the single-
step system. As shown, females with only 
phenotypes showed the lowest reliability, with 
an average reliability of 0.4 in this group. In 
contrast, females from the reference population 
(having both the phenotype and genotype) show 
the highest reliability, averaging around 0.7. 
Females with only a genotype achieve an 
average reliability of approx. 0.6. These 
reliability levels are notable given that DD is a 
low-heritability trait with a relatively small 
number of recorded phenotypes. For all 47 traits 
currently under evaluation, an observed 
increase in reliability ranged from 5 to 40 
percentage points. 

Figure 1. Reliability of the genomic breeding values 
for digital dermatitis in three groups of Holstein-
Friesian females. 
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Run times 
The implementation of the APY (Algorithm for 
Proven and Young) approach, combined with 
multi-core processing options within the 
BLUP90IOD3 software, has resulted in 
relatively short computational times for full 
genomic evaluation runs. The processing time 
varies depending on the trait under 
consideration, ranging from (in clock hours): 
1.5h for longevity, to 5h for digital dermatitis 
(DD), and between 13h to 33h for production 
traits. 
 
Conclusions 
 
Implementation of single-step evaluation 
system utilizing APY algorithm allowed to 
improve the national genetic evaluation system 
in Poland. The international correlations 
estimated by Interbull Centre for conventional 
proofs, generally, increased. The genomic 
breeding values reliability increased 
substantially thanks to including phenotyped 
and genotyped cows in the reference population 
while utilizing MACE proofs for bulls 
evaluated based on foreign daughters. Including 
cows in the reference population allowed for a 
successful implementation of hoof health trait 
which is not a routinely recorded trait in Poland. 
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Abstract 
 
For several years, dairy cattle breeders in the Walloon Region of Belgium have had access to locally 
estimated breeding values (EBV) for traits of interest. These evaluations enable Wallonia to contribute 
to the Multiple Across Countries Evaluation (MACE) conducted by Interbull. In the current local 
genomic evaluation framework, genomic and pedigree data are integrated with local EBV and external 
information, MACE-derived EBV (MACE EBV), through a pseudo-single-step genomic evaluation 
system, producing genomically enhanced EBV (GEBV). However, this approach may introduce biases. 
To address this, the present study aimed to implement a single-step genomic BLUP (ssGBLUP) that 
simultaneously incorporates all available national data alongside MACE information and validate this 
method using milk production traits. The proposed strategy first involves defining "pseudo-traits" that 
represent MACE traits (i.e., 305-day averages for milk, fat, and protein yields over the first three 
lactations). MACE EBV are then transformed into adjusted pseudo-phenotypes (i.e., deregressed proofs) 
and effective contributions but avoiding double-counting of Walloon data within MACE EBV. Next, 
the variance-covariance matrices from the local random regression test-day model were modified to 
include the three MACE pseudo-traits as correlated traits. Finally, a single-step genomic evaluation was 
performed, jointly analyzing test-day records and MACE pseudo-phenotypes. Validation of both 
pedigree-based and single-step genomic evaluations, both integrating MACE information, was carried 
out using data from the official Walloon genetic evaluations of April 2022. Results show that MACE 
information is adequately integrated in the local evaluations, because Pearson correlations between 
MACE EBV and the integrated EBV were higher than 0.97 across traits. The addition of genomic 
information in single-step evaluations resulted in small changes for all individuals, as illustrated by 
Pearson correlations ranging from 0.975 and 0.986 for sires with MACE information.  
 
Key words: dairy cattle, single-step GBLUP, multiple across-country evaluation, milk production 
traits 
 
Introduction 
  
Walloon Holstein dairy cattle breeders are 
provided with locally estimated breeding values 
(EBV) for production-, conformation-, udder 
health and other functional traits. Nearly all 
traits are submitted to Interbull 
(https://interbull.org, Uppsala, Sweden), which 
performs an across-country genetic evaluation 
using a multiple across-country evaluation 

(MACE) system, resulting in MACE-derived 
international EBV hereafter called MACE EBV 
(Schaeffer, 1994). 

In the current Walloon genomic evaluation 
system, these MACE EBV are combined with 
pedigree and genomic information in a pseudo 
single-step evaluation using a Bayesian 
integration procedure, accounting for double-
counting, to produce local genomically 
enhanced EBV (GEBV) (Vandenplas et al., 
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2014; Colinet et al., 2018). This system enables 
the integration of external (international) 
information across all animals and datasets in 
the local system, ultimately enhancing selection 
decisions (Vandenplas et al., 2015; Vandenplas 
et al., 2017; Bonifazi et al., 2023). Moreover, 
post-processing steps are performed to integrate 
MACE, GMACE and local EBV/GEBV before 
publication. 

However, this pseudo single-step evaluation 
may introduce biases. In particular, this 
approach still relies on a first BLUP step which 
does not estimate fixed effects accounting 
correctly for genetic differences as reflected by 
final GEBV. To address this, single-step 
GBLUP (ssGBLUP) is the method of choice as 
it combines phenotypic data, pedigree and 
genomic information simultaneously, resulting 
in GEBV that are both more accurate and less 
biased (Misztal et al. 2009, Aguilar et al, 2010, 
Christensen and Lund, 2010). 

The objectives of this study were to develop 
and validate a single-step genomic evaluation 
that simultaneously incorporates all available 
local data alongside MACE information for 
milk production traits in Walloon Holstein dairy 
cattle. Integration of MACE information in the 
current system is very important and had to be 
conserved. This study is part of an ongoing 
effort to implement this strategy for all our 
current evaluations but also for novel traits such 
as enteric methane emissions. 
 
Materials and Methods 
 
Data 
Phenotypic data 
All data were provided by the Walloon breeding 
association Elevéo (Awé Groupe, Ciney, 
Belgium), which manages performance 
recording data in the Walloon region of 
Belgium. Data used in the study were from the 
official Walloon routine April 2022 genetic 
evaluations. 

Three types of data were used: 1) 4 851 501 
test-day records for 305-day milk (MY), fat 
(FY), and protein yields (PY) across three 

lactations, 2) MACE EBV and reliabilities of 12 
547 bulls obtained from Interbull for these 
traits, and 3) local EBV and reliabilities of 
2 230 local Walloon bulls that were sent to 
Interbull. 

Furthermore, the cleaned pedigree used for 
the April 2022 routine evaluation consisted of 
4851501 animals. Genetic groups were defined 
as in the current evaluations by group of birth 
years, origin (Europe vs. USA) and sex. 

 
Genomic data 
Genomic data were available for 13 604 
animals and consisted of 30 554 single 
nucleotide polymorphisms (SNPs), routinely 
used in the Walloon genetic evaluation system. 
Genotyping was done using the BovineSNP50 
Beadchip v1 to v3 and EuroG MD (SI) v9 
(Illumina) chips. SNPs common across the four 
chips were retained, while non-mapped SNPs, 
SNPs located on sex chromosomes, and 
triallelic SNPs were excluded. SNPs exhibiting 
Mendelian conflicts or with a minor allele 
frequency less than 5% were excluded. The 
difference between observed and expected 
heterozygosity was estimated, and SNPs with a 
difference greater than 0.15 were excluded 
(Wiggans et al., 2009). After applying all 
quality control measures, non-mapped SNP, 
SNP located on sex chromosomes, SNP with 
Mendelian conflicts, and those with minor 
allele frequency less than 5% were excluded. 
Finally, data of 28 470 SNPs located on 29 
chromosomes were used. 

 
Definition of MACE Pseudo-traits 
Adding external information from MACE 
discounting for already contained local 
information has been a topic of applied research 
for a long time (Gengler & Vanderick, 2008). 
Recently, a commonly accepted strategy was 
developed that we also implemented. Following 
the framework of Vandenplas et al. (2015), 
MACE EBV were transformed into deregressed 
proofs (DRP), i.e., “pseudo-phenotypes”, for 
MY, FY, PY for MACE bulls excluding local 
information. These pseudo-traits captured the 
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genetic signal embedded in MACE EBV, while 
avoiding double-counting of national records. 
They were associated to weights called 
effective record contributions (ERC), 
expressing how many record equivalences 
would have generated the same information 
content. 

Following the strategy developed by 
Bonifazi et al. (2023), deregression was 
performed using the method of Garrick et al. 
(2009) where EBV were adjusted by their 
reliability to produce DRP. There are two 
inherent issues that Bonifazi et al. (2023) 
solved: the elimination of local information in 
MACE EBV, and the deregression applied to 
EBV corrected for parent averages (PA), i.e.  
Mendelian Sampling deviation. Reliability 
(REL) of this deviation is needed in the 
deregession process. This value can be obtained 
by transforming REL to ERC and subtracting 
ERC associated with PA REL from total ERC. 
This yields dERC, necessary to properly weigh 
the DRP used as pseudo-phenotypes in an 
evaluation. In a final step double counting is 
eliminated by subtracting local information sent 
to Interbull generating DRP* and dERC* free 
of local information. 
 
Models and analysis 
The model currently used in the Walloon region 
of Belgium is a three-lactation, three-trait 
random regression test-day model (RRTDM) 
for milk, fat and protein yields. Average 
lactation EBV are generated computing 
weighted sums of the underlying genetic 
random regression solutions resulting in 
aggregate 305-DIM three-lactation EBV that 
are sent to Interbull (EBV_sent). Details can be 
found in Auvray & Gengler (2002) and Croquet 
et al. (2006). 

We developed the new model to be as close 
as possible to the current Walloon genomic 
evaluation, which uses a pseudo-single-step 
evaluation as outlined in Vandenplas et al. 
(2014) and Colinet et al. (2018). Briefly 
explained, local EBV and MACE EBV were 
combined in a system using a combined 

pedigree and genomic relationships matrix, 
while discounting for local information 
included in MACE (EBV_sent), resulting in 
local GEBV. An overview of this system can be 
found in Figure 1A. 

The new developed system relies on the 
simultaneous analysis of phenotypic data, 
instead of local EBV, the MACE pseudo-
phenotypes (as DRP) weighted by ERC, and 
pedigree and genomic information using 
ssGBLUP (Aguilar et al., 2010), resulting in 
GEBV (GEBV_ss).  

Another problem is that the local traits and 
MACE traits are not on the same scale. Recently 
some research (e.g. Boerner et al., 2023) has 
proposed complex solutions. The complication 
is, however, only because one tries to pass from 
a 305DIM 3-lactation MACE trait represented 
by a single EBV to a large number of genetic 
effects (i.e., 3 random regressions) and traits 
(i.e. 3 lactations). Complicated and potentially 
imprecise backsolving equations can be 
avoided by using the following process. The 
variance-covariance matrices from the national 
test-day random regression model were 
modified to include the three MACE pseudo-
traits as correlated traits but initially without 
records linking these to the Legendre 
polynomials across the 3 lactations. As the 
linear function in the direct local evaluation 
solutions to MACE EBV is a simple 
transformation, transforming by the same 
function initial variance-covariance matrices 
generates the needed augmented genetic 
(co)variance matrices (Vandenplas et al., 2015). 
Its singularity was avoided by multiplying the 
used (co)variance between random regressions 
and MACE traits by a factor of 0.999. An 
interesting side effect of this reparameterization 
is that the new system of equation generates 
natively EBV to be sent to the MACE runs of 
Interbull. Moreover, the setting of this equation 
system is very flexible, so, one can choose to 
add or not MACE bulls. The system of 
equations can also be easily modified to keep 
fixed effects constant. This will allow us to 
provide Interbull with the different requested 
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unbiased EBV in the future (i.e., computing 
EBV_sent but using fixed effects that are 
obtained by solving with H). 

 

 
 

A 

 
 

 
B 

 
 

 
Figure 1. Comparison of the currently applied genomic evaluation system in Wallonia (above, A), compared to 
the developed single-step system with integration of MACE information based on DRP (below, B). 
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Figure 1B gives an overview of the 
developed single-step evaluation system with 
incorporation of MACE data based on DRP* 
and dERC*. Software used for these 
calculations was based on BLUPF90 family of 
programs (Misztal et al., 2014) but with a 
certain number of adaptations including 
checking of residuals for outliers and other 
adaptations to improve its usefulness in the 
context of genetic evaluations. 

Furthermore, the calculation of genomic 
reliabilities had to be adapted as well. First, 
pedigree reliability (REL) has been determined 
using Effective Daughter Contributions and 
following standard procedures employed in the 
current genetic evaluations for yield traits in the 
Walloon Region of Belgium, as described by 
Strandén et al. (2000), but extended to allow 
integration of ERC of MACE bulls. Second, 
genomic reliability (GREL) was calculated 
using an approach adapted from Gao et al. 
(2023), using the previously obtained pedigree 
REL as a starting value after adjustment for 
double-counting due to pedigree information 
(Zaabza et al., 2022). 
 
Validation 
To assess consistency, we did two types of 
comparisons. First, to validate the integration of 
MACE information in a genetic evaluation, we 
compared for the same bulls MACE EBV with 
EBV_ss obtained from a pedigree-based 
evaluation integrating MACE information as in 
the developed ssGBLUP. Theoretically, the 
system should yield exactly the same EBV_ss 
to MACE EBV. Then, the GEBV from the 
current genomic evaluation system were 
compared to GEBV_ss obtained using the 
developed ssGBLUP system (GEBV_ss), both 
systems integrating EBV MACE. In this study 
we compared correlations and regression 
coefficients, the first establishing the 
relationship between sets of breeding values, 
the later assessing potential changes in 
variances (i.e., inflation of deflation) of the sets 
of breeding values that are compared. 

Results 
 
Validation of integration of MACE 
information in the genetic evaluation 
Tables 1 and 2 present Pearson correlations 
among EBV obtained from the current local 
pedigree-based evaluation (EBV_sent), MACE 
EBV, EBV obtained from the pedigree-based 
evaluation integrating MACE EBV (EBV_ss), 
and GEBV obtained from the new ssGBLUP 
with integration of MACE EBV (GEBV_ss). 
Table 1 specifically shows the correlations for 
milk, fat and protein yields for all bulls included 
in the MACE evaluation, as well as for own 
local bulls participating in MACE. 
 
Table 1: Pearson correlations between (G)EBV_ss 
with MACE EBV and EBV_sent, for MACE bulls, 
with or without any local information sent to 
INTERBULL, for milk (MY), fat (FY) and protein 
(PY) yields. 

  MACE EBV 
(N=12547) 

EBV_SENT 
(N=2230) 

MY EBV_ss 0.967 0.962 

 GEBV_ss 0.969 0.960 

FY EBV_ss 0.945 0.958 

 GEBV_ss 0.950 0.955 

PY EBV_ss 0.979 0.964 

 GEBV_ss 0.980 0.961 

Table 2 shows the same correlations, but only for 
genotyped bulls. 
 
Table 2: Pearson correlations between (G)EBV_ss 
with MACE EBV and EBV_SENT, for local 
genotyped MACE sires, with or without any local 
information sent to INTERBULL, for milk MY), fat 
(FY) and protein yields (PY). 

  MACE EBV 
(N=2828) 

EBV_SENT 
(N=1036) 

MY EBV_ss 0.965 0.961 

 GEBV_ss 0.973 0.956 

FY EBV_ss 0.951 0.961 

 GEBV_ss 0.967 0.955 

PY EBV_ss 0.979 0.967 

 GEBV_ss 0.979 0.962 

 
The developed approach enabled integration 

of MACE EBV into multi-trait random 
regression test-day evaluations. This is shown 
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by correlations between MACE EBV and 
EBV_ss that range between 0.95 and 0.98, and 
by regression coefficients close to 1 (Figure 2). 

The new ssGBLUP approach enabled multi-
trait random regression test-day ssGBLUP with 
integration of MACE EBV. The impact of 
genomic correlations on the evaluation of 
genotyped bulls is shown by the Pearson 
correlations between MACE EBV and 
GEBV_ss, ranging from 0.945 to 0.980. 
Compared to EBV_ss, we noticed a very small 
augmentation of correlations when genomic 
information is integrated (Table 1), and this 
augmentation is more visible when only looking 
at genotyped bulls (Table 2). Additionally, 
Figure 3 shows again excellent R² values and 
regression coefficients close to 1 (therefore no 
bias) with inclusion of genomic information, 
indicating a perfectly valid integration. Figures 
for fat and protein yields are not displayed but 
show the same tendency. 
 
 

 
Figure 2. EBV_ss versus MACE EBV for all MACE 
bulls for milk yield (x10) expressed on the same 
scale 
 
 

 
Figure 3. GEBV_ss versus MACE EBV for all 
MACE bulls for milk yield (x10) expressed on the 
same scales 
 
Validation of the integration of genomic 
information 
Walloon GEBV obtained from the current and 
developed genomic systems are similar. This is 
shown by Pearson correlations between GEBV 
calculated with the current and developed 
systems of 0.975 (fat yield), 0.984 (milk yield) 
and 0.986 (protein yield) for the 2828 
genotyped MACE bulls. Additionally, Figure 4 
shows again a very high R² value. Graphics for 
fat and protein yields are not displayed but show 
the same tendency. 
 

 
Figure 4. GEBV computed with the current (GEBV) 
and the developed (GEBV_ss) (x10) genomic 
system for all genotyped MACE bulls for milk yield, 
not expressed on the same scales. 
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Discussion 
 
This study aimed to validate a single-step 
analysis that simultaneously incorporates all 
Walloon national data with available MACE 
information for milk production traits in 
Walloon Holstein dairy cattle. In recent years, 
ssGBLUP has become the preferred approach 
for genomic evaluation. Multiple countries are 
shifting their evaluations towards single-step 
evaluations, which has been reported to 
demonstrate less bias and higher accuracies, as 
proven by several countries in dairy cattle, 
(Zavadilova et al., 2014; Mäntysaari et al., 
2020; Alkhoder et al, 2022; Himmelbauer et al., 
2021; Pimentel et al. 2021, Cesarani et al., 
2021); Guarini et al., 2019)) amongst others. 
Furthermore, studies in beef cattle (e.g., 
Lourenco et al. 2015, Bonifazi et al. 2023) have 
also demonstrated effectiveness. Our results 
show very high correlations and regression 
coefficients close to one, indicating good 
robustness and thus validating the method. 

In the next step towards practical 
implementation, REL calculation will be 
performed according to the proposed strategy 
hereabove. This strategy has already been 
validated in our local methane evaluation (Chen 
et al., 2025) but has yet to be validated in the 
developed Walloon routine evaluation. 

The deregression phase of MACE 
information is based on the quality of the parent 
averages, calculated directly by Interbull using 
a sire-grand-sire model. So, for a foreign bull 
with little or no information in Wallonia, the 
information is less reliable. However, as 
expected, as the number of daughters for this 
bull in Wallonia increases, most of the 
information in the bull proof comes from the 
daughters and/or sons (Mrode & Swanson, 
1999). So, in the future, the quality of the DRP 
is expected to further improve. 
 
 
 

Conclusions 
 
As a conclusion, the proposed single-step 
GBLUP enabled an efficient genomic 
evaluation process, with robust validation 
statistics, highlighting its feasibility for routine 
use in Wallonia’s genomic evaluations. The 
comparison between the current and developed 
genomic systems ensures that base change 
modifications of (G)EBV are acceptable, and 
that limited changes will be experienced by 
farmers. Future developments will continue to 
improve the evaluation system, such as for 
example a re-estimation of the variance 
components. 
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Abstract  
 
In April 2025, we introduced single-step genomic evaluations for all traits that are subject to routine 
genetic evaluations in German Holstein. With all models, we estimate the same main effects as with the 
former conventional genetic evaluations of Holsteins. In addition, a fixed regression on the inbreeding 
coefficient was added to all the models. With the introduction of single-step models, reliabilities of 
GEBVs increased for all traits. This increase is especially pronounced in young animals with no own or 
offspring performance. As expected, the increase in reliability was greatest for many functional traits: 
longevity and direct calving index: +0.11, maternal calving index: +0.13, young stock survival and 
health index: +0.14, while it was lower for production traits: production index: +0.04. Additionally, 
validations with 2 and 4 years of right-truncated data confirm a substantial increase in the predictive 
ability of genomic GEBVs compared to the previous multi-step model: correlations of purely genomic 
GEBVs of young bulls with their later daughter-proven GEBVs are higher for all traits with the single-
step model. Again, this increase in predictive ability is highest for the functional traits and lower for the 
production traits. With publication dates in April, August, and December, we conduct main runs with 
updated phenotypic information three times a year. In these main runs, we include MACE information 
from the respective current Interbull MACE run. In addition to these full runs, we conduct weekly 
genomic evaluations, for which we use the estimates of the SNP-effects and the residual polygenic 
effects from the main runs and apply them to the newly genotyped animals.  
 
Key words: single-step model, genomic evaluation, genomic validation, Holstein cattle  
 
Introduction  
  
A multi-step SNP BLUP genomic model 
(MSM, Liu et al. 2011) was used for routine 
genomic evaluations of German Holsteins from 
August 2010 to December 2024. After the first 
publications of single-step genomic models 
(Aguilar et al. 2010; Christensen and Lund 
2010), tremendous efforts were devoted to 
research and development in Germany with the 
goal of implementing a single-step SNP BLUP 
model (SSM, Liu et al. 2014) for routine 
genomic evaluations in German Holsteins.  

There are a total of 10 trait groups evaluated 
routinely for German Holsteins. Logically, the 
SSM model must be implemented to all the trait 
groups simultaneously, to maintain the current 
weights of individual traits on total merit 

indices such as German RZG, RZ€ and 
RZOeko. To minimize the impact of genomic 
model change on genomic selection, all 
functionalities and features of the current MSM 
conventional and genomic evaluations must be 
retained as much as possible.  

Although the conventional evaluations in 
MSM were multi-trait models for all trait 
groups, the genomic evaluations were single-
trait models applied to deregressed 
conventional EBV (DRP) of reference bulls and 
cows (Liu et al. 2011). For instance, a multi-
lactation random regression model was used to 
analyze test-day milk yields in the conventional 
evaluation of German Holsteins (Liu et al. 
2004), but the evaluated trait in the genomic 
model of MSM was 305-day lactation milk 
yields combined over the first 3 lactations, 
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calculated as a linear function of the genetic 
random regression coefficients from the 
conventional test-day model. In contrast to the 
MSM, SSM implicates direct modeling of the 
genomic information based on the national test-
day milk yields. With the SSM, we therefore 
estimate for the first time SNP effects directly 
on the level of test-day random regression 
coefficients for production traits (Alkhoder et 
al. 2022; Alkhoder et al. 2024). 

To enhance the reliability of genomic 
estimated breeding values (GEBV) and to 
represent foreign genetics in the German 
population as unbiased as possible, genotyped 
foreign bulls were included in the German 
Holstein genomic evaluation under the MSM 
model. The trait definitions of all traits 
evaluated in the Holstein MACE evaluation 
were used for the German genomic evaluation, 
e.g., the combined lactation 305-day milk yield 
under the MSM model as described above. With 
the introduction of the SSM model, phenotypic 
data of foreign cows is also included as in MSM 
model, via the MACE proofs of their sires, 
which increases the reliability of genomic 
prediction. In the SSM model, deregressed 
MACE EBVs of foreign bulls are treated as the 
same trait or a correlated trait as the national 
estimation traits, depending on the trait groups. 

The objectives of this study were 1) to 
describe technical details of the genomic model 
upgrade from the MSM to the SSM model; and 
2) to compare accuracy and prediction bias of 
the two genomic models via genomic 
validation.  
 
Materials and Methods  
 
Data sets for routine single-step evaluations 
Phenotype data of cows and bulls 
All national phenotypic data as used in the 
previous conventional evaluations are now used 
in SSM: phenotypic cow data recorded since 
01.01.2000. As in the previous conventional 
and genomic MSM models, cows or calves with 
their own phenotypic records must have their 
sire and maternal grandsire known. The breeds 

of sire and maternal grandsire must be 
consistent with that of the animal. Other 
plausibility checks and edits on the data are also 
kept with SSM as they were for the 
conventional model in MSM. Because of the 
integration of foreign MACE data in the single-
step evaluation, bulls with foreign daughter 
information in MACE  are required to be born 
in 1995 or later to be consistent with the left 
truncation of national phenotype data. 
 
Genotype data 
Unlike the previous MSM model, genotype 
records of animals born before 2005 are no 
longer used in the SSM model to avoid possible 
negative impact of selective genotyping in the 
early years of genomic selection. Genotype 
imputing and routine checks on the genotype 
data are kept with SSM. 
 
Pedigree data  
In contrast to the trait-dependent pedigree 
processing procedures in the previous MSM 
evaluations, we now apply the same procedures 
to the sub-pedigrees for all trait groups: starting 
from youngest genotyped animals (including 
embryos) or cows / calves with phenotype 
records, a maximum of 20 generations of 
ancestors is traced back in the main pedigree. 
Additionally, at least 3 generations of ancestors 
are included for the oldest animals with 
phenotypic data, e.g., bulls with foreign 
daughters. Pedigree-based inbreeding 
coefficients are computed once, using all 
animals present in Germany’s pedigree 
database for dairy breeds and the resulting 
inbreeding coefficients are then used to build 
the diagonals of the inverse relationship matrix 
and to define the fixed effect on the inbreeding 
coefficient in all SSM evaluations. 
 
Data sets for two genomic validation studies  
For a comparison between SSM and MSM, two 
comprehensive genomic validation studies were 
performed. For a 2-year validation, phenotypic 
data from the most recent two years were 
removed from the full evaluation 2304 to 
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simulate an earlier evaluation in April 2021 
(2104). The phenotypic, genotypic and pedigree 
data for the two evaluations 2304 and 2104 
were already described in Tables 1 and 2 in the 
paper (Liu et al. 2023). Corresponding to the 
two different national cow data sets in 
evaluations 2304 and 2104, bull MACE data 
were obtained from the MACE evaluations in 
April 2023 and 2021.  

In addition to this 2-year validation, a 4-year 
validation was conducted: with the results of a 
truncated conventional evaluation based on data 
as of the August 2020 evaluation (2008), 
Germany had also participated in Truncated 
MACE (TMACE) in October 2024. These 
TMACE EBVs were then considered in a 
subsequent, reduced SSM evaluation 2008, 
simulating an earlier SSM evaluation as of 
August 2020. Table 1 describes the data used 
for the full SSM evaluation 2408 and the 
reduced SSM evaluation 2008 for four test-day 
traits.  

A genomic validation was conducted for all 
evaluated traits of German Holsteins, including 
MACE traits as well as national-only traits with 
both the 2-year and the 4-year validation data 
sets. For the earlier validation with 2304 and 
2104 data, a linear regression test (LR, Legarra 
and Reverter, 2018) was applied. Using 
Interbull’s GEBV Test software made available 
in September 2024, we conducted genomic 
validation with the second validation data set 
2408 versus 2008. 
 
Trait-wise development of SSM 
Until today, a total of 10 trait groups are 
considered in routine evaluations of German 
Holsteins using: a multi-lactation random 
regression test-day model for milk, fat and 
protein yields and somatic cell scores (TDMS), 
a multi-trait model for 25 conformation traits 
(CONF), a multi-trait linear animal model for 
direct functional longevity (LONG), a multi-
trait model for six female fertility traits (FERT), 
a multi-parity maternal-effect model for calving 
ease and stillbirth (CALV), a multi-trait model 
for workability traits (WORK), a multi-trait 

model for 16 direct health traits (HEAL), a 
multi-trait linear model for calf fitness (CFIT), 
a multi-trait random regression model for feed 
efficiency (FEFS), and a multi-trait model for 
four disposal reasons (DPRS) that serve as 
indicator traits for the health traits only. 
 
Table 1. Description of the data sets for the single-
step full and truncated evaluations of test-day milk, 
fat and protein yields and somatic cell scores  

Frequency 
Single-step evaluation 
2408 2008 

Genotyped 
animals  

1,631,844 Holstein animals 
(1,433,599 females and 

198,245 males) 
Phenotyped 
cows or bulls 

14,189,574 12,195,546 

Test-day 
records 

277,884,084 235,578,132 

Genotyped or 
phenotyped 
animals 

15,165,965 13,565,673 

Animals in 
pedigree SSM 

22,743,486 20,983,007 

Reference 
animals MSM 

604,587 246,910 

  
Starting with the simplest evaluation model 

for the conformation trait group CONF with 
only 1 record per cow, we tested the SSM for 
the genomic evaluation of German Holsteins 
(Alkhoder et al. 2021). After a positive 
experience with the simplest statistical model, 
we extended the SSM test implementation to the 
two most complex statistical models: the multi-
lactation random regression test-day model for 
milk production traits and somatic cell scores 
TDMS (Alkhoder et al. 2022) and the multi-
parity maternal-effect model for calving ease 
and stillbirth CALV (Alkhoder et al. 2022a). 
Having successfully tested the SSM model for 
the three trait groups CONF, TDMS and CALV, 
we finally moved on to include all the 
remaining 7 trait groups and completed the 
SSM testing processes in 2023.  
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Integration of bull MACE data 
Due to the simplicity of this approach, the 
previous conventional evaluations from MSM 
are still run in parallel to SSM at every main run 
(3x per year) to provide genomic-free EBVs to 
Interbull as input for MACE. 

The current Interbull MACE evaluation uses 
a single-trait multi-country model. For instance, 
the MACE trait of milk yield for German 
Holstein is 305-day lactation milk yield 
combined over the first three lactations, which 
corresponds to an aggregated linear function of 
the 9 random regression coefficients used in the 
German random regression test-day model (Liu 
et al. 2004; Alkhoder et al. 2024). Unlike the 
MSM genomic evaluation that was previously 
applied to DRP from the aggregated, combined 
traits on lactation basis, the SSM model 
analyzes original cow test-day milk yields also 
on the genomic level. Another example is the 
calving trait model: a multi-parity maternal-
effect single-step model for calving ease and 
stillbirth phenotypic records of calving cows in 
the first three parities. In comparison, DRP of 
first parity calving ease or stillbirth, defined as 
official breeding values for publication, were 
pseudo-phenotypic records for the single-trait 
MSM evaluation.  

Across all the trait groups, the trait definition 
for the single-trait MSM model was the German 
official breeding value for publication as well as 
the MACE trait, some of which were 
aggregated from the original national traits / 
estimation variables. 

Deregressed MACE EBVs are included in 
the SSM for the different trait groups as 
correlated traits, using the national genetic 
covariance matrices and the weights used to 
combine national traits to MACE traits to derive 
covariances between national and MACE traits. 
In most cases, the genetic correlation between 
the combination of national traits and the 
MACE trait is assumed to be 1. Only in some 
cases, this correlation was pruned to 0.97 to 
enhance convergence. 

 
  

Calculation of indices from the SSM  
After completion of the test implementations 
for all the 10 trait groups, we upgraded our 
calculation procedures for various sub-indices, 
and the German total merit indices RZG and 
RZ€ for the SSM system slightly. 
The previously used non-linear index for 
longevity (RZN, Heise 2017; Heise et al. 2016) 
was replaced with its linear approximation and 
we adapted the genetic standard deviation that 
is used to express the production index RZM on 
its relative scale, resulting in a reduction of 
variance of GEBVs for RZM. The procedures 
to calculate all other index breeding values are 
retained from MSM. 
 
Modelling inbreeding depression in the SSM 
Pedigree-based inbreeding was considered in 
the previous MSM evaluations only with its 
effect on the pedigree-based relationship matrix 
for German Holstein evaluations. And the 
effects of inbreeding depression were ignored. 
With SSM, we now include a fixed effect in 
form of a linear regression on the pedigree-
based inbreeding coefficient for all traits.  
 
Using sire genotypes for calf fitness  
An unexpectedly high genetic trend was 
observed in the initial SSM developments for 
the early-measured calf fitness CFIT (young 
stock survival). Causes for the overestimated 
SSM GEBVs were traced back to the delayed 
genotyping of female calves and the therefore 
extremely limited genotyping of dead or sick 
calves for the early survival traits (Alkhoder et 
al. 2025). As a validated solution to the inflated 
genomic prediction, we use only genotypes of 
the sires of the female calves. This contrasts 
with all other trait groups, where we use 
genotype data of all animals born 2005 or later. 
 
Weekly evaluations with the SSM 
In addition to the full SSM evaluations, a 
weekly genomic evaluation system was 
developed (Alkhoder et al. 2004). From the 
SSM evaluation that includes the current 
MACE data, SNP effect estimates and residual 

60



polygenic effect estimates for all the genotyped 
animals are obtained and then applied to the 
newly genotyped animals weekly. Direct 
genomic values of the new animals are 
computed using the SNP effect estimates and 
allele frequencies of SNP markers. Residual 
polygenic effects and GEBVs of the newly 
genotyped animals are indirectly predicted 
based on their pedigree relationship to the 
genotyped animals that are included in the main 
evaluation.  
 
Parallel SSM genomic evaluations in the testing 
phase 
The introduction of SSM represented a 
significant improvement over the previous 
MSM genomic evaluation and caused greater 
changes to GEBVs of many animals, especially 
the youngest genotyped animals. This imposed 
a challenge to breeding organizations and 
farmers for adopting to SSM. To help the users 
of genomic evaluations adapt to the new SSM 
model smoothly, we conducted parallel SSM 
evaluations in the testing phase. Starting with 
the August 2024 main evaluation, SSM test 
evaluation results were provided to the breeding 
organizations for the purpose of receiving 
valuable feedback from the breeders’ 
perspective to further optimize all SSM systems 
and models. After the development and internal 
testing of the SSM weekly evaluation system 
(Alkhoder et al. 2024), we also provided the 
breeding organizations with test results from 
weekly evaluations starting in October 2024. In 
multiple workshops with various delegates of 
the breeding organizations, we gathered the 
feedback and used it to 1) answer yet open 
questions from the breeders, 2) to further 
improve our communication strategies 
regarding the introduction of SSM, and 3) to 
further improve our SSM models and 
procedures. 
 
Results and Discussion 
 
SSM evaluations for all the 10 trait groups are 
conducted using the software MiX99 (Strandén 

and Lidauer,1999). Approximate genomic 
reliabilities for GEBVs from the SSM are 
computed using either APAX99 from the 
MiX99 software suite or using own Fortran 
programs (Liu et al. 2023), following Interbull’s 
Guidelines for approximating genomic 
reliabilities for SSM (Liu et al. 2024). Similarly, 
effective daughter contributions (EDC) of bulls 
and effective record contributions (ERC) of 
cows or calves are calculated using either 
APAX99 or own programs. The sub-indices of 
individual trait groups as well as the total merit 
indices RZG and RZ€ are computed with a 
central, configurable software, developed in 
Python. All workflows are managed with 
Snakemake as a workflow management 
software 
(https://snakemake.readthedocs.io/en/stable/pr
oject_info/citations.html). 

Differences in technical steps between the 
SSM and MSM models are schematically 
described in Figure 1. The SSM model 
simplifies the genomic evaluation process with 
a joint analysis of genotyped and non-
genotyped animals having or having no 
phenotypic data in one single step. In contrast, 
genotype data was used at a later stage of the 
evaluation process for MSM than phenotype 
data.  

 

 
 
Figure 1. Comparison of technical steps between the 
single-step and multi-step genomic models  

 
Figure 2 shows the numbers of validation 

bulls used in both validation studies: 2408 vs 
2008 and 2304 vs 2104. The selection of 
validation bulls was conducted, following the 
Interbull GEBV test rules (Mäntysaari et al. 
2010) for the validation study 2408 vs 2008. 
However, an additional selection criterion was 
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imposed on the validation bulls for the earlier 
validation 2304 vs 2104: the validation bull had 
to be owned by a German AI organization. 
Unlike the 4-year validation 2408 vs 2008, the 
2-year validation 2304 vs 2103 did not include 
data from TMACE. Instead, the actual MACE 
results from 2104 were used, and thus the 
results of the validation may likely also be 
impacted by model changes between 2104 and 
2304 in Germany or in the other countries 
participating in MACE. Overall, the numbers of 
validation bulls are reasonably high to deduce 
reliable and accurate validation results. 

Figure 3 shows, based on the 2-year 
validation 2304 vs 2104, GEBV correlations of 
the validation bulls between the early 
evaluation 2104 as young candidates without 
daughters and the later evaluation 2304 when 
these bulls were evaluated as daughter-proven 
bulls. The SSM model has evidently higher 
GEBV correlation, i.e., prediction accuracy, 
than the MSM model for all traits, RZG and 
RZ€. Similar levels of prediction accuracy are 
also observed for the validation study 2408 vs 
2008.  

 

 
Figure 2. Number of validation bulls for all trait 
groups in the two validation studies  
 
 

  
Figure 3. GEBV correlations of the validation bulls 
between two evaluations 2304 and 2104 (2-year 
validation) for the indices  
 

For a total of 258 German AI bulls born in 
2021, we compared their genomic reliabilities 
between SSM and MSM in the evaluation as of 
April 2023. Figure 4 shows the increase of 
genomic reliabilities from MSM to SSM for all 
the trait group indices, RZG and RZ€. The 
functional traits, like direct health traits 
(RZGesund) and calf fitness (RZKälberfit), 
gain more in reliabilities than the production 
trait index RZM. The traits which already had 
high reliabilities under the MSM tend to have a 
smaller increase in reliabilities when upgraded 
to the SSM model, such as somatic cell scores 
RZS. 
 Prediction bias, measured as the regression 
slope from the two validation studies, is given 
in Table 2. As mentioned above, Interbull’s 
official GEBV test software was used for the 
validation 2408 vs 2008, with deregressed 
GEBVs as the dependent target variable. 
However, for the 2-year validation study 2304 
vs 2104, our own software for a weighted linear 
regression (Legarra and Reverter 2018) was 
applied to the two SSM and MSM models. 
 
 

 
Figure 4. Increase of the genomic reliability from the 
multi-step to single-step model for German AI bulls 
in the 2-year validation 
 

Across all the trait groups and both 
validation studies, we can see that both SSM 
and MSM give nearly unbiased prediction for 
almost all the trait groups, but the SSM has 
somewhat less over- or under-estimation, i.e., b1 
is closer to 1, than the MSM model. Using the 
deregressed GEBVs as dependent variable of 
the GEBV test results in b1 values deviating 
more from 1 than using direct GEBVs as 
dependent variable, verified for the new calf 
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fitness SSM model (Alkhoder et al. 2025). Over 
all traits of the 10 trait groups evaluated for 
German Holstein, we can see that neither 
overestimation nor underestimation seem to be 
an issue for the genomic models in German 
Holsteins. Relatively poor b1 estimates were 
obtained for the calving traits, which may 
possibly be explained by the fact that very few 
stillborn/dead calves are usually genotyped. 
Additionally, male calves that have more 
problems with calving ease or stillbirth than 
female calves are rarely genotyped, in contrast 
to female calves that are all genotyped under the 
German whole-herd genotyping scheme if the 
herd participates in genotyping. Because of the 
relatively short history of routine recording of 
direct health traits and some new conformation 
traits in German Holsteins, the removal of 
phenotypic data from the last four years for the 
validation 2408 vs 2008t reduces the 
representativeness of the validation results for 
these traits, i.e., caution needs to be taken when 
interpreting the b1 estimates for the direct health 
traits in the validation study 2408 vs 2008. No 
genomic validation was conducted for feed 
efficiency due to the small number of genotyped 
cows with dry matter intake records and a lack 
of cow sires that qualified for being selected as 
validation bulls.  

Figure 5 shows GEBV correlations for the 
RZG between SSM and MSM for 8,661 
genotyped German Holstein Black-and-White 
AI bulls born between 2005 and 2023 using the 
evaluation results as of December 2024. The 
GEBV correlation for AI bulls with daughters is 
about 0.95 and drops to 0.85 for the youngest 
purely genomic AI bulls born in 2023, although 
GEBV correlations for the youngest AI bulls are 
about 0.95 for individual traits like milk 
production and conformation traits (data not 
shown here). The lower RZG correlation is 
caused, besides the model changes, also by the 
changes introduced in the milk production 
index RZM and the longevity index RZN. 
 

Table 2: Regression slope estimates of the GEBV 
test of selected traits for the genomic models in the 
two validation studies  

 
Trait 

2408 vs 
2008 

2304 vs   
2104 

SSM SSM MSM 
Milk yield 1.02 1.02 1.01 
Fat yield 1.06 1.03 1.15 
Protein yield 1.05 1.03 1.10 
Somatic cell scores 1.11 1.05 1.07 
Functional longevity 0.97 1.00 0.95 
Heifer fertility HCO 1.17 1.05 1.11 
Cow fertility CC2 0.98 0.99 0.88 
Stillbirth direct 0.84 0.88 0.97 
Calving ease 
maternal 

0.78 0.89 0.96 

Milking speed 1.01 1.06 1.13 
Milking 
temperament 

0.97 0.96 0.97 

Stature 0.99 1.03 1.07 
Udder support 0.98 1.01 1.23 
Body condition score 1.07 1.10 1.09 
Locomotion 1.01 1.00 1.14 
Digital dermatitis 0.88 0.92 0.92 
Clinical mastitis 0.58 0.86 0.67 
Calf fitness 0.95 1.04 0.92 

 
 

 
Figure 5. GEBV correlations of the total merit index 
RZG between SSM and MSM for German Holstein 
AI bulls  
 
 Like Figure 5 for AI bulls, Figure 6 shows 
GEBV correlations of RZG for 1,478,613 
genotyped Black-and-White Holstein female 
animals. For all the female animals born from 
2016 on and genotyped under the German 
whole-herd genotyping scheme, SSM and 
MSM have a GEBV correlation of about 0.95 
for the total merit index RZG, despite the 
above-mentioned additional changes impacting 
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RZG. The youngest female animals have much 
higher RZG GEBV correlation than the 
youngest AI bulls, 0.95 vs 0.85, which may be 
attributed to the different selection intensities 
between the two groups of genotyped animals. 
 
 

 
Figure 6. GEBV correlations of the total merit index 
RZG between SSM and MSM for genotyped 
Holstein female animals  
 

With respect to expectation management 
during the preparations prior to the introduction 
of SSM, we emphasized clearly from the 
beginning that the change to SSM was a major 
upgrade of the genomic model and would thus 
have a profound impact on the breeding 
organizations’ selection programs. In addition 
to the early research projects on the theory of 
the SSM model, we invested huge efforts and 
resources to develop the new evaluation 
systems as well as to help the breeding 
organizations and farmers adjust their programs 
for the new SSM model. Besides the numerous 
parallel full and weekly SSM test evaluations, 
we provided our new results at several meetings 
with our customers and improved our SSM 
systems based on their feedback. These 
iterations of providing additional analyses and 
explanations to our breeding organizations and 
including customer feedback in the 
improvement of our models led to a strong 
support of the introduction of SSM by the 
German breeding organizations. 

As the MSM genomic model uses 
deregressed proofs  as the dependent variable / 
pseudo-records calculated from the 
conventional evaluation which ignores the rapid 
genetic progress by genomic selection, the 
differences between the two genomic models 

SSM and MSM are likely to increase with time. 
A delayed update from MSM to SSM would 
make it increasingly difficult for farmers and 
breeders to adapt to the one-time model change.  
 
Conclusions  
 
SSM represents a major improvement of our 
genomic evaluation compared to the previous 
MSM. All genotypic, phenotypic and pedigree 
data are jointly evaluated by the single-step 
model, resulting in a higher accuracy of the 
genomic prediction. With two genomic 
validation studies, we have shown higher 
prediction accuracy, i.e., correlation between 
the early candidate GEBVs and later daughter-
proven GEBVs for AI bulls and higher genomic 
reliabilities for all traits from SSM compared to 
MSM. GEBVs from SSM have been proven to 
be more stable across evaluation runs and to 
have substantially increased reliabilities 
compared to GEBVs from the previous MSM 
for all the trait groups. Because of these major 
improvements, the introduction of SSM 
received strong support from the breeders and 
their breeding organizations, despite the 
relatively large one-time changes. Intensive 
collaboration with the German breeding 
organizations prior to and after the introduction 
of SSM led to strong commitment from the 
breeders’ community and helped the 
introduction of SSM in German Holsteins 
become a great success.  
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Abstract  
 
Current UK genomic evolutions follow a two-step approach; initially, a genetic evaluation based 
solely on pedigree information, followed by a Single Nucleotide Polymorphism Best Linear Unbiased 
Prediction (SNPBLUP) analysis for genotyped animals using de-regressed proofs, including MACE 
proofs from Interbull. Nowadays, with recent advances in computational feasibility and growing 
interest in across-breed genomic evaluations for dairy herds, there is a compelling need to adopt a 
single-step across-breed genomic evaluation approach within the UK dairy industry. The single-step 
method offers notable advantages by simultaneously incorporating genotypes and both recent and 
historical pedigree and phenotypic data into a single analysis. This integration enhances the accuracy 
of genetic predictions across diverse breeds, accelerates genetic progress, and improves selection 
efficiency. This study aims to evaluate the impact of using genomic information and compare the 
prediction ability of single-step genomic evaluation (using ssSNPBLUP method) and pedigree-based 
genetic evaluation (PedBLUP) employing cross-validation techniques (Linear Regression method). 
The trait analysed was somatic cell count (SCC), using data from the UK national evaluations as of the 
December 2024 official run. The dataset included 11,271,959 animals in the pedigree and 19,056,954 
SCC records from 7,527,712 cows. Foreign information was incorporated for 182,844 bulls, with 
adjustments made to avoid double counting of domestic data. Genotypic data was available for 
891,480 animals, imputed at 79,051 SNPs using findhap.f90 V3. Analyses were performed using the 
MiX99 V23.1026 software, applying an ssSNPBLUP model with 10% polygenic effects. The 
validation group comprises bulls born after 2016 and cows born after 2018, whose records are set to 
missing. Results showed a genomic accuracy improvement of up to 54% in cows when comparing 
ssSNPBLUP to PedBLUP. Among bulls, the greatest gain was observed in Holsteins (+33%), 
followed by Guernsey and Ayrshire (+30%), and Jersey (+20%). Level bias and dispersion bias was 
slightly reduced in ssSNPBLUP relative to PedBLUP. Overall, the findings demonstrate that single-
step genomic evaluation is a promising and efficient approach for enhancing prediction accuracy in 
UK dairy cattle. 
 
Key words: single-step genomic evaluation, accuracy, cross-validation, UK dairy industry 

Introduction  
  
The genetic evaluation in the UK dairy sector 
is undergoing a significant transition. 
Currently, genetic evaluation has relied on a 
two-step method. This includes conventional 

pedigree-based evaluations followed by a 
genomic prediction step using Single 
Nucleotide Polymorphism Best Linear 
Unbiased Prediction (SNPBLUP), 
incorporating de-regressed proofs from 
Interbull for foreign bulls. Recent advances in 
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computational capacity, as well as the growing 
interest in across-breed genomic evaluations 
for dairy herds, there is a compelling need to 
adopt a single-step across-breed genomic 
evaluation approach (ssGBLUP) within the 
UK dairy industry. This approach 
simultaneously integrates pedigree, 
phenotypic, and genomic information into a 
single evaluation model, offering numerous 
advantages: inclusion of all available data, 
improving prediction accuracy, mitigate the 
effects of preselection bias associated with 
multi-step approach, and, consequently, 
accelerating the genetic progress.  

This report focuses on somatic cell count 
(SCC) as a trait study to evaluate the 
prediction ability of ssGBLUP in comparison 
to traditional pedigree-based BLUP 
(PedBLUP) employing cross-validation 
techniques (Linear Regression method).  
 
Materials and Methods  
 
Data  
Somatic cell count data was obtained from the 
UK national evaluations as of the December 
2024 official run. The dataset included 
11,271,959 animals in the pedigree and 
19,056,954 SCC lactation records from 
7,527,712 cows. Foreign information was 
incorporated for 182,844 bulls, with 
adjustments made to avoid double counting of 
domestic data. Genotypic data was available 
for 891,480 animals, imputed at 79,051 SNPs 
using findhap.f90 V3. This reference 
imputation panel was derived by USDA (Al-
Khudhair et al., 2021). 
 
Model and analyses 
SCC was analyzed as loge SCC and the model 
included herd-year-season, lactation, age 
nested within parity, month of calving as fixed 
effects and random effects of herd-sire 
interaction, permanent environment and 
animal. A pedigree of five generations was 
used in the analysis and UPGs were used for 
missing parents based on year of birth, breed, 

country of origin and the four paths of dam of 
cows and bulls, and sire of bulls and cows.  

MACE proofs were included following 
Bonifazi et al. (2023). First, effective record 
contribution (ERC) was derived from the 
reliability of the animal (ERC=λ∙( 
reliability/(1-reliability)); where λ=(1- 
heritability)/heritability). In second, the de-
regressed proofs (DRP) were calculated as 
follow: DRP=PA+(EBV-
PA)/(dERC/(dERC+λ)), where PA is the 
parent average and dERC=ERC-ERCPA. To 
avoid double counting of the national data 
(NAT) of bulls with UK daughters from 
interbull (international, INT) proofs, DRP were 
blended as follow: DRP*=((dERCINT∙DRPINT)-
(dERCNAT∙DRPNAT))/dERC* where 
dERC*=dERCINT-dERCNAT.  These de-
regressed proofs were used as pseudo-records 
with the corresponding ERC as weights in the 
model. 

Analyses were performed using the MiX99 
V23.1026 software (Strandén et al., 2017), 
applying a ssSNPBLUP (Liu et al., 2014) 
model with 10% polygenic effects.   
 
Validation  
A cross-validation technique, linear regression 
method, was used to compare ssGBLUP and 
PedBLUP following Legarra & Reverter 
(2018). The different estimators’ statistics of 
bias (difference of means), dispersion (slope of 
the regression) and accuracy were calculated 
based on partial and full runs. The validation 
group included bulls born after 2016 and cows 
after 2018. The phenotypes of these cows 
together with the de-regressed proofs of these 
bulls were excluded from the “partial” runs.  

 
Results & Discussion  
 
The implementation of the single-step genomic 
BLUP model led to substantial improvements 
in prediction accuracy over the traditional 
pedigree-based BLUP (PedBLUP), with gains 
observed across all breeds: Guernsey, Holstein, 
Jersey, and Ayrshire. In cows, prediction 
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accuracy improved dramatically, with Holstein 
showing the largest relative gain of +102% 
(accuracy increased from 0.32 to 0.648). 
Guernsey and Ayrshire cows followed with 
increases of +65% and +56%, respectively, 
while Jersey cows exhibited a +43% 
improvement, but notably had the 2nd highest 
ssGBLUP accuracy. Bulls also benefitted from 
the use of ssGBLUP, with Holstein bulls 
achieving the highest accuracy gain of +33%, 
followed by Guernsey and Ayrshire (+30%), 
and Jersey (+20%). The advantage of 
ssGBLUP is coming from leverages genomic 
information to capture Mendelian sampling 
more effectively than PedBLUP. The 
improved prediction accuracies of ssGBLUP in 
both sexes are summarized in Tables 1 (bulls) 
and 2 (cows).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Level bias, as illustrated in Figure 1, was 
marginally reduced under ssGBLUP relative to 
PedBLUP across all breeds and both sexes. For 
example, the level bias for Jersey bulls was -
0.001 and -0.056 for both ssGBLUP and 
PedBLUP, respectively, reducing the level bias 
to mostly null when using ssGBLUP.  This 
reduction indicates that genetic evaluations 
using ssGBLUP are more centered on the true 
genetic values, thus improving the reliability of 
selection. Although the magnitude of the 
reduction was modest generally across breeds 
and sexes, it consistently favored ssGBLUP 
and supports its use for less biased evaluations.  

Figure 1.  Level Bias for single-step genomic evaluation approach (ssGBLUP) and pedigree-based 
BLUP (PedBLUP) accords breeds. 
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On the other hand, as shown in Figure 2, 
ssGBLUP consistently produced dispersion 
bias values closer 1.00. In contrast, PedBLUP 
tended to over-dispersion in several cases, for 
example, Ayrshire cows displayed a dispersion 
bias of 1.17 versus 1.02 for ssGBLUP. Also, 
Guernsey bulls presented a dispersion bias of 
1.11 in comparison to 0.975 for ssGBLUP. 
Overall, ssGBLUP showed more balanced 
dispersion across all breeds and sexes, 
particularly improving prediction spread in 
cows.  

Additionally, within breed ssGBLUP were 
performed which in all cases yielded lower 
accuracies compared to the across breed 
ssGBLUP (results not shown in this paper). 

These results highlight ssGBLUP’s ability 
to provide more reliable genetic evaluations. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table 1: 

Comparison of prediction ability in bulls.   

Breed 

Number 
of 
animals 

Accuracy 
ssGBLUP 

Accuracy 
PedBLUP 

Increase 
% ACC 

Correl 
Full 
PedBLUP 
# Partial 
ssGBLUP 

Gue 28 0.50 0.38 29.2 0.50 
Hol 6,087 0.79 0.69 13.9 0.90 
Jer 453 0.61 0.57 8.3 0.87 
Ayr 245 0.51 0.44 14.9 0.79 
*Gue: Guernsey; Hol: Holstein; Jer: Jersey; Ayr: 
Ayrshire. 
 
Table 2: Comparison of prediction ability in cows.   

Breed 

Number 
of 
animals 

Accuracy 
ssGBLUP 

Accuracy 
PedBLUP 

Increase 
% ACC 

Correl 
Full 
PedBLUP 
# Partial 
ssGBLUP 

Gue 855 0.45 0.27 65.1 0.40 
Hol 95,965 0.65 0.32 102.2 0.60 

Jer 3,512 0.50 0.35 43.1 0.60 
Ayr 382 0.42 0.27 56.1 0.42 
*Gue: Guernsey; Hol: Holstein; Jer: Jersey; Ayr: 
Ayrshire. 
 

Figure 2.  Dispersion Bias for single-step genomic evaluation approach (ssGBLUP) and pedigree-based BLUP 
(PedBLUP) accords breeds. 
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Conclusions  
 
The cross-validation results clearly 
demonstrate that single-step genomic 
evaluation is a more effective evaluation 
method for predicting genetic merit, 
particularly in genotyped animals. The results 
support the adoption of a unified Single-Step 
Genomic BLUP framework for genetic 
evaluation in UK dairy cattle. By combining 
genomic, pedigree, and phenotypic 
information in a single model, ssGBLUP 
improves prediction accuracy, increases 
selection efficiency, and accelerates genetic 
gain across breeds. A national implementation 
would simplify evaluations, allow the 
evaluation of crossbreed animals, and help 
ensure a more competitive and sustainable 
breeding program. 
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Abstract  
 
The study examined the impact of incorporating metafounders (MF) in single-step genomic BLUP 
(ssGBLUP) models for the genetic evaluation of Holstein (HO) and Jersey (JE) cattle with their 
crossbreds (CROSS). The dataset included 23,736,975 records on 8,560,986 cows. Genotypic data on 
181,379 JE, 1,905,292 HO, and 53,799 CROSS animals was used for the evaluation. The genetic 
evaluation included five production traits, namely milk yield (MY), protein yield (PY), fat yield (FY), 
somatic cell score (SCS), and daughter pregnancy rate (DPR), which were analyzed using a five-trait 
repeatability model using ssGBLUP with or without MF. Three different MF scenarios were tested: 
4MF (based on breed), 24MF (based on the combination of breed, sex, and year of birth), and 32MF 
(similar to 24MF but with CROSS as a separate genetic group). The three MF scenarios were compared 
to a conventional ssGBLUP model that did not include metafounders (NO_MF). Forward‐in‐time 
validation was carried out to evaluate predictability, inflation, and stability. For purebred Holstein and 
Jersey cows, the truncated dataset included phenotypes through December 2018, whereas for crossbreds 
the cutoff was December 2015; the complete dataset extended through December 2022. Validation 
targeted genotyped cows lacking records in their respective truncated dataset but with at least one record 
in the complete dataset, yielding 96, 295 Holsteins 26, 436 Jerseys, and 5,099 crossbreds for analysis. 
Results showed that including MF affected prediction metrics differently depending on the trait, breed, 
and MF configuration. While certain MF classifications (e.g., 4MF) reduce bias and improved 
predictability in crossbreds for some traits, others showed minimal effects, particularly in purebred 
Holsteins. For low heritability traits (SCS, DPR), MF scenarios provided better predictive ability in 
CROSS animals. In contrast, for high heritability traits (MY, PY, FY), stability tended to decrease in 
MF models, suggesting possible overfitting due to added model complexity. Overall, MF offers a 
promising strategy to address pedigree gaps in multibreed evaluations, but its application should be 
carefully tailored to trait architecture and population composition to avoid overfitting and ensure 
accurate genetic predictions. 
 
Key words: base population, genomic evaluation, metafounder, single-step genomic BLUP 
 

Introduction  
  
Traditionally, genomic evaluations for dairy 
cattle have been conducted on a single-breed 
basis, often excluding crossbred animals. 
However, the growing proportion of crossbreds 
in U.S. herds underscores the importance of 

including them in evaluations to improve 
management decisions. From 1990 to 2018, the 
proportion of crossbred cows in the U.S. Dairy 
Herd Improvement program rose from 0.1% to 
5.3% (Guinan et al., 2019). Recognizing this 
trend, the Council on Dairy Cattle Breeding 
(CDCB) extended genomic evaluations to 
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crossbred animals in 2019 (Wiggans et al., 
2019; CDCB, 2020). 

Several methods have been proposed for 
joint evaluations of purebred and crossbred 
animals (Wei & van der Werf, 1994; 
Christensen et al., 2014; Steyn et al., 2021; 
VanRaden et al., 2020). A straightforward 
approach combines all genotypes in a single 
relationship matrix (Lourenco et al., 2016). The 
single-step genomic BLUP (ssGBLUP) 
approach integrates pedigree (A) and genomic 
(G) matrices to estimate genomic breeding 
values (GEBV) (Aguilar et al., 2010; 
Christensen & Lund, 2010). However, 
ssGBLUP requires uniform scaling between A 
and G and a consistent base population 
(Christensen, 2012). Incomplete pedigrees and 
population stratification complicate these 
assumptions. 

To address these issues, Thompson (1979) 
and Quaas (1988) introduced unknown parent 
groups (UPG) to account for missing pedigree 
information. More recently, Legarra et al. 
(2015) proposed metafounders (MF) to model 
relationships among base populations, 
improving compatibility between A and G. MF 
consider allele frequencies of 0.5 across 
markers and estimate relationships among 
pseudo-ancestors using a gamma matrix (Γ). 
Studies have shown that MF can improve 
prediction accuracy in multibreed populations 
(Garcia-Baccino et al., 2017; Xiang et al., 
2016). 

Despite these advances, limited work has 
assessed MF performance in combined 
Holstein-Jersey ssGBLUP models, particularly 
regarding crossbred evaluations. This study 
aims to evaluate different MF classifications 
and their effects on accuracy, bias, and stability 
in genomic predictions of purebreds and 
crossbreds. 
 
Materials and Methods  
 
Official data files from Zoetis Inc. were used for 
this study. Phenotypic and pedigree data were 
sourced from U.S. dairy producers via backups 
from herd management systems (DairyComp 
305, PC Dart, and DHI Plus). Quality control 
excluded lactations with data collection ratings 
(DCR) <0.70 or implausible yields, and 
pedigree was traced back 20 generations where 
possible. Pedigree completeness varied: 57.2% 

of animals had known parents, 10.3% had 
missing sires, 8.6% had missing dams, and 
23.8% had both parents unknown. 

DNA was extracted and genotyped on 
Illumina BeadArray platforms (3K–80K SNPs). 
Low-density genotypes (<40K SNPs) were 
imputed to 45,245 markers using FImpute 
(Sargolzaei et al., 2011), achieving 97% 
concordance. 

The genetic evaluation included five 
production traits: milk yield (MY), protein yield 
(PY), fat yield (FY), somatic cell score (SCS), 
and daughter pregnancy rate (DPR). Official 
records comprised 23.7 million observations on 
8.56 million cows, with genotypes available for 
1.91 million Holsteins (HO), 181,379 Jerseys 
(JE), and 53,799 crossbred (CROSS) animals. 
Table 1 summarises the total number of records 
and number of studied animals across traits 
defined by breed. Heritabilities (±SE) for the 
five traits were 0.35 (0.005) for MY, 
0.29 (0.008) for FY, 0.31 (0.014) for PY, 
0.13 (0.008) for SCS, and 0.07 (0.003) for DPR. 

 
Table 1: number of records and cows with 
phenotypes and genotypes 

 

*CROSS = Crossbred of Holstein x Jersey, N = 
Number of records, Cows = Number of cows with 
records 

 
Genomic breed composition was determined 

using a supervised admixture model (Zoetis 
proprietary pipeline). Purebred HO and JE were 
defined as ≥80% ancestry; CROSS animals had 
combined HO and JE ancestry ≥80%. Three 
validation sets were created: 96,295 HO, 26,436 
JE, and 5,099 CROSS cows. Reduced datasets 
included records until Dec 2018 (HO, JE) or 
Dec 2015 (CROSS); complete datasets 
extended to Dec 2022. 

Models included five-trait repeatability with 
random animal, permanent environment, and 

Group 
Phenotypes 

Genotyped 
animals  
(ssGBLUP 
only) 

N Cows  

Holstein 20,166,782 7,298,374 1,905,292 

Jersey 2,868,461 996,353 181,379 

*CROSS 701,732 266,259 50,938 

Total 23,736,975 8,560,986 2,137,609 
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herd × sire interaction effects, and fixed effects 
included contemporary groups, heterosis and 
inbreeding. The genomic relationship matrix 
(G) and pedigree matrix (A) were combined in 
a single-step GBLUP (ssGBLUP) using the 
Algorithm for Proven and Young (APY) 
(Legarra et al., 2009; Aguilar et al., 2010) with 
a random core size of 30,000: 22,156 females 
and 1,931 males for HO, 5,643 females and 
181 males for Jersey, and 678 females for 
crossbred. Models were solved based on 
iteration on data with the preconditioned 
conjugate gradient (PCG) in algorithm 
BLUP90IOD2OMP1 (Tsuruta et al., 2001). 

Forward-in-time validation assessed (1) 
predictability as the correlation between 
adjusted phenotypes and GEBVs. Adjusted 
phenotypes were obtained using PREDICTf90 
v1.3 (Misztal et al., 2014); (2) inflation as the 
regression slope of phenotypes on GEBVs 
(ideal slope = 1); and (3) stability as the 
correlation between GEBVs estimated from 
reduced and complete datasets. Standard errors 
for predictabilities and stabilities were 
computed following Bermann et al. (2024). All 
regression and correlation analyses were 
performed in R software (R Development 
Core Team, 2024). The different models 
with and without MFs are detailed next. 
 
SSgblup Analyses 
All computations with ssGBLUP were done 
using the full pedigree with 27 million animals 
and the genomic relationship matrix for 
2,137,609 animals. The ssGBLUP allows the 
creation of a joint relationship matrix for 
genotyped and non-genotyped animals by 
replacing the inverse of the pedigree 
relationship matrix, , with the inverse of the 
H matrix that combines the pedigree (A) and the 
genomic relationship matrix G (Legarra et al., 
2009; Aguilar et al., 2010): 
 

 
 
where  is an inverse of the pedigree 
relationship matrix;  is an inverse of the 
genomic relationship matrix (VanRaden, 2008); 
and  is an inverse of the pedigree 
relationship matrix for genotyped animals only.  
 

Single-step GBLUP with metafounders 
The H-1 matrix considers relationships among 
MF (Γ) in the MF approach. Hence, it is 
replaced with the (H Γ)-1 matrix, as described by 
Legarra et al. (2015) and Christensen et al. 
(2014). In this way, the H-1 matrix is modified 
to become:  

�𝐇𝐇𝚪𝚪�−1 = �𝐀𝐀𝚪𝚪�−1 + �
0 0
0 𝐆𝐆𝟎𝟎𝟎𝟎−1 − �𝐀𝐀𝟐𝟐𝟐𝟐𝚪𝚪 �−1� 

 

Where 𝑮𝑮𝟎𝟎𝟎𝟎 = (𝑴𝑴−𝑷𝑷)(𝑴𝑴−𝑷𝑷)𝑇𝑇 
𝒌𝒌

, where M is the 

matrix of samples with SNPs encoded as 0, 1, 2 
(i.e., the number of reference alleles), P is the 
matrix where each column is filled with the 
value 1 (i.e., assuming allele frequencies of 0.5 
for all loci). The denominator , where 

 is the total number of SNPs. This corresponds 
to the genomic relationship matrix proposed by 
VanRaden (2008) with all allele frequencies 
assumed to be 0.5. AΓ is pedigree relationship 
matrix formed with a Γ matrix, and  is the 
submatrix of AΓ for the genotyped animals, and 
Γ is a variance covariance matrix of the MF 
estimated by Γ = 8Cov(P), as proposed by 
García-Baccino et al. (2017), where P is an m 
by r matrix of allele frequencies and r is the 
number of MF. Note that this P differs from the 
allele frequency matrix used earlier for 
individual SNPs in the genomic relationship 
matrix. Under ssGBLUP without MF, the 
genomic matrix G was constructed using the 
allele frequencies observed in the genotyped 
data. Conversely, ssGBLUP that included MF 
used a fixed allele frequency of 0.5 for all loci. 
VanRaden (2008) proposed using allele 
frequencies from base animals, representing an 
unselected population, to create the genomic 
matrix. Using an allele frequency of 0.5 in 
ssGBLUP with MF represents a relationship 
across individuals in the base pedigree 
population(s) relative to an unobserved base 
population with all allele frequencies equal 0.5 
(Legarra et al., 2024). The only modification of 
the A matrix to include MF is the assumption 
that the MF have a self-relationship denoted as 
Γ. The Γ matrix, which models the means 
within and across founders, was estimated using 
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observed genotypes and pedigree under a 
generalized least square (GLS) approach 
(Garcia-Baccino et al., 2017) using the 
gammaf90 software package (Aguilar & 
Misztal, 2008).   
Metafounder classification 
This study examined four scenarios to assess the 
impact of different strategies to build MF for a 
given data set and pedigree setting:  
1) ssGBLUP without MF (NO_MF): 

 A ssGBLUP that did not include MF nor 
any UPG was implemented so that all unknown 
parents in the pedigree are assumed to be 
unrelated and from a single population, hence 
having unknown breeding values. 
2) ssGBLUP with MF defined by breed (Γ4):  

In this approach, four MF were defined 
based on the breed of origin, with one MF 
assigned to HO, one for JE, another for CROSS, 
and a fourth assigned to the rest of the base 
animals, assuming their breed of origin was 
unknown.  This approach treated CROSS as a 
distinct genetic group (“breed”) alongside HO, 
JE, and Unknown. Thus, in the end, the 
variance-covariance matrix among MF was a 
4x4 matrix between the means across SNP and 
breeds.  
3) ssGBLUP with MF defined by breed, sex, 
and birth year (Γ24):  

In this approach, 24 MF were defined based 
on breed (HO, JE, Unknown), sex, and year of 
birth (≤2000, 2001–2005, 2006–2010, ≥2011). 
Here, the CROSS group was modelled within 
the covariance between HO and JE.  
4) ssGBLUP with MF defined by breed, sex, 
year of birth and crossbreds as a breed (Γ32):  

This approach expanded upon Γ24 by 
explicitly treating crossbred animals (CROSS) 
as a distinct genetic group alongside HO, JE, 
and Unknown. As a result, metafounders were 
defined for each combination of breed (HO, JE, 
CROSS, Unknown), sex, and year of birth, 
resulting in 32 total metafounders. This 
distinction allowed animals with mixed 
ancestry and no known parents to be grouped 
more consistently, rather than approximating 
their breed origin via pedigree tracing. In this 

case, crossbred animals with no parent 
information were directly assigned to the 
CROSS metafounder group.  

Following Legarra et al (2015), genetic 
variance parameters obtained from the model 
with unrelated founders were used to estimate 
corresponding parameters for the models with 
MF by scaling it to become; 

 
where the denominator is the scaling factor k; 

 is the variance among unrelated 
founders. The variance of the breeding values 
can then be calculated as  

, where HΓ is again the 
combined relationship matrix described in 
Legarra et al. (2015).  
 
Comparisons 
The four ssGBLUP scenarios were evaluated, 
where three used different MF classifications 
and one used a conventional ssGBLUP model 
without the inclusion of any MF 

To confirm these assumptions, we 
investigated the mean differences in the 
diagonal and off-diagonals of A22, G, A Γ

22, and 
G Γ matrices (defined by MF groups) by 
correlations and mean differences between 
these matrices.  

Finally, the four sets of ssGBLUP 
predictions were compared using the validation 
metrics described above for each studied trait.  

 
Results & Discussion  
 
Elements of matrices 
Table 2 shows the summary statistics for the 
different matrices used in the ssGBLUP 
computation using APY with a random core 
size of 30,000. Values of the diagonal and off-
diagonal elements of A22 and G increased in all 
augmentations of A and G that considered Γ. 
The mean, minimum, and maximum values of 
the diagonal and off-diagonal elements of A 

Γ24
22, A Γ32

22, G Γ24, and G Γ32 were similar. This 
similarity implied that the assignment of an MF 
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to the crossbred base population in Γ32 resulted 
in the little to no effect on the relationship 
among individuals when compared with 
modeling the crossbred base population within 
the covariance between the MF of HO and JE 
augmented in Γ24.  

Incorporating MF in A22 increased the 
correlation between the pedigree and genomic 
relationship matrices. Correlation between the 
diagonal elements of A22 and G, A Γ4

22 and G Γ4 
A Γ24

22 and G Γ24, A Γ32
22 and G Γ32 were 0.18, 

0.64, 0.28, and 0.29, respectively. In the same 
way, the correlation between the off-diagonal 
elements of A22 and G, A Γ4

22 and G Γ4 A Γ24
22 

and G Γ24, A Γ32
22 and G Γ32 were 0.39, 0.66, 0.46, 

and 0.47 respectively. In all scenarios, using the 
Γ4 resulted in higher-than-average diagonals 
and off-diagonals in the elements of A and G. 
These results were expected as including MF 
has been shown to improve the similarity 
between the pedigree and genomic relationship 
matrices compared to the traditional ssGBLUP 
model (Legarra et al., 2015).  

Furthermore, the off-diagonal elements in a 
pedigree relationship matrix containing MF are 
expected to be higher than those of a pedigree 
without MF (Junqueira et al., 2020; Kudinov et 
al., 2020), as shown in table 2. 
 
Table 2: mean, minimum, and maximum element 
values of A22, A Γ4

22 , A Γ24
22 , A Γ32

22, G,  G Γ4,G 

Γ24 ,G Γ32
 from diagonal and off-diagonal1. 

Element Matri
x 

Mea
n 

Minimu
m 

Maximu
m 

Diagon
al 

*A22 1.00
4 

1.000 1.286 

G 1.00
4 

0.779 1.453 

A Γ4
22 1.32

4 
1.266 1.551 

G Γ4 1.32
0 

1.121 1.568 

A 

Γ24
22 

1.30
6 

1.008 1.504 

G Γ24 1.31
9 

1.120 1.568 

A 

Γ32
22 

1.30
6 

1.163 1.504 

G Γ32 1.31
9 

1.120 1.568 

Off-
diagona
l 

A22 0.01
6 

0.000 0.666 

G 0.01
6 

-0.216 1.015 

A Γ4
22 0.61

3 
0.532 1.154 

G Γ4 0.63
2 

0.397 1.386 

A 

Γ24
22 

0.60
4 

0.385 1.073 

G Γ24 0.63
1 

0.395 1.380 

A 

Γ32
22 

0.60
4 

0.413 1.073 

G Γ32 0.63
1 

0.396 1.380 

*A22 is the pedigree relationship matrix of the 
genotyped animals; G Γ4, G Γ24 , and G Γ32 are the 
genomic relationship matrices with allele 
frequencies equal to 0.5 augmented by the Γ4, Γ24, 
and Γ32, respectively; G is the genomic relationship 
matrix obtained using the VanRaden (2008) method 
1; A Γ4

22, A Γ24
22, A Γ32

22,  are the pedigree relationship 
matrices of genotyped animals augmented by  Γ4, 
Γ24, Γ32 respectively. 
 
Inflation 
The slope (b₁) of the regression of adjusted 
phenotypes on GEBV from reduced datasets 
measures the dispersion of predictions. A slope 
close to one indicates no inflation or deflation 
in GEBV (Mäntysaari et al., 2010). According 
to Interbull guidelines, b₁ should range from 
0.90 to 1.10 for large populations, or be within 
statistical significance of 1.0 for smaller 
populations. Table 3 summarizes slopes across 
traits (DPR, FY, MY, PY, SCS), methods 
(NO_MF, 4MF, 24MF, 32MF), and groups 
(CROSS, HO, JE). 

In CROSS, NO_MF exhibited severe 
overdispersion, with slopes well below one for 
MY (0.52 ± 0.08), PY (0.42 ± 0.09), and FY 
(0.37 ± 0.09). Introducing 4MF improved 
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dispersion (e.g., MY: 0.63 ± 0.06; PY: 0.51 ± 
0.07). However, finer partitions (24MF, 32MF) 
did not consistently improve slopes and, for 
MY, slopes declined to 0.45 ± 0.04 (24MF) and 
0.54 ± 0.05 (32MF), suggesting potential 
reintroduction of bias. For low-heritability traits 
(DPR, SCS), slopes remained far from one and 
highly variable across scenarios. 

In HO and JE, slopes were closer to one 
across models. HO slopes ranged narrowly 
(0.68–0.77). For JE, 4MF slightly improved 
MY slope (0.67 ± 0.03 [NO_MF] → 0.87 ± 0.02 
[4MF]), with minimal differences between 
4MF, 24MF, and 32MF. These results suggest 
that coarser MF groupings can reduce 
overdispersion in CROSS, but finer granularity 
does not guarantee further improvement and 
may exacerbate bias. 

Overall, slopes were significantly different 
from 1.0 (*P < 0.05), indicating general 
inflation in predictions. However, less biased 
results for evaluations with MF were observed 
as shown in other studies (e.g., Garcia-Baccino 
et al., 2017). A potential factor is variance 
scaling in MF base populations. While Legarra 
et al. (2015) described theoretical scaling, its 
practical implementation has been inconsistent 
(Macedo et al., 2020; Meyer, 2021). 
Himmelbauer et al. (2024) reported that scaled 
variances tend to slightly overestimate GEBV. 
In this study, scaling factors (k) for base animals 
were 1.002 (4MF), 1.011 (24MF), and 1.015 
(32MF), suggesting variance scaling did not 
contribute to inflation. Breed-specific 
contributions to the base population, as noted by 
Kudinov et al. (2022), may explain slope 
differences across groups. 

Suboptimal reference populations and 
limited crossbred genotypes that did not 
represent this group in the APY core likely 
contributed to the overdispersions observed in 
our study, as shown in Khansefid et al. (2020) 
and van den Berg et al. (2020).  
 
 
 
 

Table 3: Regression coefficients (b1) and SE of cow-
adjusted phenotypes on genomic estimated breeding 
value from different single-step genomic BLUP 
(ssGBLUP) scenarios for validation cows. 

1Scenar
io 

Group
2 

Tra
it 

M
Y 

PY FY SC
S 

DP
R 

NO_M
F 

HO 0.7
7 

0.5
5 

0.6
2 

0.6
5 

0.2
0 

JE 0.6
7 

0.6 0.5
5 

0.4
5 

0.1
9 

CRO
SS 

0.5
2 

0.4
2 

0.3
7 

0.1
0 

0.3
6 

4MF HO 0.7
7 

0.5
5 

0.7
0 

0.7
9 

0.2
7 

JE 0.8
7 

0.7
6 

0.6
9 

0.6
7 

0.2
2 

CRO
SS 

0.6
3 

0.5
1 

0.4
9 

0.2
9 

0.3
5 

24MF HO 0.6
8 

0.4
8 

0.6
1 

0.7
8 

0.2
4 

JE 0.8
9 

0.7
7 

0.6
9 

0.6
5 

0.2
2 

CRO
SS 

0.4
5 

0.3
7 

0.3
9 

0.2
9 

0.2
8 

32MF HO 0.6
8 

0.4
9 

0.6
7 

0.7
8 

0.2
4 

JE 0.8
7 

0.7
6 

0.6
9 

0.6
7 

0.2
2 

CRO
SS 

0.5
4 

0.4
3 

0.4
4 

0.2
8 

0.3
0 

Scenario1: NO_MF model (single-step genomic 
BLUP without metafounders); 4MF (single-step 
genomic BLUP with four metafounders); 24MF 
(single-step genomic BLUP with 24 metafounders); 
32MF (single-step genomic BLUP with 32 
metafounders). Group2 = HO; Holstein (n = 96,295 
animal); JE; Jersey (n = 26,436 animals); CROSS (n 
= 5,099). MF = Metafounder; 2SE: HO ≤0.02 for all 
traits and scenarios; JE: ≤ 0.06 for all traits and 
scenarios; CROSS: ≤ 0.18 for all traits and scenarios; 
MY = milk yield; FY = fat yield; PY = protein yield; 
SCS = somatic cell score; DPR = daughter 
pregnancy rate 
 
Predictabilities 
Table 4 summarizes predictabilities for MY, 
PY, FY, SCS, and DPR across models 
(NO_MF, 4MF, 24MF, 32MF) and groups 
(CROSS, HO, JE). For MY, HO and JE cows 
showed moderate, stable predictabilities across 
all models (HO: 0.41–0.44; JE: 0.40–0.50). In 
contrast, CROSS animals demonstrated notable 
gains with MF inclusion, increasing from 0.33 
under NO_MF to 0.44 with 4MF, and further to 
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0.48–0.49 under 24MF and 32MF. Incremental 
gains beyond 4MF were modest, suggesting 
diminishing returns with finer metafounder 
definitions. 

For PY and FY, similar trends were 
observed. JE cows exhibited higher baseline 
predictabilities (PY: 0.31 NO_MF → 0.37–0.38 
MF), while HO showed smaller changes. 
CROSS animals had the largest improvements, 
especially under 4MF (e.g., FY: 0.19 NO_MF 
→ 0.26 4MF). Gains under 24MF and 32MF 
were limited. 

For SCS and DPR, purebred predictabilities 
remained high and stable across all models, 
while CROSS animals showed improvements 
from low baselines (e.g., SCS: 0.04 NO_MF → 
0.12 4MF → 0.14 24MF/32MF). 
These results highlight that MF effects on 
predictability are trait- and breed-dependent. 
Coarser MF groupings (4MF) improve CROSS 
predictions, while finer partitions do not 
guarantee further accuracy and may introduce 
unnecessary complexity.  

Our findings differ from Cesarani et al. 
(2023), who reported higher CROSS 
predictabilities than purebreds using UPG in 
ssGBLUP. They attributed this to genetic 
divergence between HO and JE and dense 
genotype panels (imputed 79K SNPs). In 
contrast, our study used a 45K SNP panel and a 
random APY core including only 678 
crossbreds (<3%). These factors likely reduced 
CROSS prediction accuracy despite the 
inclusion of MF. 
A more balanced APY core design, like the 
breed-stratified approach of Tabet et al. (2025), 
could better capture genetic variation in small 
groups like CROSS while maintaining 
computational efficiency. Combining variance-
based core selection with breed stratification 
may offer a promising strategy for future multi-
breed evaluations. 
 
 
 

Table 4: Predictive ability (Pearson correlation 
between genomic estimated breeding values and 
adjusted phenotype) for the validation cows. 

Scenario1 Group2 
Trait 

MY PY FY SCS DPR 

NO_MF HO 0.41 0.30 0.33 0.21 0.07 

JE 0.40 0.31 0.26 0.17 0.05 

CROSS 0.33 0.24 0.19 0.04 0.08 

4MF HO 0.44 0.31 0.37 0.25 0.08 

JE 0.50 0.38 0.34 0.22 0.06 

CROSS 0.44 0.33 0.26 0.12 0.10 

24MF HO 0.41 0.28 0.35 0.25 0.08 

JE 0.50 0.37 0.34 0.21 0.06 

CROSS 0.48 0.39 0.29 0.14 0.09 

32MF HO 0.41 0.28 0.36 0.25 0.08 

JE 0.50 0.38 0.34 0.22 0.06 

CROSS 0.49 0.39 0.30 0.14 0.09 

Scenario1: NO_MF model (single-step genomic 
BLUP without metafounders); 4MF (single-step 
genomic BLUP with four metafounders); 24MF 
(single-step genomic BLUP with 24 metafounders); 
32MF (single-step genomic BLUP with 32 
metafounders). Group2 = HO; Holstein (n = 96,295 
animal); JE; Jersey (n = 26,436 animals); CROSS; 
HOxJE animals (n = 5,099). MF = Metafounder; 
2SE: HO ≤0.003 for all traits and scenarios; JE: ≤ 
0.005 for all traits and scenarios; CROSS: ≤ 0.013 
for all traits and scenarios; MY = milk yield; FY = fat 
yield; PY = protein yield; SCS = somatic cell score; DPR 
= daughter pregnancy rate 
 
Stabilities 
In HO, stability was high under NO_MF (≥0.87 
for all traits) as shown in Table 5, reflecting 
strong agreement between reduced and 
complete datasets. Including 4MF slightly 
reduced stability for production traits such as 
PY (0.87 → 0.77) and MY (0.87 → 0.80), while 
traits with low heritability (SCS, DPR) 
remained highly stable (≥0.93). Increasing MF 
resolution to 24MF and 32MF had negligible 
additional effects, with correlations for MY and 
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PY ranging from 0.76 to 0.80 and SCS/DPR 
remaining ≥0.93. These findings suggest that, 
for HO, finer MF groupings increased model 
complexity without enhancing stability and 
may have even slightly destabilized predictions 
for certain traits. 

In JE, stability was similarly high across all 
traits in NO_MF (e.g., MY and FY = 0.93) and 
remained largely unchanged with MF inclusion. 
Minor improvements in MY stability (0.93 → 
0.94 under 4MF) were observed, but finer MF 
resolutions (24MF, 32MF) did not yield further 
gains, indicating limited impact of MF on 
stability in this breed. 
In contrast, CROSS animals showed lower 
stability under NO_MF (e.g., MY = 0.59, PY = 
0.52, FY = 0.69) compared to purebreds. MF 
inclusion modestly improved stability (e.g., 
MY: 0.59 → 0.61 under 4MF), with larger gains 
observed under 24MF (MY: 0.73) and 32MF 
(MY: 0.74). Similar trends were noted for other 
traits, suggesting that finer MF groupings may 
better account for heterogeneity in crossbred 
populations. 

These results highlight potential trade-offs. 
In purebreds, finer MF schemes increased 
model complexity without clear benefits and 
may have introduced overparameterization 
relative to the data. In CROSS, finer MF 
improved stability but did not consistently 
translate to higher predictive ability or slopes 
closer to one. This decoupling suggests that 
stability alone cannot fully evaluate model 
performance and must be interpreted alongside 
other validation metrics and trait architecture. 

As Legarra and Reverter (2018) emphasized, 
high stability does not necessarily reflect 
improved accuracy. For traits like MY and PY 
in purebreds, high stability may partly reflect 
that most genetic variance was captured by 
earlier data, limiting the impact of new 
phenotypes. Conversely, in traits with lower 
heritability (e.g., DPR, SCS), MF inclusion 
improved stability, indicating that such traits 
may benefit more from additional information 
introduced by metafounders. 

Stability should therefore be interpreted 
cautiously. While desirable for routine 
evaluations, it primarily measures agreement 
between evaluations and does not indicate 
which evaluation is more accurate. For traits 
with low h², high stability may reflect 
unresponsiveness to new data, which could 
limit genetic progress. 
 
Table 5: stability (correlation between genomic 
estimated breeding values estimated in the complete 
and reduced datasets) for validation cows. 

Scenario1 Group2 
Trait 

MY PY FY SCS DPR 

NO_MF HO 0.87 0.87 0.89 0.95 0.91 

JE 0.93 0.92 0.93 0.92 0.89 

CROSS 0.59 0.52 0.69 0.79 0.88 

4MF HO 0.80 0.77 0.83 0.94 0.93 

JE 0.94 0.92 0.92 0.92 0.92 

CROSS 0.61 0.50 0.54 0.76 0.88 

24MF HO 0.76 0.72 0.78 0.93 0.93 

JE 0.92 0.9 0.91 0.92 0.94 

CROSS 0.73 0.65 0.62 0.82 0.91 

32MF HO 0.80 0.73 0.80 0.93 0.93 

JE 0.92 0.90 0.91 0.92 0.93 

CROSS 0.74 0.65 0.64 0.83 0.91 

Scenario1: NO_MF model (single-step genomic BLUP 
without metafounders); 4MF (single-step genomic BLUP 
with four metafounders); 24MF (single-step genomic 
BLUP with 24 metafounders); 32MF (single-step genomic 
BLUP with 32 metafounders). Group2 = HO (n = 96,295 
animal); JE (n = 26,436 animals); CROSS (n = 5,099). MF 
= Metafounder; 2SE: HO ≤0.001 for all traits and 
scenarios; JE: ≤ 0.001 for all traits and scenarios; CROSS: 
≤ 0.011 for all traits and scenarios; MY = milk yield; FY 
= fat yield; PY = protein yield; SCS = somatic cell score; 
DPR = daughter pregnancy rate 
 
Conclusions  
 
This study demonstrated that incorporating 
metafounders (MF) into genomic evaluation 
models for Holstein and Jersey cattle, as well as 
their crossbreds, can result in differences in 
prediction metrics, with the effects varying by 
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trait, breed, and metafounder configuration. 
While certain MF classifications (eg, 4MF) 
reduced bias and improved regression slopes in 
crossbreds for some traits, others had minimal 
effects, especially for purebred Holstein. 
However, the added model complexity slightly 
reduced stability for traits with higher 
heritability, such as milk yield and protein yield. 
Overall, while MF provides a promising 
approach to address pedigree missingness in 
multibreed evaluations, its application should 
be tailored to the trait heritability and 
population composition to avoid potential 
overfitting and ensure accurate genetic 
predictions. 
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Abstract 

In Switzerland, a resource project was launched in 2019 to improve claw health in Swiss cattle. This 

project marked the beginning for the development of the first genetic evaluation for claw health traits in 

Swiss dairy cattle. Data recorded by claw trimmers during routine care was used to develop a single-

step genetic evaluation for the most common dairy cattle breeds Holstein, Swiss Fleckvieh, Simmental, 

Brown Swiss and Original Braunvieh.  

A key advantage of this dataset is its comprehensive inclusion of all healthy cows observed during 

routine care. From 2019 to 2024, a total of 104,276 records were collected for the multi-breed evaluation 

of Holstein cattle (encompassing Holstein, Swiss Fleckvieh, and Simmental), while 33,464 records were 

documented for Brown Swiss (Brown Swiss and Original Braunvieh). Breeding values were predicted 

for four distinct traits: dermatitis digitalis (DD), white-line disease (WL), other infectious claw diseases 

(INF), and other non-infectious claw diseases (NINF). The prevalence rates of DD, WL, INF, and NINF 

were observed as 20.9%, 9.9%, 45.8%, and 20.7% respectively in the Holstein evaluation, while in the 

Brown Swiss evaluation, they were found as 7.8%, 10.2%, 37.6%, and 13.5%. 

A multi-trait animal model with binary coding of the trait was fit in the ssGTaBLUP evaluation, with 

heritability estimates ranging from 3% to 9% determined for the four traits across both populations. A 

top-bottom comparison revealed that daughter prevalence among sires with the highest and lowest 

estimated breeding values (EBV) varied by 14% to 35%. An index incorporating breed-specific weights 

for the four traits has been developed and is now published for all Swiss breeders. 

A primary challenge in developing the genetic evaluation was the scarcity of phenotypic data alongside 

a substantial population of genotyped animals that exhibited limited genetic correlation with individuals 

supplying phenotypic records. 

Key words: Claw health, single-step genetic evaluation, dairy cattle, multi breed evaluation 

Introduction 

Claw health represents the third leading cause 

of culling in Swiss dairy cattle, following 

mastitis and fertility challenges. Claw diseases 

and the resultant lameness significantly affect 

animal health and welfare as well as herd 

productivity, primarily due to treatment costs 

and decreased milk yield. Previous research has 

estimated that associated economic losses can 

range from several hundred to over one 

thousand dollars per case and animal 

(Dolecheck and Bewley, 2018). 

A resource project was initiated in 2019 to 

enhance claw health in Swiss cattle. The main 

objective was to implement systematic 

recording of claw health data by hoof trimmers 

during routine care. Hoof trimmers received 

training to ensure standardized and consistent 

documentation of claw diseases. In addition to 

advancing management practices, a key 

objective of the project and this study was to 

establish the first Swiss genetic evaluation for 

claw health traits and to improve dairy cattle’s 

claw health. Utilizing the comprehensive 

genomic data available for dairy cattle, a single-

step evaluation was developed to maximize the 
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utility of this information. The resulting 

breeding values will support breeders in 

sustainably improving the claw health of Swiss 

dairy cattle through breeding. 

Materials and Methods 

Data 

Data recorded by claw trimmers during routine 

care was collected through the resource project 

‘Gesunde Klauen’ 

(https://gesundeklauen.unibe.ch, access date 

2025/07/30) for multiple cattle breeds. The raw 

data set included 286,138 records of both 

diseased and healthy cases from 2019 to 2024. 

Thus, having all sound and diseased records 

solved the question of reconstituting the 

contemporary groups. Disease recording was 

done according to ICAR definitions (ICAR, 

2020). Pedigree and genotype data were 

obtained from the three Swiss cattle breeding 

organizations: Braunvieh Schweiz, 

swissherdbook, and Holstein Switzerland. 

During quality control, records lacking 

identity information, herd information or 

disease codes were excluded. Data pertaining to 

the principal dairy cattle breeds in Switzerland 

– Holstein, Swiss Fleckvieh, Simmental, Brown

Swiss, and Original Braunvieh – were retained.

Typically, animals underwent trimming twice

annually. Phenotypic data were compiled as

records per month and animal. For Holstein

multi-breed evaluation, 104,276 records were

analysed (including Holstein, Swiss Fleckvieh,

and Simmental). 33,464 records were used for

Brown Swiss evaluation (Brown Swiss and

Original Braunvieh).

Genotype data obtained through standard 

imputation included 114,640 SNPs for 490,761 

animals from Holstein dataset and 146,609 

animals corresponding to Brown Swiss 

evaluation. The Holstein dataset contained 

5,284 cows with both phenotype and genotype 

records, while the Brown Swiss dataset 

comprised 2,894 cows with these records. 

Trait definition 

Due to low prevalence of certain diseases, 

genetic evaluation was limited to dermatitis 

digitalis (DD) and white-line disease (WL) as 

individual traits. Remaining diseases were 

combined into two groups: other infectious 

diseases (INF) and non-infectious diseases 

(NINF). INF comprised heel horn erosions, 

interdigital dermatitis, and interdigital 

phlegmon. NINF included interdigital 

hyperplasia (limax), asymmetric, corkscrew, 

and scissor claws, concave dorsal wall, double 

sole, axial, horizontal, and vertical horn fissure, 

thin sole, sole hemorrhage, sole bulb and toe 

ulcer, and toe necrosis.  

Genetic model 

A linear multi-trait repeated animal model was 

implemented to estimate variance components 

and genomic breeding values. Fixed effects 

included parity, trimmer by year, stage of 

lactation, year-month. Recombination and 

heterosis were also incorporated as fixed effects 

into the Holstein multi-breed evaluation. The 

random effects comprised herd-year-season, 

permanent environment, and animal genetic 

effect. Traits were coded as binary variables (0 

or 1). 

Variance components were estimated with 

the VCE software (version 6.0.2; Neumaier and 

Groeneveld, 1998) and the four-trait animal 

model, applied separately to the Holstein and 

Brown Swiss datasets. 

Genetic evaluation 

Single-step genomic breeding values were 

predicted using the ssGTaBLUP model 

(Mäntysaari et al., 2017) implemented in the 

MiX99 software package (Strandén and 

Lidauer, 1999). Reliability estimates for these 

breeding values were assessed with 

snp_blup_rel (Zaabza et al., 2020), executed 

within the MiX99 environment. Estimated 

breeding values (EBV) were standardized to a 

mean of 100 and a standard deviation of 12 for 

publication. 
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Validation of genetic evaluation 

A top-bottom comparison was performed to 

validate the genetic evaluation process. The 

average prevalence among daughters was 

calculated for sires with high reliability (Brown 

Swiss ≥ 0.35, Holstein ≥ 0.6). These averages 

were then compared between the sires within 

the top 10% and bottom 10% of EBV. 

Results & Discussion 

Prevalence rates for the traits DD, WL, INF, and 

NINF were observed at 20.9%, 9.9%, 45.8%, 

and 20.7% respectively in the Holstein 

evaluation, and at 7.8%, 10.2%, 37.6%, and 

13.5% in the Brown Swiss evaluation. The 

prevalences of DD, WL, and NINF align with 

findings from Holstein and Brown Swiss 

populations in other countries (Johansson et al., 

2011; Köck et al., 2019; Malchiodi et al., 2018). 

The comparatively higher prevalence of INF 

may be attributed to trimmers being instructed 

to record heel horn erosion with high 

sensitivity. 

Heritability estimates for the four evaluated 

traits and two assessments of Holstein and 

Brown Swiss ranged from 3% to 9%, as detailed 

in Table 1. The highest estimate was recorded 

for DD in the Holstein evaluation, while the 

lowest was noted for DD in Brown Swiss. These 

findings are consistent with previously reported 

heritability values from studies conducted in 

other countries (Chapinal et al., 2013; 

Charfeddine et al., 2018). The highest 

heritability estimate for DD in Holstein is 

expected, owing to the more extensive dataset 

and greater prevalence observed in the Holstein 

evaluation compared to the Brown Swiss 

assessment. Additionally, the trait is 

specifically characterized as a single disease 

rather than a group trait, enhancing the 

precision of the evaluation. 

Table 1: Heritability estimates and standard errors 

for claw health traits in the two evaluations 

Trait Holstein Brown Swiss 

Dermatitis 

digitalis 

0.09 

(0.003) 

0.03 

(0.006) 

White-line 

disease 

0.05 

(0.004) 

0.07 

(0.009) 

Other infectious 

diseases 

0.04 

(0.002) 

0.04 

(0.004) 

Other non-

infectious 

diseases 

0.06 

(0.004) 

0.04 

(0.007) 

The EBV of genotyped sires for the four 

assessed traits ranged from 53 to 139 in 

Holstein and from 68 to 123 in Brown Swiss, 

following standardization. Among Holsteins, 

the mean reliabilities for DD were 0.84 for 

proven bulls with a minimum of 20 phenotyped 

daughters in 10 herds, and 0.43 for selection 

candidates (Figure 1). In the Brown Swiss 

evaluation, these averages were 0.67 and 0.24, 

respectively (Figure 2). The reliability estimates 

were comparable across all four traits. 

Generally, the reliabilities observed in Holstein 

evaluations exceeded those for Brown Swiss, a 

difference attributable to the greater number of 

phenotypic records and genotyped animals 

available for Holstein analyses. 

Figure 1. Reliability estimates for dermatitis digitalis 

(DD) in Holstein for selection candidates (a) and

proven bulls (b).
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Figure 2.  Reliability estimates for dermatitis 

digitalis (DD) in Brown Swiss for selection 

candidates (a) and proven bulls (b). 

Validation of the EBV through top-bottom 

comparison revealed differences in daughter 

prevalence ranging from 14% to 35% across 

various traits and evaluations. These results are 

influenced by the average prevalence of the 

specific disease or disease group under 

consideration. For example, the top-bottom 

comparison for DD in Holstein indicated a 32% 

difference in prevalence between top and 

bottom sires (Figure 3), while in Brown Swiss 

cattle, the same trait demonstrated a 14% 

difference (Figure 4). Both figures illustrate a 

distinct separation between the two groups, 

providing strong evidence for the validity of the 

genetic evaluation for claw health traits. These 

findings confirm that selecting sires with higher 

EBV will contribute to genetic improvement in 

claw health traits. 

Figure 3. Top-bottom comparison for dermatitis 

digitalis (DD) in Holstein. The red line indicates the 

population mean prevalence. 

Figure 4.  Top-bottom comparison for dermatitis 

digitalis (DD) in Brown Swiss. The red line indicates 

the population mean prevalence. 

In pursuit of enhanced overall claw health, 

the EBV of the four traits were consolidated 

into an index. This EBV index is intended to 

streamline farmers’ selection process during 

mating decisions. The index weights for these 

traits were determined specifically for each 

evaluation and established through consultation 

with veterinarians involved in the resource 

project. Weightings were calculated based on 

both the prevalence of each trait within the 

respective evaluation and their relative 

economic significance.  

For the Brown Swiss evaluation, all four 

traits were assigned equal weight in the final 

claw health index. In contrast, within the 

Holstein evaluation, DD received a weight of 

0.5, WL and INF each received 0.125, and 

NINF was weighted at 0.25. A modest positive 

genetic trend is evident for the Brown Swiss 

breed (Figure 5), with approximately 8 index 

points gained over the past 20 years –

representing three-quarters of a standard 

deviation. For the Holstein breed, the trend is 

more pronounced, with a gain of 13 index points 

or roughly one standard deviation over the same 
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period (Figure 6). Despite the absence of a 

dedicated selection tool during this time frame, 

farmers recognized the importance of claw 

health and made intuitive decisions 

accordingly. While indirect selection through 

other traits is theoretically possible, it is 

considered unlikely. No high genetic 

correlations with previously selected traits 

could be identified. 

Figure 5. Genetic trend in the claw health index of 

Brown Swiss for individuals born from 2003 to 

2022. 

Figure 6.  Genetic trend in the claw health index of 

Holstein for individuals born from 2003 to 2022. 

By providing specific EBV for claw health 

traits, this positive trend can be sustained. 

Achieving the long-term objectives of the 

resource project and study is possible through 

careful consideration of the proposed index and 

the potential future integration of EBV into the 

overall selection index for Swiss dairy cattle 

breeds. 

The primary challenge in developing the 

genetic evaluation was the limited availability 

of phenotypic data. Despite having five years of 

recorded information, the database remained 

constrained due to the small number of 

participating hoof trimmers, the relatively low 

population of animals in Switzerland, and their 

distribution across various breeds. The genetic 

evaluation was made possible by employing the 

single-step method and leveraging genomic 

information. Nevertheless, the abundance of 

genotypes presented an additional challenge, as 

most genotyped animals showed weak genetic 

and genomic connections to those with 

available phenotypic records. The majority of 

genotypes were sourced from international 

bulls through genotype exchange programs. 

Conclusions 

The first single-step genomic EBV for claw 

health traits in Switzerland have been predicted. 

Heritability estimates for four distinct traits 

ranged from 3% to 9%, based on data from the 

five major Swiss dairy cattle breeds: Holstein, 

Swiss Fleckvieh, Simmental, Brown Swiss, and 

Original Braunvieh. These EBV were used to 

develop a claw health index, considering 

evaluation-specific weights to provide Swiss 

dairy breeders with a straightforward selection 

tool. Given the observed positive genetic trend, 

there is potential to further strengthen the 

genetic improvement of claw health in the 

future. The next phase involves participating in 

the development of the new MACE EBV for 

claw health traits. Following successful 

validation, we intend to integrate the MACE 

EBV into our single-step pipeline, leveraging 

international data to further enhance our genetic 

evaluation. 
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Abstract 
 
A single-step SNP BLUP was introduced in routine official evaluation of German Holstein in April 
2025 for all traits, including an early-measured trait, calf fitness, defined as calf survival between day 
3 and 15 months after birth. Prior to the single-step model implementation, a mixed reference 
population of bulls and calves was set up for the calf fitness genomic evaluation using a multi-step 
genomic model. During the testing phase of the single-step model, an unrealistic, strong genetic trend 
of calf fitness was observed in genotyped animals, when compared to the multi-step genomic model or 
pedigree-based conventional model. Having searched for plausible causes for the overestimation, we 
detected a much lower mortality rate for genotyped calves than non-genotyped ones, particularly for 
the early periods from day 3 to 120 after birth. Although all female calves were genotyped under the 
whole-herd genotyping scheme in Germany, farmers did not always take genotyping sample right after 
the birth of a calf, causing a delay in genotyping for the early periods of the trait calf fitness. In 
addition, there were limited economic incentives for farmers to genotype dead calves. To solve the 
overprediction bias of the calf fitness evaluation, we developed a new single-step model by using only 
genotypes of sires of all female calves with phenotypic data. Genomic breeding values of the 
genotyped calves and all other genotyped animals were indirectly predicted based on SNP effect 
estimates and residual polygenic effect estimates of all the genotyped sires from the new single-step 
model. Genomic validation showed a slightly higher accuracy of the new single-step model using sire 
genotypes than the original model using genotypes of all animals. In comparison to a significant over-
prediction for the original model, the new single-step model using only the sire genotypic records gave 
an almost unbiased genomic prediction. Genetic trends in genotyped AI bulls or female animals were 
no longer overestimated with the new single-step model. The problem of inflated genomic prediction 
of the original single-step model seems to be solved by using only the genotypic data of sires of 
female calves. 
 
Key words: single-step model, calf fitness, genomic evaluation, prediction bias 

Introduction  
 
Calf fitness (CF) is an economically important 
trait for dairy farmers which was defined as 
female dairy calf survival from day 3 to 15 
months / 458 days after birth for German dairy 
cattle breeds. The whole-time span was 
divided into five periods: days 3 to 14, 15 to 
60, 61 to 120, 121 to 200, and 201 to 458, that 
were treated as genetically correlated traits 

with a multi-trait linear animal model (Heise et 
al. 2016).  

Prior to the official implementation of a 
single-step SNP BLUP genomic model (SSM, 
Liu et al. 2014) for all evaluated traits in 
German Holstein in April 2025, genotype 
records of all animals born from 2005 onwards 
were used also for trait CF in the testing period 
of the model SSM. Thanks to the whole-herd 
female calf genotyping scheme introduced in 
2019, more than 1 million German Holstein 
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female calves with phenotypic CF records had 
also genotype data available for genomic 
evaluations. An unexpected overestimation of 
genetic trend in the genotyped animals was, 
however, identified for trait CF during the test 
phase of the SSM model. To solve the problem 
of overestimated genetic trend in trait CF, an 
alternative single-step model needed to be 
developed. 

The objectives of this study were 1) to 
identify causes of the inflated genomic 
prediction of the single-step model using all 
genotype data; 2) to develop a new single-step 
model for removing the overestimation bias; 
and 3) to conduct genomic validation for the 
two single-step models with a full and a 
truncated data set. 

 
Materials and Methods  
 
Phenotypic, genotypic and pedigree data from 
August 2024 (2408) were obtained for the 
investigation on the trait CF. Following the 
Interbull GEBV test rules (Mäntysaari et al. 
2010), four years of phenotype data were 
deleted to simulate a genomic valuation in 
August 2020 (2008t). Two SSM models were 
compared: using genotype data of all animals 
including all female calves and using only 
genotype data of sires of female calves with 
phenotypic records. Table 1 describes the 
genotype and phenotype data for the full 
evaluation 2408 and the truncated evaluation 
2008t.  
 
Table 1. Phenotype and genotype data for the full 
(2408) and truncated evaluation (2008t) 

Data 
set 

Female 
calves with 
phenotypes 

Genotyped 
calves 

Genotyped 
sires 

2408 13,273,996 1,075,268 36,325 
2008t 10,733,873 501,653 26,578 
Ratio 81% 47% 73% 
 

The total number of genotyped Holstein 
animals in both evaluations was 1,631,843, 
including 1,433,599 females and 198,244 male 

animals. All the genotyped animals were born 
in 2005 and later due to the left truncation of 
genotype data (Alkhoder et al. 2024). Figure 1 
shows the numbers of female dairy calves with 
trait CF and genotyped Holstein female calves 
with trait CF. The solid lines represent the 
numbers of female dairy calves in the full 
evaluation 2408 with phenotypic CF records 
(in blue) and genotyped Holstein female calves 
(in orange). The dotted lines denote the 
numbers of female dairy calves with 
phenotypes in the truncated evaluation 2008t 
(in black) and with both phenotype and 
genotype data (in orange).  
 

 
Figure 1. Numbers of female calves in the full 
evaluation 2408 and truncated evaluation 2008t 
 
 Figure 2 shows the number of genotyped 
sires of the female calves with phenotypic CF 
in the full evaluation 2408 (solid line) and in 
the truncated evaluation 2008t (dotted line).  
 

 
Figure 2. Numbers of genotyped Holstein sires of 
female calves in the full evaluation 2408 and 
truncated evaluation 2008t 
 
Mortality rate of dairy female calves 
Germany has run a whole-herd genotyping 
scheme in participating herds since 2016, 
where all newborn dairy female calves are to 
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be genotyped. For legitimate reasons, farmers 
do not always take genotyping samples 
immediately after birth of a calf, causing a 
delay in genotyping. Furthermore, there is 
limited incentive for farmers to genotype dead 
or even sick calves. Based on all 615,927 
Holstein female calves born in 2022 which had 
opportunity to reach the end of CF trait 
definition (458 days) in the evaluation of April 
2025. Figure 3 shows the mortality rates of 
148,427 genotyped and 467,500 non-
genotyped Holstein calves with respect to the 
five periods of trait CF. For the first period of 
CF, non-genotyped calves have a mortality rate 
of 2.46% that is six times higher than that of 
genotyped calves, 0.41%. Similarly, the non-
genotyped calves are 3 times more likely to die 
than the genotyped ones in the second period.  
 

 
Figure 3. Mortality rates of genotyped and non-
genotyped Holstein female calves  
 
A multi-step SNP BLUP genomic model  
Under the multi-step genomic model (MSM) 
for all other evaluated traits in German 
Holstein (Liu et al. 2011), a SNP BLUP model 
was applied to deregressed EBV of reference 
bulls and calves for trait CF. In the full 
evaluation 2408 there were 1,055,144 
reference calves and 13,077 reference bulls 
representing their non-genotyped calves.  
 
Two single-step SNP BLUP genomic models 
For trait CF, we compared two SSM models: 
one using all genotype records including all 
calves and the other using only genotype data 
of sires of the female calves. A single-step 
SNP BLUP model (Liu et al. 2014) was 
applied to the phenotype data and the two 
genotype data sets. For the SSM with sire 

genotypes, GEBV of all the other genotyped 
animals were indirectly predicted, following 
the weekly genomic evaluation procedure 
(Alkhoder et al. 2024a).  
 
Genotyped Holstein AI bulls and female calves  
For trait CF two main groups of genotyped 
animals were chosen to investigate the impact 
of the two SSM models: genotyped Holstein 
AI bulls and genotyped Holstein female calves. 
Both animal groups were highly relevant for 
breeding and most affected by the SSM model 
change as well. Figure 4 shows the number of 
AI bulls by year of birth with a total of 8,391 
genotyped Holstein AI bulls owned by German 
AI studs born from 2005 to 2023. Numbers of 
the genotyped Holstein female calves having 
trait CF born in 2010 and later are shown in 
Figure 5. The total number of the genotyped 
Holstein calves is 1,072,492 in the evaluation 
2408. 
 

 
Figure 4. Number of genotyped Holstein AI bulls 
owned by German AI studs  
 
 

 
Figure 5. Number of genotyped Holstein female 
calves with phenotypic records  
 
Genomic validation via GEBV Test  
Following Interbull GEBV Test rules, a total 
of 980 validation bulls were defined based on 
the full and truncated data sets. The most 

90



recent version of the GEBV Test software 
from September 2024 was used at the time of 
conducting the genomic validation. To 
investigate the impact of dependent variable on 
the validation results, both deregressed GEBV 
and GEBV were used as target variable. For 
the MSM model, an earlier genomic validation 
with a linear regression model (Legarra and 
Reverter, 2018) was performed using data 
from a full evaluation in April 2023 (2304) and 
from a truncated evaluation in April 2021 
(2104). For this special validation, the original 
SSM with genotype data of all animals was 
evaluated besides the MSM model. 
Furthermore, GEBV of 355 validation bulls 
from the full evaluation 2304 were regressed 
on GEBV from the truncated evaluation 2104 
for the regression analysis.  
 
Results & Discussion  
 
The single-step genomic full evaluation, 2408, 
was run using the two genotype data sets of 
German Holstine for trait CF: using genotypes 
of all animals and using only genotypes of 
sires of the female calves with own phenotypic 
records in CF. For the GEBV test, the single-
step evaluation based on the truncated 
phenotypic data, 2008t, was conducted for the 
two genotype data sets as well. In addition, we 
further ran the MSM model using the full data 
set 2408 and truncated 2008t. All the SSM 
evaluations were run with software MiX99 
(Strandén and Lidauer, 1999), whereas our 
own programs were used for the MSM 
evaluations.  
 
Earlier genomic validation results  
Table 2 shows results of the earlier genomic 
validation using the linear regression method 
(Legarra and Reverter, 2018) by comparing the 
full evaluation 2304 to truncated evaluation 
2104. It can be seen for both SSM and MSM 
models that the model R2 value is relatively 
high and b1 value close to 1. However, caution 
needs to be taken when interpreting the 
validation results, because the validation bulls 

have low reliability values in comparison to 
other traits, between 0.5 and 0.6 in the full 
evaluation 2304, for the low heritability trait 
CF. The high R2 values may also be attributed 
to the lower contribution of own calves’ 
phenotypic data to the total reliability of the 
validation bulls. Using GEBV as dependent 
variable for the linear regression may partially 
lead to the b1 values close to 1, too.  
 
Table 2. Genomic validation results using data from 
the full evaluation 2304 and truncated evaluation 
2104 

Genomic 
model 

Number of 
validation bulls 

R2 
value 

b1 
value 

Single-step 355 0.61 1.04 
Multi-step 355 0.40 0.92 

 
Genomic validation results of the two single-
step models  
Tables 3 and 4 give results of genomic 
validation for both SSM models via Interbull 
GEBV Test software using data from the full 
evaluation 2408 and truncated evaluation 
2008t. The total number of validation bulls 
was 980. The two SSM models show 
significantly lower R2 values than those in 
Table 2, indicating that the dependent variable 
deregressed GEBV results in a lower R2 value 
than the dependent variable GEBV. Another 
explanation for the lower R2 values is the 
number of years in the data truncation, 4 years 
for the validation in Table 3 versus 2 years for 
the validation in Table 2. Based on the 
regression slope b1 values, we can conclude 
that the SSM model using genotype data of all 
animals failed the GEBV test, leading to 
overestimated candidate GEBV.  
 
Table 3. Genomic validation results of the two 
single-step models using data from the full 
evaluation 2408 and truncated evaluation 2008t  

Deregressed GEBV as 
dependent variable  

R2 
value 

b1 
value Pass 

Using only sire genotypes 0.191 0.954 PASS 
Using all genotypes 0.164 0.849 FAIL 

 
 As an alternative form of dependent 
variable in the GEBV Test, GEBV of 
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validation bulls from the full evaluation 2408 
were regressed on those of the truncated 
evaluation 2008t. Table 4 shows genomic 
validation results of the two SSM models with 
GEBV as dependent variable. The R2 values of 
both SSM models are nearly equal and higher 
than the validation using deregressed GEBV in 
Table 3. Based on the regression slope b1 
estimates, the two SSM models pass the 
GEBV test. However, the b1 value of the SSM 
using all genotype data, 0.933, deviates more 
from its expected value of 1.  
 
Table 4. Genomic validation results of the two 
single-step models using GEBV as dependent 
variable for the regression analysis  
GEBV as dependent 
variable  

R2 
value 

b1 
value Pass 

Using only sire genotypes 0.444 0.963 PASS 
Using all genotypes 0.436 0.933 PASS 
 
 
GEBV of the genotyped Holstein AI bulls 
Figure 6 shows genetic trends of GEBV in the 
genotyped Holstein bulls born between 2005 
and 2023. GEBV of the AI bulls are expressed 
in genetic standard deviations (σg) in Figure 6.  
 

 
Figure 6. Genetic trends of the three genomic 
models in the genotyped Holstein AI bulls   
 

The SSM model using all genotype data 
(dotted black line) which failed the GEBV Test 
(see Table 3) has too high genetic trend, with a 
genetic progress of 1.4 genetic standard 
deviations in las 10 years between 2013 and 
2023, despite the fact no direct selection has 
been imposed on this trait CF in German 
Holstein. The new, optimized SSM model 

using only sire genotype data (solid black line) 
has brought down the genetic trend 
significantly, to a level much closer to the 
MSM model. For information, the genetic 
trend of the MSM model is equal to 
conventional evaluation for the genotyped AI 
bulls with calf phenotype data. 

GEBV variances of the AI bulls by birth 
year are given in Figure 7. All the three 
genomic models have nearly equal GEBV 
standard deviations within the birth years.  
 

 
Figure 7. GEBV standard deviations of the three 
genomic models for the genotyped Holstein AI 
bulls  
 
 Figure 8 shows GEBV correlations between 
all pairs of three 3 genomic models. The new 
SSM model with only sire genotype has high 
GEBV correlations with either the SSM model 
using all genotype data (solid black line) or the 
MSM model (dotted green line). The MSM 
model and the SSM with all genotypes (dashed 
blue line) have the lowest GEBV correlations. 
 

 
Figure 8. GEBV correlations between the genomic 
models for the genotyped Holstein AI bulls  
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GEBV of the genotyped Holstein female 
animals 
Regarding the genetic trends of the 3 genomic 
models in the genotyped Holstein female 
calves, we can see in Figure 9 that the SSM 
using all genotype data (dotted black line) has 
severely overestimated GEBV of the female 
calves, due to the much lower mortality rate of 
genotyped than non-genotyped calves (see 
Figure 3). However, the unrealistically high 
genetic trend is reduced significantly for the 
SSM model when only the genotype data of 
sires were used (solid black line). The GEBV 
averages by birth year of the new SSM with 
only sire genotypes are now only slightly 
higher than those of the MSM model (solid red 
line). 
 

 
Figure 9. Genetic trends of the three genomic 
models in the genotyped Holstein female animals  
 
 In addition, GEBV variances in the 
genotyped female calves are compared among 
the genomic models (Figure 10). Despite the 
large trend difference in genotyped animals 
between the two SSM models, the genotyped 
Holstein female calves have nearly equal 
GEBV variances (dotted and solid black lines), 
probably due to the rather low heritability of 
trait CF. The MSM model has lower GEBV 
variance (solid red line) than the two SSM 
models, which may be explained by the 
contribution of non-genotyped relatives with 
phenotype data to the female calves GEBV of 
the SSM model.  
 

 
Figure 10. GEBV standard deviations of the 
genomic models in genotyped Holstein female 
calves  
 
 GEBV correlations between the genomic 
models are shown in Figure 11 for the 
genotyped Holstein female calves. The highest 
GEBV correlations are found between the 
MSM model and SSM with only sire 
genotypes (dotted green line), whereas the 
GEBV correlations between the MSM model 
and the SSM using all genotypes are lowest 
(dashed blue line).  
 

 
Figure 11. GEBV correlations between the genomic 
models for the genotyped Holstein female calves  
 
 The MSM model with a mixed reference 
population of bulls and calves did not show the 
problem of overestimated GEBV for the early 
measured trait CF, partly due to the reference 
bulls whose EBV containing phenotype data of 
both live and dead calves. As another 
contributing factor, the pseudo-phenotype data 
of reference bulls or calves in the MSM 
genomic evaluation were deregressed 
conventional EBV of bulls and calves, which 
had been estimated in the preceding 
conventional evaluation without consideration 
of any genotype data. Thus the problem of 
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genotyped calves having a much lower 
mortality rate than the non-genotyped calves 
could not have any impact on the conventional 
EBV at the preceding step and on the 
subsequently generated deregressed 
conventional EBV of the reference bulls or 
calves.  
 
Conclusions  
 
The single-step genomic model using genotype 
data of all animals appears to give biased 
genomic prediction for the early-measured trait 
calf fitness, when genotyping of some calves 
are delayed with respect to the trait definition 
or there is a limited genotyping of dead calves. 
The inflated genomic prediction, observed in 
the single-step evaluation using all genotype 
data for calf fitness in German Holstein, 
occurred even under the whole-herd female 
genotyping scheme in Germany, where all 
female calves are systematically genotyped. 

A strategy for solving the problem of 
inflated genomic prediction was developed by 
using only genotype data of sires of 
phenotyped female calves, because the sires 
have both dead and live calves and almost all 
the phenotyped calves have a genotyped sire. 
Following Interbull GEBV test rules, 
phenotypic data in the last four years were 
removed from the full evaluation to perform a 
genomic validation. The new, optimized 
single-step model resulted in a slightly higher 
accuracy and a nearly unbiased regression 
slope estimate than the original single-step 
model. For the low heritability trait calf fitness 
where validation bulls have a relatively low 
reliability, we found that the deregressed 
GEBV are clearly more appropriate as 
dependent variable of the linear regression 
than the GEBV of validation bulls. In case of a 
high number of reference animals for the 
reduced genomic evaluation, 4-year data 
truncation is preferred to a 2-year data cut to 
achieve more realistic validation results.  

By comparing the new single-step model to 
the previous one using genotype data of all 

animals, we found that the genetic trends in AI 
bulls and genotyped female calves were 
reduced significantly and GEBV become more 
accurate, with slight change in GEBV 
variances. Finally, we can draw a conclusion 
that the inflated single-step prediction problem 
of the early-measured trait calf fitness has been 
solved by using only genotype data of calf 
sires.  
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Abstract 

In many countries, single-step genomic models are replacing conventional pedigree-based models for 
routine valuation. Those models use all available information on the animals’ phenotype, genotype, and 
pedigree. Pedigree data still has a huge impact on estimated genomic breeding values (GEBV), and it is 
also important to consider information about the structure of the pedigree. The foremost aspect of 
pedigree editing is dealing with missing parents' information. The choice of method of handling missing 
parents can affect the prediction of breeding values. This work investigates three scenarios of pedigree 
data: 1) Pedigree_real (P_Real) – pedigree from the routine evaluation, 2) Pedigree_2010 (P_2010) – 
at least 20 and 10 percent of dams and sires born before 2019 were set randomly to missing, respectively, 
3) Pedigree_4020 (P_4020) – at least 40 and 20 percent of dams and sires born before 2019 were set 
randomly to missing, respectively. Moreover, for those pedigrees, three approaches to defining missing 
parents were used:  1) Raw pedigree (RP) – missing parents IDs set to missing, 2) Genetic groups (GG) 
– missing parents replaced by unrelated GG, which are defined based on year of birth, sex, and country 
of origin, 3) Metafounders (MF) – missing parents replaced by MF, which correspond to genetic groups. 
Relationships within and between metafounders were estimated from genomic information of 
descendants. The genomic breeding values for fat yield were estimated using the single-step test-day 
SNP-BLUP model, implemented by the MiXBLUP software. Although GEBV prediction was similar 
across scenarios, expressing missing parents by GG or MF impacts the genetic trend, especially in 
situations of limited pedigree completeness. Removing parent information led to reduced precision 
results across the methods of handling missing parents, since P_Real scenario demonstrated highest 
accuracy results. Compared to RP and GG, MF scenarios resulted in higher genetic trends. Insufficient 
pedigree completeness, especially among ungenotyped individuals, leads to an overestimation of the 
genetic trend. Completeness of pedigree information and a large number of genotyped individuals 
improve the reliability of evaluations. Modeling missing sires with MFs is less effective than assuming 
unrelated GGs if pedigree information is very incomplete. Therefore, the best method to model missing 
parents depends on completeness of pedigree. 
 
Key words: single-step models, genetic groups, metafounders, validation 
 
Introduction 
The single-step model becomes the standard 
procedure of most national routine evaluations 
of dairy cattle (Legarra et al., 2014, Mäntysaari 
et al. 2017). The single-step model combines all 
available information, i.e., phenotype, 

genotype, and pedigree. Invariably, one of the 
main components in routine genomic evaluation 
of dairy cattle is the structure of the pedigree 
(Bradford et al., 2019). To reduce the bias due 
to missing information in the pedigree, genetic 
groups are used to associate individuals with 
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missing parents with different categories 
(Westell et al., 1988, Legarra et al., 2007). An 
alternative to genetic groups to deal with 
missing information in the pedigree are the so-
called metafounders (Legarra et al., 2015).  

In this study, we focused on a single-step 
random regression SNP-BLUP test-day model 
for fat yield in the Polish Holstein population. 
The primary objective of this study is to 
evaluate various methods for handling missing 
parents and different levels of incompleteness 
in the pedigree data based on validation results, 
average GEBV trends, and GEBV comparisons. 

Materials and Methods 

This study is based on Polish national 
evaluation data for fat yield from April 2024 
(Table 1). Two phenotype files were analysed: 
full data set – 63,615,019, and truncated data set 
– 58,446,695 test-day records. A truncated data 
set was created by removing the records for the 
youngest individuals, i.e., the last 4 years from 
the phenotype file. Genotypes that include 
48,118 single-nucleotide polymorphisms 
(SNPs), were available for 113,019 cows and 
68,972 bulls, that is 181,991 animals. The 
pedigree was extracted up to the third 
generation from animals with phenotypes and 
genotypes, including 4,712,143 animals 
(4,569,044 cows and 143,099 bulls). 

Table 1: Number of test-day records, genotypes, and 
animals in the analysed data sets for fat yield. 

Data Sex Number of 
animals 

Number of 
records 

Phenotype   
 

Cows 3,707,727 63,615,019 

Full data set 

58,446,695 

Truncated 
data set 

Genotype  Cows 113,019 181,991 

Bulls 68,972 

Pedigree  Cows 4,569,044 4,712,143 

Bulls 143,099 

To deal with missing parents we used three 
approaches: 1) RP – raw pedigree with missing 
parents IDs set to missing; 2) GG – genetic 
groups with missing parents replaced by 
unrelated genetic groups, which are defined 
based on year of birth, country of origin and sex; 
3) MF – metafounders with missing parents 
replaced by metafounders, which can be 
considered as genetic groups with relationships 
estimated from genomic information of 
descendants. Based on pedigree from routine 
evaluation, the three approaches of different 
pedigree completeness was used: 1) P_Real – 
pedigree from routine evaluation, with ~ 5.6% 
of missing sires and ~ 15.3% of missing dams; 
2) P_2010 – minimum 20% of dams and 10% 
of sires born before 2019 was set to missing 
based on P_Real; 3) P_4020 – minimum of 
40% of dams and 20% of sires born before 2019 
was set to missing based on P_Real. Only the 
parents' IDs were removed, as the manipulation 
involved animals born before 2019; therefore, 
the pedigree of the youngest validation animals 
remains the same across scenarios.  

For animals with missing parents in the 
pedigree, the genetic groups were implemented 
based on country of origin, year of birth, and 
sex. Individuals born before 1961 were 
removed from the pedigree data. Over 70% of 
individuals included in the pedigree had both 
parents. Each genetic group contained a 
minimum of 20 animals. Group “-31” (Polish 
males born between 2010-2019) had the largest 
number of missing sires (1,002,069), whereas 
group “-32” (Polish females born between 
2010-2019) had the most missing dams 
(174,954).The following single-step random 
regression test-day SNP-BLUP model (Liu et 
al., 2004; Liu et al., 2014) was applied: 

𝑦𝑦=𝑋𝑋ℎ+𝑊𝑊𝑊𝑊+𝑉𝑉𝑉𝑉+𝑉𝑉𝑉𝑉+𝑒𝑒, 

where y is a vector of cows’ test day records for 
fat yield from the first three lactations, h is a 
vector of fixed effects of herd-test-day-parity-
milking frequency, f is a vector of fixed 
lactation curve coefficients which was modelled 
by the Wilmink function (Liu et al., 2004), p is 
a vector of permanent environmental effects 

97



expressed as random regression coefficient 
coefficients of the Legendre polynomials, u is a 
random additive genetic effects also described 
by the random regression coefficients of the 
Legendre polynomials. 

The GEBVtest method was used for 
validation (Mäntysaari et al., 2010). The full 
and truncated data sets have been prepared for 
validation. The full data set contains all 
phenotypic data, while the truncated data set 
includes all phenotypic data except for the last 
4 years of data. Validation cows were defined 
as cows whose records were removed for a 
truncated data set; however, validation bulls 
were defined as sires born between 2017 and 
2019, and having more than 20 validation 
daughters. The test was implemented separately 
for validation cows and bulls, used the linear 
regression: 

GEBVf = b0 + b1GEBVp + e,  

where GEBVf represents the vector of GEBVs 
predicted based on the full data set, while 
GEBVp represents GEBVs predicted based on 
the truncated data set, b0 represents the 
intercept, which indicates a systematic bias in 
the model’s prediction, and b1 represents the 
regression slope, the dispersion of prediction 
compared to actual results. The R2 coefficient is 
one of the results of linear regression and serves 
a measure of prediction accuracy, it indicates 
the percentage of variance in the GEBVp 
explained by GEBVf.  

Validation results were computed for the 
first three lactations, and the total genomically 
enhanced breeding value (GEBV) defines as: 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺=0.5𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺1+0.3𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2+ 0.2𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺3 

where 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺1 is GEBV for the 1st lactation, 
𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸2 is GEBV for the 2nd lactation and 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺3 is GEBV for the 3rd lactation. 

Single-step genomic evaluations were 
conducted using MiXBLUP 3.0 (Vandenplas et 
al., 2022) 

 
Results & Discussion 

 Validation results are reported for 482,810 
validation cows and 562 validation bulls. 

Figures 1-3 show validation results for all 
scenarios divided by sex, method, and 
genotyping status. Figure 1 shows the b0 of the 
dam and sire. We observed similar results for all 
scenarios; the values are close to 0, which is 
expected. Figure 2 shows the b1 value, which is 
similar for every scenario for validation cows, 
with b1 in the range of 0.96 (P_Real MF 
ungenotyped) to 1.1 (P_2010 MF genotyped). 
However, for validation bulls, all results are 
similar, except for ungenotyped validation bulls 
in the scenarios P_4020 and P_2010 for MF. 
For these latter categories, we observed an 
overestimation of b1 at 1.27 (P_2010) and 1.33 
(P_4020). This may be due to a lack of pedigree 
connection for ungenotyped bulls, due to a 
higher percentage of incomplete pedigrees. 
Figure 3 shows the R2, ranging from 0.66 to 
0.90 for every scenario. Lower values were 
observed for ungenotyped validation cows; 
however, for genotyped validation cows, R2 is 
more stable and similar across scenarios. For 
ungenotyped validation bulls, we observed a 
trend where R2 increased from RP through GG 
and MF. However, for genotyped validation 
bulls, the R2 value is similar for P_Real. In 
contrast, for MF, the R2 values for P_4020 and 
P_2010 are lower than in other scenarios 
involving missing parents.  

Figure 4 compares full and truncated data 
sets for validation bulls divided by scenarios 
and genotyping status. In each case, the points 
cluster together to form an extended cloud 
centered on the diagonal; however, as parental 
information is gradually eliminated, the cloud 
dispersion becomes wider, especially for 
ungenotyped individuals. The effect is slight 
under P_Real, becomes evident in P_2010, and 
reaches its peak in P_4020, when ungenotyped 
validation bulls from the RP, GG, and MF 
deviate the most from the diagonal. All of these 
patterns show that genomic information 
protects the accuracy of prediction when the 
incompleteness of pedigree is high: prediction 
for genotyped validation bulls remains strong 
even when up to 40% of dams and 20% of sires 
are set to unknown, whereas missing parental 
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information links weaken the stability of GEBV  
for ungenotyped validation bulls.  
Figure 5 shows the average GEBV trend for all 
scenarios divided by sex. Since 2000, the mean 
GEBV has increased gradually; however, after 
2010, when genotyping became widely used in 
Poland, the increase became more pronounced. 
Compared to cows, bulls exhibit a steeper 
trajectory, indicating that the sire pathway is 
under more selection pressure. Both sexes show 
the same scenario ranking, with MF producing 
the highest averages, followed by GG and RP. 
However, as pedigree completeness declines, 
the gap between scenarios widens, underscoring 
the fact that the way missing parents are handled 
can significantly skew the perception of genetic 
progress. It is crucial to handle incomplete 

pedigrees robustly to prevent overestimating or 
underestimating the selection response. 

 Conclusions 

The results demonstrate that the method used to 
close pedigree gaps can significantly affect the 
predictions of GEBV. Regardless of the 
pedigree scenario used, the real pedigree 
yielded the most reliable validation results. 
However, for individuals without genotypes, 
scenarios with increased pedigree 
incompleteness introduced observable over-
dispersion; this effect was more pronounced for 
sires than for dams and was most noticeable in 
the MF group.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Intercept (b0) for validation individuals divided by sex and method. 
 

 

 

 

 

 

 

 

 

 

Figure 2. Slope (b1) for validation individuals divided by sex and method. 
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Figure 3. Reliabilities (R2 ) for validation individuals divided by sex and method. 

 
Figure 4. Comparison of GEBV for validation bulls across scenarios, divided by genotyped and ungenotyped 
individuals. 
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Figure 5. Average GEBV trend divided by sex and method. 
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Abstract  
 
Routine single-step genomic evaluations can be costly in time and computer resources. Hence, newly 
genotyped animals initially receive a genomic prediction of their direct genomic values (DGV). If 
genomic predictions of DGVs of animals become available, it may be convenient to estimate GEBV of 
such animals using some form of integration into conventional pedigree BLUP evaluations. DGV-
PBLUP is a novel method of integration of DGV from genomic predictions, into a conventional pedigree 
BLUP (PBLUP) evaluation. This is done by setting the prior mean of the animal genetic effect (which 
usually is zero in linear mixed models) to the DGV to be incorporated. In this paper we report on the 
application of this methodology to the Dutch-Flemish genetic evaluation. Results showed a high 
correlation (0.99 or higher) between GEBV of animals associated with a genotype in single step SNP-
BLUP and a GEBV in DGV-PBLUP. Run time of DGV-PBLUP evaluations were comparable to 
conventional pedigree evaluations and much shorter than routine single-step SNP-BLUP evaluations. 
DGV-PBLUP promises to be a convenient method of integration of genomic information into pedigree 
BLUP evaluations, without the need for sharing or accessing SNP genotypes. 
 
Key words: Single-step, pedigree BLUP, integration, genomic evaluations  
 
Introduction 

  
Routine single-step evaluations can be costly in 
time and computer resources. Hence, newly 
genotyped animals initially receive a genomic 
prediction of their direct genomic values 
(DGV). If for some animals genomic 
predictions of DGV become available it still 
may be convenient to compute their GEBV 
using some form of integration into 
conventional pedigree BLUP evaluations. 

There may also be cases where only DGV of 
animals are available for evaluation, without 
genotype data, due to legal or legislative 
considerations. This is the case at CRV, which 
consists of a commercial half, the corporation, 
and a cooperative half, with dairy farmer 
membership. The cooperative publishes 
national genetic evaluations. However, the 
single step evaluation is corporately owned. For 
reasons of IP protection, the corporation cannot 

share genotypes or allele substitution effects. 
The cooperative and the corporation have 
entered in an agreement, where the corporation 
supplies the cooperative with DGV for 
inclusion in the national evaluation. If such 
DGV are to be used in national genetic 
evaluations, integration is still required. 

Integration of genomic data into genetic 
evaluations has been a long standing subject in 
the field of animals quantitative genetics and 
breeding. Methods of integration saw an 
evolution from linear post-processing after 
evaluation, via methods using pseudo-records 
during evaluation, where DGV are fitted as 
observations on a pseudo-trait added to the 
evaluation and correlated to the target trait 
(Stoop et al.; 2014) to single-step models, 
where genotypes are fitted in the statistical 
model of evaluations. Integration methods of 
genomic information were successful in 
achieving their stated goals, but true 
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equivalency between such methods and single-
step evaluations were not achieved. 

In this paper we present a model of 
integration that is mathematically equivalent to 
single-step SNP-BLUP (ssSNPBLUP) models, 
but only requires DGV of genotyped animals, in 
addition to conventional phenotypic and 
pedigree data.  

 
Materials and Methods 

Model 
The equations of the model were derived from 
the ssSNPBLUP linear equations proposed by 
Liu et al. (2014). If we assume that estimates of 
SNP effects 𝐠𝐠� are known before performing a 
single-step genomic prediction, then the vector 
d with predicted DGV of genotyped animals 
can be computed as d = Zg, where Z is the 
genotyped matrix centered with observed allele 
frequencies, and we can assume the following 
prior multivariate normal (𝑀𝑀𝑀𝑀𝑀𝑀) distribution 
for the genetic additive effects 𝐮𝐮: 

[𝐮𝐮|𝛍𝛍�,𝐀𝐀∗] ∼ 𝑀𝑀𝑀𝑀𝑀𝑀(𝛍𝛍�,𝐀𝐀∗𝜎𝜎𝑢𝑢2) 

with 

𝛍𝛍� = �𝐀𝐀𝑛𝑛𝑛𝑛𝐀𝐀𝑔𝑔𝑔𝑔
−1

𝐈𝐈
� 𝐝𝐝 

and 

𝐀𝐀∗−1 = �
𝐀𝐀𝑛𝑛𝑛𝑛 𝐀𝐀𝑛𝑛𝑛𝑛

𝐀𝐀𝑔𝑔𝑔𝑔 𝐀𝐀𝑔𝑔𝑔𝑔 + �1
𝑤𝑤
− 1� 𝐀𝐀𝑔𝑔𝑔𝑔−1�, 

where the subscripts 𝑛𝑛 and 𝑔𝑔 refer to 
ungenotyped and genotyped animals, 
respectively,  

𝐀𝐀−1 = �
𝐀𝐀𝑛𝑛𝑛𝑛 𝐀𝐀𝑛𝑛𝑛𝑛
𝐀𝐀𝑔𝑔𝑔𝑔 𝐀𝐀𝑔𝑔𝑔𝑔

�
−1

= �𝐀𝐀
𝑛𝑛𝑛𝑛 𝐀𝐀𝑛𝑛𝑛𝑛

𝐀𝐀𝑔𝑔𝑔𝑔 𝐀𝐀𝑔𝑔𝑔𝑔
�  

is the inverse of the pedigree relationship matrix 
partitioned between genotyped and 
ungenotyped animals, 𝑤𝑤 is the proportion of 
additive genetic variance explained by the 
residual polygenic effects, 𝜎𝜎𝑢𝑢2 is the genetic 
variance, 𝐝𝐝 is the vector with DGV of 
genotyped animals, and 𝐈𝐈 is an identity matrix. 

The system of equations associated with 
these assumptions, hereafter called DGV-
PBLUP, is written as follows: 

(1)�𝐗𝐗
′𝐑𝐑−1𝐗𝐗 𝐗𝐗′𝐑𝐑−1𝐙𝐙

𝐙𝐙′𝐑𝐑−1𝐗𝐗 𝐙𝐙′𝐑𝐑−1𝐙𝐙 + 𝐀𝐀∗−1𝜎𝜎𝑢𝑢−2
� �𝛃𝛃
�
𝐮𝐮�
� =

� 𝐗𝐗′𝐑𝐑−1𝐲𝐲
𝐙𝐙′𝐑𝐑−1𝐲𝐲+ 𝐀𝐀∗−1𝜎𝜎𝑢𝑢−2𝛍𝛍�

� 

where 𝛃𝛃� is the vector of estimated fixed effects, 
𝐲𝐲 is the vector of records, 𝐑𝐑−1 is the inverse of 
the residual variance structure matrix, and 𝐗𝐗 and 
𝐙𝐙 are incidence matrices relating records to the 
fixed and additive genetic effects, respectively. 

The system of equations of DGV-PBLUP is 
equivalent to a single-step genomic evaluation, 
provided that the SNP effects 𝐠𝐠� were estimated 
using the same phenotypic, genomic and 
pedigree information (Vandenplas et al, 2021).  
The system of equations of DGV-PBLUP can 
also be considered as an application of the 
Bayesian procedure to integrate external 
information into genetic evaluations (Legarra et 
al., 2007; Vandenplas and Gengler, 2012), 
where, in essence a prior mean is fitted for all 
animals, based on the (imputed) DGV of 
(un)genotyped animals. 
 
Data 
The DGV-PBLUP method was tested on a 
dataset and associated variance components of 
the milk production test day model (TDM), 
which is a 5 lactation, 4th order random 
regression with Legendre polynomials (5 
regressions per lactation), analyzing milk, fat, 
protein and lactose yield, as well as somatic cell 
score and urea content of milk. 

Phenotypic data were taken from the April 
2025 evaluation of CRV. DGV for each of the 
25 regressions were taken from a genomic 
prediction based on SNP effect estimates from 
a single-step SNPBLUP evaluation on the same 
phenotypic data (April ’25). The latter included 
828,590 genotyped animals. The data in the 
DGV-PBLUP evaluation consisted of 
16,382,568 pedigreed animals, 13,662,463 of 
which had phenotypic data. Also included were 
DGV of 851,704 animals. 
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GEBV from DGV-PBLUP were compared 
to results from the corresponding single-step 
SNPBLUP run. GEBV from the current 
pseudo-record evaluation (Stoop et al., 2014) 
were also contrasted to these. GEBV were 
produced for the following traits or trait groups: 

 
1) Milk production (lac. 1-5 and overall) 
2) Fat production (lac. 1-5 and overall) 
3) Protein production (lac. 1-5 and overall) 
4) Lactose production (lac. 1-5 and overall) 
5) Somatic cell score (lac. 1-5 and overall) 
6) Urea content (lac. 1-5 and overall) 
 
Presented in this paper are the comparison of 

GEBV from ssSNPBLUP and DGV-PBLUP 
for young bulls without progeny, born after 
2020, since this group of animals is the most 
sensitive to changes in genomic information in 
an evaluation. For the overall traits the Pearson 
correlation were calculated, as well as the 
fraction of animals whose GEBV differed less 
than a quarter genetic standard deviation, as an 
indication of GEBV stability. For reference the 
same statistics were produced from the current 
pseudo-record (PSR) method of integrating 
genomic information into the national 
evaluation. 

 
Results & Discussion 

 
Breeding values 
A comparison of the GEBVs from DGV-
PBLUP and the current PSR system for overall 
GEBV of traits in the milk production test-day 
random regression model are presented in Table 
1. Correlations with ssSNPBLUP GEBV were 
clearly improved with DGV-PBLUP, with all 
correlations > 0.99. Changes in GEBV from 
ssSNPBLUP to integrated GEBV were also 
considerably smaller for DGV-PBLUP, with 
virtually all GEBV with ¼ genetic standard 
deviation. This also indicates a considerable 
improvement in GEBV stability compared to 
the PSR system, where the fraction of animals 
changing more than ¼ s.d. was considerably 
larger. 

An attractive feature of the DGV-PBLUP 
method is that no extra correlated traits have to 
be fitted to incorporate DGV information in a 
pedigree BLUP evaluation. Neither does it 
require a post-processing step to integrate 
DGV. 

Table 1. Number of selected bulls, correlations with 
ssSNPBLUP GEBV and fraction of animals whose 
GEBV changed less than ¼ genetic standard 
deviation for the DGV-PBLUP method (dgv) and the 
current pseudorecord method of integration (psr). 

Selected were young bulls without progeny born 
after 2020. 
 
Table 2. Run times of genetic evaluations of the 
milk production test day model. Run times are given 
in hours:minutes for routine ssSNPBLUP 
evaluations, DGV-PBLUP and conventional 
pedigree BLUP evaluations. 

All evaluations were run using 5 threads for parallel 
computing on a server with Intel(R) Xeon(R) Gold 
6448H 64bit chips at 4000MHz. 

 
Run time 
The wall clock times of all evaluations are 
presented in Table 2. All evaluations were run 
without starting values. The run times of DGV-
PBLUP were comparable to the run times of 
conventional pedigree BLUP evaluations, as 
expected. The run times of routine single-step 
SNPBLUP evaluations on average were 2.4 
times longer than either conventional or DGV-
PBLUP evaluations. 

Trait ssSNPBLUP 
DGV- 

PBLUP PBLUP 
Milk 51:28 18:17 17:53 
Fat 47:26 18:39 17:37 
Protein      49:05 19:20 18:08 
Lactose 48:47 19:02 19:30 
SCS 56:02 18:22 18:31 
Urea 63:00 18:49 19:45 
 

Trait  Correlation < 1/4 s.d. 
 N dgv psr dgv psr 
Milk 5,629 0.999 0.928 100.0% 72.2% 
Fat 5,629 0.999 0.964 100.0% 80.1% 
Protein      5,629 0.998 0.934 100.0% 74.8% 
Lactose 5,629 0.995 0.972 99.8% 85.3% 
SCS 5,629 0.999 0.994 100.0% 98.3% 
Urea 5,629 0.999 0.918 100.0% 70.5% 
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Conclusions 
 
DGV-PBLUP presents itself as a superior 
method of integrating genomic data into 
conventional pedigree BLUP evaluations, in the 
sense that it replicates more closely the results 
of a routine single-step SNPBLUP run than the 
PSR method of integration currently 
implemented at CRV. DGV-PBLUP promises 
to be a convenient method of integrating 
genomic information into pedigree BLUP 
evaluations, without the need for sharing SNP 
genotypes. 
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Abstract  
 
Single step methods use a blended relationship matrix that contains a fraction (typically 5%-20%) of 
pedigree-based relationships, called Residual Polygenic Effect (RPG). Indirect predictions of animals 
not included in the Mixed Model Equations (MME) are composed by a Direct Estimated Genomic Value 
(DGV), a sum of SNP readings times their solutions, and an RPG. Computation of RPG is not 
straightforward, and involves some complicated algebra and software, including separate relationships 
for genotyped and non-genotyped animals. We propose an alternative, equivalent computation that 
infers RPG for genotyped animals in the MME as RPG=GEBV-DGV, and then solves BLUP equations 
with RPG as “record” with heritability close to 1. The solution is the RPG for all animals in the MME, 
from which Parent Average can be used for Indirect Predictions. We show feasibility in practice with a 
US data set with millions of animals genotyped and in pedigree.  
 
Key words: single step, residual polygenic effects  

Introduction 
  
Genomic evaluations typically include a 
fraction of pedigree-based relationships usually 
called Residual Polygenic effect (RPG). This 
fraction considers the relationships not well 
covered by markers, regress the genomic 
relationships towards pedigree ones, and 
generally prevents the evaluations from 
overdispersion (VanRaden, 2008; Liu et al., 
2011). The resulting final GEBV 𝐮𝐮� = 𝐮𝐮�∗ can be 
separated into genomic-based and pedigree-
based parts that we will call DGV (Direct 
Genomic Value). For genotyped animals 𝑔𝑔 this 
is equal to the sum of SNP solutions 𝐮𝐮�𝑔𝑔∗ = 𝐙𝐙𝐚𝐚�, 
and the RPG part that is 𝐝̂𝐝𝑔𝑔 = 𝐀𝐀𝑔𝑔,𝑔𝑔𝐆𝐆−1𝐮𝐮�𝑔𝑔 
(Legarra and Ducrocq, 2012, eq [8]).   

RPGs are conceptually transmitted as an 
infinitesimal trait and therefore their 
covariances are modelled using pedigree-based 
relationships A. The RPG of non-genotyped 
animals 𝑛𝑛 as a function of genotyped ones can 
be obtained using some equivalent expressions 
(Vandenplas et al. 2023) which involve 
dedicated programming, among them 𝐝̂𝐝𝑛𝑛 =

𝐀𝐀𝑛𝑛𝑛𝑛𝐀𝐀𝑔𝑔𝑔𝑔−1𝐝̂𝐝𝑔𝑔 which solves RPG for non-
genotyped animals. 

New animals with genotypes (selection 
candidates) are typically evaluated, at least at 
first, based on solutions from the previous 
Single-step run. The DGV part is easily 
computed from the newly read genotype 𝒛𝒛 as 
𝑢𝑢�∗ = 𝒛𝒛𝒂𝒂�. The RPG part can be obtained as 
Parent Average of RPG from the ancestors, 
proceeding in pedigree order if needed from 
animals in the Single Step equations. This needs 
all solutions of RPG for non-genotyped 
animals, e.g. from 𝐝̂𝐝𝑛𝑛 = 𝐀𝐀𝑛𝑛,𝑔𝑔𝐀𝐀𝑔𝑔,𝑔𝑔

−1 𝐝̂𝐝𝑔𝑔. 
The last equation can be a bit cumbersome 

to obtain, and Vandenplas et al. (2023) propose 
a few equivalent expressions, which need to be 
programmed. Here we propose an alternative 
shortcut that uses BLUP to obtain 𝐝̂𝐝𝑛𝑛 and 
therefore “regular” BLUP solvers can be used. 
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Materials and Methods 
 
We arrange all animals (and Unknown Parent 
Groups or Metafounders) in the single step 
evaluation into non-genotyped and genotyped 
animals. Consider the following MME: 

�𝐀𝐀
𝑛𝑛,𝑛𝑛𝜆𝜆 𝐀𝐀𝑛𝑛,𝑔𝑔𝜆𝜆

𝐀𝐀𝑔𝑔,𝑛𝑛𝜆𝜆 𝐀𝐀𝑔𝑔,𝑔𝑔𝜆𝜆 + 𝐈𝐈� �
𝐝̂𝐝𝑛𝑛
𝐝̂𝐝𝑔𝑔∗
� = �

0
𝐝̂𝐝𝑔𝑔
�  [1] 

For 𝜆𝜆 = 1−ℎ2

ℎ2
. When ℎ2 → 1 , 𝜆𝜆 → 0 and 

𝐝̂𝐝𝑔𝑔∗ ≈ 𝐝̂𝐝𝑔𝑔. From the top equation we obtain 
𝐝̂𝐝𝑔𝑔 = −(𝐀𝐀𝑛𝑛,𝑛𝑛)−1𝐀𝐀𝑛𝑛,𝑔𝑔𝐝̂𝐝𝑔𝑔 = 𝐀𝐀𝑛𝑛,𝑔𝑔𝐀𝐀𝑔𝑔,𝑔𝑔

−1 𝐝̂𝐝𝑔𝑔 . In 
other words, we obtain RPG solving BLUP 
equations. 

Convergence of this iterative system is slow, 
as it will be shown later, because there are many 
more non-genotyped than genotyped animals. 
Thus, a second, approximated model and 
associated MME are: 

�
𝟏𝟏′𝟏𝟏 𝟎𝟎 𝟏𝟏′
 𝟎𝟎  𝐀𝐀𝑛𝑛,𝑛𝑛𝜆𝜆 𝐀𝐀𝑛𝑛,𝑔𝑔𝜆𝜆
𝟏𝟏 𝐀𝐀𝑔𝑔,𝑛𝑛𝜆𝜆 𝐀𝐀𝑔𝑔,𝑔𝑔𝜆𝜆 + 𝐼𝐼

��
𝜇̂𝜇
𝐝̂𝐝𝑛𝑛
𝐝̂𝐝𝑔𝑔∗
�

= �
𝟏𝟏′𝐝̂𝐝𝑔𝑔
𝟎𝟎
𝐝̂𝐝𝑔𝑔

�  [2] 

upon solution of this system, we should add 
back 𝜇̂𝜇 to 𝑑̂𝑑𝑔𝑔∗  and 𝑑̂𝑑𝑛𝑛. 

After running a single step evaluation with 
US data, at CDCB we tested both [1] and [2] 
with the “yield” group of traits (milk, fat and 
protein yields) with ~50M animals in pedigree, 
~2.5M animals genotyped. Therefore there are 
2.5M RPG “records” (obtained as 𝐝̂𝐝𝑔𝑔 = 𝐮𝐮�𝑔𝑔 −
𝐙𝐙𝐚𝐚�) and 48M animals with “no records”, for a 
total of 150M equations. We used PCG iteration 
in blup90iod3 from the BLUPF90 suite 
(Lourenco et al., 2022), with 8 threads. We tried 
several convergence criteria from 10−6 to 
10−14, and we considered 10−14 as pseudo-
true. Then we computed the correlation with the 
pseudo-true solutions. 

In addition, we verified number of rounds 
needed to achieve PCG convergence of 10−12 
for all traits evaluated by CDCB except calving 
ease and stillbirth. 

 
 

Results & Discussion  
 
Results for yield traits are presented in Tables 1 
and 2. Time per round is 20 seconds so 1000 
iterations take ~5h, and this is a post-processing 
step after the single step run that need not be run 
again. For model [1], the convergence with the 
pseudo-true solution is quite fast, with a 
correlation of almost 1 at a PCG convergence of 
10−10.   

On the other hand, model [2] is of faster 
apparent convergence but of actual slower one 
– good correlations with the pseudo-true 
solution appear at PCG convergence levels of 
10−14 and smaller. So the total computing time 
is about the same, and the convergence is more 
misleading. Model [2] is not recommended. 

Table 3 shows number of rounds to reach 
PCG convergence of 10−12. Trait groups that 
take longest time (over 1,000 iterations) are 
those with large number of animals and lowest 
proportion of animals genotyped. For instance, 
“Fertility” has 50M animals in pedigree, 2.2M 
of them genotyped; “Health” has ~10M animals 
in pedigree, 1.2M of them genotyped; and 
“Residual Feed Intake” has 60K animals in 
pedigree, 9K of them genotyped. 
 
Table 1: correlation of the solution for RPGs using 
[1] with the pseudo-true solution, yield traits. 

 PCG 
convergence 

correlation with 
pseudo-true 

iteration 

10E-06 0.916 113 
10E-07 0.958 244 
10E-08 0.978 381 
10E-09 0.995 655 
10E-10 0.9995 898 
10E-11 0.999988 1177 
10E-12 0.999999 1385 
10E-13 1 1549 
10E-14 1 1808 
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Table 2: correlation of the solution for RPGs using 
[2] with the pseudo-true solution, yield traits 

 PCG 
convergence 

correlation with 
pseudo-true 

iteration 

10E-10 0.872 31 
10E-11 0.895 46 
10E-12 0.914 79 
10E-13 0.950 213 
10E-14 0.995 568 
10E-15 0.9992 712 
10E-16 0.9996 804 

 
Table 3: rounds to reach PCG convergence of 10E-
12, all trait groups 

Trait group iteration 
Fertility 1476 

Gestation length 384 
Heifer livability 460 

Health 397 
Livability 1751 

Productive life 1537 
Residual feed intake 104 

Somatic cell score 1040 
Yield 1385 

 
Conclusions  
 
In absence of dedicated software, the RPG 
solutions for animals in the single step 
equations can be computed using BLUP with 
ℎ2 ≈ 1. Computing time is a few hours and it 
depends on the ratio genotyped animals/non-
genotyped animals. This BLUP gives a simple 
and competitive solution to backsolve RPGs for 
all animals considered in the evaluation. Those 

RPGs can be used later for candidates to 
selection through “indirect predictions”. 
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Abstract 

Accurate approximation of genomic estimated breeding value (GEBV) reliabilities is vital in single-

step genomic prediction as reliable predictions of GEBV facilitate effective selection decisions. 

However, calculating exact reliabilities by inverting the left-hand side matrix of the mixed model 

equations is computationally infeasible for large datasets. In this study, we compared two approaches 

from Luke and Interbull for approximating genomic reliabilities for both genotyped and non-

genotyped animals. The Luke approach uses effective record contributions (ERC) derived from the 

conventional EBV reliabilities as weights to approximate GEBV reliabilities for genotyped animals. A 

blended approach is used to implicitly account for residual polygenic (RPG) effects. Subsequently, 

genomic information is propagated to non-genotyped animals using ERC weights derived from the 

reliabilities of the genotyped animals. In contrast, the Interbull approach requires the derivation of a 

constant parameter, denoted 𝜑𝑐, which is the genomic effective daughter contribution (EDC) gain via

the Interbull GEBV test. This parameter is used to propagate genomic information to non-genotyped 

relatives through the pedigree. The final genomic reliabilities are obtained by combining conventional 

reliabilities with the genomic reliability gain. Notably, accuracy of reliabilities by this method highly 

depends on the precise estimation and regular updating of 𝜑𝑐. In addition, this approach requires

validation-based adjustments to correct inflated theoretical reliabilities observed in extremely large 

reference populations. In this study, both approaches were assessed and compared against exact 

reliabilities using a real dataset from the Finnish Red dairy population under a single trait model. The 

results demonstrated that the approximated reliabilities from both approaches were in close agreement 

with the exact reliabilities. Thus, both approaches can offer effective strategies for obtaining the 

reliabilities of GEBV in practical large-scale single-step evaluations.  

Key words: single-step model, GEBV reliability, SNPBLUP,  EDC, ERC

Introduction 

Single-step methods (Legarra et al., 2009, 

Christensen and Lund, 2010) allow computing 

genomic estimated breeding values (GEBV) for 

both the genotyped and non-genotyped 

individuals simultaneously. Their adoption in 

routine genetic evaluations has become 

increasingly widespread in dairy cattle 

breeding. Consequently, the accurate 

computation of GEBV reliabilities has gained 

importance for supporting effective selection 

decisions. However, computing exact 

reliabilities by inverting the left-hand side of the 

mixed model equations (MME) becomes 

computationally infeasible for large-scale 

datasets. Thus, efficient approximation methods 

are needed. 

Several methods for approximating the 

reliabilities of GEBV have been proposed and 

implemented (Misztal et al., 2013, Edel et al., 

2019, Ben Zaabza et al., 2022, Bermann et al., 

2022, Gao et al., 2023). In particular, to ensure 

the international comparability of national 

genomic reliabilities, an Interbull working 

group was established in 2016 to develop a 
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standardized procedure for estimating GEBV 

reliabilities in dairy cattle genetic evaluations 

(Liu et al., 2017). A corresponding guideline 

targeting large-scale genotyped populations has 

recently been released (Liu et al., 2024). 

In this study, we compared two approaches 

for approximating genomic reliabilities for both 

genotyped and non-genotyped animals. The 

first approach, hereafter referred to as the Luke 

approach, uses effective record contributions 

(ERC) as weights within simplified SNPBLUP 

and PBLUP models to approximate GEBV 

reliabilities  (Gao et al., 2023). The second 

approach, hereafter referred to as the Interbull 

approach, combines the genomic reliability gain 

with the conventional EBV reliability to obtain 

the final GEBV reliability for all animals (Liu 

et al., 2024). 

Materials and Methods 

The Luke approach 

This is a three-step approach to approximate 

GEBV reliabilities in a single-step model that 

includes a residual polygenic (RPG) effects 

(Gao et al., 2023). 

Step 1: Compute reliabilities of direct genomic 

values (DGV) for the genotyped animals 

A simplified single-trait weighted SNPBLUP 

without RPG effects was used: 

𝐲 = 𝟏𝜇 + 𝐙𝐠 + 𝐞  (1) 

where y is an n  1 vector of (pseudo) 

phenotypes; µ is the general mean; 1 is an n  

1 vector of ones; Z is an n  m matrix of SNP 

marker covariates centered and scaled using 

VanRaden method 1 (VanRaden, 2008), g is an 

m  1 vector of the SNP marker effects; e is a 

vector of residuals. It is assumed that 

𝐠 ~ 𝑁(𝟎, 𝐈𝑚𝜎𝑢
2), and 𝐞 ~ 𝑁(𝟎, 𝐃𝑛

−1𝜎𝑒
2), where

Dn is a diagonal matrix with elements dii equal 

to the ERCi value for genotyped animal i, 

computed by reversing the method of Tier and 

Meyer (2004) using the conventional EBV 

reliabilities for the genotyped animals, and 𝜎𝑢
2

and 𝜎𝑒
2 are the additive genetic and the residual

variances, respectively. The MME for model 

(1) is:

[
𝟏′𝐃𝑛𝟏 𝟏′𝐃𝑛𝐙

𝐙′𝐃𝑛𝟏 𝐙′𝐃𝑛𝐙 + 𝜆𝐈𝑚
] [

𝜇̂
𝐠̂

] = [
𝟏′𝐃𝑛𝐲

𝐙′𝐃𝑛𝐲
]     (2) 

with 𝜆 = 𝜎𝑒
2

𝜎𝑢
2 . We partitioned and denoted the 

inverse of the LHS matrix of the MME as 

[
𝐂𝜇𝜇 𝐂𝜇𝐠

𝐂𝐠𝜇 𝐂𝐠𝐠]. The reliability of DGV for 

genotyped animal i is 𝑟𝑔,𝑔,𝑖
2∗ = 1 −  𝜆

𝐙𝑖𝐂𝐠𝐠𝐙𝑖
′

𝐆𝑖𝑖
, 

where Zi represents row i in Z, and 𝐆𝑖𝑖 is the

diagonal element i of the genomic relationship 

matrix 𝐆 = 𝐙𝐙′.

Note that the RPG effects were not explicitly 

included in model (1) to preserve the 

dimensionality and computational advantages 

of SNPBLUP model, particularly in scenarios 

where the number of individuals (n) greatly 

exceeds the number of markers (m). 

The RPG effects were accounted for by 

blending the above DGV reliabilities with the 

traditional EBV reliabilities: 

𝑟𝑔,𝑔,𝑖
2 =

(1 − 𝜔)𝐆𝑖𝑖𝑟𝐷𝐺𝑉,𝑖
2 + 𝜔𝐀22𝑖𝑖𝑟𝐸𝐵𝑉,𝑖

2

(1 − 𝜔)𝐆𝑖𝑖 + 𝜔𝐀22𝑖𝑖

 (3) 

where A22 is the submatrix of A corresponding 

to the genotyped animals, 𝐀22𝑖𝑖 is the diagonal

element i of the A22 matrix which is equal to 

1+Fi with Fi equal to the pedigree-based 

inbreeding coefficient of animal i,; 𝑟𝐷𝐺𝑉,𝑖
2  is the 

DGV reliability for animal i and 𝑟𝐸𝐵𝑉,𝑖
2  is the 

EBV reliability for animal i.  is the proportion 

of the RPG effects. 

Step 2: Calculate the genomic ERC for the 

genotyped animals 

The ERC accounting for the genomic 

information for all genotyped animals can be 

calculated as: 

𝐸𝑅𝐶𝑔 = 𝐸𝑅𝐶𝑐𝑜𝑛𝑣 +
1 − ℎ2

ℎ2
(

𝑟𝐷𝐺𝑉
2

1 − 𝑟𝐷𝐺𝑉
2

−  
𝑟𝐸𝐵𝑉

2

1 − 𝑟𝐸𝐵𝑉
2 ) 

(4) 

where 𝐸𝑅𝐶𝑐𝑜𝑛𝑣 is the conventional ERC for the

genotyped animals. Note that these genomic 

ERC values are included as weights for the 
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genotyped animals when computing the GEBV 

reliabilities for non-genotyped animals in Step 

3. 

Step 3: Compute reliabilities of GEBV for the 

non-genotyped animals 

A simplified single-trait weighted PBLUP 

model was used: 

𝐲 = 𝟏𝜇 + 𝐚 + 𝐞                                             (5) 

where y is a p  1 vector of pseudo phenotypes 

with p equal to the number animals in the 

pedigree; µ is the general mean; 1 is a p  1 

vector of ones; a represents a p  1 vector of 

additive genetic effects; e is a vector of 

residuals. It is assumed that 𝐚 ~ 𝑁(𝟎, 𝐀𝜎𝑢
2) and

𝐞 ~ 𝑁(𝟎, 𝐃𝑝
−1𝜎𝑒

2), where A is the numerator

relationship matrix and Dp is a diagonal matrix 

with elements of ERC from vector of 

[
𝐄𝐑𝐂𝑐𝑜𝑛𝑣

𝐄𝐑𝐂𝑔
], and 𝜎𝑢

2 and 𝜎𝑒
2 are the additive

genetic and residual variances, respectively. 

The Interbull approach 

This approach is a three-step approach which 

requires the Interbull GEBV test (Mäntysaari et 

al., 2010), thus it has been feasible for routine 

single-step genomic evaluation with millions of 

genotyped animals (Liu et al., 2024). The 

approach uses a parameter called genomic 

effective daughter contribution (EDC) gain (𝜑𝑐)

for genotyped animals and the propagated EDC 

(𝜑𝑖
𝑝𝑟𝑜𝑝𝑔

) for non-genotyped animals, to

combine the genomic reliability gain with the 

conventional EBV reliability to obtain the final 

GEBV reliability. 

Step 1: Calculate the genomic EDC gain (𝜑𝑐)

This step comprises five sub-steps: 

1) compute the DGV reliabilities for all the

genotyped animals were computed using the

model (1).

2) compute theoretical gain in genomic EDC as:

𝜑𝑖 =
1−ℎ2

ℎ2 (
𝑟𝐷𝐺𝑉

2

1−𝑟𝐷𝐺𝑉
2 −  

𝑟𝐸𝐵𝑉
2

1−𝑟𝐸𝐵𝑉
2 )                         (6)

we denoted the mean of 𝜑𝑖 as 𝜑̅.

3) compute 𝜑𝑖
𝑝𝑟𝑜𝑝𝑔

 using 𝜑̅ as input to

propagate the genomic information from

genotyped animals to their non-genotyped

relatives via pedigree (VanRaden and Wiggans,

1991, Liu et al., 2004).

4) compute the combined total theoretical EDC.

For genotyped animals:

𝜑𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝜑𝑖

𝑐𝑜𝑛𝑣 +  𝜑𝑖                                     (7)

For non-genotyped animals:

𝜑𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝜑𝑖

𝑐𝑜𝑛𝑣 +  𝜑𝑖
𝑝𝑟𝑜𝑝𝑔

                              (8)

5) convert to the final theoretical GEBV

reliability:

𝑅𝑖
2 =

𝜑𝑖
𝑡𝑜𝑡𝑎𝑙

𝜑𝑖
𝑡𝑜𝑡𝑎𝑙+

1−ℎ2

ℎ2

  (9) 

Note that sub-steps 1 through 5 must be applied 

to both the full and reduced datasets. 

6) compute an adjustment factor (f) based on the

validation bulls:

𝑓 =
𝐸(𝜑𝐸)

𝜑̅𝐸
                                                       (10)

where 𝐸(𝜑𝐸) is the expected EDC value:

𝐸(𝜑𝐸) =
1−ℎ2

ℎ2 ×
𝐸(𝑅𝐸

2)

1−𝐸(𝑅𝐸
2)

                                   (11)

where  

𝐸(𝑅𝐸
2) = 𝑅𝐿

2̅̅̅̅ − 𝐸(∆𝑅2)                                (12)

where 𝑅𝐿
2̅̅̅̅  is the mean reliability of GEBV of the

validation bulls from the full dataset, 𝐸(∆𝑅2) is

the expected change in reliability of GEBV: 

𝐸(∆𝑅2) = 𝑣𝑎𝑟(𝑢̂𝐿 − 𝑢̂𝐸)/𝜎𝑢
2                       (13)

where 𝑢̂𝐿 and 𝑢̂𝐸 are the GEBV of the validation

bulls from the evaluation using the full and 

reduced datasets, respectively; 𝜎𝑢
2 is the

additive genetic variance. 𝜑̅𝐸 is the theoretical

EDC value of the validation bulls from the 

reduced dataset: 

𝜑̅𝐸 =  
1

𝑛
∑ (

1−ℎ2

ℎ2 ×
𝑅𝐸𝑖

2

1−𝑅𝐸𝑖
2

𝑛
𝑖=1 )  (14) 

7) compute the adjusted genomic EDC gain

(𝜑𝑖
𝑎𝑑𝑗

) for all the genotyped animals with the f

factor derived from equation (10):

𝜑𝑖
𝑎𝑑𝑗

=
1−ℎ2

ℎ2 (
𝑟𝐷𝐺𝑉

2

1−𝑟𝐷𝐺𝑉
2 × 𝑓 − 

𝑟𝐸𝐵𝑉
2

1−𝑟𝐸𝐵𝑉
2 )             (15)

The constant parameter of 𝜑𝑐 is the mean of the

adjusted genomic EDC gain (𝜑𝑖
𝑎𝑑𝑗

):

𝜑𝑐 =  
1

𝑛
∑ 𝜑𝑖

𝑎𝑑𝑗𝑛
𝑖=1                                          (16)
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Step 2: Propagate genomic information 

This step is the same as sub-step 3) above to 

obtain 𝜑𝑖
𝑝𝑟𝑜𝑝𝑔

 for the non-genotyped animals

but using 𝜑𝑐 as the input data.

Step 3: Compute the final reliability of GEBV 

for all animals 

For genotyped animals: 

𝜑𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝜑𝑖

𝑐𝑜𝑛𝑣 +  𝜑𝑐                                   (17)

For non-genotyped animals, use the equation 

(8). The final reliability of GEBV for all the 

animals can be calculated via equation (9). 

Data 

To evaluate the approaches, a dataset 

comprising 47,124 Finnish Red dairy cows with 

305-day milk yield records from first lactation 

was used. The analyses included 19,757 

genotyped animals with 46,914 SNPs, and the 

pedigree encompassed 64,808 animals. The 

heritability of the trait was set to 0.44, and the 

proportion of RPG effects was assumed to be 

0.30. 

Results & Discussion 

Reliabilities of the genotyped animals 

The mean (SD) reliability of GEBV were 0.66 

(0.09), 0.66 (0.09), 0.57 (0.10) from the exact, 

Luke, and Interbull approach for the genotyped 

animals, respectively. Figure 1 shows the 

GEBV reliabilities from the exact method 

versus those from the Luke method (left panel) 

and the Interbull method (right panel). Overall, 

the correlations between Luke/Interbull and 

exact method were close to one.  

Figure 1.  Scatter plot and Pearson’s correlation 

coefficients (r) of the reliabilities of genomic 

estimated breeding values (GEBV) for genotyped 

animals via the Luke method (y-axis) versus the 

exact method (x-axis) (left panel) and via the 

Interbull method (y-axis) versus the exact method 

(x-axis) (right panel). The solid red line acts as a 

reference line with intercept 0 and slope 1 

Reliabilities of the non-genotyped animals 

The mean (SD) GEBV reliabilities for non-

genotyped animals were 0.48 (0.17), 0.44 

(0.15), and 0.43 (0.17) using the exact, Luke, 

and Interbull approach, respectively. Figure 2 

presents the GEBV reliabilities from the exact 

method against those from the Luke approach 

(left panel) and the Interbull approach (right 

panel). While the correlations between the 

Luke/Interbull and exact approaches were 

slightly lower than those observed for 

genotyped animals, they remained high overall. 

Figure 2.  Scatter plot and Pearson’s correlation 

coefficients (r) of the reliabilities of genomic 

estimated breeding values (GEBV) for non-

genotyped animals via the Luke method (y-axis) 

versus the exact method (x-axis) (left panel) and via 

the Interbull method (y-axis) versus the exact 

method (x-axis) (right panel). The solid red line acts 

as a reference line with intercept 0 and slope 1 

In this study, we compared the Luke and the 

Interbull approaches for approximating GEBV 

reliabilities. Both approaches computed GEBV 

reliabilities separately for genotyped and non-

genotyped animals and required conventional 

EBV reliabilities for all animals in the pedigree. 

The Luke approach used the information 

from a PBLUP model to derive ERC which 

served as weights in a SNPBLUP model that 

incorporates genomic information when 

computing GEBV reliabilities for genotyped 

animals. Similarly, for non-genotyped animals, 

the genomic information was included 

indirectly by applying additional weights 

derived from the genotyped animals within a 

weighted PBLUP model. An important feature 
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of this approach is that the models for 

computing GEBV reliabilities include only a 

general mean and genetic effects, while the 

weighting scheme and relationship structure 

differ between genotyped and non-genotyped 

groups.  

The Interbull approach employed a constant 

parameter (𝜑𝑐) derived from the Interbull

GEBV test, to simplify computations in large-

scale genotyped populations. The 𝜑𝑐 was

propagated to the non-genotyped relatives via 

pedigree to obtain their respective propagated 

EDC gain (𝜑𝑖
𝑝𝑟𝑜𝑝𝑔

). The final EDC values were

then calculated by combining the conventional 

EDC with  𝜑𝑐 for genotyped animals and

𝜑𝑖
𝑝𝑟𝑜𝑝𝑔

 for non-genotyped animals. GEBV

reliabilities were subsequently derived from the 

total EDC using equation (9).  

The results showed that the approximated 

GEBV reliabilities from both approaches were 

in close agreement with the exact values, 

supporting their applicability in practical 

genetic evaluations. 

It is important to note that a key feature of 

the Interbull approach is the derivation and use 

of the genomic EDC gain parameter (𝜑𝑐), which

can be repeatedly applied to approximate 

GEBV reliabilities. However, because 𝜑𝑐 is

directly linked to the Interbull GEBV Test, it 

must be re-estimated and updated each time a 

new GEBV test is conducted. This feature 

offers the computational simplicity and 

efficiency. In contrast, the Luke approach 

requires precise calculation of ERC weights for 

each computation of reliabilities, which may 

increase computational demands. 

The RPG effects need to be considered to 

avoid overestimating the reliability of GEBV; 

however, these effects were not explicitly 

incorporated in either approach. The Luke 

approach employed a blended method to 

approximate GEBV reliabilities for genotyped 

animals, thereby retaining the primary 

advantage of the SNPBLUP model, that is, even 

as the number of genotyped animals increases, 

the dimensionality of the coefficient matrix of 

the MME remains fixed, depending solely on 

the number of SNPs. The Interbull approach 

implemented an adjustment factor (f) to scale 

down the theoretical GEBV reliabilities to 

ensure an appropriate genomic reliability level 

for young selection candidates. 

This study used a relatively small dataset to 

ensure the feasibility of computing the exact 

GEBV reliabilities by directly inverting the 

coefficient matrix of the MME. However, 

routine single-step genomic evaluations in 

practice often involve millions of genotyped 

animals, thus, a larger and more representative 

datasets might be more appropriate to further 

evaluate these approaches. 

Conclusions 

This study compared two approaches for 

approximating genomic reliabilities for both 

genotyped and non-genotyped animals. The 

results demonstrated that both approaches 

produced reliability estimates in close 

agreement with the exact reliabilities computed 

using the full dataset in a ssGBLUP evaluation. 

Importantly, both methods indirectly accounted 

for residual polygenic (RPG) effects without 

explicitly including them in the model. 

Although the Interbull method relies on the 

Interbull GEBV test, both approaches offer 

effective strategies for obtaining GEBV 

reliabilities in practical large-scale single-step 

evaluations. 
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Abstract  
 
Many publications requiring access to large datasets from commercial conditions, such as dairy genetics, 
note challenges with access to and quantity of data. Challenges include insufficient records and 
inconsistent trait definitions. This could be improved through developing closer relationships between 
farmers and researchers. In the same way that scientists innovate to develop the fields of genomics, 
phenomics, metabolomics, etc., can we advance our research by developing ‘farmeromics’ – defined as 
the study of farmer-driven, biological data recording, at scale? The purpose of this investigation was to 
compile examples of research studies that involved farmers in their co-design, including the calf vitality 
project, Feeding the Genes and ImProving Herds These examples could spark discussion on ways to 
strengthen collaboration between farmers, scientists and stakeholders to reach shared data-gathering 
objectives.  
 
Key words: Co-design, farmer engagement, phenotyping, farmeromics  

Introduction  
  
It is likely that a reader of this Bulletin will 
intuitively recognize the importance of 
phenotypic data to drive genetic gain in dairy 
cattle and will easily recall Professor Mike 
Coffey’s famous phrase, ‘in the age of the 
genotype, phenotype is king’ (Coffey, 2020). 
Yet, data availability remains a stumbling block 
in many research activities. Once example of 
this is calf health. For instance, in 2022, 1 in 5 
Australian dairy herds systematically recorded 
calving traits (Axford et al., 2023). This low 
participation rate is inconsistent with trait 
preference data suggesting that farmers value 
calving ease similarly to mastitis, type traits and 
temperament - traits that are so essential that 
they are often included in national breeding 
indices (Axford et al., 2025a). Similarly, in 
Canada, up to 15% of farms had accessible calf 
health records (Hyland, 2022) suggesting that 
the problem isn’t isolated to a particular 
country.  

It’s no surprise, then, that publications on the 
genetics of dairy health traits often include 

commentary on data-related challenges. 
Authors frequently cite under-reporting, 
inconsistent trait definitions, and a lack of 
standardization (Cuttance & Laven, 2019; 
Lombard et al., 2019; Lynch et al., 2024). 
Additional concerns include non-digitised 
storage and inaccessible data sources (Edwards 
et al., 2024). These issues are so widespread that 
they are frequently cited, yet solutions remain 
elusive. Proposing meaningful solutions 
remains far more difficult. 

This raises an important question. What role 
can researchers play in getting closer to the 
source of the data - the farm and the farmer? 
Just as scientists have pioneered the fields of 
genomics, phenomics, metabolomics, etc., can 
we advance our research by developing 
‘farmeromics’ – the study of farmer-driven, 
biological data recording, at scale? 
Encouragingly, both farmers and scientists have 
a strong history of driving change. Involving 
farmers more directly in research may unlock 
innovation that leads to more effective, 
practical improvements in research practice.  

This investigation aims to compile examples 
of studies that involved farmers in their co-
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design and to highlight the impact that emerged 
from these collaborations.  

 
Materials and Methods  
 
Defining Farmeromics? 
As introduced earlier, ‘farmeromics’ refers to 
the study of farmer-driven, biological data 
recording, at scale. To clarify this concept, it 
can be broken down into three components. 

1. Farmer driven. This aspect focuses on 
listening to farmers to understand the 
motivators for data collection. Key questions 
include: 

• What problems do farmers want to 
solve using data? 

• What motivates farmers to record data 
in the first place? 

2. Biological data. This refers to the type 
of data that is relevant to both farmers and 
researchers. It prompts consideration of: 

• What data do researchers need to 
answer scientific questions? 

• What data might already be available 
on farms? 

3. Recording at scale. This component 
addresses the practicality of large-scale data 
collection efforts. It asks: 

• Do current recording practices align 
with the standard operating procedures 
common on today’s farms? 

• Have researchers actively sought out 
this data from farmers? 

 
The Approach 
Retrospectively, a selection of successful 
projects that incorporated elements 
of “farmeromics” was compiled. These 
examples are not intended to be comprehensive, 
but rather illustrative and are offered to spark 
conversation. Each case demonstrates how 
farmer involvement in data collection and 
research design contributed, in part, to 
meaningful outcomes. 

 
 

Results & Discussion  
 
In Table 1, we introduce 3 research activities 
that featured a close association with farmers 
that are discussed in this paper. 
 
Table 1. Project overview 

Project Aim 
Calf vitality Estimate variance 

components for calf health 
traits 

Feeding the 
Genes 

Study genetic by 
environment interaction in 
herds that varied by feeding 
system 

ImProving 
Herds 

Compare the cows’ 
contribution to profit between 
cows differentiated by 
national index rank.   

 
Example 1: Calf vitality 
Australia’s Calf Vitality Project aimed to 
estimate variance components for calf health 
traits in a country without obligatory or 
habitual recording practices (Axford et al, 
2025b). During the initial stages of the project 
when farmer recruitment was underway to 
build a bespoke dataset, farmers proposed an 
additional phenotype which was a subjective 
score. In their words, they wanted to record 
calves that were ‘rippers’ or ‘duds’. These 
colloquial terms were formed into a subjective 
scoring tool trait with 5 levels where A was a 
vigorous calf (a ‘ripper’), B was a good calf, C 
was an average ‘ok’ calf, D was a dull calf that 
lacked vigour (a ‘dud’) and E was a dead 
calf.   The approach was modelled on the 
familiar system for recording workability traits 
(milking speed, temperament and likeability) 
that was initiated thirty years ago and still well 
used today (Beard, 1993). Images reflecting 
the scoring tool were developed, as shown in 
Figure 1, to introduce the idea to project 
participants.  
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Figure 1.  Visual descriptions of the calf vitality 
scores 
 
What was the outcome? 
Over 50 farmers participated in the calf vitality 
project and contributed detailed health 
phenotypes and genotypes from ~20,000 calves. 
While it is difficult to apportion the success of 
the data collection activity to one or more 
factors, it is likely influenced by the high level 
of farmer interaction during the initiation of 
data collection. At the completion of data 
collection, about half of the participating 
farmers actively recorded this new trait. Of all 
the calf traits, calf vitality had the highest 
estimated heritability (11%) as described, along 
with more detailed genetic parameters in 
Axford et al. (2025b). Further, this trait 
attracted farmer engagement to the project and 
generated the most conversation of all the calf 
traits during industry events.   
 
Why did it work? 
Underpinning the definition of ‘farmeromics’ is 
the principle of co-design. In this context, co-
design’ means involving farmers and advisors 
in a project from the beginning to increase 
engagement, acceptance, transparency and 
reduce the possibility of failure. Fleming et al. 
(2023) extends co-design to include ‘co-
development’ and ‘co-delivery’ as part of a 
Co-3D spectrum for project delivery. Calf 
vitality was ‘co-designed’ by first listening to 
the problems as farmers expressed them. Then, 
we developed a mechanism of recording data 
that fitted with their routines and targeted a 
problem that farmers wanted to solve. When the 
value proposition was strong (ie, breeding for 
healthier calves), and the barriers to 
participation were low (ie, simple recording), 

farmers were willing to provide data that was 
earlier though to be unavailable. 
 
Example 2: Feeding the Genes 
With hindsight, ‘Feeding the Genes’ (Morton et 
al., 2015) was successful, in part due to 
elements of ‘Farmeromics’. The aim of this 
project was to investigate the interaction 
between genetic merit and feeding system on 
the performance of cows in Australia herds. A 
feature of the Australian dairying system is a 
heterogeneity of feeding systems. Dairy 
Australia has identified five broadly defined 
feeding systems ranging from predominantly 
pasture and conserved fodder with low 
concentrate use, through to total mixed rations. 
Farmers were asking questions about the 
performance of high genetic merit animals in 
each of these systems, especially for phenotypic 
measures of milk production and longevity.  

This study required feeding system data that 
was not routinely recorded and stored for herd-
recorded herds. A survey was conducted to 
gather the required data and it is here that that 
we find principles of ‘Farmeromics’. The 
survey was: 

• focused on questions that farmers were 
asking, 

• short – with just 5 questions, 
• targeted – candidate herds with selected 

on the basis of production and 
longevity data, and 

• backed by industry advocates – a multi-
disciplinary team that included well-
known spokespeople were leading the 
survey. 

 
What was the outcome? 
The survey attracted a high response rate of 
24% meaning that ~300,000 lactations from 505 
herds were able to be used in the milk 
production analysis. The ability to link feeding 
systems and herd performance enabled research 
that concluded there were clear benefits to using 
high genetic merit sires in each of the five 
feeding systems. 
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Why did it work? 
In this example, the availability of feeding 
system data was critical to the research but not 
readily available. By asking farmers for this 
information in a way that was simple and with 
a clear value proposition, the response rate 
exceeded expectations. ‘Simple’ for the end 
user shouldn’t be confused as ‘easy’ for the 
researcher. Significant effort was required to 
develop the survey questions with a multi-
disciplinary team of advocates in order to 
achieve success. 
 
Example 3: ImProving Herds  
Many models that are used to derive economic 
indexes target an outcome based on a definition 
of profit, for example Pro$ in Canada (Van 
Doormaal et al., 2015), Balanced Performance 
Index (BPI) in Australia (Byrne et al., 2016), 
Net Merit in the United States of America (Van 
Raden et al., 2025) and others. Farmers and 
advisors often seek information that validates 
the profit predicted in indices with practical, 
‘real’ herd examples. One of the aims of 
Australia’s ImProving Herds project was to 
compare the cows’ contribution to profit 
between cows differentiated by BPI rank.  This 
required a comparison of individual cow 
lifetime performance information with farm 
financial data to calculate margin over feed and 
herd costs (MOFH) as a measure of contribution 
to farm profit (Newton et al., 2017). However, 
detailed farm financial records are rarely 
captured in routine herd recording. In this 
project, two disparate datasets were initially 
combined from different agencies, with 
agreement from farmers. Later, consultants 
with specific expertise in compiling and 
assessing farm financial data were engaged to 
collect this data for a diverse range of herds with 
high value herd performance and genomic data 
that were important to the study. This 
information enabled an analysis that linked 
farm financial performance with genetic merit 
at an individual cow level resulting in the 
calculation of each cow’s contribution to profit. 
This formed the basis of a series of practical 

case studies that appealed to farmers and service 
providers. 
 
What was the outcome? 
On average, high-BPI cows contributed ~AU 
$300 per cow per year more to margin-over-
feed and herd costs (MOFH) than did their low-
BPI herd mates (Newton et al., 2021). 
Additional milk income easily compensated for 
the higher feed costs associated with high BPI 
cows. Further, a sensitivity analysis showed that 
this result holds true even if milk price fell by 
50% while feed cost stayed the same or feed 
cost doubled and milk price stayed the same. As 
the case studies were conducted in a range of 
environments, this project generated many 
stories that formed a well-used extension 
resource. 
 
Why did it work? 
In this project, looking beyond the traditional 
data sources revealed opportunities previously 
thought ‘too hard’. As discussed by Newton et 
al., (2021), iterative discussions with dairy 
farmers, economists, service providers and 
technical independent geneticists from overseas 
were required to develop this research study. 
Consistent with co-design principles, 
communication and early extension activities 
were incorporated within a research project and 
this enabled the involvement of representatives 
from across the herd improvement industry 
throughout the project. While challenging to 
manage, the iterative feedback cycles on the 
project methodology and messaging created 
new opportunities. 
 
Conclusions  
 
In these three examples, involving farmers   
• revealed new data that was not previously 
unknown to exist, through discussion,  
• fine-tuned the research question, through 
conversations, so that the project’s discoveries 
were more meaningful to the intended audience,  
• ensured that proposed practice changes had 
considered practical implications, and, 
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• benefited communication and extension 
activities that raised awareness of the research 
findings. 

At its heart, ‘farmeromics’ is a prompt to 
ask, ‘how can we do a better job of working 
with farmers to capture important data and 
make great research projects even more 
meaningful?’  
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Abstract  
 
In this study, we integrated Multiple Across Country Evaluation (MACE) information for Interbull 
(ITB) bulls into the Swiss Test-day model (TDM). The 9-trait TDM includes test-day records of milk, 
protein and fat from the first three lactations, while total yield indices submitted to ITB are averages of 
305d yields for lactations. A bull was considered to have relevant MACE information if its reliabilities 
for all indices in MACE were at least 0.1 units higher than its reliabilities from the Swiss TDM. With 
this integration, the Swiss TDM gained information for round 5,800 bulls with MACE index reliabilities 
exceeding 0.5. 
The integration process had three steps. 1) For selected bulls, the multitrait reversed reliability 
approximation was used to estimate effective record contributions (ERC) for Swiss and MACE yield 
indices, based on their respective reliabilities. 2) Yield indices and ERCs were used to calculate 
multitrait deregressed proofs (DRP) separately for Swiss and MACE evaluation. Correlations between 
the evaluated indices and pedigree relationships were accounted during the ERC and DRP calculations. 
3) Based on the DRPs and ERCs for domestic and MACE indices, pseudo-observations approximating 
the additional information in the MACE evaluation were calculated for the selected bulls. As a result, 
for each selected bull a DRP and ERC for milk, protein, and fat were obtained. 
The original Swiss TDM describes breeding values using 45 random regression coefficients. The DRP 
was included in the model as a separate trait, weighted by its ERC. The genetic correlation between 
pseudo trait and lactation averages of the original traits was assumed to be 1. MACE inclusion improved 
correlations between MACE and Swiss indices to 0.99 (from 0.78–0.80 for milk, fat, protein). This 
demonstrates a good alignment between the two evaluation systems. Integration of MACE is now 
implemented successfully in the Swiss single-step routine genetic evaluation. 
 
Key words: Test-day model, MACE integration, three-step approach, production 

Introduction 
Accurate genetic evaluation is essential for 
accelerating genetic improvement in dairy 
cattle breeding programs (Schaeffer, 1994). 
Integrating multiple across-country evaluation 
(MACE) proofs into single-step genomic 
analyses enables the inclusion of reliable 
international information, particularly for 
foreign progeny-tested sires with no or only few 
domestic offsprings. This integration improves 
the accuracy of estimated breeding values 
(EBV), enhances the genetic connectedness 
between countries, and supports more robust 

selection decisions in an increasingly 
globalized dairy industry (Sullivan, et al. 1999, 
Boerner et al., 2022). 

Recent research has proposed several 
strategies to incorporate MACE information 
into single-step evaluations. For instance, 
Nieuwhof et al. (2023) developed a method 
using deregressed proofs (DRPs) that account 
for relationships among MACE bulls, 
improving reliability and reducing bias 
compared to approaches that assume 
unrelatedness of bulls. Similarly, Bayesian 
methods such as ssGBayes and trait-specific 
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deregression techniques have shown promising 
results in Canadian and Walloon Holstein 
populations (Strandén et al., 2022; Splichal et 
al., 2023) 

While some approaches simplify the 
relationship between international and domestic 
genetic effects, e.g., by treating MACE DRPs as 
auxiliary traits or integrating them into reduced-
rank test-day models, these often compromise 
consistency with the full model structure. In 
contrast, the approach presented here integrates 
MACE-derived pseudo-observations directly 
into the full Swiss multi-trait test-day model 
(TDM). These pseudo-observations are treated 
as weighted, trait-specific contributions aligned 
with the genetic lactation curves, ensuring 
consistency with the model’s structure and 
preserving trait definitions across data sources. 

This study describes a three-step approach to 
integrating MACE information into the Swiss 
TDM and demonstrates its validity through 
comparisons of EBV and reliabilities from 
pedigree-based BLUP (PBLUP) and single-step 
GBLUP (ssGBLUP) before and after blending. 
Furthermore, it evaluates the impact of genomic 
information on the blending procedure, 
particularly for genotyped bulls. The 
implementation is now part of the Swiss routine 
single-step evaluation pipeline. 
  
Materials and Methods 
 
Data 
The raw phenotypic dataset encompassed 
49,744,608 test day records for the yield traits: 
milk, fat and protein each in kg for days in milk 
(DIM) between 5 and 365. Different milk 
testing methods (A4, ATM4 and AT4) were 
used to record the data on 1,753,643 cows born 
between 1984 and 2023.  

The total number of herds was 34,896. The 
number of herd-test-day-parity (HTD) classes 
was 4,437,539 and the number of time-region-
age-parity-season (TRAPS) classes was 476. 
Time was divided into half-year groups based 
on the test day, starting from year 2000. Region 
was defined via geographic classification. Age 

was divided into monthly classes (≤19 month, 
20-24 month, 25-28 month and ≥ 28 month). 
Parity was divided into first, second and third 
and ongoing. Season was divided in January-
March, April-June, July-September, October-
December. 

Genotypes of 153,499 animals were 
included in the single-step evaluations. As 
animals were genotyped with different SNP 
panels, all genotypes were imputed together 
(one reference panel) to 125K SNP following 
the routine imputation process at Qualitas with 
FImpute (v3.0; Sargolzaei et al., 2014). 

The pedigree was built up using cows with 
phenotypes as well as young, genotyped 
animals and pruned to three generations and 
finally included 2,367,788 animals. Genetic 
groups were divided by breed but also separated 
over different periods of time and sex.  

 
Swiss test-day model 
A multi-trait (yield traits), multi-parity (5 
lactations) random regression model, defined as 
 𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒑𝒑𝒑𝒑 + 𝒁𝒁𝒂𝒂𝒂𝒂 + 𝝐𝝐, (1) 

was used, where y is the vector of observations, 
β represents the fixed effects of HTD and the 
fixed lactation curve for TRAPS, p is the vector 
of random permanent environmental effects, 𝒂𝒂 
is the vector of random genetic effects, and ϵ 
represents the random residuals. 𝑿𝑿 and 𝒁𝒁𝒑𝒑,𝒁𝒁𝒂𝒂 
are respective incidence matrices. 

To account for the accuracy of the 
phenotype, different weights were used for 
different milk testing method (1=A4, 
0.94=ATM4, 0.88=AT4). 

The TRAPS effect was modeled using a six-
order Legendre polynomial. Both the genetic 
and permanent environmental lactation curves 
were modeled using fourth-order Legendre 
polynomials. Lactations 4 and 5 were treated as 
repeated measures of the third lactation for the 
fixed effects and the genetic effect, while 
lactation-specific effects were included for 
permanent environmental effects. Assumptions 
were that 
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�, (2) 

where 𝑮𝑮𝑜𝑜 is the covariance (45×45) matrix for 
the random genetic effects, assumed to be the 
same for each cow. 𝑨𝑨 is the pedigree 
relationship matrix between the animals used 
for pedigree BLUP (PBLUP). To include 
genomic information, the A matrix was 
replaced by an augmented matrix (H) that 
includes both pedigree and genomic 
information, and was incorporated by applying  
ssGTABLUP (Mäntysaari et al., 2017), where 
the genomic relationship matrix (G) was 
constructed using VanRaden method I 
(VanRaden, 2008) and blending the G matrix 
with a 5% residual polygenic component. 
Pedigree inbreeding coefficients were 
incorporated into both A⁻¹ and A₂₂⁻¹. Genetic 
groups were accounted for in the single-step 
models through a partial QP transformation that 
excluded G⁻¹ from the QP matrix (Koivula et 
al., 2021).  

𝑷𝑷 is the covariance (75×75) matrix for the 
permanent environmental effects. 

R is the covariance matrix of the residuals, 
composed of 3×3 covariance matrices 
corresponding to four lactation periods based on 
DIM: 5–45, 46–115, 116–265, and 266–365. 
Each period was associated with its own 3×3 
residual covariance matrix. 

Lactation specific breeding values were 
calculated by summing up the breeding values 
for DIM 5 to 305. Combined breeding values 
were calculated as a weighted sum of lactation 
specific breeding values by using weight of 1/3 
for each lactation. The combined breeding 
value was standardized by subtracting the mean 
EBV of cows aged between 6 and 8 years. 
Standardized breeding values for milk, protein 
and fat and their reliabilities were submitted to 
Interbull for all bulls. 

 
Bulls Chosen to be Blended 
After performing MACE, ITB returned MACE 
breeding values and reliabilities. Bulls were 
selected for blending if their MACE reliability 

exceeded 0.5 and exceeded their domestic 
reliability by more than 0.1 units, irrespective of 
whether the bull was genotyped or not. 
In total 5,864 bulls were selected per yield trait, 
whereof 5,466 were genotyped and 247 had 
information in domestic evaluation. 
 
Calculation of pseudo-observations 
Integration of additional information in MACE 
breeding values for milk, protein and fat to 
domestic evaluation was done using 
deregressed proofs (DRP) as pseudo-
observations and effective record contribution 
(ERC) as weights. The integration process 
includes calculating ERCs from reliabilities and 
DRPs from EBV based on domestic and MACE 
proofs (Pitkänen et. all 2020, Pabiou et. all 
2018, Vandenplas et. all 2014).  
DRPs and ERCs were calculated assuming that 
EBV and reliabilities are from linear multitrait 
animal model: 

 �
𝑦𝑦𝑚𝑚
𝑦𝑦𝑝𝑝
𝑦𝑦𝑓𝑓
� = 𝜇𝜇 + 𝑎𝑎 + 𝑒𝑒, (3) 

where 𝑦𝑦𝑚𝑚, 𝑦𝑦𝑝𝑝 and 𝑦𝑦𝑓𝑓 are combined 305d 
observations for milk, protein and fat, 𝜇𝜇 is 
intercept, 𝑎𝑎 is random genetic effect, containing 
breeding values for combined milk, protein, and 
fat for each animal, and 𝑒𝑒 is the residual effect. 
The variance components for a and 𝑒𝑒 were 
derived for 305d yields based on test-day model 
variance components. Residual variance 
covariance matrix included variation due to 
residual and permanent environment effects in 
the test-day model. 

In the first step, two sets of reliabilities—one 
from the domestic evaluation and one from 
MACE—were used to calculate effective 
record contributions (ERC_D and ERC_M) for 
combined milk, protein, and fat.  

In the second step, DRPs for combined milk, 
protein and fat for domestic (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) and MACE 
(𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀) were calculated based on combined 
EBV from evaluations and using ERCs from the 
first step as weights. The standardized EBV 
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were back transformed to original scale before 
calculations.  

Since 𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀, contains information also from 
domestic animals, it can’t be directly included 
in the model due to double counting of 
information. In the third step, the double 
counting was removed by calculating 𝐷𝐷𝐷𝐷𝑃𝑃𝐵𝐵, 
𝐸𝐸𝐸𝐸𝐶𝐶𝐵𝐵 , within trait as: 
 𝐸𝐸𝐸𝐸𝐶𝐶𝐵𝐵 = 𝐸𝐸𝐸𝐸𝐶𝐶𝑀𝑀 − 𝐸𝐸𝐸𝐸𝐶𝐶𝐷𝐷  (4) 
 𝐷𝐷𝐷𝐷𝑃𝑃𝐵𝐵

=  
𝐷𝐷𝐷𝐷𝑃𝑃𝑀𝑀 ⋅ 𝐸𝐸𝐸𝐸𝐶𝐶𝑀𝑀 − 𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷 ⋅ 𝐸𝐸𝐸𝐸𝐶𝐶𝐷𝐷

𝐸𝐸𝐸𝐸𝐶𝐶𝐵𝐵
. 

(5) 

 
Blending Model  
Pseudo-observations for milk, protein and fat 
yield were included as separate traits for the 
test-day model assuming the pseudo-
observation is a weighted sum of 305d breeding 
values of lactations 1 to 3. The model for 
pseudo-observations for animal i is: 

�
𝐷𝐷𝐷𝐷𝑃𝑃𝑖𝑖𝑖𝑖𝐵𝐵

𝐷𝐷𝐷𝐷𝑃𝑃𝑖𝑖𝑖𝑖𝐵𝐵

𝐷𝐷𝐷𝐷𝑃𝑃𝑖𝑖𝑖𝑖𝐵𝐵
� = 𝜇𝜇 + 𝑪𝑪𝑎𝑎𝑖𝑖1 + 𝑪𝑪𝑎𝑎𝑖𝑖2 + 𝑪𝑪𝑎𝑎𝑖𝑖3  + 𝒆𝒆𝑖𝑖,  

where  
𝑪𝑪 = 𝑰𝑰3⨂𝑪𝑪305 , 

and 

𝒂𝒂𝑖𝑖𝑖𝑖 = �
𝑎𝑎𝑖𝑖,𝑚𝑚𝑚𝑚
𝑎𝑎𝑖𝑖,𝑝𝑝𝑝𝑝
𝑎𝑎𝑖𝑖,𝑓𝑓𝑓𝑓

�. 

The vector 𝑪𝑪305 is sum of covariable values for 
genetic lactation curve between DIM 5 to 305. 
Residual covariance matrix for pseudo-
observations was the same as used in model 
(3). The genetic regression coefficients, 𝑎𝑎𝑖𝑖,𝑡𝑡𝑡𝑡, 
for trait t, and lactation l, are the same as for 
the test-day observations. Hence, the genetic 
correlation between MACE and domestic 
evaluation was assumed to be 1. All 
calculations were done using MiX99 software 
suite, Release X/2023. 
 
Results & Discussion  
 
In the following only the results for milk are 
shown (Figure 1, 2 and 3) and discussed, 
because they are similar for the other traits. 

PBLUP reliabilities 
Integrating MACE proofs improved 
correlations between MACE and domestic 
reliabilities (R2) towards the expected value of 
1 (Figure 1). The intercept of the reliabilities 
decreased, and the slope increased indicating 
that the reliabilities after blending are not 
biased. 

 

 
Figure 1. Comparison plots between PBLUP 
reliabilities (R2) before (top) and after blending 
(bottom) with MACE reliabilities. The red, dotted 
line represents the expectation if blending works.  
 
PBLUP breeding values 
Integrating MACE proofs improved 
correlations between MACE and domestic EBV 
(Figure 2). The intercept of the EBV increased, 
while the slope of the EBV decreased.  

The intercept deviates from 0. However, 
compared to the scale of the EBV ranging from 
-2000 to +2000 this deviation is small. More 
important is the slope which is quite close to the 
expectation. Traits are modelled independently 
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in MACE but dependently in the domestic ERC 
and DRP calculation, which might explain the 
deviation from the expectation.  

Overall, the results are in accordance 
Pitkänen et al. (2019 and 2020), where similar 
blending strategies were applied to Nordic 
Holstein evaluations, and Vanderick et al. 
(2025). In contrast to this study, their approach 
sets the residual correlation for DRP 
computation to zero.  

 

 
Figure 2. Comparison plots between PBLUP 
breeding values (EBV) before (top) and after 
blending (bottom) with MACE EBV. The red, dotted 
line represents the expectation if blending works.  
 
ssGBLUP reliabilities and breeding values 
The integration of genomic information led to a 
higher standard deviation of the ssGBLUP 
reliabilities compared to their MACE 
equivalent (Figure 3). All genotyped bulls 
gained in reliability. The reliability of non-
genotyped bulls has not changed after blending.  

The standard deviation of the EBV increased 
when integrating genomic information. 

These findings are consistent with the 
observations of Rostellato et al. (2024) who 
demonstrated that genomic-free Single-Step 
EBVs used for MACE derivation increase 
reliability, particularly for genotyped animals. 
 

 
Figure 3. Comparison plots between ssGBLUP – and 
MACE reliabilities (R2) on top and ssGBLUP – and 
MACE breeding values (EBV) on bottom. The red, 
dotted line represents the expectation for PBLUP.  
 
Conclusions  
 
The three-step approach integrates well MACE 
results into PBLUP and ssGBLUP and allows 
recovering indirectly a large amount of 
phenotypic information. All available external 
sources of information are correctly propagated 
avoiding double counting of contributions due 
to relationships and due to own records. 
Furthermore, the results are in accordance with 
the findings from the literature. Therefore, the 
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approach proves to be a good choice for the 
Swiss genomic evaluation system integrating 
domestic and MACE EBV and is now 
implemented successfully in the routine genetic 
evaluation.  
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Abstract  
 
The increasing level of inbreeding in dairy cattle populations can be a concern for researchers, 
producers, and artificial insemination (AI) companies. High inbreeding levels can lead to the 
accumulation of deleterious recessive variants, depression of the mean value of economically important 
traits, and a reduction in available genetic diversity in the population. Advancements in reproductive 
technologies and the integration of genomic information into genetic evaluations have contributed to 
rising inbreeding levels. Given the global interest in inbreeding, there is a need to monitor inbreeding 
trends and develop strategies to manage its adverse effects while ensuring continued genetic progress. 
The objective of this study was to measure the current trends in genetic and genomic relationships among 
Canadian Holstein cows and international Holstein bulls. Pedigree and genotype data were provided by 
Lactanet Canada (Guelph, ON). Genotype information was available for 168,995 animals, for which a 
pedigree of 616,258 animals was extracted. Among genotyped animals, 8,491 bulls were born between 
2000 and 2023, and 131,139 cows were born between 2010 and 2024. The average pedigree 
completeness index of all genotyped animals was greater than 99%, with a maximum pedigree depth of 
30 generations. Genetic relationship values were estimated using pedigree data (R-value) and genomic 
data (GR-value). R-value and GR-value represent the expected and realized percentage of shared DNA 
between an animal and a defined reference population, respectively. This was done by iteratively tracing 
back the gene contribution of an animal to the reference population. In this study, the reference 
population was defined as currently active cows and heifers enrolled in milk recording without a 
documented left-herd date on the latest test day in April 2024. Results show a yearly increase in 
relationship within the reference and bull populations. The average genetic relationship between bulls 
and the reference population ranged from 9.3% to 26.5% (R-value) and from 12.9% to 40.8% (GR-
value). Among bulls, those with United States registration codes had the highest relationship value with 
active Canadian cows and heifers, with R-value and GR-value estimates of 20.8% and 30.4%, 
respectively. Conversely, bulls registered in the Czech Republic had the lowest average relationship 
values, with R-value and GR-value estimates of 17.1% and 24.3%, respectively. Selecting sires with 
low average relationship values among defined reference populations as a mating strategy could reduce 
or maintain inbreeding at acceptable levels while preserving genetic diversity. 
 
Key words: Genetic relationship, inbreeding diversity, Holstein, dairy cattle 
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Introduction 
  
The availability of genotype information has 
driven rapid advancements in breeding 
programs across most intensive dairy producing 
countries, particularly following the 
implementation of genomic selection (García-
Ruiz et al., 2016; Miglior et al., 2017). 
Moreover, the international exchange of 
genotypes among partner countries has been 
reported to produce higher gains in reliability 
estimates of breeding values for economically 
important traits (Schenkel et al., 2009). These 
exchanges contribute not only to the increase of 
genetic progress, but also to greater genetic 
relatedness of animals across and within 
countries. This increased genetic connectedness 
leads to rising levels of inbreeding within a 
given population. 

Increased inbreeding can reduce genetic 
variation, which may limit the response to 
selection, lower the mean value of 
economically important traits, and promote the 
accumulation of deleterious recessive alleles. 
Ultimately, this can increase the frequency of 
genetic defects and result in substantial 
economic losses for producers. Therefore, 
monitoring relatedness and inbreeding levels 
within a population is important for sustainable 
genetic progress. One approach to monitoring 
genetic relatedness within a population is by 
estimating genetic relationship values between 
actively producing cows and currently available 
sires. Genetic relationship values measure the 
proportion of DNA an animal shares with a 
predefined reference population and can be 
estimated using either pedigree information (R-
values) or genomic data (GR-values). 

As pedigree and genotype information 
accumulates, genetic relationships among 
animals in a population can be more accurately 
estimated. These relationships depend on both 
the number of descendants an animal 
contributes to the active population and the 
number of ancestors that have many 
descendants in the active population. 
Consequently, genetic relationships are bound 

to change continuously as actively producing 
animals are culled or lost from the population. 
Increased availability and use of young 
genomic sires can reduce the heavy reliance on 
proven sires, which may subsequently lower the 
average relationship values for proven sires. An 
analogous way to capture this dynamic is 
through the expected future inbreeding (EFI), 
which is approximately half the average genetic 
relationship between a sire and a random 
sample of active cows. The objective of this 
study was to assess the current average genetic 
relationship trend between active foreign and 
domestic sires and currently active Canadian 
Holstein cows using both pedigree and genomic 
information. 
 
Materials and Methods 
 
Data 
Pedigree and genotype data were provided by 
Lactanet Canada (Guelph, ON, Canada) 
following the April 2024 evaluation release. In 
addition, herdbook records for active milk-
recorded cows and heifers were provided. The 
reference population used for analysis was 
defined as active cows with a recorded test date 
in April 2024, as well as heifers up to 30 months 
of age that were registered in the herdbook and 
had no recorded left-herd date. 

In total, there were 616,258 animals in the 
pedigree, which included all known ancestors 
for the genotyped animals traced back 20 
generations. The pedigree completeness index 
(PCI) for all animals in the pedigree was 
estimated going back five generations and only 
animals with a PCI greater than or equal to 90% 
were retained for further analyses.     

Genotype data were available for a total of 
146,698 animals linked to the pedigree. Of 
these, 8,504 were bulls with birth year between 
2000 to 2023 and 138,194 were active cows or 
heifers that had not been culled from the herd 
with birth year between 2010 to 2024. All 
animals had genotypes on the 50K SNP panel 
(Illumina Inc., San Diego, CA, USA).  Quality 
control was performed to retain autosomal SNP 
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with a call rate greater than 95%, a minor allele 
frequency (MAF) greater than 5%, and a 
difference between expected and observed 
heterozygosity less than 0.15 (Wiggans et al., 
2009). In addition, only genotyped animals with 
a five generation PCI greater than or equal to 
90% were included in the final dataset, resulting 
in 8,491 bulls and 131,139 active cows and 
heifers retained for further analyses. 
 
Statistical analyses 
Genetic relationship values between each 
animal and the reference group were estimated 
in accordance with the method developed by 
Van Doormaal et al. (2003). This was then 
modified to incorporate genomic information 
for estimation of GR-values. The first step was 
iterative estimation of progeny gene 
contribution of each animal to the reference 
population for the sire and dam separately. 
 

𝐶𝐶𝑠𝑠𝑠𝑠 = � 1/2𝐶𝐶𝑖𝑖

𝑚𝑚

𝑖𝑖=1

;   𝐶𝐶𝑑𝑑𝑑𝑑 = � 1/2𝐶𝐶𝑖𝑖

𝑚𝑚

𝑖𝑖=1

              (1)  

 
where Csi and Cdi are the ith individual progeny 
gene contribution to their sire and dam, 
respectively, Ci is the contribution of the ith 
individual with an initial starting value of 1 for 
all active animals and 0 for all other animals, 
and m is the number of animals in the pedigree. 

 
 

 
 
 
 
 
where Ri is the total value of the ith individual 
that reflect the genetic relationship to the 
reference group, and Si and Di are the sire and 
dam of the ith individual, respectively, and when 
0 it indicates unknown parent. The R-value is 
then defined as: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 =
𝑅𝑅𝑖𝑖
𝑛𝑛

                                                          (3) 

 

where Rvali is the percentage genetic 
relationship value of the ith individual and n is 
the total number of animals in the reference 
group. 

For the genomic relationship values, 
equation (1) was modified to use the realized 
marker-by-marker similarity between progeny 
and parent, instead of assuming the expected 
value of 0.5 used for pedigree. In this case, 
actual SNP genotypes were used to estimate the 
proportion of identical-by-state (IBS) alleles 
shared between parent and offspring. 
 
Results & Discussion 
 
The distribution of genotyped active cows and 
heifers is presented in Table 1. Notably, 45.7% 
of the reference population represents heifers 
that have not calved. Including heifers in the 
reference group is essential to represent the 
expected future breeding population of active 
females. Furthermore, approximately 7% of 
cows were seven years of age or older, 
suggesting that older animals tend to leave or 
are culled from the herd. This dynamic turnover 
contributes to ongoing changes in the genetic 
relationship values estimated within the 
population.  

Among genotyped bulls, those under the age 
of four accounted for 30.7% of the total 
genotyped bulls (Figure 1). This attests to the 
impact of genomic selection, which allows for 
early selection of bulls rather than the expected 
five years for progeny proven time (Schaeffer, 
2006). This could contribute to diversification 
of the pool of available bulls and influence the 
estimated genetic relationship values within the 
population.  
 
 
 
 
 
 
 
 

 𝑅𝑅𝑖𝑖 = �

𝐶𝐶𝑖𝑖                                                 𝑖𝑖𝑖𝑖 𝑆𝑆𝑖𝑖 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷𝑖𝑖 = 0
0.75𝐶𝐶𝑖𝑖 + 0.5𝐶𝐶𝑠𝑠𝑠𝑠                       𝑖𝑖𝑖𝑖 𝑆𝑆𝑖𝑖 ≠ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷𝑖𝑖 = 0
0.75𝐶𝐶𝑖𝑖 + 0.5𝐶𝐶𝑑𝑑𝑑𝑑                      𝑖𝑖𝑖𝑖 𝑆𝑆𝑖𝑖 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷𝑖𝑖 ≠ 0
0.75𝐶𝐶𝑖𝑖 + 0.5𝐶𝐶𝑠𝑠𝑠𝑠 + 0.5𝐶𝐶𝑑𝑑𝑑𝑑     𝑖𝑖𝑖𝑖 𝑆𝑆𝑖𝑖 ≠ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷𝑖𝑖 = 0

  (2) 
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Table 1: Age distribution of the reference group as 
of April 2024. 

Age (year) Number of 
active cows and 
heifers 

Percentage of 
total 

<1 3,394 2.6% 
1 28,073 21.4% 
2 28,499 21.7% 
3 23,775 18.1% 
4 18,264 13.9% 
5 12,620 9.6% 
6 7,947 6.1% 
7 4,155 3.2% 
8 2,169 1.7% 
9 1,214 0.9% 
10 527 0.4% 
>10 502 0.4% 

  The average annual genetic relationship per 
year (Figure 2) trend showed a steady increase 
over time, mirroring the pattern observed in the 
estimated increase in pedigree inbreeding 
reported by Van Doormaal (2024). Although, 
genomic relationship values were 
approximately 1.5 times higher than the 
pedigree relationship values, both increased in 
parallel from 1990 to 2024. Specifically, R-
values increased from 14.6% in 2010 to 21.4% 
in 2024, while GR-values rose from 20.7% to 
31.3% over the same period (Table 2).  

 
 
Figure 1. Distribution of the number of genotyped 
sires across birth year from 2000 to 2023. 
 
 

Increase in both genomic and pedigree 
relationships suggest a concurrent increase in 
inbreeding levels within the population over 
time. Based on the estimated genetic 
relationships, the expected pedigree future 
inbreeding (EFI) and genomic future inbreeding 
(GFI) was estimated as half the R-values and 
GR-values, respectively. The EFI increased 
from 7.0% in 2010 to 10.6% in 2024, while GFI 
increased from 9.9% to 15.5%. These estimates 
aligned with the estimated pedigree inbreeding 
coefficients for the corresponding period and 
ranged from 6.6% to 11.1%. 

  

 
 
Figure 2. Annual average genetic relationship values 
per year based on pedigree and genomic information 
from 1990 to 2024. Blue line with triangles and red 
line with circles are pedigree and genomic 
relationship values, respectively.  

 
Additionally, the observed correlations for 

pedigree inbreeding coefficients (Fped) with R-
values and GR-values were moderately high at 
0.77 and 0.76, respectively (Table 3). These 
findings suggest that genetic relationship 
measures can serve as a sufficient proxy of 
inbreeding levels and can be effectively used to 
inform mating strategies and selection decisions 
with the consideration of reducing inbreeding 
within the population. 
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Table 2: Average pedigree and genomic 
relationship values, pedigree and genomic future 
inbreeding estimated from relationship values and 
inbreeding coefficients across birth year from 2010 
to 2024. 

Birth 
Year 

R-value 
(%) 

GR-
value 
(%) 

EFI 
(%) 

GFI 
(%) 

Fped 
(%) 

2010 14.6 20.7 7.0 9.9 6.6 
2011 15.2 21.4 7.3 10.3 6.8 
2012 15.6 22.1 7.6 10.7 7.1 
2013 16.3 23.1 7.8 11.0 7.4 
2014 16.7 23.8 8.1 11.6 7.5 
2015 17.7 25.4 8.4 11.9 7.8 
2016 18.2 26.2 8.9 12.7 8.1 
2017 18.9 27.3 9.1 13.1 8.6 
2018 19.3 28.0 9.5 13.7 8.8 
2019 19.8 28.8 9.7 14.0 9.3 
2020 20.3 29.6 9.9 14.4 9.7 
2021 20.6 30.0 10.1 14.8 10.1 
2022 21.0 30.6 10.3 15.0 10.4 
2023 21.2 30.9 10.5 15.3 10.8 
2024 21.4 31.3 10.6 15.5 11.1 

 
This analysis identified the degree of 

relationship between each countries’ bulls and 
the active Canadian cows and heifers. Results 
showed that bulls registered to the United 
States, Belgium, and the Netherlands had the 
highest average genetic relationship with the 
Canadian reference population, with R-values 
of 20.8%, 20.7%, and 20.2% and corresponding 
GR-values of 30.4%, 30.1%, and 29.3%, 
respectively (Table 4). 

 
Table 3: Correlation coefficients between pedigree 
and genomic relationship values and pedigree 
inbreeding.  

 R-value GR-value Fped 
R-value 1   
GR-value 0.99 1  
Fped 0.77 0.76 1 

 
These findings indicate frequent exchange 

of genetic materials between these countries 
and Canada. In contrast, two decades ago, bulls 
from Spain (11.4%), Japan (9.4%), and Italy 
(9.4%) had the highest R-values with active 
Canadian cows in 2004, which may indicate a 
shift in bull selection (Van Doormaal et al., 
2005). Moreover, in 2004, the average 
Canadian bull R-values with active Canadian 
cows was estimated to be 11.7% and currently 

in 2024 it has increased to 19.4%, indicating an 
increase in genetic relatedness and, by 
extension, inbreeding. Additionally, a wider 
range of R-values (4.2% to 11.4.%) was 
observed between international bulls and active 
Canadian cows in 2004, which had substantially 
narrowed by 2024 (17.1% to 20.8%). This 
pattern indicates that the Holstein breed across 
countries has become increasingly similar over 
time, which is likely due to the frequent 
international exchange of genomic material and 
the widespread adoption of genomic selection.  
 
Table 4: Properties of countries with genotype bulls 
that are connected with the active Canadian cows 
and heifers. 

Country Number 
of Bulls 

Number 
of 
Daughters 

R-
value 
(%) 

GR-
value 
(%) 

EFI 
(%) 

GFI 
(%) 

CAN 3,022 50,107 19.4 28.1 9.7 14.0 
AUS 14 902 19.1 27.3 9.6 13.7 
BEL 10 8 20.7 30.1 10.3 15.1 
CHE 50 361 20.0 29.1 10.0 14.6 
CZE 10 0 17.1 24.3 8.5 12.2 
DEU 121 461 19.6 28.4 9.8 14.2 
DNK 21 57 17.5 25.3 8.8 12.6 
ESP 5 50 19.4 28.0 9.7 14.0 
FRA 82 108 19.1 27.7 9.6 13.9 
GBR 49 415 19.4 27.9 9.7 13.9 
HUN 19 3 17.4 24.9 8.7 12.4 
ITA 111 571 19.0 27.5 9.5 13.7 
NLD 225 3,944 20.2 29.3 10.1 14.7 
USA 4,745 57,120 20.8 30.4 10.4 15.2 

 
The average genetic relationship values 

varied across bulls, ranging from approximately 
10% to 25% for R-values and 14% to 36% for 
GR-values (Figure 3). This variation highlights 
the opportunity for strategic selection of bulls 
that are less related to the reference population 
to manage and minimize inbreeding levels. 
Additionally, AI companies can support this 
effort by diversifying bull selection pools and 
offering sires that are less genetically related to 
specific herds or producers. Figure 4 presents 
the genetic relationship values of the top 100 
lifetime performance index (LPI) bulls, with R-
values ranging from 19% to 25% and GR-
values from 28% to 36%, reflecting a 
considerable genetic contribution to the 
population. This is expected because bulls with 
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high LPI tend to have more daughters and 
shared ancestry, which ultimately increases 
their genetic relationship with the active cow 
and heifer population. 
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Figure 3. Distribution of relationship values of genotyped bulls with the active cows and heifers in the Canadian 
Holstein population using pedigree and genomic information. 

Figure 4. Distribution of relationship values for the top 100 LPI bulls in April 2024 with the active cows and 
heifers in the Canadian Holstein population using pedigree and genomic information. 
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Conclusions 
 
Genetic relationships within Canadian 
Holsteins have steadily increased over time, 
corresponding with the observed rise in 
inbreeding levels. Additionally, genetic 
relationships between international bulls and 
active Canadian cows and heifers have 
increased, with differences between countries 
narrowed. The United States remains the major 
contributor of bulls to the active Canadian 
population. Among available bulls, variation 
exists in the genetic relationships with the active 
cows and heifers. This variation affords the 
opportunity to select less related bulls that could 
help manage and minimize inbreeding at the 
population level without trading-off the desired 
genetic gain. Finally, preventing the continued 
rise in inbreeding will require collaborative 
efforts from academia, AI companies, and 
producers. 
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Abstract  
 
The genetic evaluation of Brown Swiss cattle has undergone a significant methodological 
improvement with the introduction of a new algorithm designed to enhance the accuracy and stability 
of genetic indices for productive traits. This innovation addresses issues observed in previous models, 
particularly the significant variability in early evaluations of genomic bulls. The updated model 
incorporates a classification system for herds based on productivity differences between primiparous 
and multiparous cows, ensuring more precise genetic assessments. The new approach has resulted in 
greater stability in genetic indices and reduced the impact of initial data distribution biases. This 
advancement strengthens the reliability of genetic evaluations, supporting breeders in achieving their 
productivity goals. 
 
Key words: Brown Swiss, Test days, Stability, primiparous, production traits, genomic  

Introduction 
  
Genetic evaluations in Italian Brown Swiss 
have been based on a test-day repeatability 
model since the early 2000s. This system was 
designed to support evaluations in a diverse 
environment with many small and mountain 
herds (Dal Zotto 2000). Genomic selection was 
introduced in 2011 (Rossoni 2009), and since 
2019, the single-step genomic evaluation based 
on deregressed EBVs has been adopted 
(Vicario 2016).  

However, over time, several issues related 
to index instability have emerged, particularly 
for widely used young genomic bulls. This 
instability undermines breeder confidence and 
complicates selection decisions. 

This study investigates potential sources of 
instability and proposes a revised model 
incorporating a herd-level classification to 
better account for structural differences in herd 
productivity.  
 
 

Materials and Methods  
 
Data from routine national evaluations were 
analyzed to identify patterns and potential 
biases affecting the stability of early genetic 
indices.  

We investigated several potential sources of 
instability, including: 

– A high proportion of short lactations 
– Predominantly first-parity records 
– Cows calving at very young ages 
However, none of these factors were found 

to be the actual source of the observed 
instability. In addition, we considered the non-
random distribution of daughters across herds 
with varying management levels as a possible 
source of bias. As a first step, we tested 
whether heterogeneity of variance across herds 
could be responsible for the observed 
instability. However, this hypothesis was ruled 
out, as the observed pattern was exactly the 
opposite of what would be expected under 
variance heterogeneity. Typically, such 
heterogeneity leads to an overestimation of 
bulls whose daughters are mostly in high-
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producing herds. In contrast, in our case, bulls 
with daughters in high-producing herds 
appeared underestimated. 

This led us to focus more closely on the 
average production difference between first- 
and later-parity cows within herds, which 
could interact with the distribution of 
daughters and contribute to the observed 
instability. To address these, a new herd-level 
classification was introduced based on the 
average milk yield gap between primiparous 
and multiparous cows in the previous three 
years period. Three levels were defined: 

- High: Top 25% herds with the largest 
production differences 

- Medium: Middle 50% of herds 
- Low: Bottom 25% with smallest 

differences 
This level was included in interaction with 

year, lactation number, age at calving, days in 
milk, and pregnancy status in the linear model: 

y = htd + Ye × L × nlat × age × dim × prg + 
pe + a + e 

Where: 
htd = herd test day 
Ye = quinquennium of production 
L = herd level based on production gap 
nlat = number of lactations 
age = age of calving 
dim = days in milk 
prg = days of pregnancy 
pe =permanent environmental 
a = additive effect 
e = error.  
As shown in Figure 1, the thresholds used 

to classify herds into Low, Medium, and High 
groups remained relatively stable until around 
2010. After that point, particularly for the 
upper threshold separating Medium and High 
herds, a marked upward trend can be observed. 
This indicates an increasing divergence over 
time, with High-level herds showing a 
progressively larger milk yield gap between 
primiparous and multiparous cows compared 
to the others. 
 
 

 
Figure 1. Herd average milk yield gap (kg) between 
primiparous and multiparous cows across herds 
classified Low (below the dashed line), Medium 
(between the dashed and solid lines) and High 
(above the solid line) 

 
Results & Discussion 
 
The updated model improved the stability of 
EBVs by reducing the influence of biased early 
data distributions. As shown in Figure 2, 
correlations between subsequent evaluations 
increased, and the advantage of the new model 
becomes more evident as the time interval 
between evaluations grows, reaching a 
difference of up to 0.03 when comparing 
evaluations four years apart. 
 

 
Figure 2. Correlations between estimated breeding 
values (EBVs) for sires across consecutive years, 
comparing the new model (white bars with diagonal 
hatching) and the previous model (solid black bars). 

 
The updated model shows its greatest 

advantages in improving the stability of 
genetic evaluations for young bulls. As 
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illustrated in Figure 4, which highlights the 
bulls with the largest changes in EBV between 
their first publication and the most recent one, 
the new model consistently produces smaller 
variations compared to the previous approach. 
 

 
Figure 4. Difference between the first daughter-
based evaluation and the most recent available 
evaluation for the 10 sires with the largest changes. 
Solid bars refer to the previous model, while white 
bars indicate the new model. 

 
This increased stability is largely due to the 

model’s improved handling of non-random 
herd distribution, a common issue when 
genomic bulls are initially used intensively in 
high-performing herds. By classifying herds 
according to the productivity gap between 
primiparous and multiparous cows, the new 
model incorporates both management level and 
its interaction with parity, thereby reducing 

bias and enhancing the reliability of early 
predictions. 
 
Conclusions 
 
Incorporating farm classification based on 
production differences between primiparous 
and multiparous cows into the genetic 
evaluation model substantially improves the 
reliability of early evaluations in the Italian 
Brown Swiss breed. This helps breeders make 
more confident decisions when selecting 
genomic bulls and enhances the credibility of 
the national genetic evaluation system. 
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Abstract 
 
The Council on Dairy Cattle Breeding provides four female fertility evaluations for U.S. dairy 
producers: daughter pregnancy rate (DPR), cow conception rate (CCR), heifer conception rate 
(HCR), and early first calving (EFC). These evaluations were first introduced in 2004 for DPR, 2009 
for CCR and HCR, and 2019 for EFC. Currently, these traits are expressed on six different breed 
bases: Ayrshire, Brown Swiss, Guernsey, Holstein, Jersey, and Milking Shorthorn. Over time, the data 
and methods used to calculate these traits have evolved in response to changes in availability, 
recording practices, and management systems. In recent tri-annual evaluations, unexpected season 
fluctuations have been observed in the Sire Estimated Breeding Values (EBV) of recently born bulls. 
The objective of this project was to identify the cause of these fluctuations and implement changes to 
improve stability across evaluations. In collaboration with the USDA Animal Genomics and 
Improvement Laboratory, this project also involves the research and development of a potential new 
trait to be added to the fertility evaluation, First Service to Conception (FSC), and re-estimation of 
genetic parameters for all five traits. Comprehensive tests were conducted to refine models, pre-
adjustments, and data edits, including the use of both truncated and full datasets. Although data 
truncation showed promise in mitigating historical biases, it introduced higher variability in smaller 
breeds (Guernsey and Ayrshire). Additional tested changes included stricter calving year restrictions, 
improved data extraction procedures, updated CCR and HCR pre-adjustments, the inclusion of a days-
in-milk covariate at first insemination for CCR and FSC, and the addition of a random herd-by-sire 
effect. Tests also examined whether modeling days open to pregnancy rate as a linear or non-linear 
trait, modeling traits as uncorrelated, performing unweighted analyses, or stricter convergence criteria 
of the traditional evaluation mixed model equations solver were appropriate. While the findings 
suggest that current methodologies provide a robust foundation, ongoing work is required to address 
the persistent slight negative trends reported in young bulls, where the underlying causes remain 
unclear. The project team is well-positioned to further enhance the stability of female fertility trait 
evaluations for U.S. dairy producers. 
 
Key words: conception rate, pregnancy rate, predicted transmitting ability, breeding value 
fluctuations, trait stability  

Introduction 
  
Female fertility traits play an important role in 
dairy cattle breeding by offering insight into 
the reproductive performance of animals 
across diverse management systems. In the 
United States (U.S.), Daughter Pregnancy Rate 

(DPR) was introduced in 2004 (VanRaden et 
al., 2004; Van Raden et al., 2002), Cow 
Conception Rate (CCR) and Heifer 
Conception Rate (HCR) in 2009, and Early 
First Calving (EFC) in 2019, providing 
producers with tools to select for female 
reproductive performance (CDCB, 2025a; 
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Miles et al., 2023). DPR is calculated by a 
non-linear transformation of days open to 
pregnancy rate. The trait predicts the 
percentage of non-pregnant cows that will 
become pregnant during each 21-day period 
(VanRaden et al., 2004). CCR and HCR 
predict the ability to conceive at each 
insemination for lactating cows and maiden 
heifers, respectively. EFC predicts the animal’s 
ability to alter their female offsprings age at 
first calving in days. All traits are scaled to 
their breed base of six breeds: Ayrshire (AY), 
Brown Swiss (BS), Guernsey (GU), Holstein 
(HO), Jersey (JE), and Milking Shorthorn 
(MS). Traits are often re-evaluated for 
continued improvement as management 
changes or more data becomes available 
(Hutchison et al., 2013; Miles et al., 2023; 
Wiggans et al., 2005). 

In recent years, subtle but consistent 
seasonal patterns have been observed in 
fertility evaluations, especially in spring 
(April) tri-annual evaluations. The dairy 
industry raised concern after noticing that the 
estimated breeding values (EBV) of individual 
young bulls, particularly for DPR, were 
gradually, but consistently declining from 
evaluation to evaluation as these bulls 
accumulated more information. This is 
unexpected because some bulls should change 
upwards and some downwards. These trends 
prompted a deeper look into whether the 
current evaluation system reflected modern 
management practices and phenotypic data 
accurately, or whether aspects of the modeling 
might be contributing to these shifts. 

To investigate, the Council on Dairy Cattle 
Breeding (CDCB), in collaboration with the 
United States Department of Agriculture 
Animal Genomics and Improvement 
Laboratory (USDA AGIL), launched a 
focused review in early 2024. The objective 
was not to overhaul the fertility evaluation 
system, but to understand the source of these 
trends, test updates to improve consistency, 
and determine whether any adjustments were 
needed.  

This paper outlines the investigative 
process, highlighting data handling 
improvements, model refinements, and 
ongoing questions that emerged over the 
course of this project.  

 
Materials and Methods 
 
Data: 
Phenotypic records are routinely extracted 
from the National Cooperators Database 
managed by the CDCB every tri-annual 
evaluation (OFFICIAL; CDCB, 2025b). In 
order to make a direct comparison against four 
OFFICIAL that have already been conducted, 
the test-runs utilize the database from 
December 2023 (2312), April 2024 (2404), 
August 2024 (2408) and December 2024 
(2412) to extract new phenotype files. As of 
the most recent extraction, 2412, phenotypes 
were available for 94,528,060 DPR, 
39,599,925 CCR, 13,311,667 HCR, and 
37,300,141 EFC records. Heifer records, HCR 
and EFC, only have one record per animal 
whereas DPR and CCR can have up to 5 
records per animal, one per lactation. 
Lactational CCR and HCR are aggregated 
values from events, usually inseminations or 
diagnostics, that happened within the lactation. 
The earliest available calving dates were 
January 1960 for DPR and EFC, December 
2002 for CCR and October 2003 for HCR. 
Insemination dates required for CCR and HCR 
calculations were not collected nationally until 
2003 (VanRaden et al., 2004). 
 
Modeling:    
For each test, traditional evaluations were 
generated by the fertility pipeline which 
includes data extraction, phenotype creation, 
pre-adjustments, and mixed model analysis. 
Animal effects were calculated using a 
pedigree-based BLUP with a multiple-trait, 
animal model. DPR, CCR, and HCR were 
developed using single-trait models, but were 
developed into a multi-trait model in 2015 
(VanRaden et al., 2014). DPR, CCR, and HCR 
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are treated as correlated traits (Kuhn et al., 
2006; VanRaden et al., 2014), while EFC is 
treated as uncorrelated. These tests followed 
the same steps as the traditional evaluation 
conducted during the OFFICIAL.  
 
Test Scenarios: 
Two sets of scenarios were developed for 
testing. The first included changes applied to 
the full datasets (CHG), and the second used 
the same changes, but truncated the historical 
DPR and EFC records to December 2002 
(CHG_TR). This allowed the same period of 
data to be used across all four traits. Both test 
scenarios were compared to traditional results 
from OFFICIAL.  
 
Changes Applied to Tests: 
Several changes were applied in both CHG and 
CHG_TR. A stricter calving date restriction 
was implemented so that only records with at 
least 365 days between calving and data 
extraction were included compared to the 
current edit of ≥70 days described by 
Hutchison et al., 2013. If calving dates or days 
open information were missing, those records 
were removed from DPR rather than estimated. 
Extraction programs were revised for 
efficiency and formatting. Pre-adjustments 
applied to individual inseminations were 
updated for both CCR and HCR and were 
estimated within each evaluation instead of 
fixed across evaluations. A DPR record was 
removed if the cow’s sire was unknown, 
aligning it with existing edits for CCR, HCR, 
and EFC. A new covariable, days-in-milk at 
first insemination, was added to the CCR 
model. Additionally, the convergence criteria 
for the mixed model equations solver 
(described in VanRaden et al., 2014) were also 
made stricter. 

A proposed additional trait, days from First 
Service to Conception (FSC), developed by 
USDA AGIL, was included in the tests 
evaluation pipeline and modeled alongside the 
other four traits. Updated variance components 
were estimated for all traits by USDA AGIL 

and University of Connecticut collaborators as 
part of this work. However, results related to 
FSC and the re-estimated variance components 
are not presented here and will be reported 
separately. 

Additional changes were explored but were 
excluded from further testing due to limited 
benefits or failure to converge. These included 
modeling DPR as a linear function of days 
open, using unweighted analyses, treating all 
five traits as correlated, and including a 
random herd-by-sire effect. 
 
Results 
 
Impact of Data Edits: 
Applying a stricter calving date restriction 
removed 2–4% of records from recent years 
across traits. Removing records with missing 
days open or calving dates for DPR had a 
minimal effect on overall record count but was 
important for ensuring consistency in how 
phenotypes were calculated. Removal of 
records with unknown sires reduced record 
counts primarily in earlier years and among 
smaller breeds, with little effect in Holstein 
data. 

Pre-adjustment updates for CCR and HCR 
led to moderate shifts in phenotype 
distributions, especially in the most recent 
years, where older adjustment factors may no 
longer have reflected regional and seasonal 
differences in management. The inclusion of 
days-in-milk at first insemination as a 
covariate also influenced the distribution of 
CCR values, likely among high-producing 
herds where voluntary waiting periods may be 
longer. Research on voluntary waiting periods 
by herd and years is in-progress.  
 
Phenotypic Trends: 
Phenotypic trends by year of calving were 
broadly consistent across OFF, CHG, and 
CHG_TR. For most traits, the use of truncated 
data slightly reduced phenotypic variability in 
early years but had limited impact in recent 
years. Among smaller breeds (Guernsey and 
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Ayrshire), the truncation of pre-2002 data for 
DPR and EFC led to a more noticeable 
reduction in available records and 
corresponding shifts in average values. 
 The updated edits resulted in smoother 
trends in recent years, especially for DPR and 
raw CCR (cow conception rate without pre-
adjustments applied). Raw CCR or raw HCR 
values were easier to interpret and more 
transparent in terms of seasonal or year-based 
shifts. However, these trends without pre-
adjustments on individual inseminations also 
showed greater variability, especially in recent 
years when data volume is lower. The 
application of updated pre-adjustments within 
each evaluation test helped reduce this 
instability and produced smoother trends over 
time. 
 

 

EBV Trends: 
The EBV of young cows with phenotypes were 
averaged by birth year and segmented by their 
sire’s breed. Figure 1 has 9 graphs of 
OFFICIAL (top), CHG (middle), CHG_TR 
(bottom) and 2312 vs. 2404 (left), 2404 vs. 
2408 (center), and 2408 vs. 2412 (right) for 
Holstein DPR by year of birth.  
 Across all test scenarios, the applied 
changes did not substantially alter the 
consistency of these breed-level averages. The 
seasonal fluctuations originally observed in 
these figures, especially in April evaluations, 
remained present to some extent but were not 
worsened by the new edits or data truncation. 
 
 
 
 

 

Figure 1.  Mean daughter pregnancy rate (DPR) estimated breeding value (EBV) of young cows with 
Holstein sire official tri-annual evaluations (OFFICIAL; top), full data set with changes applied (CHG; 
middle), and truncated dataset with changes applied (CHG_TR; bottom) for multiple evaluations: 
December 2023 (2312), April 2024 (2404), August 2024 (2404) and December 2024 (2412). 
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Sire EBV Trends: 
Although not shown in this report, future work 
will focus more directly on trends in the EBV 
of male animals. The industry concern 
prompting this investigation was centered on 
recent declines in DPR among young bulls. 
The exploratory analyses presented here did 
not fully resolve that concern but laid the 
groundwork for evaluating where those trends 
originate whether from the data, model 
assumptions, or something else. 
 
Discussion 
 
The goal of this review was to understand 
whether changes to the data pipeline or model 
structure could explain the seasonal variation 
observed in EBV for female fertility traits. 
While the test scenarios introduced several 
improvements, the comparisons among OFF, 
CHG, and CHG_TR suggest that the core 
evaluation system is already relatively robust, 
and that no single edit tested fully accounts for 
the observed patterns. 

Across most traits and breeds, the CHG 
scenario which applied updated edits and 
model refinements without removing historical 
data showed the greatest internal consistency. 
Phenotypic trends were smoother, and changes 
to the pre-adjustments and model covariates 
helped reduce irregularities in CCR and DPR 
that often appear in more recent years. The  
edits removed relatively few records overall 
but targeted potentially less reliable data such 
as data including missing calving dates or 
undefined sires. 

The CHG_TR scenario, in contrast, 
introduced greater variability, particularly in 
the smaller breeds. Truncating DPR and EFC 
records prior to 2002 ensured a uniform time 
range across traits, but the loss of early data 
reduced the sample size enough to destabilize 
trends for breeds like Guernsey and Ayrshire. 
For Holstein and Jersey, the impact of 
truncation was smaller, though not negligible. 
These results suggest that while historical data 
may introduce bias, it also contributes 

information for estimating trends, especially in 
populations with less data.  

None of the edits tested in CHG nor 
CHG_TR substantially changed the EBV 
trends which reflect mean EBV of daughters 
grouped by their sire’s breed. While these 
figures have been useful for monitoring 
population-level trends, they are not a 
substitute for direct evaluation of individual 
young male animals. The continued presence 
of seasonal fluctuations in these plots, even 
after updates, indicates that the source of 
variation may lie elsewhere. 

The investigation also highlighted a 
recurring challenge in fertility evaluations: 
edits and model refinements often improve 
internal consistency but do not necessarily 
resolve the deeper patterns observed in young 
animal EBV. The inclusion of more refined 
covariates, like days-in-milk at first 
insemination, potentially helped account for 
some management-driven variability in CCR, 
but did not have an effect large enough to shift 
overall trends. Similarly, pre-adjustments 
estimated within each evaluation for CCR and 
HCR produced more stable results, but did not 
fully explain the seasonal fluctuations of 
interest. 

The updates applied in CHG improved the 
evaluation pipeline and represent meaningful 
refinements. However, they did not resolve the 
underlying concern of declining EBV with 
consecutive evaluations in recently born bulls. 
Truncation (CHG_TR) introduced more 
variability than it removed and may be better 
suited for targeted applications rather than as a 
universal solution. 
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Conclusions 
 
This project reviewed and tested a range of 
updates to the U.S. female fertility evaluation 
pipeline, with the goal of improving stability 
and addressing concerns about seasonal trends 
in the EBV of recently born bulls. While these 
trends remain an interest, the changes tested 
here did not appear to be the direct cause. 

Edits implemented in the CHG scenario 
including stricter calving date filters, updated 
pre-adjustments, and improved handling of 
incomplete records contributed to smoother 
trends in phenotypes and improved consistency 
in recent years. These changes strengthened 
the overall foundation of the system and are 
candidates for future implementation. 
However, the comparison with CHG_TR 
showed that truncating historical data can 
introduce additional variability, especially for 
smaller breeds. This suggests that while older 
data may have some unanticipated effect, it 
continues to play a stabilizing role in multi-
trait fertility evaluations. 

Although the updates improved internal 
consistency and addressed specific 
improvement opportunities in the evaluation 
process, they did not resolve the seasonality of 
the trend observed in young bull EBV. Further 
work is needed to explore this issue more 
directly, particularly by evaluating how the 
actual EBV of male animals change across 
evaluations and whether changes in herd 
management, data recording practices, or 
model assumptions are contributing to the 
trend. 

The results presented here represent a step 
forward in refining female fertility trait 
evaluations, but additional investigation is 
needed to fully understand and resolve the 
ongoing patterns observed in young animals. 
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Abstract  
 
Small reference populations hinder prediction accuracy in minor breeds, thereby limiting genetic 
progress. In response, the World Ayrshire Federation (WAF) initiated an international collaboration 
through the Interbull Centre (IBC) to enhance genomic evaluations for Ayrshire-based populations 
across countries. This initiative is primarily to ensure breed sustainability by addressing the challenge 
of limited reference population sizes in individual countries, which affects the reliability of national 
genomic evaluations. The aim of this study is to adapt IBC’s Multiple Across-Country Evaluation 
(MACE) to include female estimated breeding values (EBVs) alongside male data while leveraging the 
Interbull Data Exchange Area (IDEA) and GenoEx-GDE platforms for data management.  
The participating countries initially include Australia, Canada, Colombia, the United Kingdom, New 
Zealand, South Africa, and the United States. A total of 22,383 genotyped Ayrshire animals (4,403 
males and 18,880 females) have been identified, with Canada contributing 46% of the genotypes. 
Adding cow data is envisioned to accelerate reference population growth, boost genotyping returns and 
improve the reliability of both national and international genetic and genomic evaluations over time. 
The first phase of implementation involves integrating cow EBVs into MACE while sharing genotypes 
among participating countries using the GenoEx-GDE platform. The second phase envisions extending 
these evaluations through InterGenomics for interested countries and those that cannot perform their 
own national genomic evaluations. This collaboration paves the way to faster growth of reference 
population sizes and improves genetic and genomic prediction accuracy for not only Ayrshire 
sustainability, but also the opportunity exists for other small breed populations like Guernsey, among 
others. 
 
Key words: Ayrshire, genomic evaluation, MACE, small populations, international evaluation 

Introduction  
 
As genotyping costs continue to drop, the 
number of genotyped animals worldwide is on 
the rise. This creates an opportunity to 
significantly accelerate genetic gain through 
genomic evaluations on both national and 
international levels. However, the reliability of 
genomic predictions depends heavily on the 
size of the reference population, which links 

genotypic and phenotypic information. For 
numerically small dairy breeds such as 
Ayrshire, Guernsey, and others, a limited 
national reference population remains a 
persistent challenge that restricts the potential 
gains from genomic selection (Mäntysaari et al., 
2010; Wiggans et al., 2011). 

Traditionally, international genetic 
evaluations for dairy breeds have relied on the 
MACE system implemented by the IBC, which 
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integrates bull evaluations from national 
genetic evaluation centres (Schaeffer, 1994). 
However, MACE has typically excluded cow 
EBVs, omitting valuable data that could 
enhance prediction accuracy. With IBC’s data 
sharing platforms, such as the Interbull Data 
Exchange Area (IDEA) and GenoEx-GDE, it is 
feasible to exchange raw genotype data and 
expand genomic reference sets across countries 
under agreed-upon terms. 

In this context, the WAF, in partnership with 
the IBC, initiated a collaborative project to 
investigate the possibility of including cow data 
into MACE. We hypothesise that incorporating 
female EBVs into the MACE system while 
leveraging the IDEA and GenoEx-GDE 
infrastructures will enable broader, more 
reliable international evaluations. This work 
holds potential not only for Ayrshire 
sustainability but also as a model for other 
numerically small or geographically dispersed 
dairy breeds. This paper outlines the proposed 
approaches and data management strategies for 
an international Ayrshire-based genetic 
evaluation that includes female EBVs, building 
on existing IBC services such as MACE and 
thus the future possibility of InterGenomics. 

 
Materials and Methods  
 
The first step of the project involves the 
modification of the existing MACE pipeline to 
incorporate female EBV records. This involves 
evaluating the accuracy of current de-regression 
methods for female data and ensuring no 
information overlaps between bulls and cows. 
Contributing organisations will supply female 
EBVs and pedigree data, alongside bull EBVs, 
while the Interbull Centre will conduct the 
necessary research to adapt, test, and validate 
the MACE pipeline and its outcomes. 
 
Data Collection and Management 
Data for the proposed research will include 
pedigree, genotypes, and EBVs (for both cows 
and bulls), managed through the IDEA and 
GenoEx-GDE platforms. Pedigree data utilises 

the Interbull International ID format, ensuring 
consistency across countries. Genotypes will be 
stored in GenoEx-GDE, with organisations 
controlling data-sharing permissions. Cow 
EBV and pedigree data uploaded to IDEA will 
undergo quality checks and verification of data 
integrity, together with bull data, before being 
included. 

In 2023, participating countries shared 
genotype counts with CDCB, revealing a total 
of 22,383 genotypes for Ayrshire animals, with 
Canada contributing 46% of the total (Table 1). 
These data form the basis for evaluating 
reference population sizes and potential 
genomic evaluation improvements when 
females are added. 
 

Table 1: Number of Ayrshire genotypes by sex 
and participating country 
Country  Female Male Total 
Canada 8,670 1,806 10,476 
United States 3,107 1,973 4,180 
South Africa 2,761 19 2,780 
New Zealand 2,105 41 2,146 
United Kingdom 1,175 468 1,643 
Australia 1,062 96 1,158 
Columbia  N/A N/A N/A 
Total 18,880 4,403 22,383 

Source: Brian Van Doormaal, 2024 
 
MACE with Female EBVs 
MACE, a multi-trait evaluation treating each 
country-trait combination as a separate trait, 
uses de-regressed proofs from national 
evaluations. Including female EBVs requires 
modifications to account for heterogeneous 
variance and potential double-counting of 
information. Proposed changes include 
adjusting data verification and checking 
programs in IDEA and establishing the 
threshold criteria for cow data inclusion (e.g., 
minimum number of daughters, herds, and 
status). Preliminary estimates of descriptive 
statistics from the data are expected to follow. 
Additionally, the research phase of the project 
will involve the investigation of the technical 
aspects below: 
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• The best method to deregress cow 
EBVs for MACE 

• Adjustments to the MACE model 
• Possible bias, double counting 
• Changes in reliability 
• Accurate conversion equations that 

include females 
  
InterGenomics 
After a successful MACE evaluation that 
includes cow data, international EBVs will be 
provided to the participating countries (Figure 

1). For those countries that cannot perform 
national genomic evaluations, and those 
interested in international genomic evaluations, 
they might then have an opportunity to 
participate in a new InterGenomics service from 
IBC. With InterGenomics, MACE EBVs are 
used as phenotypes, and together with GenoEx-
GDE genotypes, international genomic 
breeding values and their reliabilities can be 
estimated and provided to countries that request 
the service. It is also possible to obtain 
information on duplicate genotypes, SNP 
conflicts, and parentage conflicts. 

 

 
Figure 1. Proposed workflow showing the two implementation phases of including females in MACE project. 
 

Results and Discussion  
 
The international collaboration to enhance 
genomic evaluations for Ayrshire populations, 
as proposed by the participating countries 
involved in the World Ayrshire Federation 
(WAF), represents a significant step toward 
improving the reliability of genomic predictions 
for a breed with historically small reference 
populations in many countries. The initiative 
leverages the Interbull Centre’s infrastructure 
and expertise to integrate genotypic and 
phenotypic data from multiple countries, 
including Australia, Canada, Colombia, the 
United Kingdom, New Zealand, South Africa, 
and the United States. The preliminary data         

reveal a substantial pool of 22,383 Ayrshire 
genotypes currently available, with 84% being 
females, providing a robust foundation for 
expanding national genomic reference 
populations.  

This section discusses the potential benefits, 
challenges, and considerations of the proposed 
methodologies, adapting MACE to include 
female EBVs while addressing their 
implications for Ayrshire breed sustainability. 
 
Benefits of International Collaboration 
The primary advantage of this collaboration is 
the significant increase in reference population 
size, which directly enhances the accuracy of 
genomic predictions. National evaluations for 
Ayrshire populations often suffer from limited 
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reference populations, resulting in lower 
reliabilities for genomic estimated breeding 
values. By pooling genotypes from across 
countries, the reference population for bulls 
alone exceeds 2,900, a marked improvement 
over any single country’s capacity. This aligns 
with findings from Bonifazi et al. (2020), who 
demonstrated that increasing the number of 
genotyped animals in international evaluations 
improves across-country genetic correlation 
estimates, thereby enhancing prediction 
accuracy.  

For countries like Colombia and South 
Africa, where genomic evaluations are not yet 
established, this collaboration could enable the 
implementation of genomic selection, fostering 
breed sustainability. The inclusion of female 
EBVs in MACE further amplifies the reference 
population by incorporating cow data, which is 
particularly valuable given the high proportion 
of genotyped females, allowing faster genetic 
gains. Mäntysaari et al. (2011) showed that de-
regressed cow EBVs can be effectively used in 
national genomic evaluations, suggesting 
potential for international applications.  

The IDEA and GenoEx-GDE platforms 
facilitate secure permission-based data sharing, 
allowing countries to control access while 
benefiting from collective data (Figure 1). This 
infrastructure supports the standardisation of 
data formats and quality control, critical for 
ensuring evaluation consistency across diverse 
national systems (Nilforooshan and Jorjani, 
2022). 
 
Challenges in MACE with Female EBVs 
Adapting MACE to include female EBVs 
presents technical challenges, particularly the 
risk of double-counting information from cows 
and their sires. This issue arises because cow 
EBVs may partially reflect sire contributions 
already included in MACE, potentially biasing 
results. Thus, careful de-regression methods are 
needed to mitigate bias. The Interbull Centre 
has outlined steps to address this, including 
defining thresholds for cow data inclusion, such 
as minimum daughter numbers, the type of cow, 

among others. These modifications involve 
research to develop de-regression techniques 
and validate data integrity. Additionally, 
heterogeneous variance across countries must 
be addressed, as differences in national 
evaluation models could affect the 
standardisation of EBVs (Nilforooshan and 
Jorjani, 2022). 

Including cow data also necessitates updates 
to the IDEA database and verification 
programs, such as those in the 
CheckProofsPara.py and verify_proofs.F90 
programs to accommodate cow-specific metrics 
like genotyping status (codes “00” or “40” for 
non-genotyped or genotyped animals, 
respectively). These updates need to ensure that 
only valid female records are included and are 
subject to changes as the research goes on. 
While these changes are feasible, they require 
careful coordination with participating 
countries to establish consistent data 
submission protocols. 
 
Strategic Considerations 
Both methodologies require agreements on data 
sharing and result distribution, which involve 
political and legal considerations. The GenoEx-
GDE platform allows countries to control data 
access, but consensus on sharing female 
genotypes and EBVs is critical. The IBC’s 
experience with InterGenomics for Brown 
Swiss and small Holstein populations provides 
a model for establishing an Ayrshire-specific 
service, potentially managed by a Global 
Ayrshire Services Management Committee. 
This committee would facilitate ongoing 
discussions to address emerging opportunities 
and challenges, ensuring alignment with 
national priorities. 

The choice to participate in MACE or 
InterGenomics with cow data depends on 
computational resources, data availability, and 
country preferences. MACE is less 
computationally intensive and leverages 
existing infrastructure, making it a faster option. 
However, InterGenomics may offer superior 
accuracy for small populations by directly 
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incorporating genomic data (Bonifazi et al., 
2023). A hybrid approach, combining MACE 
with InterGenomics, could balance feasibility 
and accuracy, as proposed for Brown Swiss 
(CDCB 2024). 
 
Implications for Ayrshire Sustainability 
This collaboration has the potential to transform 
Ayrshire breeding by enabling genomic 
evaluations in countries without national 
systems and enhancing existing ones. By 
maximising reference population sizes, the 
initiative addresses the breed’s risk of declining 
relevance due to limited genomic progress.  
 
Conclusions 
 
This study presents a novel and collaborative 
approach to enhancing genomic evaluations for 
numerically small dairy breeds by adapting the 
IBC MACE system to include cows. Future 
research will focus on optimising the 
integration of female EBVs into MACE and on 
piloting InterGenomics services tailored to the 
Ayrshire population. Currently, a data call has 
gone out to participating countries, together 
with an agreement for collaboration that 
includes data sharing. This work may reshape 
how global evaluations are designed for 
underrepresented breeds. 
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Abstract 
 
Enteric methane (CH4) emissions from cattle account for 70% of livestock GHG emissions in Sub-
Saharan Africa. Also, climate change has impact on smallholder livestock-based food systems in terms 
of feed resources and emergence of new diseases. Direct selection for CH4 is one of the approaches to 
mitigate the effects of climate change and this requires estimation of genetic parameters.  Moreover, the 
amount of CH4 emitted is influenced by the activity status (ACTs) of the cow such as feeding, 
ruminating, sleeping, and standing idle during time of measurement. The aim of this study was to 
evaluate CH4 emissions under different activities, estimate variance components and compare accuracies 
of predicting CH4 emissions using MIR information. The data consistent of over 14500 point-
measurement of methane emissions measured by laser methane detectors with minimum duration of 3 
minutes from 940 cows in 29 small-holders dairy farms in Ethiopia under various cow activities from 
July 2023 to March 2025. Records obtained under different ACTs for feeding, ruminating, sleeping, and 
standing idle were 2382, 7885, 660, and 3494 respectively. Pedigree information was also available for 
435 cows with observation for CH4 and the remaining 459 cows were genotyped using a 90k SNP chip. 
Overall average CH4 production was 341 g/day. CH4 production in feeding status was highest with 517 
g/day on average. Pedigree BLUP (PBLUP), and single step combining both pedigree and genomic 
information (HBLUP) were applied to estimate variance components (VCs) using different modelling 
approaches. A repeatability animal model (full model (FM)) was fitted with ACTs, year-season, and 
average farm milk yield as fixed factors and permanent environmental effects a random effect in addition 
to animal. Also, records averaged within year-season subclasses (average model) were also analyzed 
with fixed effects of year-season and average farm milk yield and random effects of animal and 
permanent environmental effects. Heritability estimates for the FM were 0.09 (0.03), and 0.10(0.02) for 
PBLUP and HBLUP, respectively. The corresponding estimates for the average model were 0.14 (0.06), 
and 0.19 (0.04).  For the indirect prediction of CH4, a partial least square modelling approach was applied 
using milk mid-infrared data obtained in one-week period around the CH4 measurements. The model 
with data restricted only to cows feeding gave higher prediction accuracy of 0.41 compared to 0.28 when 
using all data. In summary, heritabilities were low and consistent with published estimates, indirect 
predictions accuracy of CH4 were moderate. In general, feeding status not only had the highest 
production average but also highest prediction accuracy and has influence on genetic parameters.  
 
Key words: methane emission, animal activity, variance components 
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Introduction 
 
Enteric methane (CH4) emissions from cattle   
account for 70% of livestock GHG emissions in 
Sub-Saharan Africa years (GLEAM 2023), and 
it is of critical climate concern due to methane's 
short atmospheric lifespan of 12 years. 
Therefore, strategies to reduce enteric methane 
are vital for the 1.5°C global warming target and 
to mitigate the impact of climate change on the 
smallholder agri-food systems and livestock-
based food systems in most developing 
countries in terms of feed resources, emergence 
of new diseases, increased levels of heat and 
humidity and related stresses. Studies have 
shown that methane emission is heritable and 
selective breeding for low emitting individuals 
through genetic selection is feasible (De Haas et 
al. 2021). Therefore, direct selection for 
methane is one of the approaches to mitigate the 
effects of climate change and this requires 
estimation of genetic parameters and variance 
components for methane and the capture of 
methane measurements. These recordings 
should be accurate and reflect overall methane 
production of individuals to maximize the 
accuracy of selection. The amount of the 
Methane (CH4) emitted by cattle is not constant 
but varies with different activities because each 
activity changes the animal’s rumen function, 
respiration rate, and gas release pathways 
(eructation, respiration). 

Highest CH₄ production may occur during 
and after feeding. Rumen microbes ferment 
carbohydrates into volatile fatty acids and 
hydrogen which then methanogens convert  
hydrogen into methane. Methane peaks happen 
typically post-feeding especially after forage-
rich diets (Rooke et al. 2014). Factors such as 
feed type (forage vs. concentrate), intake level, 
and feeding frequency strongly influence 
methane emission (Jiao et al. 2014). 

 Various technologies have been proposed to 
measure methane emission in cattle, each with 
different levels of accuracy, cost, practicality, 
and suitability for on-farm vs. research use 
(Sorg 2021). Most of these technologies record 

CH4 when animals are in a particular state such 
as feeding or milking. These short time 
measurements of several minutes a day over a 
week are then generalized to estimate the 
methane production per day. Since animals may 
be different state of activities, such as feeding, 
drinking, milking, lying/resting, standing, 
walking or ruminating, CH4 production may 
vary under different activities (ACTs). 
Therefore, to estimate an accurate amount of 
CH4   production during a day, a comprehensive 
recording which includes these activities is 
needed for accurate predictions.  

Methane recording in small holders’ cattle 
farms is challenging and extra care needs to be 
taken for accurate and practical recording in 
scale. Laser Methane Detectors (LMD) are 
portable devices which has comparatively low 
purchase and running costs and results in only 
low-to-moderate behavioural changes of the 
animals but requires relatively high labour 
resources and has a moderate throughput in 
terms of the number of records per time (Sorg 
2021). 

Of the various technologies proposed to 
measure methane emissions in dairy cattle, the 
most commonly used include the GreenFeed 
and Fourier-transformed infrared (FTIR) breath 
analysers (sniffers) installed in feed bins (Sorg 
2021). 

Unlike GreenFeed or Sniffers which are 
installed in feed bins for recording methane 
only in the feeding status of cows, LMD can 
record methane during any cow activity, 
thereby providing the potential for a better 
estimation of overall methane produced by a 
cow. 

As recording methane emission is still 
challenging and expensive, proxy traits such as 
milk mid-infrared (MIR) profiles are studied to 
indirectly predict CH4 as an easy and cost-
effective approach to record the trait.  Training 
models for predicting methane emissions 
through proxy traits, relies highly on the 
accurate measurements of methane emissions 
under various the animal activities.  
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The aim of this study was to evaluate 
methane emissions under different activities, 
estimate variance components and compare 
accuracies of predicting methane emissions 
using MIR information under different ACTs.  
 
Materials and Methods  
 
About 14500 point-measurement of methane 
emissions from 940 cows recorded using 
handheld laser methane detectors in 29 small-
holders dairy farms spanning a wide range of 
environmental conditions in Ethiopia were used 
for the study. 

 The duration of each point measurement 
was 3 to 5 minutes under various cow activities. 
Data was recorded at random times and days 
once or twice a month from July 2023 to March 
2025. Each animal had between 2 to 32 records 
from farms with different management systems. 
The animals were of different ages, stages of 
lactation and were crossbreds resulting from 
crossing local cattle breeds with mostly 
Holstein and Jersey. After quality control 14421 
records were analyzed and were recorded under 
different ACTs. A total of 2382, 7885, 660, and 
3494 measurements were taken during feeding 
or ruminating or sleeping or standing idle 
respectively. Pedigree information was 
available for 435 cows with observation for CH4 

and 459 cows were genotyped using a 90k SNP 
chip.  

Initially a fixed effect model consisting of 
ACTs, age at recording, breed proportion, 
lactation number, lactation stage, year-season, 
and average farm milk yield as management 
criteria were fitted to determine the factors with 
significant effect on methane.  

Pedigree BLUP (PBLUP) and single step 
combining both pedigree and genomic 
information (HBLUP) were applied to estimate 
variance components (VCs) fitting significant 
effects from the fixed effect model.  
An initial analysis indicated that repeatability of 
methane measurement was low at 0.26. Given 
this low repeatability, two sets of models were 
considered for estimation of genetic parameters. 

One set of models used the individual records 
of cows as the dependent variable or methane 
averaged year-season subclasses.  The latter 
represents the average of subsequent 
measurements methane for a cow over a season 
of about 3-6 months and so mimics 
measurements of methane from other 
equipment such as the GreenFeed. 

 The full model (FM) including ACTs, year-
season, and average farm milk yield as fixed 
factors and permanent environmental effects a 
random effect in addition to animal is: 

y = Xb + Za + Wp +   e  
where y is the observed CH4 measurements, b 
is the vector of fixed effects, a is the random 
animal effect, p is the random permanent 
environmental effect, and e is the residual. 
Matrices X, Z, and W are the incidence 
matrices connecting fixed and random effects to 
the observations.  

The model based on CH4 records overaged a 
year-season subclasses (average model) 
consisted of fixed effects of year-season and 
average farm milk yield and random effects of 
animal and permanent environmental effect.  
 
Indirect prediction of methane using MIR data 
A corresponding 7714 milk mid infrared 
profiles from 608 individuals were available 
within ±7 days of LMD records. Out of 930 
spectral points, three spectral regions were 
considered for the calibration process (968–1 
577 cm-1, 1 720–1 809 cm-1, and 2 561–2 966 
cm-1), resulting in the selection of 289 data 
points.  

Savitzky-Golay filtering approach with 3rd 
order polynomial and a window size of 5 data 
points was used to improve the spectra 
resolution by eliminating constant baseline, and 
to obtain robust prediction models by restricting 
the insertion of bias into the model. We used 
Sgolay function implemented in R Signal 
package for this calibration process. 

A partial least square modelling approach 
using 10 principal components to predict the 
methane emission using MIR information using 
R PLS package was used for prediction. 
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The full model to predict CH4 by MIR 
information was as below: 
CH4 ~ MIR + milk fat% + milk protein% + body 
weight + milk yield. 

The reduced model included only MIR 
information performed as below: 
CH4 ~ MIR. 

A 5-fold cross validation approach was used 
so that one fifth of data was sampled randomly 
as validation set and the rest was used to train 
the model for prediction of methane emission 
by MIR data. One hundred sampling and 
prediction were performed and the average 
correlation value between predicted and actual 
measurements were calculated as accuracy of 
prediction.  
 
Results & Discussion 
 
Overall average methane production was 341 
g/day. Methane production in feeding status 
was highest with 517 g/day on average. 
Average methane production under other 
activities were 296, 303, and 332 g/day for 
ruminating, sleeping, and standing idle, 
respectively.  
 
Table 1: Summary statistics of data used in this study 

trait No. of  
animals   

No. of  
records   

mean SD 

CH4 940 14427 341 122 

Milk yield 608 6423 12.5 4.7 
Fat % 608 7714 2.97 1.44 
Protein % 608 7714 3.36 0.6 
MIR* 608 7714 - - 
genotypes 459 - - - 

*Milk mid-infrared profiles. 
 

The fixed effect model indicated that animal 
activity significantly influenced the methane 
production followed by age at recording.  

Heritability estimates for the full model were 
0.09 (0.03) for PBLUP and 0.10(0.02) for 
HBLUP models.  Genotypic data increased the 
heritability estimates by only 0.01 which may 
be due to low genetic connectivity between 

animals in the pedigree. The corresponding 
estimates for the average model were 0.14 
(0.06), and 0.19(0.04), which are higher than 
those from the full model, showing a significant 
difference in variance components in the two 
models with and without ACTs fitted. The 
heritability estimates are in the range of 
estimates from other publications for methane 
emission in cattle (Van Breukelen et al. 2023; 
Lassen and Løvendahl 2016; Ghavi Hossein-
Zadeh 2022; Pszczoła et al. 2017). Moreover 
averaging over several point measurements as 
is common in other studies may increase the 
heritability estimates (Van Breukelen et al. 
2023; 2022). 

The partial least square modeling approach 
to predict methane emission by proxy traits 
using data restricted to only feeding activity had 
a higher accuracy of 0.41 compared to when 
using all data with accuracy of 0.28. studies 
show prediction of methane emission using 
MIR data in the range of 0.25 to 0.7 (McParland 
et al. 2024; Shadpour et al. 2022; Shetty et al. 
2017). No study was found to compare 
prediction on methane emission recorded across 
various ACTs in cattle.  Interestingly feeding 
status not only had the highest production 
average but also the highest prediction accuracy 
and a substantial influence on variance 
components estimation.  

The accuracy of prediction using repeated 
records were studies to find the optimum 
number of records using LMD device. We 
examined animals with 1 to 12 records for the 
prediction. The results showed that 6 records 
per individual is the optimum number of records 
as show the highest accuracy while is value of 
accuracy is comparable to individuals having 
more records (Table 2). 
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Table 2: Changes in accuracy of predicting methane 
emission using milk mid infrared data in different  
number of records. 

Average 
records  

 Accuracy RMSE 

1 0.24 168 

2 0.28 149 

3 0.29 133 

4 0.37 124 

5 0.39 122 

6 0.45 116 

7 0.47 116 

8 0.45 109 

9 0.45 107 

10 0.45 106 

11 0.46 105 

12 0.45 106 

*Residual mean square error. 
 
Conclusions 
 
The results indicate that heritability estimates 
for CH4 using LMD were low at 0.09 to 0.14 but 
consistent with estimates reported using other 
more expensive equipment. The indirect 
prediction accuracies using MIR data were 
moderate and are encouraging. Furthermore, 
animal activities play an important role not only 
in terms of correctly measuring methane 
production but also influences estimation of 
genetic parameters and accuracy of prediction 
of CH4 from MIR data. 
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Abstract 
 
In the context of data sharing for genetic evaluation, such as enteric methane emissions in cattle, 
quantifying the effective contributions of phenotypic records to genetic evaluations is essential. This 
research introduces a framework for estimating the effective contribution of phenotypic records to 
genetic evaluations, using the concept of effective record contributions (ERCs). Our three-step 
approach involves: 1) computing reliabilities of a pedigree-based genetic evaluation using phenotypic 
information, 2) approximating ERCs due to own records, free of contributions due to relationships, 
from reliabilities of phenotyped animals using a reverse reliability algorithm, and 3) calculating the 
total effective contribution of phenotypic records as the sum of ERCs associated with all phenotyped 
animals. We apply this approach to a Dutch dataset comprising 187 219 records of weekly enteric 
methane emissions from 8 668 Holstein cows measured between March 2019 and April 2024. The 
pedigree spans five generations. Estimated heritability and repeatability were 0.18 and 0.47, 
respectively. We evaluate the effective contribution of weekly enteric methane emission records using: 
1) the entire dataset, 2) a subset spanning until October 2023, instead of April 2024, 3) a dataset 
reduced by over 30% and limited to 20 records per animal, and 4) the entire dataset but considering 
the weekly enteric methane trait as an indicator trait genetically correlated to a hypothetical trait of 
interest with a heritability of 0.20 and a genetic correlation of 0.80. Results show that the entire dataset 
corresponds to 12 671 ERCs for the weekly enteric methane emission trait, which remains similar after 
reducing the number of weekly records by over 30%. The subset spanning until October 2023 
corresponds to 10 870 ERCs. The reduction of ERCs can be explained by a smaller amount of records, 
but also by a smaller amount of recorded animals. Finally, when calculating the effective contribution 
to a correlated trait of interest, the entire dataset with weekly methane emission records corresponds to 
only 3 286 ERCs. Our approach provides a flexible framework for quantifying the effective 
contribution of phenotypic records to genetic evaluations. The proposed framework can be extended 
for optimizing data collection schemes when aiming to optimize the accuracy of genetic evaluations. 
 
Key words: effective record contribution, phenotype, genetic evaluation, methane emissions  

Introduction 
  
Global climate changes pose significant threats 
to ecosystems and human societies, with rising 
temperatures and altered weather patterns. 
Livestock, particularly ruminants, contribute to 
greenhouse gas emissions, with enteric 
methane emissions accounting for a 
considerable portion of their emissions. 

Several strategies have been proposed to 
mitigate enteric methane emissions, including 
management practices, feed additives, 
vaccination, and genetic selection (Knapp et 
al., 2014). Genetic selection is particularly 
appealing due to its low implementation costs 
as well as its permanent and cumulative effects 
(Bishop and Woolliams, 2004). However, the 
success of genetic selection in breeding 
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programs depends on several factors. A key 
factor is the definition of the breeding 
objective that will guide the designs of the 
breeding program and of the trait recording 
schemes (Banks, 2024). For traits difficult or 
expensive to measure, such as methane 
emissions in ruminants, a special attention for 
the design of the trait recording scheme is 
required, as the main limiting factor is the 
availability of sufficient phenotypes to create a 
reference population to estimate sufficiently 
reliable genetic parameters and breeding 
values required for informed breeding 
decisions. 

Worldwide, research groups and breeding 
organizations are exploring the integration of 
methane mitigation into breeding programmes, 
requiring a clearly defined trait that is 
recordable, cost-effective, exhibits phenotypic 
variation, and is heritable. Recent studies (e.g., 
Manzanilla-Pech et al., 2021; van Breukelen et 
al., 2023) have explored various phenotyping 
methods and trait definitions. For instance, van 
Breukelen et al. (2023) compared daily and 
weekly means of methane production 
(grams/day) by GreenFeed units and of 
methane concentration (ppm) by sniffers, 
recorded on commercial dairy farms in the 
Netherlands. These differences in terms of 
phenotyping methods and trait definitions may 
limit the effectiveness of collaborations across 
research groups and breeding organizations, 
hindering the success of genetic selection for 
methane mitigation (Manzanilla-Pech et al., 
2021). 

In this context, the Global Methane 
Genetics (GMG) initiative 
(https://www.wur.nl/en/project/global-
methane-genetics-initiative.htm) was launched 
in 2024 as a global initiative to accelerate 
genetic progress in reducing methane 
emissions in ruminants (Gredler-Grandl et al., 
2024). The GMG initiative is coordinated by 
Wageningen University and Research-Animal 
Breeding and Genomics and funded by the 
Global Methane Hub and the Bezos Earth 
Fund. It aims to enhance genetic progress by 

establishing standard operating procedures for 
data collection, harmonizing protocols, 
facilitating the sharing of methane phenotypic 
and genotypic data, and increasing methane 
data recording in large and small ruminants 
across the world. 

A key task of the GMG initiative is to first 
establish a GMG database for sharing data and 
protocols to support research, reference 
population expansion, breeding program 
design, and genetic evaluations for enteric 
methane reduction. The effective amount of 
information of phenotypic records provided by 
any party to the GMG database varies, 
impacting the composition of reference 
populations and the effectiveness of genetic 
evaluations and breeding programs with 
clearly defined breeding objectives. Factors 
that influence the effective amount of 
information of phenotypic records for a genetic 
evaluation are, of course, the number of 
phenotypic records provided, but also the 
definition of the recorded trait, the recording 
scheme and associated factors (e.g., the 
contemporary group sizes), and the accuracy of 
recording (reflected by heritability and 
repeatability), among others. 

The objective of this research is to develop 
a framework to quantify the effective 
contribution to a genetic evaluation of 
phenotypic records submitted to a database. 
The framework considers the number of 
records provided, recording scheme properties, 
and the accuracy of recording (heritability and 
repeatability). Then, we apply our framework 
to a Dutch dataset including individual cow 
enteric methane emissions measured with 
sniffers in automatic milking systems (AMS). 
Results demonstrate the flexibility of our 
framework to quantify the effective 
contribution of phenotypic records to a genetic 
evaluation.  
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Materials and Methods 
 
This section introduces the framework for 
quantifying the effective contribution of 
phenotypic records to genetic evaluations. We 
first define the concept of effective record 
contribution (ERC) to quantify the effective 
amount of information of phenotypic records. 
Second, we outline our proposed framework 
which leverages this concept. Finally, we 
present various scenarios assessing the 
framework using a Dutch dataset. 

 
Effective amount of information 
The concept of effective amount of 
information contributing to a genetic 
evaluation was introduced in the 80s to 
approximate reliabilities (REL) associated 
with estimated breeding values (e.g., Wilmink 
and Dommerholt, 1985; Robinson, 1986; 
Misztal and Wiggans, 1988; Meyer, 1989). 
The main goal of all these approaches is to 
summarize all information of an individual in a 
single value that is a diagonal element of a 
diagonal matrix D such that the diagonal 
elements of the inverse of (D + A-1λ) are 
approximately equal to the prediction error 
variances obtained from the inverse of the 
absorbed coefficient matrix, (Z’MZ + A-1λ), 
where Z is the incidence matrix relating 
phenotypes to animals, M is the absorption 
matrix including all fixed and random effects 
other than the random additive genetic effect, 
A-1 is the inverse of the pedigree relationship 
matrix, and λ is the ratio between the residual 
variance and the additive genetic variance. 

Several measures have been proposed for 
summarizing the effective information, varying 
by application context. For sire evaluations, 
these measures focus on the records of progeny 
of a sire, and are called "daughter equivalent" 
(VanRaden and Wiggans, 1991), "effective 
number of daughters" (Wilmink and 
Dommerholt, 1985; Van Vleck, 1987), or even 
"effective daughter contribution" (Fikse and 
Banos, 2001). Similarly, for animal models, 
the proposed measures focus on the records of 

the animals themselves and are called "record 
equivalent" (VanRaden and Wiggans, 1991), 
"effective number of records" (Misztal and 
Wiggans, 1988) or "effective record 
contribution" (Meyer, 1989; Přibyl et al., 
2013). 

In line with VanRanden and Wiggans 
(1991), and for our context of quantifying the 
effective contribution of phenotypic records to 
genetic evaluations, we define one ERC as the 
amount of information contributed by a 
standard animal to its genetic prediction. This 
standard animal is defined as having one 
record and an infinite number of contemporary 
group mates. The total ERC for a standard 
animal (ERC_total) can be computed for a 
trait of interest using its REL, as follows: 

ERC_total = (1-h2)/h2 * REL/(1-REL), 
with h2 being the heritability of the trait of 
interest. 

Notably, ERC_total is the sum of two 
components: ERC due to own records 
(ERC_own) and ERC due to relationships 
(ERC_rela). ERC_own represents the amount 
of information contributed by the own records 
of an animal, excluding information from 
relatives. ERC_own is influenced by factors 
such as the number of records, the 
contemporary group size, and the repeatability, 
among others (Misztal and Wiggans, 1988; 
VanRaden and Wiggans, 1991). In contrast, 
ERC_rela represents the amount of 
information contributed by relatives (through 
the parents and progeny) to the genetic 
prediction of an animal. 

From a phenotypic dataset, algorithms for 
approximating REL and ERC_total involve 
accumulating information from an animal 's 
performance records or those of its relatives, 
and adjusting for finite contemporary group 
sizes, and potentially accounting for other 
fixed and random effects, such as random 
permanent environment effects in case of 
repeated records (Misztal and Wiggans, 1988; 
VanRaden and Wiggans, 1991; Tier and 
Meyer, 2004). 
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From REL, algorithms for approximating 
ERC_own and ERC_rela involve reversing 
REL or ERC_total (Harris and Johnson, 2010; 
Vandenplas and Gengler, 2012; Ben Zaabza et 
al., 2022). Such algorithms are often used to 
calculate appropriate weights for integrating 
deregressed proofs in a genetic or genomic 
evaluation (Harris and Johnson, 2010; 
Vandenplas and Gengler, 2012) or 
approximating genomic reliabilities (Ben 
Zaabza et al., 2022; Bermann et al., 2022).  

 
Quantification of the effective contribution of 
phenotypic records to genetic evaluations 
The framework for quantifying the effective 
contribution of phenotypic records to genetic 
evaluations consists in a three-step approach: 
(1) approximation of REL using a pedigree-
based evaluation and the model associated 
with the phenotypic records; (2) estimation of 
ERC_own using a reverse reliability algorithm; 
and (3) calculation of the total effective 
contribution of phenotypic records by 
summing the ERC_own of all phenotyped 
animals. 

 
Step 1: Approximation of pedigree-based 
reliabilities 
The first step consists of approximating 
pedigree-based REL for the trait of interest 
using the provided phenotypic records, the 
pedigree, and the associated model and 
variance components. If the phenotypic 
records are available for an indicator trait 
correlated with the trait of interest, pedigree-
based REL for the trait of interest can be 
approximated using genetic correlations 
between the indicator trait and the trait of 
interest, and the heritability of the trait of 
interest. For this study, pedigree-based REL 
are approximated using the Tier and Meyer 
(2004) algorithm, as implemented in the 
software MiX99 (Lidauer et al., 2013) and 
MiXBLUP (Vandenplas et al., 2022).  

 
 
 

Step 2: Estimation of ERC due to own records 
The second step involves estimating the 
ERC_own for animals with phenotypes, using 
pedigree-based REL of the trait of interest 
approximated in the first step. We assume 
these REL are from a univariate animal model 
including only the additive genetic and 
residual effects, and with variance components 
reflecting the heritability of the trait of interest. 
The estimation of ERC_own is performed 
using a reverse reliability algorithm, which 
aims to estimate ERC_own for phenotyped 
animals, independent of ERC due to 
relationships (that is, contributions through the 
parents and progeny). For this study, 
ERC_own for phenotyped animals are 
estimated using the reverse reliability 
algorithm proposed by Ben Zaabza et al. 
(2022) and based on Tier and Meyer (2004). 

 
Step 3: Calculation of the total effective 
contribution of phenotypic records 
The final step involves calculating the total 
effective contribution of phenotypic records to 
a genetic evaluation for a trait of interest by 
summing the ERC_own associated with all 
phenotyped animals. This measure allows for a 
comprehensive understanding of the overall 
impact of the phenotypic records on genetic 
evaluations. 

 
Data and software 
Enteric methane emissions were recorded by 
sniffers (WD-WUR version 1.0, Carltech BV) 
installed in AMS on 62 commercial dairy 
farms located throughout the Netherlands, 
between March 2019 and April 2024. Pedigree 
and other cow information were provided by 
CRV (Arnhem, the Netherlands). For further 
details on the data recording scheme and data 
editing, see van Breukelen et al. (2024).  

After editing, the dataset used in this study 
comprises 187 219 records of weekly averaged 
enteric methane emissions for 8 668 animals in 
62 herds. The pedigree, extracted from the 
animals with phenotypes, spans five 
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generations and includes a total of 31 471 
animals. 

The same model and variance components 
as estimated by van Breukelen et al. (2024) are 
used in this study. It is worth noting that the 
model includes as random effects, additive 
genetic, within-lactation permanent 
environment, across-lactation permanent 
environment and residual effects. The 
heritability is 0.18, and the repeatability is 
0.47, respectively (van Breukelen et al., 2024). 
The software MiXBLUP (Vandenplas et al., 
2022) was used for approximating pedigree-
based REL and for reversing REL to estimate 
ERC_own. 

 
Description of the scenarios 
Using the Dutch dataset with weekly enteric 
methane emissions, the proposed framework is 
investigated using four scenarios. The first 
scenario simulates an initial submission of the 
entire Dutch dataset (i.e., 187 219 records for 8 
668 animals) to a database. 

The second scenario simulates a subsequent 
submission of a second dataset to a database. 
In this scenario, the entire Dutch dataset is 
submitted to a database in two subsets: 1) the 
first subset includes 125 169 records up to 
October 2023 for 8 034 animals, and 2) the 
second subset includes 62 050 records from 
October 2023 to April 2024, including 634 
animals that are not present in the first subset. 

The third scenario simulates a subsequent 
submission of a dataset with additional records 
for animals that already have some records in 
the database. In this scenario, the entire Dutch 
dataset is submitted to a database in two 
subsets: 1) the first subset includes 125 484 
records for all the 8 668 animals, with at most 
20 records per animal, and 2) the second subset 
includes the remaining 61 735 records. It is 
worth noting that the subsets have a similar 
number of records in the second and third 
scenarios. 

For the first three scenarios, the weekly 
enteric methane emission trait is considered as 
the trait of interest. In the fourth scenario, the 

weekly enteric methane emission trait is 
considered as an indicator trait genetically 
correlated to a hypothetical trait of interest 
with a heritability of 0.20 and a genetic 
correlation of 0.80. In this scenario, the 
proposed framework is applied on the entire 
Dutch dataset to estimate its effective 
contribution to genetic evaluations for the 
hypothetical trait of interest. 

 
Results & Discussion 
 
Scenario 1 – Entire Dutch dataset 
Applying the first and second steps of the 
framework on the entire Dutch dataset results 
in ERC_own ranging from 0 to 2.7 ERCs per 
animal with phenotypes, with an average of 1.5 
ERCs (Table 1). First, ERC_own equal to 0 
indicate that certain animals and their 
associated phenotypic records do not 
contribute to a genetic evaluation at all. This 
can be explained, for example, by animals 
being part of contemporary groups that are too 
small. 
Second, these ERC_own illustrate that the 
number of phenotypic records, ranging from 1 
to 80 records per animal, and averaging 21.6 
ERCs (Table 1) does not linearly translate to 
an effective contribution of a dataset to genetic 
evaluations. This can be also observed in 
Figure 1 showing that, beyond a certain 
threshold (approximately 8 to 10 records), 
ERC_own no longer increases substantially 
with an increase number of records, indicating 
diminishing returns on investment in collecting 
more records. 
 
Table 1. Number of records, and effective record 
contributions due to own records for the entire 
Dutch dataset. 
 Min. Average Max. Total 
Number of 
records 

1 21.6 80 187 219 

ERC_own1 0.0 1.5 2.7 12 671.4 
ERC_total2 1.0 3.2 6.3 25 724.0 
1ERC_own = Effective record contributions due to 
own records. 
1ERC_total = Effective record contributions due to 
own records and due to relationships. 
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Figure 1. Effective record contributions due to own 
records (ERC_own) according to the number of 
records per animal.  
 

Applying the third step of the framework 
on the entire Dutch dataset results in a total 
effective contribution of phenotypic records to 
a genetic evaluation for weekly methane 
emissions equal to 12 671 ERCs (Table 1). 
This sum of ERC_own is substantially lower 
than the number of records in the entire Dutch 
dataset (i.e., 187 219 records; Table 1), 
illustrating again that additional records do not 
linearly translate into effective contribution to 
genetic evaluation. 

It is worth noting that ERC_own are lower 
than ERC_total because it include both 
contributions due to own records and due to 
relationships. Computed from the REL as 
ERC_total = (1-h2)/h2 * REL/(1-REL), the 
ERC_total range from 1 to 6.3 ERCs per 
animal with phenotypes, with an average of 3.2 
ERCs (Table 1). The additional ERCs are due 
to relationships (ERC_rela), depend on 
contributions of relatives, and will therefore 
vary with a new submission of phenotypic 
records to the database.  
 
Scenario 2 – Two subsequent submissions 
For the second scenario, the entire Dutch 
dataset is divided into two subsets, with the 
first subset up to October 2023, and the second 
subset from October 2023 until April 2024. 
The first subset includes 8 034 animals and 
125 169 records, and corresponds to a total 
effective contribution of phenotypic records of 

10 870 ERCs, as estimated with the proposed 
framework. 

The second subset dataset includes the 
remaining records of the entire Dutch dataset, 
as well as 634 animals that were not included 
in the first submission. Given that the entire 
Dutch dataset comprises 12 671 ERCs, we can 
estimate with the proposed framework that this 
second subset corresponds to 1 801 ERCs, 
calculated as the difference between the total 
effective contribution of the entire Dutch 
dataset (i.e., 12 671 ERCs) and the total 
effective contribution of the first subset (i.e., 
10 870 ERCs). This effective contribution of 
the second subset can be explained by the 
additional records and also by the addition of 
634 newly recorded animals. 
 
Scenario 3 – Two submissions with no new 
animals 
The framework is further investigated by 
dividing the entire Dutch dataset into two 
submissions, such that no new animals with 
phenotypes are added to the database. The first 
subset comprises 125 484 records for 8 668 
animals with at most 20 records per animal and 
corresponds to a total effective contribution of 
12 137 ERCs. Notably, this total effective 
contribution is comparable to that of the entire 
Dutch dataset, despite this first subset 
representing only 67% of the entire dataset.  

Given that the entire dataset comprises 12 
671 ERCs, the second subset corresponds to 
534 ERCs only, calculated as the difference 
between the total effective contribution of the 
entire dataset (i.e., 12 671 ERCs) and the total 
effective contribution of the first subset (i.e., 
12 137 ERCs). These total ERCs illustrate that 
this second subset will have a limited 
contribution to a genetic evaluation that 
already includes the first subset, even if it 
includes 61 735 records. 
 
Scenario 4 – A hypothetical trait of interest 
For the fourth scenario, the weekly methane 
emission trait is considered as an indicator trait 
genetically correlated to a hypothetical trait of 
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interest with a heritability of 0.20 and a genetic 
correlation of 0.80. Applying the proposed 
framework on the entire Dutch dataset results 
in a total effective contribution of the Dutch 
phenotypic records to a genetic evaluation for 
this hypothetical trait of interest of 3 287 
ERCs. This sum of ERC_own represents the 
effective contributions that flow from the 
indicator trait to the trait of interest through the 
genetic correlation. 
 
A flexible framework 
The different scenarios demonstrate the 
flexibility of the proposed framework to 
quantify the effective contribution of 
phenotypic records to genetic evaluations for a 
trait of interest. Our scenarios involve 
submission of datasets that include either 
records for a trait of interest, or records for an 
indicator trait. 

Our framework can be easily extended to 
datasets that include records both for the trait 
of interest and for indicator traits. In such a 
scenario, pedigree-based REL for the trait of 
interest are approximated using phenotypic 
records of all traits with the first step of the 
proposed framework. Then, ERC_own are 
approximated for the trait of interest with the 
second step by reversing REL of the trait of 
interest assuming that they are approximated 
from an univariate model. The obtained 
ERC_own for the trait of interest include 
therefore ERC_own of the trait of interest, but 
also ERC_own of the indicator traits 
transferred through genetic correlations. 
Finally, the sum of all ERC_own of the trait of 
interest represents the effective contribution of 
all records of the trait of interest and of 
indicator traits to a hypothetical univariate 
genetic evaluation for the trait of interest.  
Our framework can be also easily extended for 
estimating the effective contribution of 
phenotypic records to genetic evaluations of 
relatives of the phenotyped animals, such as 
selection candidates. By focusing on 
ERC_own of phenotyped animals, this study 
illustrates how individual phenotypic 

contributions can be aggregated to understand 
their cumulative impact on their genetic 
evaluations for a trait of interest. However, the 
aggregate effective contribution obtained from 
our framework does not reflect the effective 
contribution or phenotypic records to genetic 
evaluations of another group of animals, such 
as selection candidates. It has been shown that 
the accuracy of genomic prediction for 
selection candidates depends on the 
relationships among the reference animals and 
on the relationships between the reference 
animals and the selection candidates (Pszczola 
et al., 2012). Such contributions can be easily 
considered with our framework by estimating 
ERC_own for the selection candidates using 
the phenotypic records of the reference 
population with the second step of the 
framework, and then by aggregating these 
ERC_own to estimate the effective 
contribution of phenotypic records to genetic 
evasluations of selection candidates. The 
ERC_own of a non-phenotyped selection 
candidate is 0. However, the second step will 
estimate for selection candidates non-zero 
ERC_own that represent the effective 
contribution of relatives’ phenotypic records to 
their genetic evaluations, without considering 
ERC_rela among them. 

Finally, future research could aim to adapt 
the proposed framework for designing optimal 
recording schemes when aiming to optimize 
the accuracy of genetic evaluations. Such an 
optimization framework could integrate prior 
knowledge on the traits to be recorded (e.g., 
heritability, repeatability), but also prior 
knowledge on environment, management (e.g., 
seasons and herds), and recording costs 
(Banks, 2024). Future research could also aim 
to extend the proposed framework to consider 
genomic relationships, instead of pedigree 
relationships, in the first step of the 
framework. Considering genomic relationships 
will allow, for example, to estimate the 
effective contribution of phenotypic records of 
one breed to the genetic evaluation of another 
breed. That is currently not possible with the 
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proposed framework because it is based on 
pedigree information only. 
 
Conclusions 
 
This study presents a flexible and 
comprehensive framework to quantify the 
effective contribution of phenotypic records to 
genetic evaluations using the concept of 
effective record contribution. This method 
relies on reversing reliabilities of estimated 
breeding values for a trait of interest by 
accounting for finite contemporary group 
sizes, and potentially other fixed and random 
effects, such as random environment 
permanent effects, as well as genetic 
correlations among the trait of interest and 
indicator. 
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Abstract 
 
Enteric methane emissions from ruminants are a major contributor to global greenhouse gas emissions 
and pose a significant challenge to the sustainability of livestock production. To mitigate these 
emissions, breeding strategies have been mentioned as a promising tool, but prediction accuracies of 
methane emission traits are still limited by the size of datasets with records. Hence, using methane 
concentrations (MeC) in Danish Holstein cows as target trait, this study evaluated the predictive 
performance of pedigree-based BLUP (pBLUP) and single-step genomic BLUP (ssGBLUP) in 
univariate and multi-trait models, the latter including milk production traits. Previously, both ssGBLUP 
as well as multi-trait models have been shown to enhance prediction accuracies. The dataset included 
1,744 primiparous (PP) and 2,989 multiparous (MP) cows from 15 Danish dairy farms, with over 
600,000 daily records of MeC, fat yield (FY), and energy-corrected milk yield (ECM). Methane 
concentrations were measured using sniffers, and milk production data was acquired from milking 
robots and national milk recording data. At first, a pedigree-based variance component estimation 
revealed heritabilities between 0.17 (SE=0.03) for MeC in PP and MP cows to 0.38 (SE=0.06) for ECM 
in PP cows. Similarly, repeatabilities ranged from 0.32 (MeC, SE=0.01) to 0.81 (ECM, SE=0.01). 
Genetic correlations between MeC and production traits were positive but unfavorable, i.e., in a range 
from 0.15 (SE=0.13) between MeC and ECM in PP cows to 0.41 (SE=0.09) between MeC and ECM in 
MP cows, indicating a genetic antagonism between reducing emissions and maintaining milk yield. 
Prediction accuracies were generally higher for ssGBLUP compared to pBLUP models (up to 61.90% 
increase), and for MP cows compared to PP cows. Multi-trait models outperformed univariate models, 
particularly when phenotypic data for FY and ECM were available in both the reference and validation 
populations. The highest accuracy for MeC prediction in PP cows was 0.38 (ssGBLUP), while MP cows 
reached up to 0.51, both for the multi-trait model including both, ECM and FY. While incorporating FY 
and ECM improved MeC prediction, the unfavorable genetic correlations highlight the risk of 
compromising milk production when selecting for reduced emissions. Therefore, future breeding 
strategies should aim to expand methane phenotyping, develop methane traits independent of milk 
production, and implement multi-trait selection indices that balance environmental and economic goals. 
This study demonstrates the potential of multi-trait genomic prediction to enhance the genetic evaluation 
of methane emissions and supports its integration into sustainable dairy cattle breeding programs. 
 
Key words: methane concentrations, single-step genomic prediction, multi-trait genomic prediction, 
predictor traits 

Introduction   
Methane is a potent greenhouse gas (GHG) with 
a global warming potential approximately 28 

times greater than that of carbon dioxide (IPCC, 
2024). At this, a significant proportion of 
anthropogenic methane emissions originates 
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from enteric fermentation in ruminants, where 
microbial digestion of fiber in the rumen 
produces methane as a by-product (Knapp et al., 
2014). Effective and sustainable mitigation 
strategies have thereby become imperative, 
given the fact that the European Union has 
committed to reducing GHG emissions by 55% 
by 2030 and achieving climate neutrality by 
2050 (European Commission, 2019). Among 
the various approaches to reduce enteric 
methane emissions, such as feed additives and 
improved management practices, genetic 
selection offers a particularly promising long-
term solution. This is, because unlike 
management-based strategies, genetic 
improvement can lead to cumulative and 
permanent reductions in methane emissions 
across generations (Knapp et al., 2014; 
Manzanilla-Pech et al., 2022a). However, the 
success of breeding programs targeting 
methane emissions depends on the availability 
of reliable phenotypic data for large populations 
of genotyped animals. Recent advances in 
phenotyping technologies have enabled the 
development of non-invasive, high-throughput 
methods for measuring methane emissions. 
Here, the sniffer method has gained popularity 
world-wide and measures methane 
concentrations (MeC) in the breath of cattle 
during routine milking or feeding (Garnsworthy 
et al., 2019; Lassen and Difford, 2020). This 
approach facilitates large-scale data collection 
at relatively low cost and has been shown to 
result in heritable phenotypes, with heritability 
estimates of MeC around 0.14 (e.g., 
Manzanilla-Pech et al., 2020). Despite these 
advances, accuracies of genomic prediction for 
methane emissions that are sufficiently high to 
enable genetic progress, remains limited, 
primarily due to the relatively small datasets. 
Different strategies to improve prediction 
accuracies of genomic evaluations, e.g., 
simultaneously exploiting genotypic, 
phenotypic and pedigree information, as in 
single step genomic prediction (Christensen and 
Lund, 2010), or by applying indirect 
information from correlated predictor traits, as 

in multi-trait prediction, have been proposed. 
Multi-trait genomic prediction methods are 
thereby exploiting genomic information from 
predictor traits that are highly correlated with 
the target trait and have earlier been shown to 
outperform univariate prediction methods 
(Calus and Veerkamp, 2011).  

The objective of this study was to evaluate 
the predictive ability of pBLUP and ssGBLUP 
as well as univariate and multi-trait models to 
estimate genetic breeding values (GEBV) for 
MeC. Fat yield (FY) and energy corrected milk 
yield (ECM) were included as predictor traits in 
multi-trait models, since they were previously 
shown to be genetically correlated with 
methane emissions (Lassen and Difford, 2019). 
Moreover, these traits are directly recorded on 
the large scale, as they are part of the national 
milk recording scheme (Danish Cattle Database 
(SEGES, Skejby, Denmark)). To account for 
physiological differences between growing and 
mature animals, presumably leading to a 
different covariance structure between the 
applied traits, analyses were conducted 
separately for primiparous (PP) and 
multiparous (MP) cows.  
 
Materials and Methods  
 
Data collection 
The dataset used in this study comprised daily 
records from 1,744 PP and 2,989 MP Danish 
Holstein cows, housed on 15 commercial dairy 
farms in Denmark. In total, 182,288 
(PP) and 424,888 (MP) daily records were 
available for MeC, ECM and FY, collected 
between March 2021 and December 2024. 
Additional animal-level information, 
including pedigree, genotypic data, days in 
milk (DIM; 0–365 days), week in milk 
(WIM), parity, and age at first calving (AFC), 
was retrieved from the Danish Cattle 
Database (SEGES Innovation, Skejby, 
Denmark). The pedigree was pruned using 
the DMU trace software (Madsen, 2012) to 
include only animals with records and their 
ancestors born after 1970, resulting in a final 
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pedigree of 47,383 animals. Genotypic data 
were provided by Nordic Cattle Genetic 
Evaluation (Skejby, Denmark). Most animals 
were genotyped using the Illumina 
BovineSNP50 BeadChip or imputed from 
lower-density panels. Imputation was 
performed by SEGES Innovation as part of 
routine evaluations resulting in a total of 46,342 
single nucleotide polymorphisms available for 
the analysis. The majority, i.e. 97.31% of PP 
cows were genotyped, whereas the genotyping 
rate was lower for MP cows (73.00%). 
 
Methane concentration measurements 
Methane concentrations were recorded every 
second during the cows` visits to the automatic 
milking system (AMS) using sniffers, i.e., 
nondispersive infrared sensors (Guardian NG, 
Edinburgh Sensors, Livingston, UK) that were 
installed in the AMS feed bins and had a 
measurement range of 0–10 000 ppm for MeC. 
Since the sniffers themselves did not record 
animal identification numbers, which, however, 
are required to extract the abovementioned 
additional information about the cows from the 
Danish Cattle Database, a matching filter 
approach (Milkevych et al., 2022) was applied 
to link each measurement to the corresponding 
cow. Next, we applied a method to correct for 
background gas concentrations, head-lifting 
and diurnal variation, as described in detail in 
Løvendahl et al. (2024). For each visit, the mean 
MeC was calculated and then averaged across 
all visits per day to calculate daily MeC records, 
that are applied in this study. 
 
Milk production traits 
Daily milk yields (MY) were calculated from 
AMS data by using all milkings within the 
previous 96 hours, following ICAR 
standards (ICAR, 2023). Moreover, milk 
component data, i.e., fat percentage 
(FPCT) and protein percentage (PPCT), from 
monthly milk recordings were obtained from 
the Danish Cattle Database and linearly 
interpolated between two consecutive milk 
component recordings to generate daily 

values in alignment with the daily methane 
records. Next, daily FY and protein yield 
(PY) were computed by multiplying MY with 
FPCT and PPCT, respectively, in order to 
calculate ECM as ECM (kg) = 0.25 ∗
MY (kg) + 12.2 ∗ FY (kg) + 7.7 ∗ PY (kg), 
using the formula from Sjaunja et al. (1991). 
 
Variance components and GEBV estimation 
At first, variance components for MeC, ECM, 
and FY were estimated using the AI-REML 
algorithm implemented in the DMU 
software (Version 6, Release 5.4; Madsen and 
Jensen, 2014), thereby applying the following 
linear mixed model 

𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 + 𝑊𝑊𝑊𝑊𝑊𝑊 + 𝐼𝐼𝑒𝑒. 
Here, 𝑦𝑦 is the vector of phenotypic 

observations for MeC, ECM, or FY. The 
vector 𝛽𝛽 includes the overall mean and fixed 
effects, i.e., the WIM, as well as the AFC for PP 
cows (20–30 months), and parity (2nd to 8th 
parity) for MP cows. Moreover, a combined 
fixed effect of herd-year-season × AMS × 
sniffer box (HYS × AMS × sniffer) was 
included for MeC, while for ECM and FY, 
only HYS was modeled as a fixed effect. The 
corresponding incidence matrix that links the 
trait records to the fixed effect was denoted with 
𝑋𝑋, and the terms 𝑎𝑎 and 𝑝𝑝𝑝𝑝 are the random 
additive genetic as well as the permanent 
environmental effect with their corresponding 
matrices 𝑍𝑍 and 𝑊𝑊. The residual was denoted 
with 𝑒𝑒. It was assumed that these three terms 
follow a normal distribution with 
𝑎𝑎 ~ 𝑁𝑁(0,𝐴𝐴𝜎𝜎𝑎𝑎2), 𝑝𝑝𝑝𝑝 ~ 𝑁𝑁(0, 𝐼𝐼𝜎𝜎𝑝𝑝𝑝𝑝2 ), and 
𝑒𝑒 ~ 𝑁𝑁(0, 𝐼𝐼𝜎𝜎𝑒𝑒2), where 𝐴𝐴 is the pedigree-based 
relationship matrix and 𝐼𝐼 an identity matrix. 
Conversely, the additive genetic, permanent 
environmental and residual variance were 
denoted with 𝜎𝜎𝑎𝑎2, 𝜎𝜎𝑝𝑝𝑝𝑝2 , and 𝜎𝜎𝑒𝑒2.  The heritability 
was calculated as ℎ2 = σ𝑎𝑎2 /(σ𝑎𝑎2 + σ𝑝𝑝𝑝𝑝2  + σ𝑒𝑒2), and 
the repeatability as 𝑡𝑡 = (σ𝑎𝑎2 + σ𝑝𝑝𝑝𝑝2 )/(σ𝑎𝑎2 + σ𝑝𝑝𝑝𝑝2  + 
σ𝑒𝑒2). Genetic and phenotypic correlations were 
estimated from multi-trait analyses for MeC, 
ECM, and FY.  
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Table 1 Overview over the different scenarios performed per method (pBLUP, ssGBLUP). 

Traits included in GEBV 
estimation 

Type of 
analysis 

Scenario 
name 

Information included in  
validation 
population 

reference 
population 

MeC Univariate 1 - MeC 

MeC-FY Bivariate 
2a FY 

MeC, FY 2b - 

MeC-ECM Bivariate 
3a ECM 

MeC, ECM 
3b - 

MeC-ECM-FY Trivariate 
4a ECM, FY 

MeC, ECM, FY 
4b - 

GEBV: genomic EBV, pBLUP: pedigree-based BLUP, ssGBLUP: single-step genomic BLUP, MeC: methane 
concentrations, ECM: energy corrected milk, FY: fat yield 

 
Next, different pBLUP and ssGBLUP 

methods, divided into seven univariate and 
multi-trait scenarios, were applied to estimate 
GEBV for MeC. An overview of the different 
scenarios can be taken from Table 1.  

Briefly, the basic scenario, i.e., scenario 1, 
was a simple univariate scenario where 
phenotypes were only available for animals in 
the reference population. Multi-trait scenarios 
included FY, ECM, or both as predictor traits, 
each with two sub-scenarios: one where 
predictor trait phenotypes were available in 
both reference and validation populations, and 
one where they were restricted to the reference 
population. All scenarios were applied 
separately to PP and MP cows. GEBVs for MeC 
were estimated using DMU, applying the same 
fixed and random effects as in the variance 
component estimation. For ssGBLUP, the 
inverse of the H matrix was computed following 
Aguilar et al. (2010) and Christensen and Lund 
(2010): 

𝑯𝑯−1 =  𝑨𝑨−1 + �0 0
0 (𝜔𝜔𝑮𝑮 + (1 −𝜔𝜔)𝑨𝑨22)−1 −  𝑨𝑨22−1

� 

where 𝑮𝑮 is the genomic relationship matrix 
(VanRaden, 2008), computed using 
the invgmatrix software (Su and Madsen, 
2011), 𝑨𝑨22 is the pedigree relationship matrix 
for genotyped animals, and ω = 0.8 is the 
weight assigned to the genomic information. 
 
 
 

Cross-validation groups 
A 10-fold cross-validation strategy was used to 
assess the prediction accuracy of each scenario.  
Validation groups were constructed by sire 
using stratified random sampling to ensure  
balanced representation of paternal half-sibs. 
Sires were ranked by the number of genotyped 
daughters with MeC records, and one sire from 
each group of ten was randomly assigned to one 
of the ten folds. For each fold, MeC phenotypes 
were excluded from the validation group, and 
GEBVs were predicted using the remaining 
data as the reference population. 
 
Accuracy calculation 
Prediction accuracies were obtained following 
the approach of Manzanilla-Pech et al. (2020). 
At first, adjusted phenotypes for MeC were 
computed as the sum of the estimated genetic 
and permanent environmental effects from the 
full dataset, providing a single phenotype per 
animal. Then, accuracies for cross-validation 
group were calculated as the correlation 
between the adjusted phenotype and the GEBV 
for MeC divided by the following formula 
adapted from Mrode (2013) computed to 
calculate the accuracy for repeated records. 

Accuracy = 𝑟𝑟

� 𝑛𝑛ℎ2

�1+(𝑛𝑛−1)𝑡𝑡

 

Here, the correlation between the adjusted 
phenotype and GEBV is denoted with 𝑟𝑟. The 
average amount of repeated records for each 
animal, specified per cross-validation group, is 
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defined as 𝑛𝑛, and ℎ2 (𝑡𝑡) is the heritability 
(repeatability) of MeC, taken from the variance 
component estimation (Table 2). Then, the 
accuracy for each scenario was calculated as the 
average of all cross-validation groups, and 
corresponding standard errors were obtained by 
dividing the standard deviation of accuracies 
across cross-validation groups by the square 
root of the number of validation groups, i.e., 10.  
 
Results & Discussion  
 
The estimation of variance components 
revealed moderate heritability estimates for 
MeC, FY, and ECM. Specifically, the 
heritability for MeC was estimated at 0.17 
(SE=0.03) in both PP and MP cows. In contrast, 
ECM in PP cows exhibited the highest 
heritability at 0.38 (SE=0.06). These findings 
are consistent with previously reported 
estimates in the literature, such as heritabilities 
ranging from 0.26 to 0.37 for ECM (Li et al., 
2018) and 0.14 for MeC (Manzanilla-Pech et al. 
2020). Moreover, ECM in PP cows showed the 

highest repeatability with 0.81 (SE=0.01), while 
MeC was found to have low repeatability in 
both PP and MP cows, i.e., 0.32 (SE=0.01). 
Genetic correlations between MeC and 
production traits were moderate to weak and 
varied by parity. In MP cows, the genetic 
correlation between MeC and ECM was 0.41 
(SE=0.09), and 0.37 (SE=0.09) between MeC 
and FY. In PP cows, these correlations were 
lower and accompanied by larger standard 
errors: 0.15 (SE=0.13) for MeC and ECM, 
and 0.18 (SE=0.13) for MeC and FY. 
Importantly, these positive genetic correlations 
are considered unfavorable, as they suggest that 
selection for increased milk production may 
inadvertently lead to higher methane emissions. 
A similar structure has been reported in 
previous studies, including a genetic correlation 
of 0.35 between MeC and ECM (Manzanilla-
Pech et al., 2022b) and a correlation 
of 0.27 between GEBV for MeC and FY 
(Lopez-Paredes et al., 2020). A detailed 
summary of the estimated genetic parameters is 
provided in Table 2. 

 
Table 2 Genetic parameters for methane concentrations (MeC), energy corrected milk (ECM) and fat yield (FY). 
Shown are the heritabilities (ℎ2), repeatabilities (𝑡𝑡), and the genetic correlation (𝑟𝑟𝑔𝑔) with MeC together with the 
corresponding standard errors in parentheses. 

Trait 
Primiparous Multiparous 

ℎ2 𝑡𝑡 𝑟𝑟𝑔𝑔 with MeC ℎ2 𝑡𝑡 𝑟𝑟𝑔𝑔 with MeC 
MeC 0.17 (0.03) 0.32 (0.01)  0.17 (0.02) 0.32 (0.01)  
ECM 0.38 (0.06) 0.81 (0.01) 0.15 (0.13) 0.24 (0.03) 0.74 (0.01) 0.41 (0.09) 
FY 0.31 (0.06) 0.74 (0.01) 0.18 (0.13) 0.20 (0.03) 0.65 (0.01) 0.37 (0.09) 

Regarding the different prediction scenarios, 
accuracies were generally higher for ssGBLUP 
than pBLUP models and for MP compared with 
PP cows. For PP cows, the increase from 
pBLUP to ssGBLUP was largest, i.e., 61.90% 
for the univariate scenario. Two scenarios 
resulted in a decrease in accuracies between 
pBLUP and ssGBLUP, i.e., -4.55% for scenario 
3a in MP cows and -3.58% for scenario 3b in 
PP cows (Table 3). However, the observed 
difference was only small and might be owed to 
the generally rather small dataset. Moreover, we 
found an increase in accuracy from univariate to 

multi-trait models, but only when phenotypic 
information on predictor traits was available for 
the animals in the validation population. For PP 
cows, the highest accuracy of 0.38 was found 
for the ssGBLUP scenarios 4a (SE=0.03), 4b 
and 2b (SE=0.05, respectively), whereas the 
lowest accuracy was observed for the pBLUP 
scenario 1 (0.21, SE=0.04). In MP cows, 
prediction accuracies ranged from 0.31 
(SE=0.04) in pBLUP scenario 2b to a 
maximum of 0.51 (SE=0.03) in ssGBLUP 
scenario 4a. A comprehensive overview of. 
 

170



Table 3 Overview over the different pBLUP and ssGBLUP scenarios` accuracies (Acc), corresponding standard 
errors (SE, in parentheses), and difference between pBLUP and ssGBLUP (in %). 

Traits included in 
GEBV estimation 

Scenario 

pBLUP ssGBLUP 
PP MP PP MP 

Acc 
(SE) 

Acc 
(SE) 

Acc 
(SE) 

Difference to 
pBLUP (in%) 

Acc 
(SE) 

Difference to 
pBLUP (in%) 

MeC 1 0.21 
(0.04) 

0.35 
(0.02) 

0.34 
(0.03) 

61.90 0.43 
(0.03) 

22.86 

MeC-FY 
2a 0.27 

(0.03) 
0.43 

(0.04) 
0.37 

(0.03) 
37.04 0.49 

(0.04) 
13.95 

2b 0.28 
(0.05) 

0.31 
(0.04) 

0.38 
(0.05) 

35.71 0.42 
(0.03) 

35.48 

MeC-ECM 
3a 0.24 

(0.03) 
0.44 

(0.04) 
0.36 

(0.03) 
50.00 0.42 

(0.05) 
-4.55 

3b 0.28 
(0.05) 

0.33 
(0.04) 

0.27 
(0.04) 

-3.58 0.41 
(0.04) 

24.24 

MeC-ECM-FY 
4a 

0.28 
(0.03) 

0.44 
(0.04) 

0.38 
(0.03) 

35.71 0.51 
(0.03) 

15.91 

4b 0.28 
(0.05) 

0.33 
(0.04) 

0.38 
(0.05) 

35.71 0.43 
(0.03) 

13.16 

GEBV: genomic EBV, pBLUP: pedigree-based BLUP, ssGBLUP: single-step genomic BLUP, MeC: methane 
concentrations, ECM: energy corrected milk, FY: fat yield, PP: primiparous, MP: multiparous 

 
prediction accuracies across all scenarios is 
presented in Table 3 

As anticipated based on previous results in 
dairy cattle (Hayes and Goddard, 2008; 
VanRaden et al., 2009), the accuracies of 
GEBV obtained using ssGBLUP were 
consistently higher than those obtained using 
pBLUP. This trend was observed across all 
scenarios and parities. Furthermore, multi-trait 
prediction scenarios yielded mostly higher 
GEBV accuracies compared to the univariate 
scenarios, which is in alignment with e.g. 
Tsuruta et al. (2011) for linear type traits. 
Notably, the improvement in prediction 
accuracy was most pronounced when 
phenotypic information for the predictor traits, 
ECM and FY, was available in both the 
reference and validation populations. This 
observation is consistent with the results of 
Pszczola et al. (2013), who reported enhanced 
prediction accuracy for dry matter intake when 
information on predictor traits was included in 
both populations. It is important to emphasize 
that the gain in GEBV accuracy for the goal trait  
 

 
in multi-trait genomic prediction depends on the 
extent of genetic correlations between the goal 
and predictor traits. Additionally, as noted by 
Jia and Jannink (2012), the relative heritability 
of the goal trait compared to the predictor traits 
also influences the extent of accuracy 
improvement. Specifically, the benefit of multi-
trait prediction is more substantial when the 
goal trait has a lower heritability, as the 
contribution of genetically correlated traits 
becomes more impactful. Interestingly, both PP 
and MP cows exhibited increased prediction 
accuracies when FY and ECM were included in 
the genomic prediction models, despite the 
relatively low and imprecise genetic 
correlations between MeC and the predictor 
traits in PP cows. This may be explained by the 
larger difference in heritability between MeC 
and the predictor traits in PP cows, which could 
enhance the relative contribution of the 
predictor traits to the accuracy of MeC 
predictions. 
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Conclusions  
 
In conclusion, using ECM and FY records can 
improve accuracy of MeC breeding values, 
especially for individuals without MeC records. 
However, it is important to keep in mind that the 
genetic correlations between MeC and both FY 
and ECM are unfavorable, indicating that 
selection for reduced methane emissions may 
reduce genetic progress in milk production. 
Since multi-trait prediction models are designed 
to exploit, but not to disentangle genetic 
correlations, selection based on these models 
may lead to genetic gains in MeC at the expense 
of economically important traits such as milk 
yield. Hence, further efforts are urgently needed 
to record methane emissions in more animals; 
to develop methane emission traits that are 
genetically independent from economically 
important, correlated traits like FY or ECM; and 
to design a multi-trait selection index including 
all economically important. 
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Abstract 
 
Dairy cows contribute to the emission of methane (CH4), a strong greenhouse gas, into the 
atmosphere. Reducing CH4 emissions from dairy cows will lower the impact of livestock on global 
warming. Breeding could be an effective reduction method, and estimating breeding values was the 
objective of this work. The CH4 emission of 11,595 dairy cows in 89 Dutch herds was measured with 
sniffers in parts per million (ppm) of exhaled air. The CH4 emission of 397 dairy cows from 1 Dutch 
herd was measured in grams per day (g/d) of exhaled air using GreenFeed. CH4 measurements took 
place from 2019 to 2025 (sniffer) and from 2022 to 2025 (GreenFeed). All observations during a week 
on a cow were averaged into week observations. There were 226,449 week observations for ppm and 
11,824 week observations for g/d. Genetic parameters were estimated with ASReml 4.2 using an 
animal multi-trait repeatability model. Heritabilities (h2) were 0.14, 0.14 and 0.19 for ppm and 0.34, 
0.37 and 0.37 for g/d, for respectively parity 1, parity 2 and parity 3 and later (3+). Genetic 
correlations between different parities for ppm were 0.74, 0.47 and 0.79, and for g/d 0.73, 0.38 and 
0.69, between respectively 1 and 2, 1 and 3+, and 2 and 3+. An overall breeding value was calculated 
for g/d based on traits in parity 1, 2 and 3+. By using a selection index, extra information was added to 
the overall breeding value in g/d. Traits in the selection index were kg milk production, kg fat 
production, feed intake and body weight with genetic correlations of respectively 0.39, 0.19, 0.20 and 
0.09. The average CH4 emission of a dairy cow was 435 gram per day with a genetic standard 
deviation of 36 grams per day. The heritability of the trait, the size of the genetic standard deviation, 
and the fact that genetic correlations with health traits were estimated to be small, makes breeding an 
effective and powerful tool to mitigate CH4 emissions from dairy cattle in the Netherlands and 
Flanders. The overall breeding value for CH4 in grams per day is published in the Netherlands and 
Flanders from April 2025 onwards. 
 
Key words: methane, methane emissions, sustainable dairy breeding, dairy, genetics 
 
Introduction 

  
In Europe, 10.8% of total greenhouse gas 
(GHG) emissions is from agriculture (EEA, 
2023). Methane (CH4) is the second most 
important GHG, with a warming effect that is 
about 28 times more powerful than carbon 
dioxide. CH4 has a half-life in the atmosphere 
of 12.4 years, and reducing CH4 production 
leads directly to less GHG in the atmosphere  

 
and is therefore an effective measure against 
climate change (Cottle et al., 2011; Pachauri et 
al., 2014).  

Around 85% of the CH4 coming from cows 
is formed by enteric fermentation in the rumen, 
and is emitted by breathing and belching. The 
other 15% of CH4 coming from cows is from 
manure storage and management. 

Breeding is one of the CH4 mitigation 
strategies to reduce emissions from dairy cows. 
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Selecting animals that emit less CH4 than 
average as parents for the next generation, 
leads to a future generation that emits less CH4 
than the previous generation. To know which 
animals have the lowest CH4 emissions, 
phenotyping animals on their CH4 emissions is 
necessary. 

 Phenotyping dairy cows on their CH4 
emissions is challenging, since those 
techniques are often expensive and have low-
throughput. Recently developed air analyzers, 
so-called ‘sniffers’, made it possible to 
phenotype dairy cows on their methane 
emission on a relatively large scale. Sniffers 
measure the CH4 emission of cows in parts 
CH4 per million of analyzed air. GreenFeeds 
are another CH4 measurement system, and are 
relatively high-throughput, although they can 
measure less animals compared to a sniffer, 
but with more accurate measurements. 
GreenFeeds measure the CH4 emission of 
cows in grams CH4 per day.  
 
Materials and Methods 

Data 
A total of 89 herds, located all over the 
Netherlands, were selected to phenotype their 
cows with sniffers (Carltech B.V., Maarheeze, 
the Netherlands). The sniffers were located in 
the milking robot (automatic milking system, 
AMS), so cows were phenotyped during 
milking. Each herd had only one sniffer 
installed, so on herds with more than one 
AMS, there was only one AMS equipped with 
a sniffer. Because there were not enough 
sniffers to phenotype on all herds at the same 
time, sniffers rotated between herds. The first 
herds started phenotyping in 2019, and by 
2025, all herds had a phenotyping period of at 
least two years. 

The sniffer was not connected with the 
AMS, so observations from the sniffer were 
merged with AMS data afterwards to assign 
the sniffer measurements to the correct cow, 
based on date and time.  

Next to the 89 herds that phenotyped their 
cows with sniffers, data was used from one 
herd in the Netherlands that phenotyped their 
cows with GreenFeeds (C-Lock Inc., Rapid 
City, South Dakota, USA). Three GreenFeeds 
were installed in this herd, and measurements 
started in 2022. 

There is diurnal variation in CH4 
emissions. Cows emit more CH4 after eating, 
and CH4 emissions are decreasing after a long 
period without eating. The diurnal variation is 
dependent on the management/ feeding 
strategy, and is therefore herd specific. 

All sniffer observations were corrected for 
diurnal variation (van Breukelen et al, 2023). 
In addition to correction for diurnal variation, 
GreenFeed observations were also corrected 
for GreenFeed unit since there were three units 
on the farm where measurements took place. 
The correction for diurnal variation and unit 
was based on the estimated effects for θ and 
uniti according to formula 1: 

                        1 

yijklmnop = µ + ∑(sin jθ2π + cos jθ2π) + uniti  
                      j=1 

+ year*seasonp + animalk + diml + parm + 
afcn + eo                                            (1) 

 
where yijklmnop is the measurement of CH4 
emission, j is the order of regression, and in 
this analysis an order of 1 was used, θ is a 
decimal fraction of the time of measurement 
during the day following a 24-h diurnal cycle, 
uniti is the GreenFeed unit i within the herd, 
year*seasonp is year and season p, animalk is 
the kth animal, diml is days in lactation l, parm 
is the mth parity, afcn is age at first calving in 
months n and eo is the residual error o.  

The residual error was a random effect, the 
diurnal variation was a covariable using a fifth 
order polynomial, all other effects were fixed 
effects. The estimated effects for diurnal 
variation are shown in figure 1. 
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Figure 1. Diurnal variation in CH4 emissions (g/d) 
on herd with GreenFeed measurements relative to 0 
a.m. 
 

All measurements on a cow during a week 
were averaged into a week observation for 
both sniffer and GreenFeed. 

In April 2025, 457,036 week observations 
for sniffer from 14,089 dairy cows on 89 
different herds were available, and 11,889 
week observations from the GreenFeed on 404 
cows were available.  

For the breeding value estimation, only 
herdbook animals were allowed and the 
minimum number of measurements in the 
week observation was four for sniffer and three 
for GreenFeed. After those selection criteria, 
226,449 weekly sniffer observations from 
11,595 cows with 1,380 different sires and 
11,824 weekly GreenFeed observations from 
397 cows with 154 different sires were 
selected for the breeding value estimation. 
 
Parameters         
Parameters were estimated for parity 1, parity 
2 and parity 3+ (parity 3 and higher) and were 
based on 139,098 weekly sniffer observations 
and 9,974 weekly GreenFeed observations. 
The total number of cows was 7,175. The 
distribution over the parities was 38,934, 
33,097 and 67,067 for sniffer observations, and 
was 5,450, 3,589 and 935 for GreenFeed 
observations, for respectively parity 1, parity 2 
and parity 3+. All cows were at least 87,5% 
Holstein. Parameters were estimated using an 
animal model, including a H-1 pedigree-
genomic augmented inverse matrix (Aguilar et 
al., 2010; Christensen & Lund, 2010). 

 
Model            
The statistical model used for methane 
emissions was split up into a model for parity 1 
and parity 2 and a model for parity 3+. The 
model for parity 1 and parity 2 is given in 
formula 2: 
Y1ijklmnopr = HYSi + DIMj + AACk + HETm + 
RECn + INBo + Ap + PMEl + Restijklmnopr          (2) 
 

The model for parity 3+ is given in formula 
3:  
Y2ijklmnopr = HYSi + DIMj + PARk + HETm + 
RECn + INBo + Ap + PMEl + Restijklmnopr          (3) 
 

In which: 
Y1 observation on methane for cows in 

parity 1 and parity 2; 
Y2 observation on methane for cows in 

parity 3+; 
HYS herd x year x season i (for sniffer 

observations) or farm x year x month i 
(for GreenFeed observations); 

DIM days in lactation j; 
AAC age at calving in months k; 
PAR  parity number k; 
HET heterosis effect m; 
REC recombination effect n; 
INB inbreeding effect o; 
A  additive genetic effect of animal p; 
PME permanent environmental effect l; 
Rest  residual term r of that which is not 

explained by Y1ijklmnop and Y2ijklmnop. 
 

The effects A, PME and Rest were random, 
the effects HET, REC and INB were 
covariables, the other effects were fixed.  
 
Correlations with other traits 
Genetic correlations between the methane 
traits and traits in the Dutch/ Flemish total 
merit index were estimated using the MACE 
procedure. The MACE procedure can be used 
to estimate genetic correlations between 
deregressed sire estimated breeding values 
(EBVs) of different traits (Larroque and 
Ducrocq, 1999; Schaeffer, 1994). The initial 
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function of the MACE procedure was to 
evaluate bulls for one trait across countries by 
Interbull (Interbull Centre, 2017).  

The genetic correlations were estimated for 
both the overall breeding value for CH4 ppm 
and CH4 g/d. The breeding values for the 
methane traits were estimated using a single 
step approach, and only Holstein bulls with a 
reliability of at least 40% were used to 
estimate genetic correlations. 
 
Results & Discussion 
 
Model effects 
Figures 2 to 4 show the effects of lactation 
stage, age at calving and parity number on 
methane emissions for gpd. These effects 
resulted from the model solutions.  

 
Figure 2. Effect of lactation stage in weeks on 
methane emissions in grams per day for parity 1, 
parity 2 and parity 3+. Solutions are standardized 
with week 10 within each lactation. 
 

 
Figure 3. Trendline of solutions for effect of age at 
calving in months on methane emissions in grams 
per day for parity 1. 

 
Figure 4. Effect of parity number on methane 
emissions in grams per day. 
 

For lactation stage, the difference between 
the top of the graph in mid-lactation and the 
bottom of the graph in early and late lactation 
stage is about 30 grams per day. The estimates 
per week are relative to week 10.  

Heifers calving at an older age have higher 
methane emissions. The effect of age at 
calving is about 15 grams per day difference 
between animals calving at a young and those 
calving at an old age. The effects are relative 
to a calving age of 27 months.  

For parity number, animals in parity three, 
four, five and six have higher methane 
emissions compared to the older cows in later 
parities. The difference is about 10 grams per 
day. The effects in the figure are relative to 
parity 3.  
 
Genetic parameters 
Genetic parameters were estimated for weekly 
CH4 emissions in ppm measured with sniffers 
(CH4 ppm) and weekly CH4 emissions in 
grams per day measured with GreenFeeds 
(CH4 g/d) for parity 1, parity 2 and parity 3+. 
Table 1 shows the heritabilities, repeatabilities 
and genetic standard deviations of the methane 
traits. Table 2 presents the genetic correlation 
between parities for the methane traits. 
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Table 1. Heritabilities (h2), repeatabilities (r2), and 
genetic standard deviation (σa) for methane traits in 
parity 1 (par.1), parity 2 (par.2), and parity 3+ 
(par.3). 
Trait  h2 r2 σa 
CH4 ppm par.1  0.14 0.49  21.1 
CH4 ppm par.2  0.14 0.55  23.3 
CH4 ppm par.3  0.19 0.55 28.3 
CH4 g/d par.1  0.34 0.60  43.2 
CH4 g/d par.2  0.37 0.60 50.4 
CH4 g/d par.3  0.37 0.60 50.4 
 

The heritabilities in table 1 shows that CH4 
emissions have a moderate heritability, with 
heritabilities between 0.14 and 0.19 for weekly 
measurements with sniffers and heritabilities 
between 0.34 and 0.37 for weekly 
measurements with GreenFeeds. Higher 
heritabilities for CH4 emissions measured with 
GreenFeeds are expected since measurements 
of GreenFeeds are of a higher quality.  

The measurements for CH4 ppm are re-
scaled and converted to a mean of 0, what 
makes that the standard deviations given in 
table 1 cannot directly be related to the 
measurements in ppm.  

The genetic standard deviations of CH4 g/d 
in table 1 are based on the real observations. 
These are different from the genetic standard 
deviation of EBV CH4 g/d on an absolute 
scale, as that one is taken into account the 
reliability of the EBVs.  
 
Table 2. Genetic correlations for methane traits 
between parity 1 and 2 (par.1-2), parity 2 and 3+ 
(par.2-3), and parity 1 and 3+ (par.1-3). 
           genetic correlations 
trait par.1-2 par.2-3 par.1-3 
CH4 ppm 0.74 0.79 0.47 
CH4 g/d 0.73 0.69 0.38 
 

The genetic correlations in table 2 between 
parity 1 and parity 2 and between parity 2 and 
parity 3+ are considered as moderate to strong 
genetic correlations with values in the range 
0.69 – 0.79.  

Between parity 1 and parity 3+, the genetic 
correlations were lower and considered as 

moderate with a value of 0.47 for CH4 ppm 
and 0.38 for CH4 g/d. This lower correlation 
can be expected based on the estimated 
correlations between the other parities. 

The genetic correlation between CH4 ppm 
and CH4 g/d was not estimated in this 
research, since the number of cows and 
observations was relatively small for CH4 g/d 
and there were no cows with observations on 
both CH4 ppm and CH4 g/d. This genetic 
correlation was already estimated for the 
Dutch population Holstein cows, based on a 
dataset with more CH4 g/d observations 
compared to this research, at 0.76 (van 
Breukelen et al., 2023). This genetic 
correlation was used in the genetic 
variance/covariance matrix between CH4 ppm 
and CH4 g/d for all combinations of parities. 
 
Overall breeding values 
Breeding values were estimated for both CH4 
ppm and CH4 g/d for parity 1, parity 2, and 
parity 3+. An overall breeding value was 
calculated for both traits based on the EBV in 
parity 1, parity 2, and parity 3 with a weight of 
respectively 0.423, 0.288, and 0.227.    
 
Correlation with other traits 
The genetic correlations with the total merit 
index and the underlying traits of this index are 
presented in Table 3. 
 
Table 3. Genetic correlations for overall methane 
traits with production, health, and conformation 
traits. (EBVs for methane traits: higher EBV is 
lower methane emission) 
trait CH4 ppm CH4 g/d 
NVI (total merit index) -0.00 -0.06 
milk production -0.08 -0.39 
fat production -0.28 -0.19 
protein production -0.01 -0.18 
longevity 0.12 0.03 
udder conformation -0.08 -0.01 
feet & legs 0.02 0.04 
fertility index 0.00 0.04 
udder health index 0.05 -0.07 
claw health 0.01 0.07 
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feed intake -0.11 -0.20 
body weight -0.03 -0.09 

 
Higher breeding values for methane reflect 

lower CH4 emissions, since lowering the CH4 
emissions is desirable. Therefore, the genetic 
correlation with production is negative, 
meaning that a higher breeding value for 
production corresponds to a lower breeding 
value for methane. Animals that are more 
productive, will on average emit more CH4.  

The correlations of CH4 g/d with the other 
traits are somewhat larger than the correlations 
of CH4 ppm with the other traits. This is 
expected given the fact that the GreenFeed is 
able to measure CH4 emissions more precisely 
compared to the sniffer.  

All correlations are small, only the 
correlation between CH4 g/d and milk 
production can be considered as moderate. The 
largest genetic correlations for CH4 g/d are 
found with milk production (-0.39), fat 
production (-0.19), protein production (-0.18), 
feed intake (-0.20), and body weight (-0,09). 
The correlations with health and conformation 
traits are small and very close to zero, meaning 
that it is possible to breed for less CH4 
emissions without affecting the health and 
conformation of the animals. 
 
Selection index 
Because the number of phenotyped animals is 
relatively small compared to other traits, the 
reliability of the EBVs is rather low. To 
increase this reliability, indicators traits are 
used in a selection index.  
 The methane trait used in the selection 
index is CH4 g/d because the unit of this trait 
makes it possible to calculate the genetic 
progress, reduction of CH4 emissions, as a 
quantity. This will also be the trait that is 
published to farmers and bull-owners. CH4 g/d 
does still contain information about CH4 ppm 
by using the genetic covariance between both 
traits. 
 Next to CH4 g/d, the other traits in the 
selection index are milk production, fat 

production, feed intake, and body weight. 
These traits have the largest correlations with 
methane, and that is also expected from a 
biological point of view.  
 Table 4 presents the genetic standard 
deviations and heritabilities of the traits in the 
selection index and the genetic correlations 
between them. The correlations between the 
traits are all estimated based on bull breeding 
values. The genetic standard deviations are 
based on the EBVs, with for relative EBVs a 
fixed genetic standard deviation of 4.5. 
 
Table 4. Genetic standard deviations of EBV (σa) 
and heritabilities (diagonal) and genetic 
correlations (below diagonal) of the traits in the 
selection index. 

trait σ a
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CH4 g/d (-) 4.5 0.56     
milk production (kg) 745 -0.39 0.58    
fat production (kg) 28 -0.19 0.50 0.57   
feed intake (kg) 1.37 -0.20 0.56 0.67 0.20  
body weight (-) 4.5 -0.09 0.05 0.15 0.41 0.60 
 
 The heritability for CH4 g/d, 0.56, is based 
on the heritability for the overall trait, which 
takes into account that there are multiple 
measurements on CH4 emissions, in multiple 
parities.  
 Daughter proven bulls will not profit much 
from the selection index. The reliability of 
their breeding value for CH4 g/d will, 
depending on the number of phenotyped 
daughters, increase with 0 to 3% by using the 
correlation structure with the other traits in the 
selection index.   
 Genotyped animals without progeny 
information on CH4 emission will increase 
their EBV with 5 to 10%, depending on their 
reliabilities for the traits in the selection index. 
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Publication 
The breeding value that is published by CRV 
is overall CH4 g/d after the selection index. 
This is a relative breeding value with mean of 
100, based on animals born in 2020, and a 
genetic standard deviation of 4.0 (assuming a 
reliability of 80%). 

The mean CH4 emission for Dutch and 
Flemish Holstein cows is 435 grams per day 
(van Breukelen et al., 2023), with a genetic 
standard deviation of 36 grams per day. This 
genetic standard deviation is on the scale of 
relative breeding values and is standardized to 
80% reliability, so 4 points breeding values is 
equal to 36 grams per day. The true genetic 
standard deviations are given in table 1. 
 Mating an average cow (EBV 100) with a 
bull with an EBV of 104 for CH4 g/d will, on 
average, result in offspring with EBV 102, 
which corresponds to 18 grams less CH4 
emissions per day.  

The average reliability for daughter proven 
bulls is 46.5%, with reliabilities up to 83%. 
Number of daughters is in the range of 1 – 576. 
The average reliability for genomic bulls is 
32.2%, with reliabilities up to 43%. These 
reliabilities will increase as more animals are 
phenotyped in the coming years.  

EBVs will be published for bulls with at 
least one phenotyped daughter, and for 
genotyped bulls if the bull-owners give CRV 
permission to do so. The EBV should have a 
reliability of at least 25%. If not, a parent 
average is calculated and published when the 
reliability of the overall EBV before selection 
index is at least 10%.  

Cow EBVs are published for all cows with 
phenotypic information and all cows with 
genotypic information. If not, parent averages 
are calculated and published if the reliability of 
the EBV after selection index is at least 10%.  

EBVs will only be estimated and published 
for Holstein Friesian (HF) cows, as there is 
only phenotypic data available from HF cows. 
 
 
 

Conclusions 
 
CH4 emissions in dairy cows can be measured 
large-scale. More than 14,000 dairy cows were 
phenotyped with sniffers in the period 2019-
2025 on 89 Dutch herds, and more than 400 
dairy cows were phenotyped with GreenFeeds 
in the period 2022-2025 on one Dutch herd.  

CH4 emissions of dairy cows is a heritable 
trait. CH4 ppm has a heritability of 
respectively 0.14, 0.14 and 0.19, while CH4 
g/d has a heritability of respectively 0.34, 0.37 
and 0.37, for parity 1, parity 2, and parity 3+.  

The EBV that is published is overall CH4 
g/d. A mean EBV, 100, corresponds to a CH4 
emission of 435 grams per day. The genetic 
standard deviation is 4 points and corresponds 
to 36 grams per day. Lower CH4 emissions are 
desirable, so EBVs above 100 reflects animals 
with below average daily CH4 emissions. 
Mating a cow with EBV 100 with a bull with 
EBV 104 results, on average, in offspring with 
EBV 102. The CH4 emission of the offspring 
will be, on average, 18 grams per day lower 
than her dam.  

More productive animals tend to have a 
somewhat higher CH4 emission. So, animals 
with high EBVs for production tend to have 
lower EBVs for CH4 emission on average. 
However, genetic correlations with production 
are small to moderate (-0.39, -0.19, and -0.18 
for respectively milk, fat, and protein), 
indicating that there is still enough variation 
between animals that makes it possible to 
select animals that are productive with lower 
CH4 emissions. Also higher feed intake and 
more body weight are related to somewhat 
higher CH4 emissions. So, animals with higher 
EBVs for feed intake and bodyweight tend to 
have lower EBVs for CH4 emission. Genetic 
correlations on EBVs are -0.20 and -0.09 for 
respectively feed intake and body weight. 

Genetic correlations with health, longevity, 
and conformation traits are estimated to be 
small. So breeding on lowering CH4 emissions 
from dairy cows will not affect the health, 
longevity, and conformation of the animals. 
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The reliabilities for bulls are ranging from 
25 to 83%, depending on their pedigree, 
daughter information, and genomic 
information. The average reliability is 46.5% 
for daughter proven bulls and 32.2% for 
genomic bulls. Reliabilities will increase when 
more cows are phenotyped. 

Estimating breeding values for CH4 
emissions made sustainable dairy breeding 
possible in the Netherlands and Flanders. 
Farmers can breed for dairy cows which emit 
less CH4 without compromising on production 
and health. 
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Abstract 
 
For several years, dairy cattle breeding in the Walloon Region of Belgium has increasingly focused on 
sustainability, including strategies for reducing methane emissions. Genetic selection provides a viable 
long-term approach to mitigating methane emissions while maintaining economic viability. The 
current study aimed to present a single-step genomic evaluation framework for methane efficiency 
(ME) based on predicted methane (PCH4) derived from milk mid-infrared (MIR) spectra and its 
integration into the existing genomic evaluation system for Holstein dairy cattle. The study 
incorporated data from 285 530 first-parity, 224 643 second-parity, and 160 226 third-parity Holstein 
cows across 1 520 herds. Genomic information from 9 631 animals, including 1 823 bulls, was 
integrated using a single-step GBLUP approach with a three-trait model (PCH4 across three parities). 
The predictive accuracy of the genomic evaluation framework was validated using a set of 2 038 
youngest genotyped animals. Approximate genetic correlations (AGC) were calculated between PCH4 
and 37 traits included in the Walloon breeding goal. Three methane efficiency (ME) indices were 
evaluated: relative ME based on production (RMEP), relative ME based on functionality (RMEF), and 
relative ME based on a global economic index (RMEG). The results demonstrated that the mean daily 
PCH4 ranged from 324 to 367 g/day, with mean daily heritability estimates between 0.20 and 0.23 for 
the first three lactations. The genomic prediction accuracy for PCH4-GEBV was 0.83. The AGC 
between PCH4 and the 37 traits ranged from -0.16 (milk yield) to 0.53 (fat percentage), highlighting 
the importance of balancing methane reduction with economic performance. Among the three ME 
indices, RMEG exhibited the most favorable balance, supporting its integration into genomic 
evaluations. Bulls with higher ME indices produced progeny with lower methane emissions, 
demonstrating the potential for genetic selection to contribute to sustainability goals. In light of these 
findings, we propose that INTERBULL considers methane for international genetic evaluations as 
many countries start to generate breeding values. These and other MACE breeding values would allow 
us to generate ME indices locally. Further discussions should focus on integrating reducing methane 
into breeding programs while maintaining productivity and functionality traits, as well as exploring 
strategies to incorporate direct methane measurements. Alternative thinking and use of tools like 
desired gain index will be required, but most important will be better knowledge about economic value 
of methane and its genetic relationship to other traits of interest. These initiatives will support 
sustainable dairy breeding strategies, aligning environmental and economic objectives for the future. 
 
Key words: methane index, mid-infrared spectra, genetic correlation, single-step random regression 
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Introduction 
 
Reducing methane emissions from dairy cattle 
is a critical component of sustainable livestock 
production. In the Walloon Region of Belgium, 
breeding programs have increasingly 
prioritized environmental sustainability 
alongside productivity. Genetic selection offers 
a long-term, cumulative solution to mitigate 
methane emissions without compromising 
economic performance. 

Genomic evaluations for methane 
emissions faces three major challenges in a 
breeding context: 
• Availability of adequate phenotypic data 

representing methane emissions. 
• Development of an adapted genomic 

evaluation system. 
• Reporting methane EBV to breeders in a 

way that allows to mitigate methane 
emissions while maintaining breeding for 
increased economic performances. 

Therefore, the objective of this document was 
to report the latest on how the Walloon Region 
is overcoming these challenges in the 
development of a genomic evaluation system 
for methane efficiency in Walloon Holstein 
cattle towards its current proceeding 
implementation. It will report complementary 
elements to submitted peer reviewed papers. 

 
Materials and Methods 
 
Used Data:  
Phenotypic, pedigree and genomic data were 
acquired in collaboration with Elevéo (Awé 
groupe, Ciney, Belgium).  
 
Methane Phenotypes: 
Direct measurements of methane using 
respiration chambers, which are widely 
regarded as the gold standard, are costly, labor-
intensive, and constrained by logistical 
challenges. Garnsworthy et al. (2019) 
compared chambers and various other direct 
methane measurement methods, noting that 

while each had its own strengths and 
limitations, all face significant barriers to 
really large-scale implementation. Breath 
sampling during milking and feeding (i.e., 
sniffers) was considered the one able to 
generate highest throughput but still needing 
high levels of maintenance of the installations 
that have to be distributed in many commercial 
farms. In contrast, mid-infrared spectrometry 
(MIR) is already used routinely in milk 
recording for phenotyping fat, protein and 
other milk components. Any novel predictions 
can be easily added as they exploit this 
existing infrastructure. Therefore, this enables 
low-cost, high-throughput phenotyping for 
CH₄ emissions, crucial for large-scale breeding 
programs. In order to differentiate from direct 
methane emission measurement MIR predicted 
methane emission will be called PCH4 (g/d). 

Milk samples were collected between 2007 
and 2023 during the official milk recording of 
Walloon Region of Belgium. The milk samples 
were analysed by MIR spectrometry 
(commercial instruments from FOSS) to 
generate MIR spectra. The milk spectra were 
standardized as described by Grelet et al. 
(2015). The development of MIR based PCH4 
is an ongoing process. In this study the best 
equation developed by Vanlierde et al. (2021) 
with coefficient of determination (R2), 
standard error, and root mean square error 
(RMSE) of cross-validation of 0.68, 57 g/d, 
and 58 g/d, respectively. The PCH4 records 
were extracted for Holstein cows divided into 
3 traits according to parity: PCH41 for the first, 
PCH42 for the second, and PCH43 for the 
third parity. Records on DIM lower than  
5 d and over 365 d were eliminated. The PCH4 
records were limited to 100 to 800 g/d. In total, 
methane data (PCH4, g/d) on 285 530 first-
parity (1 920 130 test-day records), 224 643 
second-parity (1 516 843 test-day records), and 
160 226 third-parity (1 072 725 test-day 
records) Holstein cows distributed in 1 520 
herds in the Walloon region of Belgium were 
used. On average, 6.72, 6.75, and 6.70 test-day 
records were available per cow per parity.  
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Pedigree Data: 
The cleaned pedigree from the Walloon 
genetic evaluation was used. Genetic groups 
were defined as in the evaluations by group of 
birth years, origin (Europe vs. USA) and sex. 
The pedigree used consisted of 439 214 
animals, including 13 834 bulls. 
 
Genomic Data: 
Genomic data of 30 554 SNPs was available 
for 9 631 animals, including 1 823 bulls (either 
directly phenotyped or represented in the 
analysed pedigree) from the routine genetic 
evaluation system of Holstein cattle in the 
Walloon region of Belgium. After applying all 
quality control measures, non-mapped SNP, 
SNP located on sexual chromosomes, SNP 
with Mendelian conflicts, and those with minor 
allele frequency less than 5% were excluded. 
Finally, data of 28 513 SNPs located on 29 
chromosomes were used. 
 
Genomic Evaluation System: 
A random regression test-day model (RR-
TDM) was implemented, using the existing 
model for milk, fat, and protein yields as 
reference. As the used phenotype PCH4 is 
available at each test-day for each milk-
recorded cow in the Walloon Region by direct 
substitution of milk, fat, protein by PCH4 as 
the target trait compatibility with established 
post-evaluation procedures was maintained, 
particularly for the estimation of reliability 
(REL). The model was applied jointly for first, 
second, and third lactations, treating each 
parity as a distinct trait. 
 
Variance Component Estimation 
Due to the large size of the dataset, variance 
components were estimated using a subset-
based approach. Six random subsets were 
generated by sampling 10% of herds with 
replacement. Each subset was analyzed 
independently, with corresponding pedigree 
data extracted to include an average of 45 343 
animals per subset. Variance components were 
estimated using the Expectation-Maximization 

Restricted Maximum Likelihood (EM-REML) 
algorithm. The final estimates for each 
component were obtained by averaging the 
results across the six subsets. Heritability was 
calculated daily across the lactation period and 
subsequently averaged. Genetic, permanent 
environmental, and herd-year variances were 
derived from the covariance matrices, while 
residual variances were modeled as trait-
specific. 
 
Genomic Evaluation and GEBV Computation 
The RRTDM was solved as a ssGBLUP Model 
integrating pedigree relationship and genomic 
relationship matrix using an iterative on-data 
preconditioned conjugate gradient solver, 
enabling allowing efficient computation of 
genomic estimated breeding values (GEBV). 
Daily genetic random regression solutions 
were averaged over a standard 305-day 
lactation period for each of the three lactations 
to derive GEBVs. 
 
Genomic Reliability (GREL) Estimation  
Initial reliability estimates were computed 
using pedigree-based REL, following the same 
single-trait procedure used for traditional 
production traits. These REL values were then 
transformed into genomic reliability (GREL) 
using the methodology described by Gao et al. 
(2023) and Ben Zaabza et al. (2022). This 
transformation replaced the pedigree-based 
relationship matrix (A⁻¹) with the genomic 
relationship matrix (H⁻¹) for genotyped 
animals. allowing for improved accuracy and 
the propagation of genomic data to non-
genotyped animals. 
 
Integrating Methane in a Breeding Program: 
There are several options to consider methane 
in a breeding program. Achieving a full 
integration in the breeding goal is currently 
limited by missing economic values—except 
in Denmark. A desired gain approach has also 
been considered, though it poses difficulties in 
optimization. We opted for a temporary 
solution, where animals would be ranked for 
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methane emissions while keeping productivity, 
functionality, or economic outcomes constant 
while maintaining breeding for increased 
economic performances. This approach leads 
to a residual-based efficiency trait, which can 
also be interpreted as correcting methane 
emissions for those specific performance levels. 
In this context, we tested three approaches: 
 
1. Relative to production traits, leading to a 

Residual Methane Efficiency Production 
(RMEP) index; 

2. Relative to functional traits, summarized 
in the Walloon V€F sub-index, leading to 
Residual Methane Efficiency Functional 
(RMEF); 

3. Relative to all traits, using the Walloon 
V€G global index, leading to Residual 
Methane Efficiency Global (RMEG). 
 

Higher values of RMEP, RMEF, and 
RMEG indicate more efficient animals. 
Therefore, these indices were expressed 
relative to all cows born in 2020 with records, 
standardized to have a mean of 100 and a 
standard deviation of 10. 

Needed genetic parameters were estimated 
using 1,020 bulls, each meeting the following 
criteria: a minimum of 30 daughters 
phenotyped for PCH4, a reliability (REL or 
GREL) of at least 0.50 for PCH4 but also 
across all other 37 investigated traits or indices 
evaluated in our routine. Approximate genetic 
correlations were estimated based on birth year 
trend adjusted GEBV of the selected bulls 
using the procedure proposed by Blanchard et 
al. (1983). 

 
Evaluating the Impact of Each Index: 
The impact of the use of the RMEP, RMEF, 
and RMEG indexes was evaluated by plotting 
the PCH4 averages by daughter groups. 
 
Comparing to other Genetic Evaluations: 
Some other countries have started to produce 
GEBV for methane emissions based on breath 

measurements. However, public access to this 
information remains limited. We are reporting 
here only for two countries, one relying on 
sniffers and GreenFeed systems (Country A) 
and one using sniffers (Country B). Even if the 
available data was limited, and a few bulls 
have GEBV were reliable enough for 
meaningful comparisons. Despite this, this 
small study allowed them to compare our 
GEBV that are only milk composition based. 
 
Results & Discussion 
 
Descriptive Statistics and Genetic Parameters 
Lactation curves of PCH4 for the first 3 parties 
are presented in Figure 1-A. The average daily 
PCH4 in the first parity was lower than in the 
second and third parities, ranging from 324 to 
367 g/d. Estimated heritability (h2) of PCH4 
throughout lactation for the first three parities 
is presented in Figure 1-B. The results show 
that h² varies over lactation, peaking around 
DIM 200. The mean (SD) h2 estimates for 
daily PCH4 were 0.23 (0.05), 0.21 (0.05), and 
0.20 (0.05) in the first, second, and third parity, 
respectively. Figure 1-C presents the genetic 
correlations between lactations, visualized 
across the whole lactation. For a major part of 
the lactations the observed genetic correlations 
were very high, close to 1. 

 
Figure 1. (A) Lactation curves for methane 
emissions (PCH4) in first (blue), second (red), and 
third (green) parity, (B) Heritability of PCH4 across 
lactation for each parity, and (C) genetic correlation 
across parities across the lactation. 
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Figure 2. Distribution of average methane emissions (PCH4) for the 1020 daughter groups, sires sorted 
according to their relative GEBV, the consistency of the impact of selection being reported through R2 values for 
RMEP, RMEF and RMEG. 
 

When comparing the impact of selection 
base on the distribution of daughter groups for 
the different indexes (Figure 2), the RMEG 
showed the strongest impact. 

For Country A, 382 of their published sires 
were in common to our 1020 animals. Most of 
these bulls were born in NLD (105), USA 
(103), CAN (57), DEU (46), ITA (23) and 
FRA (21). As illustrated in Figure 3, many of 
these bulls had low to very low reliabilities. 
This illustrates a common issue in methane 
phenotyping based on breath measurements, 
the scarcity of data. 

 

 
Figure 3. Distribution of reliability (REL) of 
common sires from Country A 

 
Figure 4.  Visualization of the Blanchard et al. 
(1983) adjusted rank correlation based on common 
sires from Country A. 
 

Figure 4 illustrates the rank correlations we 
observed with this population, based on 
different levels of foreign REL. Please note 
that we expressed PCH4 in its natural scale 
from low to high methane emissions, all other 
indexes, local or foreign, are defined from least 
to most desirable. After adjusting for the 
direction of correlation (SE) for the sires over 
REL of 0.50 were 0.41(0.19), 0.40 (0.21), 0.40 
(0.19) and 0.17 (0.23) for PCH4, RMEP, 
RMEF and RMEG. These moderately positive 
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values when comparing to a pure emission 
foreign EBV are encouraging that even totally 
different phenotyping strategies generate EBV 
that show the same tendency.  

Figures 5 and 6 show similar figures but for 
Country B. However, only 14 sires were in 
common therefore the presented results should 
be considered in a very cautious manner. 

 

 
Figure 5.  Distribution of reliability (REL) of 
common sires from Country B 
 
As shown in Figure 5 the mean level of REL in 
the common bulls is extremely low. 

 

 
 
Figure 6.  Visualization of the Blanchard et al. 
(1983) adjusted rank correlation based on common 
sires from Country B. 
 
After adjusting for the direction of correlation 
(SE) for the sires over REL of 0.10 were 
0.71(0.64), 0.27 (0.66), 0.61 (0.67) and 0.46 
(0.68) for PCH4, RMEP, RMEF and RMEG 
(Figure 6). Even if these results are pure 
indication of a common trend, this trend is 
again positive, showing rather similar results. 
 

Conclusions  
 
We presented in this paper companion material 
shown at the INTERBULL Meeting 2025 to 
more detailed publications illustrating the 
novel genomic evaluation system for Methane 
Efficiency in Walloon Holstein cattle. Despite 
having a completely different approach to 
other countries which use sniffer and / or 
Greenfeed technology we estimated EBV that 
showed similar positive direction in terms of 
rank correlations. 

We tested several residual-based efficiency 
indexes that could also be interpreted as 
correcting methane emissions for those 
specific performance as an interim solution for 
the integration of methane in breeding 
programs. The one relative to all currently 
selected traits, using the Walloon V€G global 
index, showed the most promising results and 
it the easiest to communicate. Indeed, it allows 
breeders to decide after selection the best 
animal based on V€G which one can be 
considered the most efficient. 
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Abstract 
 
Reducing methane emissions from dairy cows has been a key area of research in recent decades. This 
study aimed to identify genomic regions associated with methane intensity (MeI) in Chinese Holstein 
cattle. MeI phenotype was either predicted by mid-infrared spectra (MIRS, R2cv= 0.66) or directly 
measured by sniffer. Data were collected from eight commercial farms in Beijing between 2017–2020 
and 2024. A weighted single-step genome-wide association study (WssGWAS) was performed based 
on 1,120 genotypes, 4,995 phenotypic records, and pedigree of 10 911 individuals. 
The mean MeI was 7.67 ± 1.52 (g/kg milk yield). The estimated heritability of MeI was 0.15±0.04, and 
the repeatability was 0.42±0.02. Eleven 10-SNP windows harboring 19 protein encoding genes 
explained 2.17% of the genomic variance, with genomic regions on BTA1, 5, 8, 15, 19, 20, 24, 26, and 
27. Five of the windows were also associated with milk production or milk component traits, while one 
window contained the QTL linked to metabolic body weight. The region explaining the highest 
proportion of variance (0.34%) was located on BTA15, which included five protein encoding genes. 
Among them, SCN4B and MPZL3 are proposed as candidate genes. 
In total, the preliminary results show that MeI is a heritable, repeatable, and polygenic trait in Chinese 
Holstein population. The identified MeI-related genomic regions provide an insight for breeding dairy 
cows with lower methane emissions. 

 
Key words: dairy cattle, genetic parameter, WssGWAS, methane intensity

Introduction   
 
Methane emissions from ruminants are a 
significant contributor to greenhouse gas 
emissions in agriculture. In China, 
approximately 24% of total methane emissions 
come from the production of livestock (Wang et 
al., 2024). In the past 30 years, the contribution 
of dairy cattle has notably increased, rising from 
1.9% to 7% of the total emissions (Wang et al., 
2024). Reducing methane emissions from cows 
is an issue that requires worldwide attention. 
As we all know, animal breeding is a helpful 
method to reach this goal. To apply breeding 
techniques, large-scale recording of individual 
enteric methane emissions is essential (de Haas 
et al., 2017). However, methane emission is 

difficult to measure, and only few methods can 
costly generate large amount of data, such as 
sniffer and milk mid-infrared spectra (MIRS). 
With sniffer, individual cows can be recorded 
on a wide scale and at a reasonable cost 
(Garnsworthy et al., 2019). Using sniffers 
placed in the feed bin of automatic milking 
systems (AMS), this method measures the 
concentrations of gases. The present study also 
employed MIRS to predict the methane 
intensity of dairy cows.  It is simple, high-
throughput, and shows a great deal of 
potential for predicting methane emissions 
from dairy animals. The ability of MIRS to 
predict methane emissions has been widely 
reported (Coppa et al., 2022, Dehareng et al., 
2012). 
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Among the various methane emission traits, 
the definition if methane intensity (MeI) is 
methane output relative to output such as milk 
production (de Haas et al., 2017). Specifically, 
MeI measures the amount of methane (CH₄) 
emitted per kilogram of output product, such as 
milk (g/kg), and is strongly influenced by both 
the milk production levels and the energy 
required for this process. 

The main objective of this study is to 1) 
measure sniffer-based methane intensity and 
predict methane intensity based on MIRS in 
Chinese Holstein population; 2) estimate 
genetic parameters for methane intensity and, 3) 
identify candidate genomic regions for methane 
intensity. 

 
Materials and Methods  
 
Data and Sampling  
Animals 
Data were collected from July 2024 to 
November 2024 at two commercial farms in 
Beijing. A total of 208 cows were recorded 
during experiment.  
 
Breath Sampling  
All cows had access to an AMS (DeLaval 
International AB, Tumba, Sweden) for milking. 
Each barn was equipped with two AMS, but 
only one of them was installed with a sniffer. 
Cows were free to enter either AMS, with or 
without the sniffer (Guardian NG/Gascard, 
Edinburgh Instruments Ltd, Livingston, UK). 

Data segments with no record of a cow 
entering the AMS within 5 minutes before or 
after were classified as ambient values. The 
ambient values recorded on a given day were 
averaged and used as the daily ambient mean. 
While cows were inside the AMS, their heads 
could approach the gas collector positioned in 
the feed bin, as shown in Figure 1. Records of 
cows spending less than 2 minutes inside the 
AMS were excluded from the analysis. The raw 
data were preprocessed in four steps: (1) 
matching data from the AMS and sniffer to 
match a sniffer measurement with an 

identification number; (2) removing the first 
minute of each record; (3) using the ‘findpeaks’ 
function in R v4.3.2 to identify belching peaks. 
At least one peak must be found (exceed the 
mean ambient CH₄ concentration for the day by 
200 ppm); (4) deleting consecutive when CO₂ 
concentration dropped below the lower 25%  

Figure 1.  Gas collector in the feed bin 
 

quartile of the mean CO₂ concentration for more 
than 10 seconds, indicating that the cow’s head 
had left. 

After processing, ambient-corrected gas 
concentrations for CH₄ and CO₂ were obtained 
by subtracting the ambient mean from the 
measured concentrations. The mean values of 
the gas concentrations and their ratio were 
calculated for each measurement. Subsequently, 
a three-step data quality control process was 
employed: (1) daily averages for the ambient-
corrected gas concentrations were calculated 
after collecting all records for a single day. A 
twofold standard deviation quality control was 
used to eliminate records with excessively high 
or low gas contents; (2) records for 
measurement days with fewer than 10 cows 
were removed to avoid potential machine errors; 
(3) records with concentration ratios greater 
than the mean ± standard deviation of the 
concentration ratios for the same cow were 
removed.  

 
Milk Yield, Body Weight, and Feed 
For milk yield, the 3-day average was used as 
the daily milk yield (DMY). Milk composition 
data, including milk fat percentage, lactose 
percentage, and protein percentage, were 
collected from DHI. The closest DHI record to 
the methane measurement date (within 15 days) 
was selected for subsequent calculation. 
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Records with milk fat >7% or <2%, milk 
protein >5% or <2%, and daily milk yield <5 kg 
or >100 kg were excluded. Additionally, 
records with days in milk (DIM) <15 or >300 
were removed. Energy-corrected milk was 
calculated using the formula from Sjaunja et al. 
(1990). 

Body weight was expressed as weekly 
averages after a two-step quality control process: 
(1) cows whose body weight exceeded the 
upper or lower limits were removed (first parity: 
450–750 kg; 2+ parities: 500–900 kg); (2) 
measurements within a single parity that 
differed by >50 kg from the mean were 
removed. After this, weekly averages of body 
weight were calculated. Since first-parity cows 
have greater weight variability, their weekly 
body weight average only represented the 
current week's weight. In contrast, body weight 
data from cows of later parities can represent 
the averages of the current, previous, and next 
week’s body weight. 

Feed data was provided by farm. Descriptive 
statistics of individual information, daily milk 
yield, body weight and diet crude fat for dairy 
cows is shown in Table 1. 

 
Table 1: Descriptive statistics of individual 
information, daily milk yield, body weight and 
diet crude fat in Chinese Holstein cattle. 

Trait mean SD min max 

parity 2.46 1.33 1 7 

days in milk 132.81 77.81 15 299 
daily milk 
yield (kg) 42.85 9.03 17.14 66.48 

body weight 
(kg) 690.53 87.81 481 888 

diet crude fat 
(%DM) 5.58 0.42 4.91 6.42 

 
Methane Intensity 
Following the ‘Model 2’ developed by Kjeldsen 
et al. (2024), CO₂ production (CO₂P) was 
calculated. Subsequently, the methane and CO₂ 
concentrations from each measurement were 
averaged. Since the gases originated from the 
same breath, their concentrations were 
multiplied by their molecular weights before 

calculating the ratio to obtain the mass ratio 
(CH₄:CO₂). Methane intensity (MeI) was 
calculated as: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
𝐶𝐶𝐶𝐶₄:𝐶𝐶𝐶𝐶₂ × 𝐶𝐶𝐶𝐶₂𝑃𝑃

𝐷𝐷𝐷𝐷𝐷𝐷
 

 
Given the variability in methane emissions 

at different times of day, a single measurement 
cannot accurately reflect an animal’s true 
methane emission level. Therefore, weekly 
averages were used as the methane emission 
traits in this study. Weekly averages were 
calculated by retaining records from weeks with 
more than 4 measurements. Finally, 758 weekly 
averages were retained for subsequent analyses. 
 
MIRS Prediction 
Most of the milk spectral data were collected by 
the farm for DHI testing. In addition to the DHI 
sample collections, we also collected milk 
samples between two DHI samplings. All milk 
samples were analyzed using the same 
spectrometer (Banteley), which generates a 
spectrum of 899 wavelength transmittance 
values in the mid-infrared (MIR) region. The 
following spectral regions were retained for 
analysis, including 968.1–1 577.5 cm⁻¹, 1 
731.8–1 762.6 cm⁻¹, 1 781.9–1 808.9 cm⁻¹, and 
2 831.0–2 966.0 cm⁻¹ followed Grelet et al. 
(2021), leaving a total of 215 wavenumbers. 
The spectra were preprocessed using Savitzky-
Golay second-order derivatives, with spectral 
quality control conducted using pcout 
(Filzmoser et al., 2008). In addition to the MIRS 
data, individual information (parity, DIM, and 
DMY) were also included in the dataset for 
prediction. The data were processed to match a 
total of 227 records from 120 cows, which 
formed the training set (Dataset A).  
 
Prediction Equation Development 
Partial least squares regression (PLSR) was 
used to develop the prediction equation. Under 
10-fold cross-validation, the model achieved an 
R² (coefficient of determination) of 0.66 and a 
Root mean square error of prediction (RMSE) 
of 1.25. 
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Then the prediction formula was employed 
in the dataset B (21 772 records with MIRS and 
individual information) to obtain phenotypes 
for a larger population. Dataset A was contained 
by dataset B. To ensure the usability of the 
prediction equations, the Mahalanobis distance 
(Mahalanobis, 1936) was calculated for MIRS 
in dataset B. Only data with Mahalanobis 
distance within that of dataset A were retained. 
Predictive equations for methane emission traits 
were built based on the training set and applied 
to dataset B for quality control of predicted 
methane emission phenotypes. When the 
records within the same individual parity was 
less than 3, all values for that parity were 
deleted. Subsequently, the coefficient of 
variation (CV) was calculated for each cow in 
single parity. Records with a CV greater than 25% 
were removed, leaving a total of 4 995 records 
from 1 187 cows. 

 
Pedigree and Genotype 
The pedigree of the cows with phenotypic 
records were traced back as many generations 
as possible. The final pedigree included 10 911 
cows. 

A total of 1,120 cows were genotyped using 
the Illumina 150K Bovine Bead Chip (Illumina 
Inc.). Genomic quality control was performed 
using PLINK v1.90 software (Purcell et al., 
2007). Single nucleotide polymorphisms (SNPs) 
with minor allele frequencies lower than 0.1 or 
those with extreme deviations from Hardy–
Weinberg equilibrium (P-value < 10⁻⁶) were 
excluded. After quality control, a total of 109 
619 SNPs were used in the study. 

 
WssGWAS 
The (co)variance components were estimated 
using AI-REML and EM-REML procedure 
implemented in the AIREMLF90 package from 
BLUPF90 (Misztal et al., 2014). 

The variance components and genetic 
parameters was estimated based on the model: 

𝑦𝑦 = 𝑋𝑋1β+ 𝑋𝑋2𝜙𝜙 + 𝑍𝑍𝑍𝑍 + 𝑊𝑊𝑊𝑊𝑊𝑊 + e 
y was the vectors of methane intensity. 𝛽𝛽 was 
the vector of fixed effects for colostrum quality 

traits, including farm-season-year of calving 
(45 levels), parity (3 levels); 𝜙𝜙 was the 
regression coefficient of days in milk.  𝛼𝛼 was 
the vector of random additive genetic effects, 
following 𝛼𝛼~𝑁𝑁(0,𝐻𝐻𝜎𝜎𝑎𝑎2); 𝑝𝑝𝑝𝑝 was the permanent 
environment effect following 𝑝𝑝𝑝𝑝~𝑁𝑁(0, 𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝2 ); 𝑒𝑒 
was the vectors of random residual effects 
following 𝑒𝑒~𝑁𝑁(0, 𝐼𝐼𝐼𝐼𝑒𝑒2) ; 𝑋𝑋1 , 𝑋𝑋2 , Z , and 𝑊𝑊 , 
were the corresponding incidence matrices; 𝐻𝐻 
was the matrix of additive genetic relationships 
constructed from the pedigree and genotype; 𝜎𝜎𝑎𝑎2 
was the additive genetic variance; I was an 
identity matrix,  𝜎𝜎𝑝𝑝𝑝𝑝2  was the permanent 
environment variance, and 𝜎𝜎𝑒𝑒2 was the residual 
variance. The inverse of the H matrix (H−1) was 
calculated as follows: 

𝐻𝐻−1 = 𝐴𝐴−1 + �0 0
0 𝐺𝐺−1 − 𝐴𝐴22−1

� 

where 𝐴𝐴−1 is the inverse of the pedigree-based 
relationship matrix; 𝐴𝐴22−1  is the 𝐴𝐴−1  for the 
genotyped animals; and 𝐺𝐺−1is the inverse of the 
genomic relationship matrix. The G matrix was 
calculated according to(VanRaden, 2008): 

𝐺𝐺 =
𝑍𝑍𝑍𝑍𝑍𝑍′

2∑ 𝑃𝑃𝑖𝑖(1 − 𝑃𝑃𝑖𝑖)𝑀𝑀
𝑖𝑖=1

 

where 𝑍𝑍 is the matrix of genotypes adjusted for 
allele frequencies (0, 1, or 2 for aa, Aa, and AA, 
respectively); 𝐷𝐷 is a diagonal matrix of weights 
for SNP variances (initially 𝐷𝐷 = 𝐼𝐼 ); 𝑀𝑀  is the 
number of SNPs, and 𝑃𝑃𝑖𝑖  is the minor allele 
frequency of the ith SNP.  

The estimates of SNP effects and weights for 
the WssGWAS analyses (four iterations) for 
colostrum quality traits were obtained 
according to (Wang et al., 2014). The weight for 

each SNP was calculated as: 𝑑𝑑𝑖𝑖 = 1.125
�𝑎𝑎�𝑖𝑖�

𝑠𝑠𝑠𝑠(𝑎𝑎�𝑖𝑖)
−2

 
(VanRaden, 2008), where i is the ith SNP. The 
percentage of the total addictive genetic 
variance explained by the ith region was 
calculated as:  
𝑉𝑉𝑉𝑉𝑉𝑉(𝑎𝑎𝑖𝑖)
𝜎𝜎𝑎𝑎2

× 100% =  
𝑉𝑉𝑉𝑉𝑉𝑉�∑ 𝑍𝑍𝑗𝑗𝑢𝑢�𝑗𝑗10

𝑗𝑗=1 �
𝜎𝜎𝑎𝑎2

× 100% 

where 𝑎𝑎𝑖𝑖 is genetic value of the ith region that 
consists of contiguous 10 SNPs, 𝜎𝜎𝑎𝑎2 is the total 
additive genetic variance, 𝑍𝑍𝑗𝑗 is a vector of gene 
content of the jth SNP for all individuals, and 𝑢𝑢�𝑗𝑗 
is the marker effect of the jth SNP within the ith 
region. 
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Non-overlapping contiguous genomic 
windows that explained 0.15% or more of the 
total additive genetic variance were considered 
to be associated with the trait. Candidate genes 
were identified by examining genomic 
windows based on the ARS-UCD1.2. The 
biological functions of these genes, Gene 
Ontology (GO) terms (Ashburner et al., 2000) 
enrichment were identified using the R package 
“BiomaRt” (Durinck et al., 2009) and 
“clusterProfiler” (Wu et al., 2021). The 
genomic regions were compared to cattle QTL 
database (Hu et al., 2022).  

 
Results & Discussion  
 
As presented in Table 2, the average MeI was 
7.22 ± 1.99 g/kg in the current population. The 
predicted methane intensity closely followed 
the observed values, with a predicted MeI of 
7.67 ± 1.52 g/kg. 
 
Table 2: Descriptive statistics of methane intensity 
(MeI) and predicted methane intensity (PMeI) in 
Chinese Holstein cattle. 

Trait mean SD min max 
MeI 
(g/kg) 7.22 1.99 3.11 15.04 

PMeI 
(g/kg) 7.67 1.52 3.14 13.62 

 
Different MeI values have been recorded in 

earlier studies. In a mixed cow herd, MeI ranged 
from 3.0 to 36.0 g/kg, with an average of 13.5 ± 
3.92 g/kg reported by Niu et al. (2018). 
Similarly, in a population of French Holstein 
cattle, Fresco et al. (2023) reported a MeI of 
11.7 ± 2.6 g/kg. In this study, MeI was lower 
than those found in these studies, but it was 
closer to 8.61 ± 1.15 g/kg in dairy cattle 
reported by Lassen and Løvendahl's (2016). 

PMeI showed moderate heritability 
according to our research. The results indicate 
that the heritability estimate for PMeI was 
0.15±0.04 and the repeatability was 0.42±0.02. 
In previous study, MeI or PMeI heritability 
ranged from 0.04 to 0.35. In a population of 1 
091 Swiss Brown cows, Bittante and 

Cecchinato et al. (2020) observed a heritability 
of 0.12 ± 0.06, which is similar to our study. 
While Fresco et al. (2024) reported a heritability 
of 0.35 ± 0.04 using a very large dataset (n = 
167 514), Lassen and Løvendahl (2016) 
estimated a heritability of 0.21 ± 0.06 using a 
population of 3 121 cows. Higher heritability 
values than those obtained in our study were 
found in both of these studies. However, our 
result was lower such as the heritability of 0.04 
± 0.03 estimated by Manzanilla-Pech et al. 
(2022) using of 1 962 Danish Holstein cows. 
The breed, gas measurement techniques and 
equipment, and raising conditions of dairy cows 
are some of the variables that affect the 
heritability estimate of MeI or PMeI in various 
populations. The heritability estimates in the 
current population are in the medium range 
when compared to the findings of other studies.   

In this study, we identified eleven genomic 
regions on Bos taurus autosome (BTA) 1, 5, 8, 
15, 19, 20, 24, 26, and 27 that explained more 
than 0.15% of the genetic variance as Figure 2. 
These regions, which harbor a total of 19 
protein-coding genes, accounted for 2.17% of 
the genomic variance. The window that 
explained the highest genetic variance was 
located on BTA15, which explained 0.34% of 
additive genetic variance and contained five 
genes, including JAML, SCN2B, TMPRSS4, 
SCN4B, and MPZL3. Two of these genes were 
enriched by the significant GO terms, which 
were SCN2B and MPZL3. 

 

 
Figure 2. Proportion of the total additive genetic 
variance of 10-SNP genomic windows based on the 
weighted single-step genome association study for 
predicted methane intensity. Red points represent the 
windows exceed the 0.15% threshold of the total 
additive genetic variance. 
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Table 3: Quantitative trait loci reported for Bos 
taurus associated with genomic regions that 
explained more than 0.15% of the additive genetic 
variance for predicted Methane intensity 

Chr Regions 
(Mb) 

Explained 
genetic 
variance, % 

Associated 
trait  

1 20.03-20.29 0.20 MP 
5 44.96-45.20 0.15 MF, MY 
24 47.10-47.32 0.16 MF 
24 56.77-56.93 0.22 MP, BW 
26 19.74-20.23 0.19 MF, MP 

MP: milk protein, MF: milk fat, MY: milk yield, BW: 
body weight 
 
Additionally, we referred to the Cattle QTL 
database to examine potential QTL overlaps 
with genomic regions that explained more than 
0.15% of the additive genetic variance. Table 3 
shows five genomic regions containing QTLs 
associated with milk protein, milk fat, milk 
yield, and body weight. However, the 
relationships of MeI with these traits still needs 
to be further explored. 
 
Conclusions  
 
Methane intensity can be measured and 
predicted by milk mid-infrared spectra. It is a 
moderate heritable, polygenic trait in Chinese 
Holstein population. However, these are 
relatively preliminary findings, and further 
research is still necessary. 
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Abstract 
 
Longevity of dairy cattle is an important trait from an economic and welfare perspective, as well as from 
a societal and government perspective. For a farmer it is beneficial to keep older cows, as it will reduce 
costs of rearing. The Dutch government aims to reduce the environmental impact of livestock, and for 
that it is also beneficial to keep older cows. Older cows produce more on average, and feed is converted 
more efficiently. In the Dutch-Flemish genetic evaluation of functional longevity a random regression 
animal model with a fifth order Legendre polynomial is used, where within-herd production level is 
fitted as an explanatory effect. Published breeding values for longevity are partially based on predictor 
traits. The breeding values for milk production, as well as udder health, claw health and locomotion are 
added as predictor traits through selection index theory. In this paper the impact of the introduction of 
genetic evaluation of longevity is assessed. Over the past 25 years all statistics on longevity metrics have 
been favorable. Productive life increased with 337 days to 1,445 days for cows culled in 2024. Together 
with a reduced amount of youngstock, the rearing period reduced 40 days to 763 days. The mean number 
of calvings increased by 0.8 to 3.9 calvings. Lifetime production increased in 25 years by 14,329 kg to 
38,283 kg of milk (with 4.40% fat and 3.58% protein), resulting in 1,684 kg fat and 1,369 kg protein. 
Production per day of life increased by 4.8 kg to 17.1 kg of milk. Longevity is a result of management 
(e.g. feeding, housing and culling decisions), environment, and genetics. Genetically, longevity 
increased by 600 days, which suggests that the full genetic potential is not yet utilized. The strong 
increase of the genetic trend for longevity was supported by selection on udder health, claw health and 
feet & legs. Culling decisions can also be affected by governmental changes in regulations. The genetic 
trend is more consistent over the years than the phenotypic trend. Long-term trends show that all these 
factors together resulted in significant improvements for longevity and lifetime production. With the 
continuing improvement of production and health traits further improvement of longevity is expected. 
 
Key words: longevity, genetic evaluation, trends  

Introduction 
  
Longevity of dairy cattle is an important trait 
from an economic and welfare perspective, as 
well as from a societal and government 
perspective. For a farmer it is beneficial to keep 
older cows, as it will reduce costs of rearing. 
The Dutch government aims to reduce the 
environmental impact of livestock, and for that 
it is also beneficial to keep older cows. Older 
cows produce more on average, and feed is 
converted more efficiently. 

The genetic evaluation for longevity was 
introduced in 1999 based on a proportional 

hazard model and the published breeding value 
was for functional longevity, where functional 
longevity is longevity corrected for within-herd 
production level. The published breeding value 
changed in 2008 to true longevity, meaning that 
the adjustment for production was removed 
from the statistical model. In 2018 the statistical 
model was revised and changed to a random 
regression animal model, and true longevity is 
published. 

Since the introduction of the breeding value 
of longevity it has not been investigated how 
lifetime performance of Dutch and Flemish 
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cattle has evolved, and in this paper the impact 
of genetics on lifetime performance is assessed. 
 
Genetic evaluation 
  
Data 
Length of productive life is defined as the time 
from first calving to the last test date for milk 
production, before the animal died or was culled 
for slaughter; this also included dry periods. 
The analysed period is length of productive life 
until 72 mo after first calving. The data set is 
constructed from records of pedigree, lactations 
and movements of cows in the Netherlands and 
Flanders. Herdbook-registered cows from a 
dairy breed with a test-day record on or after 
January 1, 1988 are included for Dutch data, 
and on or after January 1, 2006 for Flemish data. 
Data up to February 14, 2025 are included in the 
most recent genetic evaluation of April 2025. 
Cows are required to have an age at first calving 
between 20 and 40 mo. If the first calving of a 
cow took place before the starting date of the 
study, the record is considered to be left-
truncated. Records of cows that are still alive at 
the time of data collection are considered to be 
right-censored. Records of cows that moved to 
another milking herd are also considered to be 
right-censored, if this herd is not participating 
in a milk recording scheme.  
Records are constructed for each month a cow 
is present in a herd, from first calving up to the 
month the cow is culled, or 72 mo, or when the 
cow is censored. A cow culled in month j has j 
– 1 records with score 100 (alive), and record j 
with score 0 (culled). Monthly records are 
treated as missing after culling. 

Additional selection criteria included: 1) 
data of a cow is used after a waiting period of 
120 days after first calving; 2) Culled heifers 
without a milk testing, mostly culled before the 
first milk test, present in a herd with milk 
recording, are included; 3) Herd-year-months 
need to have a survival rate of at least 70%; 4) 
Herd-year-months with 5 or more culled 
animals need to have a survival rate that is 
higher than the mean survival rate of the past 12 

months minus three times the standard 
deviation of survival of the past 12 months. 

 
Statistical model 
The genetic evaluation for the Netherlands and 
Flanders is a random regression animal model 
where survival per month is analysed: 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝐻𝐻𝐻𝐻𝐻𝐻_𝐿𝐿𝐿𝐿𝑖𝑖 + 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌_𝐿𝐿𝐿𝐿𝑗𝑗 + 𝐻𝐻𝐻𝐻𝐻𝐻𝑘𝑘

+ ℎ𝑒𝑒𝑒𝑒𝑙𝑙 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚

+ �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛

5

𝑞𝑞=0

𝑙𝑙𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜

+ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
where 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 : observation for survival in month o 

after first calving; mo 1 – 72; 
𝐻𝐻𝐻𝐻𝐻𝐻_𝐿𝐿𝐿𝐿𝑖𝑖  : fixed effect for herd-year-season x 

lactation-stage i; year-season observation, 
lactation split in 1, 2, 3+, stage of lactation 
split in mo 1-2, 3-9, 10+ and dry period; 

𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌_𝐿𝐿𝐿𝐿𝑗𝑗  : fixed effect for year-season x AFC 
x within-herd production level x lactation-
stage j; year-season of observation, AFC in 
months 20, 21, …, 34, 35+, within-herd 
production level is defined per 3 years and 
is divided in 5 classes of 20% each for 
predicted or realised age-corrected 305-day 
yield of kg fat and protein; 

𝐻𝐻𝐻𝐻𝐻𝐻𝑘𝑘  : fixed effect for herd size change k; HSC 
is calculated by comparing the number of 
cows present in a herd in a year with the 
number of cows in the same herd one year 
later. Seven classes are distinguished: 
shrinkage between 90 and 50%, shrinkage 
between 50 and 30%, shrinkage between 30 
and 10%, neither shrinkage nor growth over 
10%, growth between 10 and 30%, growth 
over 30%, and herds that were terminated 
(more than 90% shrinkage). 

ℎ𝑒𝑒𝑒𝑒𝑙𝑙  : covariable for heterosis l of animal n; 
𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚 : covariable for recombination m of 

animal n; 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛 : additive genetic random regression 

coefficient of animal n corresponding to 
polynomial q;  
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𝑙𝑙𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜 : covariates of order q Legendre 
polynomial for month o; 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 : random residual effect of 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 

 
Within-herd production level is fitted to correct 
for culling due to low production, which is 
assumed to be the major source of voluntary 
culling yielding EBV for functional longevity. 
 
Breeding values 
In the direct breeding value estimation breeding 
values for functional longevity are estimated, 
because survival per month is adjusted for 
within-herd production level in the statistical 
model. Bull owners and farmers are used to 
using the breeding value for true longevity. 
With a selection index true longevity is derived 
from functional longevity and the production 
traits kg milk, kg fat, and kg protein. 

Indirect information is used next to the direct 
information for longevity to increase the 
reliability of the breeding value longevity for 
young animals, as little direct information is 
available. Traits that are early available in life 
are preferred to increase the reliability, and for 
this the breeding values for subclinical mastitis, 
claw health and locomotion are used in a 
selection index. 
 
Results & Discussion 
 
The total data set for the routine genetic 
evaluation of longevity of April 2025 
comprised 481,058,418 records from 
14,292,149 animals in 44,328 herds. The 
pedigree included 16,834,548 animals 
including 226 phantom groups. 
 
Genetic trend 
The genetic trend for longevity for black & 
white Holstein cows is shown in figure 1. Since 
2000 the genetic level increased by 615 days. 
Up to 2010 the average increase per year was 17 
days, and since 2010 the increase per year 
increased to 37 days. 

 
Figure 1. Genetic trend for black and white Holstein 
cows in the Netherlands. 
 
Phenotypic trend 
The phenotypic trend for productive life for 
culled herdbook cows in the Netherlands is 
shown in figure 2. From 2000 to 2024 the 
productive life increased by 337 days from 
1,108 days to 1,445 days. This increase 
fluctuates over these 25 years. From 2000 to 
2008 every year there was an increase in 
productive life. After 2008 productive life 
stabilized until 2016. From 2017 to 2019 the 
productive life declined because of culling 
excess cows related to national phosphate 
regulation. Since 2019 the productive life 
shows a sharp increase of 200 days in just four 
years. In the last two years, 2023 and 2024, the 
increase in productive life leveled off, likely 
due to more culling due to blue tongue 
infections. 
 

 
Figure 2. Phenotypic trend for productive life for 
culled herdbook cows in the Netherlands. 
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Genetic vs. phenotypic trend 
The genetic trend and phenotypic trend both 
showed an increase since 2000. However, the 
phenotypic progress was 337 days, and the 
genetic progress was 615 days. Genetically the 
cows have the potential to get older than what is 
currently achieved. 
 The genetic trend for longevity shows a 
steady yearly increase with an acceleration 
since 2010 due to the introduction of genomics. 
The phenotypic trend shows more fluctuations, 
where especially the decline in the years 2017 
to 2019 showed that national regulations can 
have significant effect. Also, the increase in 
productive leveled off in 2023 and 2024 showed 
that the environment in the form of disease 
pressure (blue tongue infections) has a marked 
effect. 
 The sharp increase in productive life since 
2019 is the result of a change in replacement 
strategy of farmers. The incentive in change in 
replacement strategy is that it is more profitable 
to have a larger proportion of dairy cows 
compared to replacements. Genetically the 
cows are able to produce longer, and the sharp 
increase in productive life showed that cows are 
able to show their genetic potential. 
 Figure 3 shows the realized extra days for 
productive life for the daughters of black & 
white Holstein bulls born in 2012. The bulls are 
divided in four EBV classes. The daughters of 
the bulls with a breeding value longevity 
between -250 and 0 days had 1266 productive 
days after their first calving. Compared to the 
lowest EBV class these daughters have on 
average 112 days longer productive life. The 
daughters of bulls in the highest EBV class had 
1484 productive days. The achieved productive 
life corresponds well with the breeding value of 
the EBV class. The difference between the 
productive life of the daughters of the best and 
the lowest scoring bulls for longevity is 330 
days, and the difference in EBV is with 719 
days. The expected difference is half of the 
EBV when mated on average cows, and the 
phenotypic difference is close to half of the 
genetic difference. 

 
Figure 3. Realised extra days for productive life for 
daughters of black & white Holstein bulls born in 
2012 divided in four EBV classes. 
 
Change over time 
Previous research showed that longevity 
changed over time. Van Pelt et al. (2016b) 
showed that the culling for low production 
reduced phenotypically. To compare animals 
genetically over time it is preferred to account 
for within-herd production level (Van Pelt et al., 
2016a), as genetically functional longevity 
showed less or no bias over years. For this 
reason, the genetic evaluation is analysing 
functional longevity. 
 The genetic parameters used in the genetic 
evaluation are based on phenotypic data from 
1988 up to 2015. From the parameters genetic 
part-whole correlations can be derived as 
described in Van Pelt et al. (2015). The genetic 
parameters were re-estimated on a more recent 
data set with phenotypic data from 2008 up to 
2023. In figure 4 the part-whole correlations for 
functional longevity are shown for the current 
parameters and the re-estimated parameters. 
With the current parameters the genetic 
correlation of cumulative survival up to 6 
months after first calving with 72 months after 
first calving is 0.81, and then gradually 
increases. This shows that survival in early life 
is genetically different from survival later in 
life. With the re-estimated parameters based on 
more recent years the genetic correlations up to 
24 months after first calving with total survival 
up to 72 months are lower than with the current 
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parameters, and as low as 0.75. Over the years, 
survival in early life is genetically more 
different from survival in later life. 
 

 
Figure 4. Genetic part-whole correlations for 
functional longevity based on phenotypic data from 
1988 up to 2015 and from 2008 up to 2023.  
 
Lifetime performance statistics 
Over the past 25 years all statistics (CRV, 2024) 
on longevity metrics have been favorable 
(Table 1). Productive life increased with 337 
days to 1,445 days for cows culled in 2024. 
Together with a reduced amount of youngstock, 
the rearing period reduced 40 days to 763 days. 
The mean number of calvings increased by 0.8 
to 3.9 calvings. Lifetime production increased 
in 25 years by 14,329 kg to 38,283 kg of milk 
(with 4.40% fat and 3.58% protein), resulting in 
1,684 kg fat and 1,369 kg protein. Production 
per day of life increased by 4.8 kg to 17.1 kg of 
milk. The highest relative change of 61% was 
achieved for lifetime production kg fat + 
protein. This is a result of the underlying traits; 
the rearing period reduced (-5%), production 
days increased (+34%), and kg m/day increased 
(+19%).  
Longevity is a result of management (e.g. 
feeding, housing and culling decisions), 
environment, and genetics, as shown by the 
genetic and phenotypic trends. The genetic 
trend is also a result of the genetic response 
achieved by selecting on the Dutch/Flemish 
total merit index NVI. 
 

Table 1. Lifetime performance statistics of culled 
herdbook cows in the Netherlands in 2000 and 2024. 

 Culling year Change 
 2000 2024 Abs. Rel. 
Calvings (nr) 3.1 3.9 0.8 26% 
Production days 967 1,291 324 34% 
Herdlife (d) 1,957 2,238 281 14% 
kg m/day1 24.9 29.7 4.8 19% 
LTP kg f+p2,3 1,895 3,053 1,158 61% 
LTP kg m 24,044 38,283 14,239 58% 
Productive life(d) 1,108 1,445 337 30% 
Rearing period(d) 803 763 -40 -5% 
kg m/day of life 12.3 17.1 4.8 39% 
kg f+p/day of life 0.97 1.36 0.40 41% 

1kg m : kg milk, 2LTP: lifetime production, 3kg f+p : 
kg fat + protein 
 
 The breeding goal has evolved over time from 
only including production traits, followed by 
including and put more emphasis on longevity 
and health traits. All traits in the NVI have 
favorable genetic correlations with longevity, 
resulting in the highest genetic response for 
longevity from all breeding goal traits. 
 
Conclusions 
 
Phenotypically, longevity increased by 337 
days since 2000. Genetically, longevity 
increased by 600 days, which suggests that the 
full genetic potential is not yet utilized. The 
strong increase of the genetic trend for 
longevity was supported by selection on udder 
health, claw health and feet & legs. Culling 
decisions can also be affected by governmental 
changes in regulations. The genetic trend is 
more consistent over the years than the 
phenotypic trend. Long-term trends show that 
all these factors together resulted in significant 
improvements for longevity and lifetime 
production. With the continuing improvement 
of production and health traits further 
improvement of longevity is expected. 
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Abstract  
 
National selection indexes combining important traits are frequently used by dairy farmers, breeders, 
and A.I. companies to achieve their breeding goals. The Canadian dairy industry has made significant 
genetic progress with two national selection indexes, the Lifetime Performance Index (LPI) and Pro$, 
which are now double the rate compared to the pre-genomics era. Since its introduction in 1991 the LPI 
formula has changed alongside the expansion of national breeding objectives. With the introduction in 
recent years of genetic evaluations for its portfolio of traits related to sustainability, the timing was right 
for Lactanet to modernize several aspects of Canada’s LPI, effective April 2025. A key strategic change 
is the creation of six subindexes, which are each published on their own using a standardized scale with 
an average of 500 and standard deviation of 100. Subindexes include the Production Index (PI), 
Longevity & Type Index (LTI), Health & Welfare Index (HWI), Reproduction Index (RI), Milkability 
Index (MI), and Environmental Impact Index (EI). For the Holstein breed, the relative weights placed 
on these subindexes are 40% PI, 32% LTI, 8% HWI, 10% RI, 5% MI, and 5% EI.  The six other dairy 
breeds evaluated have differing relative weights in accordance with the respective breed objectives. A 
second important change is an increased focus on presenting the genetic response over the next five 
years that can be expected for each trait based on the average level of selection gain realized for LPI. 
While this approach recognizes the impact of direct inclusion of a trait in one of the six LPI subindexes, 
it also reflects the expected response for correlated traits. Defining six subindexes that contribute to LPI 
demonstrates the increased diversity of traits currently evaluated and acknowledges the continued 
expansion of Canada’s overall breeding goal for dairy cattle breeds. 
 
Key words: Lifetime Performance Index, subindexes, expected response  

Introduction 
  
Given the vast number of traits evaluated in 
dairy cattle breeding, most countries use at least 
one national genetic selection index to identify 
superior males and females in each breed. In 
Canada, the Lifetime Performance Index (LPI) 
was introduced in 1991 as the official ranking 
index for all seven dairy breeds, namely 
Ayrshire, Brown Swiss, Canadienne, Guernsey, 
Holstein, Jersey and Milking Shorthorn. A 
second national genetic selection index, named 
Pro$, was introduced in 2015 (Van Doormaal et 

al., 2015). With the relatively small population 
size of the Brown Swiss, Canadienne, Guernsey 
and Milking Shorthorn breeds in Canada, 
combined with the very high correlation (i.e.: 
over 85%) between the two national indexes, 
Pro$ values are only published for the three 
other breeds, Ayrshire, Holstein and Jersey. 

Since the introduction of LPI in 1991, the 
traits included, and their relative weights, were 
previously reviewed and modified seven times 
with the latest being in 2019. While the original 
LPI formula included only production (60%) 
and type (40%) traits, herd life and somatic cell 

203



score were included in 2001, and a Health & 
Fertility component was first introduced with 
the addition of daughter fertility in 2005. The 
formula changes in 2008, 2015 and 2019 all 
increased the relative emphasis on the Health & 
Fertility component compared to the Production 
and Durability components, which have been 
20:40:40, respectively, since 2019.  

Canada was among the first countries 
globally to introduce national genetic 
evaluations for Feed Efficiency in 2021 
(Jamrozik et al. 2021), which was then included 
in the Holstein LPI formula as an add-on trait 
starting in April 2022.  In April 2023, two more 
traits related to environmental sustainability 
were launched by Lactanet Canada. Body 
weight data, converted to metabolic body 
weight, is used as the input phenotype to 
produce single-step genetic evaluations for 
Body Maintenance Requirements (Fleming et 
al., 2023). Together with Feed Efficiency, 
selection aims to reduce on-farm feed costs. 
Lactanet Canada was the first country to use 
milk mid-infrared (MIR) spectral predictions of 
methane yield as input phenotypes for its single-
step genetic evaluation for Methane Efficiency 
(Van Doormaal et al., 2023; Oliveira et al., 
2024). With this portfolio of traits available to 
help farmers genetically select to reduce the 
carbon footprint of their herd, the timing was 
right to modernize the LPI formula to allow for 
the inclusion of traits related to environmental 
sustainability. 

There were multiple other goals underlying 
the need to modernize Canada’s LPI formula, 
including: 
• Reduce the mathematical nature of the 

formula and how to communicate it to 
breeders. 

• Replace the three LPI components with six 
subindexes to be published on their own as 
well as be combined into LPI. 

• Enhance the breeder understanding and 
language towards expected response by trait 
from index-based selection, instead of 
focusing on the specific traits included in the 
index and their relative weights. 

Materials and Methods 
 
Correlation Matrix and Expected Response 
Official genetic evaluations for bulls within 
each breed served as the basis for the analysis 
of correlations and expected selection response. 
For each breed, progeny proven sires included 
in the genetic base definition for each breed 
were combined with younger genomic bulls 
with at least 30 registered daughters in Canada 
but not progeny proven for production and type 
traits. A matrix of simple correlations among all 
traits and indexes was calculated based on the 
official genetic evaluations published for the 
group of bulls included for each breed. 

As described by Van Doormaal et al. (2015) 
for the development of Canada’s profit-based 
national selection index, Pro$, correlations 
between any given index and individual traits 
can be used to estimate the expected response 
for the trait resulting from selection for the 
given index. Technically speaking, this requires 
true genetic correlations, but the use of bull 
evaluation correlations leads to easier 
calculations and serves as an excellent proxy. 
Such expected selection responses are more 
relevant than the traditional use of relative 
weights on traits included in an index, which 
often ignore the underlying correlation matrix 
among all traits.  

To facilitate dairy farmer understanding of 
the concept of expected selection response, the 
bull evaluation trait correlations with the LPI 
national selection index were converted to units 
of expected genetic gain in the next five years. 
To accomplish this, the total genetic gain 
realized in Canadian cows and heifers born in 
the most recent 5-year period was calculated 
and then expressed in terms of standardized 
units based on the standard deviation of LPI 
values for Canadian females.  For each 
individual trait, the 5-year expected response 
from selection for LPI was estimated by 
multiplying the total realized standardized gain 
for LPI by the trait correlation with LPI and the 
trait standard deviation based on published cow 
evaluations.  
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Formulation of LPI Subindexes 
Since 2005, the Canadian LPI formula has 
included three components: Production, 
Durability and Health & Fertility. A key goal of 
the new modernized LPI formula was the 
development of six subindexes to better reflect 
the diverse groups of traits currently in Canada: 

• Production Index (PI) 
• Longevity & Type Index (LTI) 
• Health & Welfare Index (HWI) 
• Reproduction Index (RI) 
• Milkability Index (MI) 
• Environmental Impact Index (EI) 

 
For the development of each subindex by 

breed, consultations with each breed association 
were held to identify any specific traits for 
which they desired targeted gains for the future. 
For the Production and the Longevity & Type 
subindexes, breed associations and industry 
organizations agreed to implement only minor 
modifications. In addition to separating the 
former Health & Fertility component into the 
new Health & Welfare and Reproduction 
subindexes, there was also a desire to include 
new traits in each subindex based on the 
underlying correlation matrix. 

Given the increasing adoption of robotic 
milking systems in Canadian herds, which now 
represents one-quarter of milk-recorded cows, 
the industry agreed to develop a new 
Milkability subindex of LPI.  In addition, with 
the launch of three new traits aimed at reducing 
the carbon footprint of dairy farms, a new 
Environmental Impact subindex was developed 
and included in the LPI for Holsteins. 

 
Results & Discussion 
 
Following industry consultation including the 
comparison of results from various LPI 
scenarios, Table 1 represents the final relative 
weight on each of the six subindexes in the 
modernized LPI for the Holstein breed, as well 
as the resulting correlation between each 
subindex and LPI. Similar relative weights were 

used for building the LPI for the six other dairy 
cattle breeds evaluated by Lactanet but are not 
presented here. 

 
Table 1: Relative weight (%) of each subindex of the 
modernized LPI for Holsteins and their resulting 
correlation with LPI. 

 
 

The Production Index has the highest 
relative weight of 40%, which also yields the 
highest correlation with LPI of 0.83. The 
Longevity & Type Index represents 32% of the 
LPI formula and has a relatively strong 
correlation of 0.69 with LPI. Results for the 
Health & Welfare and Reproduction Indexes 
are of particular interest since their relative 
weights of 8% and 10%, respectively, result in 
LPI correlations of 0.57 and 0.39.  The lower 
LPI correlation for Reproduction stems from 
the underlying negative correlation between 
female fertility traits and other key traits in the 
LPI, especially milk yield and some key 
conformation traits. Both the Milkability and 
Environmental Impact Indexes are new 
subindexes of the LPI formula.  Based on 
discussions with industry organizations, a 
relative weight of 5% on each was 
implemented. As shown in Table 1, these 
weights yield a correlation with LPI that is near 
zero at 0.01 and 0.00, respectively. In both 
cases, exclusion of these new subindexes of LPI 
would have yielded a negative correlation and 
expected selection response, which is not 
desired.  In addition, for the Environment 
Impact Index the relative weight of 5% serves 
as a starting point to raise dairy farmer and 
industry awareness for the opportunity to 
genetically select for the underlying traits 
related to the carbon footprint of a dairy herd, 
even while there is no direct financial incentive 
to do so at the present time. 
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The 2025 update to the LPI formula 
represents the sixth significant modification 
since its inception in 1991. Figure 1 presents the 
evolution of traits that have been included by 
presenting them in groups aligned with the six 
subindexes included in the 2025 LPI formula 
for Holsteins. 

 
Figure 1: Evolution of the Holstein LPI formula 
expressed as relative weights (%) on traits grouped 
by the six subindexes of the 2025 modernized LPI. 

 
 

In the 1990s, the LPI formula only included 
production and type, with relative weights of 
60:40, respectively. Herd Life and Somatic Cell 
Score were added in 2001. Daughter Fertility 
was added in 2005 and then increased in 
emphasis in 2008. The updates in 2015 and 
2019 included higher relative weights on traits 
related to the current Health & Welfare and 
Reproduction subindexes, which therefore 
decreased the relative emphasis placed on the 
other subindexes, including production traits. 
Since 2015, however, the Production Index has 
maintained a 40% weight in the Holstein LPI, 
even with the addition of the new Milkability 
and Environmental Impact subindexes in 2025. 
The 2025 focus on estimates of expected 
response by trait resulting from LPI selection, 
rather than on traits included and their relative 
weights, slightly reduced the overall weight on 
traits related to the Health & Welfare and 
Reproduction subindexes (Figure 1). 
 
Production Index (PI) 
Figure 2 shows Fat and Protein Yields as the 
only two traits directly included in the 
Production Index, with relative weights of 60% 
and 40%, respectively.  The inclusion of only 
these two traits also applies for all other breeds. 

When selecting for LPI, however, five other 
traits related to the Production subindex are 
monitored as correlated traits, namely Milk 
Yield, Fat and Protein Deviations and Lactation 
Persistency.  
 

 
Figure 2.  Traits included in the Production Index 
(PI) of LPI for Holsteins, with their relative weights, 
and key correlated traits. 
 

In addition to the trait weights for the 
Production Index, Table 2 provides the 
resulting correlation that the direct and 
correlated traits have with LPI, given the 
relative weight of all six subindexes in Table 1. 
These correlations are also expressed in terms 
of the expected selection response (ESR) for 
each trait based on selection for LPI over the 
next five years.  
 
Table 2: Relative weight (%) of traits included in the 
Production Index (PI) of LPI for Holsteins, their 
resulting correlation with LPI, and the expected 
selection response (ESR) by trait over the next 5 
years resulting from selection for LPI. 

 
 

The results in Table 2 clearly demonstrate 
the importance of concentrating on expected 
response versus trait emphasis in any index.  For 
example, although Milk Yield has no direct 
weight in the Production Index, selection for 
LPI is still expected to result in over 500 kg of 
genetic gain for milk production in the 
Canadian Holstein population over the next five 

206



years, in addition to 42.1 kg and 28.0 kg for Fat 
and Protein Yields, respectively.  In a similar 
manner, selection for the yields of milk 
components, without any direct weight on milk 
production also results in relatively strong 
expected gains for Fat and Protein Deviations 
(Table 2). Without direct inclusion of Lactation 
Persistency in the Production Index for 
Holsteins, the resulting correlation with LPI of 
0.10 translates to little expected selection 
response but the ESR value is in the desired 
direction. 
 
Longevity & Type Index (LTI) 
The main goal of the Longevity & Type Index 
is to provide a subindex that allows dairy 
farmers the opportunity to select for increased 
longevity and functional conformation. For this 
reason, Mammary System, Feet & Legs and 
Herd Life have the highest direct emphasis in 
this subindex, with relative weights of 37% 
33% and 20%, respectively (Figure 3).   
 

 
Figure 3.  Traits included in the Longevity & Type 
Index (LTI) of LPI for Holsteins, with their relative 
weights, and key correlated traits. 

 
Rump and Dairy Strength both have relative 

weights of 5% for Holsteins to maintain the 
current genetic level of their underlying traits 
without targeting further genetic gain per se. 
Given the fact that overall Conformation is a 
composite index of the four major scorecard 
traits, it is monitored only as a correlated trait of 
this subindex. 

Given the relative weights of each trait in the 
Longevity & Type Index and the relative 
weights of each subindex in LPI presented in 

Table 1, the resulting correlations with LPI and 
the expected selection response (ESR) by trait 
are presented in Table 3. These results clearly 
show that applying a relative weight of only 
20% on Herd Life still yields the highest LPI 
correlation and an ESR of 3.4 units of Relative 
Breeding Value (RBV) for the next five years. 
Similar to the result discussed for Milk Yield 
under the Production Index, having no direct 
weight on Conformation still yields a 
correlation with LPI of 0.51 and also a relatively 
strong 5-year ESR of 3.2 EBV units. The key 
composite traits of Mammary System and Feet 
& Legs also show moderate correlations with 
LPI of 0.47 and 0.46, respectively, and 
associated levels of 5-year ESR. 
 
Table 3: Relative weight (%) of traits included in the 
Longevity & Type Index (LTI) of LPI for Holsteins, 
their resulting correlation with LPI, and the expected 
selection response (ESR) by trait over the next 5 
years resulting from selection for LPI. 

 
 
Health & Welfare Index (HWI) 
Compared to the previous Health & Fertility 
component of the LPI formula in Canada, the 
new Health & Welfare Index was separated out 
to facilitate the genetic selection and 
improvement for multiple traits related to 
disease resistance and animal welfare. With the 
goal of reducing the incidence of important 
dairy cattle diseases, Mastitis Resistance and 
Metabolic Disease Resistance are directly 
included in the new Health & Welfare subindex 
with relative weights of 47% and 27%, 
respectively (Bjelland et al. 2025), as shown in 
Figure 4.  Hoof Health is currently the only 
family of traits evaluated in Canada related to 
animal welfare but has a relative weight of 21% 
in this LPI subindex. While Somatic Cell Score, 
Metritis and Retained Placenta are correlated 
traits not directly included in the Health & 
Welfare Index, Cystic Ovaries is included with 
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a weight of 5% to achieve a desired selection 
outcome. 
 

 
Figure 4.  Traits included in the Health & Welfare 
Index (HWI) of LPI for Holsteins, with their relative 
weights, and key correlated traits. 
 

Mastitis Resistance is an index that 
combines Clinical Mastitis with Somatic Cell 
Score, which is an indicator of sub-clinical 
mastitis. For this reason, the LPI correlation 
with these two traits are very similar at 0.44 and 
0.46, respectively, and the 5-year ESR exceeds 
2 RBV points for both traits (Table 4).  
 
Table 4: Relative weight (%) of traits included in the 
Health & Welfare Index (HWI) of LPI for Holsteins, 
their resulting correlation with LPI, and the expected 
selection response (ESR) by trait over the next 5 
years resulting from selection for LPI. 

 
 

Compared to these two traits, even though 
Metabolic Disease Resistance has a lower direct 
weight of 27% in this subindex, it has a similar 
LPI correlation of 0.40 and ESR of 2.1 RBV 
points over the next five years. With a relative 
weight of 21%, Hoof Health has a relatively low 
LPI correlation of 0.27, which translates to an 
ESR of 1.4 RBV points after 5 years of LPI 
selection. 

In Canada, Lactanet provides genetic 
evaluations for three fertility disorders. For two 
of them, namely Metritis and Retained Placenta, 
positive correlations with LPI resulted even 

without direct emphasis in the Health & 
Welfare Index (Table 4). This stems from the 
positive correlations that these traits have with 
both Herd Life and Daughter Calving Ability, 
which are directly included in the modernized 
LPI formula. For Cystic Ovaries, however, 
which has a relatively low correlation of 0.34 
and 0.19 with the other two fertility disorders, 
respectively, direct inclusion with a 5% relative 
weight was decided to obtain the desired 5-year 
ESR of 1.0 RBV points. 
 
Reproduction Index (RI) 
The Reproduction Index focuses on 
improvement of traits related to female fertility, 
calving ease and calf survival (i.e.: reverse 
expression of stillbirth rate). Given the major 
importance of female fertility, the Daughter 
Fertility index has a relative weight of 90% and 
10% is allocated to Daughter Calving Ability 
(Figure 5). Calving Ability, which is an index 
that includes service sire traits for calving ease 
and calf survival, is monitored as a correlated 
trait to this LPI subindex. 
 

 
Figure 5.  Traits included in the Reproduction Index 
(RI) of LPI for Holsteins, with their relative weights, 
and key correlated traits. 
 

As shown in Table 5, even though Daughter 
Fertility has the highest emphasis in the 
Reproduction Index, Daughter Calving Ability 
has the highest correlation with the resulting 
LPI at 0.58, compared to 0.32 for Daughter 
Fertility. These correlations translate to 5-year 
ESR values of 2.8 and 1.6 RBV points, 
respectively. Without direct inclusion of 
Calving Ability in this subindex, the LPI 
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correlation slightly exceeds that of Daughter 
Fertility at 0.34 and the associated ESR is 1.9 
RBV points after 5 years of selection for LPI.  
 
Table 5: Relative weight (%) of traits included in the 
Reproduction Index (RI) of LPI for Holsteins, their 
resulting correlation with LPI, and the expected 
selection response (ESR) by trait over the next 5 
years resulting from selection for LPI. 

 
 
Milkability Index (MI) 
With the growing adoption of robotic milking 
systems, the objective of creating a new 
Milkability Index for inclusion in the LPI was 
to allow dairy farmers to specifically select for 
a group of traits related to milking ability and 
efficiency. As shown in Figure 6, Milking 
Speed and Temperament are directly included 
in the subindex, with relative weights of 25% 
and 18%, respectively. 
 

 
Figure 6.  Traits included in the Milkability Index 
(MI) of LPI for Holsteins, with their relative 
weights, and key correlated traits. 

 
Multiple descriptive type traits related to the 

udder and teats were also considered for direct 
inclusion. The result of various analyses led to 
the inclusion of Teat Length at 36%, Udder 
Depth at 15% and Udder Floor at -6%, with the 
negative value encouraging selection away 
from udders with a reverse tilt. Rear and Fore 
Teat Placement are considered as correlated 
traits. 

The relative weights used for directly 
including Milking Speed and Temperament in 

the Milkability Index do not, however, lead to 
strong correlations with LPI (i.e.: 0.03 and 0.10, 
respectively), and therefore high levels of ESR 
are not expected, as shown in Table 6.  
 
Table 6: Relative weight (%) of traits included in the 
Milkability Index (MI) of LPI for Holsteins, their 
resulting correlation with LPI, and the expected 
selection response (ESR) by trait over the next 5 
years resulting from selection for LPI. 

 
 
All five of the descriptive type traits 

considered for inclusion in this subindex are 
evaluated on an intermediate optimum scale 
whereby bull EBVs with higher numerical 
values (i.e.: either above or below zero) reflect 
sires that will move the breed toward one 
extreme or the other, with both being undesired. 
This expression scale means that correlations 
with these traits need to be carefully interpreted. 
The 15% emphasis on Udder Depth in the 
Milkability subindex results in a correlation 
with LPI of 0.31 based on the 5% relative 
weight of this subindex in LPI as shown in 
Table 1. Based on how this trait is measured by 
the classifiers and designated a linear score 
from 1 to 9, positive EBV correlations would 
lead toward more shallow udders instead of 
deeper. The 5-year ESR for Udder Depth of 2.0 
EBV units in the direction of shallow udders is 
the desired target to reduce problems in robotic 
and parlour milking systems. For Udder Floor, 
a negative relative weight of -6% was required 
to achieve a near-zero LPI correlation and ESR 
so that selection for LPI would not increase the 
frequency of reverse tilt udders, which are 
especially problematic with robotic milkers. 

Teat Length was a trait of particular interest 
since breeders and the industry have taken steps 
to mitigate the past trend towards shorter teats. 
For this reason, this trait receives the highest 
relative weight in the Milkability Index at 36%. 
Even with this emphasis, however, the resulting 
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correlation between Teat Length and LPI is -
0.19, which yields a 5-year ESR of 1.2 EBV 
units towards shorter teats. Without the 36% 
emphasis on this trait in this subindex, this 
suboptimal selection direction would be even 
stronger. During the industry consultation 
process, various relative weights for Teat 
Length were tested but an ESR toward shorter 
teats was a consistent result.  This is caused by 
the underlying correlation matrix between traits 
since Teat Length has a moderate negative 
correlation (i.e.: toward shorter teats) ranging 
from -0.20 to -0.28 with other traits directly 
included in the LPI, including Fat Yield, Herd 
Life, Udder Depth and Daughter Calving 
Ability. Without any direct inclusion of Rear 
and Fore Teat Placement in the Milkability 
Index, the correlation with LPI is either neutral 
or slightly favourable, at 0.03 and 0.15, 
respectively, to avoid selection towards teats 
that become wider apart (Table 6).  
 
Environmental Impact Index (EI) 
Since 2021, Lactanet introduced genetic 
evaluations for three traits directly targeting the 
reduction of greenhouse gas emissions 
produced by animals on dairy farms. These 
include Feed Efficiency and Body Maintenance 
Requirements, which reflect the volume of feed 
consumed, and Methane Efficiency that reflects 
methane yield independent of production levels. 
As shown in Figure 7, all three of these traits are 
directly included in the Environmental Impact 
Index with relative weights of 25%, 38% and 
37%, respectively, based on analysis reported 
by Richardson et al. (2025). 
 

The trait correlations with LPI and ESR 
based on five years of LPI selection are 
presented in Table 7. For Methane Efficiency 
and Feed Efficiency, the LPI correlations are 
relatively low but in the desired direction at 0.19 
and 0.09, respectively. Even with only 5% 
weight of this subindex in the current LPI, some 
favourable response is expected with 5-year 
ESR values of 0.9 and 0.5 RBV points. 
 

 
Figure 7.  Traits included in the Environmental 
Impact Index (EI) of LPI for Holsteins, with their 
relative weights, and key correlated traits. 
 
Table 7: Relative weight (%) of traits included in the 
Environmental Impact Index (EI) of LPI for 
Holsteins, their resulting correlation with LPI, and 
the expected selection response (ESR) by trait over 
the next 5 years resulting from selection for LPI. 

 
 

The same result is not found for Body 
Maintenance Requirements, which has an LPI 
correlation of -0.16 and an ESR of -0.8 after five 
years of LPI selection (Table 7). Fleming et al. 
(2023) developed the single step evaluation 
system for this trait using metabolic body 
weight as the phenotypic measure.  Resulting 
sire RBV are expressed such that higher values 
result in the selection of more moderately sized 
daughters. The genetic trend for this trait has 
been negative so inclusion in the Environmental 
Impact subindex of LPI is an important step to 
at least reducing the rate of the observed genetic 
trend.  As financial incentives are introduced in 
the future to encourage dairy farmers to reduce 
the carbon footprint of their herd, it is expected 
that this subindex will have higher emphasis in 
the LPI formula. 
 
Expression of LPI Subindexes 
Lactanet currently calculates genetic 
evaluations for over 100 individual traits and 
indexes. On its LactanetGen.ca website, which 
provides genetic information and associated 
tools, over 50 traits are displayed on each 
animal’s Genetic Evaluation Summary page.  
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In general, while some breeders have a keen 
interest in studying the detailed genetic profile 
of sires and the females in their herd, most dairy 
farmers are overwhelmed by the number of 
traits to consider for their selection and mating 
decisions. To simplify such decisions, each of 
the six subindexes of Canada’s modernized LPI 
formula are expressed on a standardized scale 
within each breed and can therefore be used as 
an overall trait on their own. As presented in 
Figure 8, each subindex has an average of 500 
and a standard deviation of 100 points based on 
the group of progeny proven sires that forms the 
genetic base within each breed.  For Holsteins, 
this includes proven bulls born in the most 
recent complete 10-year period (i.e.: for 2025 
includes bulls born from 2009 to 2019). The key 
advantages of this standardized scale include (a) 
easily identifies elite sires for each subindex 
(i.e.: 700 or higher), the higher range results in 
fewer animals tied at the same level, and (c) the 
higher average results in all animals in the 
active population of bulls and females have 
positive subindex values. 
 

 
Figure 8.  Scale of expression used for each LPI 
subindex within each breed. 
 
Conclusions 
 
The Lifetime Performance Index (LPI) was 
Canada’s first national genetic selection index 
introduced in 1991. At that time, only six traits 
were included to meet the breeding goal of 
balancing production and type with relative 
weights of 40:20. Over the past 30+ years, many 
new traits were introduced, and breeding 
objectives were broadened.  Most recently, the 
launch of genetic evaluations associated with 

environmental sustainability served as strong 
motivation to modernize the LPI formula for all 
seven dairy breeds evaluated in Canada. 

The new modernized LPI maintains focus on 
production traits with its Production Index, 
which is followed by the Longevity & Type 
Index in terms of relative weight.  The increased 
number of evaluations targeting selection for 
enhanced disease resistance led to the creation 
of a new Health & Welfare Index. The 
Reproduction Index was broadened to include 
calving performance traits in addition to female 
fertility. With the increase adoption of robotic 
milking systems, a new Milkability Index was 
created, which allows dairy farmers to 
specifically select for key traits in this area.  For 
the Holstein breed, a new Environmental 
Impact Index combines the three traits currently 
evaluated and was introduced in the LPI 
formula to increase awareness and initiate 
genetic selection for this novel family of traits. 
Within each breed the subindexes are expressed 
on a standardized scale to facilitate producer 
understanding and they are published alongside 
LPI to give increased visibility. 

An important shift with the modernized LPI 
is the focus towards the communication of 
expected selection response (ESR) achieved by 
selection for LPI, rather than concentrating on 
the list of traits included and their relative 
weight.  This approach is more appropriate for 
describing the rate of genetic change that can be 
expected by index selection and accounts for the 
underlying correlations among the traits and 
indexes. 
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Abstract 
 
The use of mating technologies, including genomic testing and sexed semen, has recently increased in 
the breeding programs of commercial dairy herds, along with the use of beef semen. We aimed to 
quantify the utilization of advanced mating strategies in US dairy herds and the influence of these 
strategies on genetic merit. Breeding records (n = 35,124,479) that resulted in successful pregnancies 
of cows and heifers by semen type (conventional dairy, sexed dairy, and beef) and records of genomic 
testing of female dairy cattle were extracted from the National Cooperator Database for the years 2008 
to 2023. Herds were categorized within year by semen type used and use of genomic testing of heifers 
and the genetic merit of heifers born in 2023 (n = 678,064) was compared by herd mating strategy. 
Female dairy cattle in the US are genotyped, on average, at 6 months of age. When the net merit of a 
genotyped heifer increased by one standard deviation, the odds that she remained in the herd through 
first lactation increased by 13%. Breeding values of net merit ($1,203) and most of the traits 
investigated were most favorable in heifers born in herds that used all mating strategies investigated 
(genotyping of heifers, and a combination of beef, sexed, and conventional semen). Calves born in 
herds that used a combination of sexed and conventional semen had the least net merit ($532) and 
generally had the least favorable breeding values across production, fertility, and longevity traits. 
Results confirm that the incorporation of advanced mating strategies has increased rapidly in US dairy 
herds. Heifers were more likely to enter the milking herd as their genomic merit increased and herds 
that incorporated all strategies investigated had the greatest genetic progress.  
 
Key words: Genomic testing, sexed semen, beef on dairy

Introduction 
  
Dairy cattle breeders have used artificial 
insemination for many decades; now newer 
tools, like genomic testing, allow for more 
precise breeding strategies. Following the 
inception of genomic selection, rapid genetic 
progress has occurred in the US dairy cattle 
population (Garcia-Ruiz et al., 2016; Guinan et 
al., 2023). Recent reports support that there has 
been a rapid increase in genotypes of dairy 
females (CDCB, 2025) and in dairy cattle being 
mated to sexed and beef semen (Lauber et al., 
2023).  

Multiple research groups have simulated the 
economic and genetic benefits of incorporating 

female genomic testing, sexed semen, beef 
semen, and combinations thereof into mating 
programs. For example, models suggest that 
using genomic information to select 
replacement heifers can reduce genetic lag 
through increased selection accuracy and 
selection intensity (Weigel et al., 2012; Calus et 
al., 2015). Likewise, selection intensity can be 
increased by mating genetically superior 
females to sexed semen, ensuring replacement 
heifers are born to the best cows (Weigel, 2004; 
De Vries et al., 2008). Combining sexed semen 
with genomic testing of heifers increased the 
rate of genetic progress because more heifers in 
a herd increased room for selection (Calus et al., 
2015).  
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Because of the added value beef x dairy 
calves have over dairy bull calves, economic 
models suggest that profitability can be 
maximized in dairy mating programs when 
sexed semen and beef semen are selectively 
used, though not in herds with poor 
reproductive performance (Pahmeyer and Britz, 
2020; Cabrera, 2022). Additionally, as 
proportions of sexed and beef semen increased, 
genetic lag was reduced (Hjortø et al., 2015; 
Clasen et al., 2021). Using genomic testing to 
inform selective use of sexed and beef semen 
further reduced genetic lag, though economic 
gains were similar in models that did not use 
genomic testing (Hjortø et al., 2015; Clasen et 
al., 2021).  

The combined use of genomic testing, sexed 
semen, and beef semen in US dairy herds and 
their influence on genetic progress has yet to be 
quantified. We aimed to characterize the 
utilization of advanced breeding strategies in 
US dairy herds by quantifying genotyping of 
replacement heifers, and the use of 
conventional, sexed, and beef semen, and 
combinations thereof. Further, we sought to test 
the hypothesis that herds that use combinations 
of advanced breeding tools produce 
replacement dairy calves with greater genetic 
merit than those using exclusively conventional 
semen.  
 
Materials and Methods 
 
The data used in this study was accessed from 
the National Cooperator Database, managed by 
the Council on Dairy Cattle Breeding (CDCB). 
The phenotypes, genotypes, and pedigree used 
in the US national dairy cattle genetic 
evaluation and this study included phenotypes 
of reproductive events (Format 5), herd test-
date records, and genotypes of females born in 
the US. 

Predicted breeding values (PBV) on the 
lifetime net merit (NM$ index and PBV of traits 
evaluated in all dairy breeds from the August 
2024 official national genetic evaluation were 
extracted. All dairy breeds were included in this 

study, including crossbred animals. Heifers and 
cows were classified by the breed base PBV are 
reported on (Ayrshire, Brown Swiss, Guernsey, 
Holstein, Jersey, or Milking Shorthorn), when 
relevant.  
 
Heifer genotypes 
Between 2008 and 2023, a total of 5,683,150 
individual female dairy cattle born in the United 
States were genotyped. The earliest instance of 
genotyping was retained to determine the initial 
age a farmer intended to genotype a female calf.  
 
Breeding strategies 
Breeding events of cows and heifers that were 
extracted from Format 5 reproductive records 
submitted by dairy records processing centers. 
Events that resulted in full-term pregnancies, 
verified by a calving event that occurred within 
breed average gestation length ± 14 days were 
retained. Data submitted from herds that use 
less than 80% AI were removed. Miles et al. 
(2023) recently reported that there are no 
Format 5 breeding records associated with 97% 
of calves born via embryo transfer (ET). Due to 
these data flow and quality issues, we did not 
attempt to quantify calvings from ET events and 
animals conceived through ET were removed 
from the data. Retained AI breeding events that 
resulted in calvings between the years 2008 and 
2023 (n = 35,124,479) were used to quantify 
changes in semen type use over time. 

A subset of the genotyped females (n = 
982,536) was examined to determine the 
proportion of genotyped heifers that remained 
in the herd they were born in through their first 
calving. For inclusion, cattle had to be 
genotyped as heifers (≤24 months of age) to 
allow for a culling decision to be made prior to 
their first calving. Likewise, calves were 
required to be born prior to 2022 to provide 
adequate opportunity to become cows. To fairly 
determine that a heifer reached first lactation, 
only animals born in herds that had at least one 
DHIA test in 2023 and 2024 were included. 
Genotyped calves that began their first lactation 
in the same herd they were born in were denoted 
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as stay = 1, while those that started their first 
lactation in a different herd or had no associated 
lactation records were denoted as stay = 0. 

Breedings were classified by 4 semen types: 
conventional dairy-breed semen, sexed (X-
sorted) dairy-breed semen, conventional beef-
breed semen, and sexed (Y-sorted) beef-breed 
semen. Breeding strategies were categorized by 
herd-year and defined to capture both genomic 
testing of heifers and types of semen used to 
conceive the calves born within the herd-year. 
Herds were binned by semen type within year 
as follows: conventional (CON), where calves 
born were exclusively conceived with 
conventional dairy-breed semen; beef and 
conventional (BC), where calves born were 
conceived with conventional dairy-breed semen 
or with beef-breed semen that could be 
conventional or sex-sorted; sexed and 
conventional (SC), where calves born were 
conceived with sex-sorted or conventional 
dairy-breed semen; beef, sexed, and 
conventional (BSC), where calves born were 
conceived with sex-sorted or conventional 
dairy-breed semen or beef-breed semen. 
Additionally, SC and BSC herds that utilized 
genomic testing (GT) were considered those 
that genotyped any heifers born in the year 
observed and were binned separately by semen 
type as GT-SC, and GT-BSC. 

To compare the genetic merit of heifers by 
herd breeding strategy calving events, dairy 
heifer calves born in 2023 (n = 678,064) were 
categorized by the breeding strategy of the herd 
they were born in.  

 
Statistical analyses 
The effect of genetic merit on whether a 
genotyped calf was sold prior to first lactation 
was evaluated with following binomial 
generalized linear mixed model: 

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑝𝑝

(1− 𝑝𝑝)�
=  𝜇𝜇 + 𝛽𝛽1 𝑁𝑁𝑁𝑁𝑖𝑖 + 𝛽𝛽2𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗

+ ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
where p = the probability of yijkl = 1, where y = 
heifer stayed in herd through first lactation; µ 
= model intercept; β1 = regression coefficient 

of stay on NM$; β2 = regression coefficient of 
stay on age genotyped; herdk = the random 
effect of the herd the heifer was born in k (herd 
1 to herd 2,030); and εijkl  = residual error.  

The odds ratio (OR) of a heifer staying in 
the herd when NM$ increased by 1 SD was 
generated with a 95% CI. 

Merit index PBV and PBV of individual 
traits of heifer calves born in 2023 were 
compared by herd mating strategy with the 
following linear mixed model: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝑀𝑀𝑀𝑀𝑖𝑖 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑗𝑗 + 𝐵𝐵𝐵𝐵𝑘𝑘 + 𝑆𝑆𝑙𝑙 +
ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚(𝑀𝑀𝑀𝑀𝑖𝑖) + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  

where y = calf PBV; µ = model intercept; MSi 
= mating strategy used by the herd the calf was 
born in i (CON, BC, SC, BSC, GT-SC, GT-
BSC); lactj = dam parity j (1, 2, 3, 4, or ≥5); 

BBk = the breed base PBV of the heifer calf are 
reported on k (Ayrshire, Brown Swiss, 
Guernsey, Holstein, Jersey, or Milking 
Shorthorn); Sl  = the random effect of season 
calf was born in two-month intervals (1 to 6); 
herdm = the random effect of herd m (herd 1 to 
herd 5613) nested within mating strategy i; and 
εijklm = residual error.  

Differences in least squares means were 
Tukey-Kramer adjusted for multiple 
comparisons. Statistical analyses were 
performed with SAS (9.4). Data visualization 
was conducted in R (v. 4.4.1) using the ggplot2 
package (Wickham, 2016). 
 
Results & Discussion 
 
Heifer genotypes 
In 2008, 68% of female dairy cattle genotyped 
were 24 months or older; average age at 
genotyping was 42.4 months (Figure 1). By 
2009, just less than 1/3 of females were 2 years 
of age or older when genotyped. The proportion 
of heifers (≤ 24 mo. old) genotyped increased 
each year. In 2023, average age at genotyping 
was lowest at 5.5 months. Over all 15 years of 
data, average age at genotyping was 6.3 ± 8.5 
months. 
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Figure 1.  The age US female dairy cattle were 
genotyped as the percentage of total females 
genotyped in a year.  
 

Nearly all genotyped females in the US were 
genotyped as heifers, which aligns with 
recommendations in the literature to maximize 
economic return of genomic testing. In 
simulated data, selecting females for breeding 
by GEBV resulted in a gain in NM$, following 
deduction of the cost of genotyping, over 
selecting females based on parent average 
(Weigel et al., 2012). However, the increase in 
genetic merit was reduced when females were 
genotyped as cows, thus, authors recommended 
genotyping calves and heifers for the greatest 
return on investment (Weigel et al., 2012). By 
genotyping youngstock, farmers can also 
leverage genomic information to make mating 
decisions for an animal in future parities, which 
Hjortø et al. (2015) demonstrated increases the 
economic returns of genotyping.  

The odds that a genotyped heifer calf stayed 
through first lactation when NM$ increased by 
1 SD of the mean ($511) increased by 13.6% 
(OR = 1.136 [1.131,1.141]). We expected that 
greater NM$ would increase the likelihood that 
a heifer stayed in the herd, but the magnitude is 
smaller than anticipated. This may indicate that 
management strategies implemented with 
genomic results vary across herds. In a scenario 
where a herd utilizing genomic testing has 
surplus heifers, culling excess heifers with the 
least genetic merit is a logical selection strategy. 
However, some herds may choose to market 

their genetically elite heifers as breeding stock 
while retaining females with lower genetic 
merit for use as embryo recipients or for mating 
with beef semen.  

Figure 2. The proportion of annual calvings in US 
dairy herds by service sire semen type. 

Breeding strategies 
Over 90% of the calves born from 2008 to 2015 
were conceived with conventional semen, with 
most of the remaining of calves conceived with 
sexed dairy semen (Figure 2). In 2016, 1% of 
the calves born were beef-sired and the 
proportion of calves conceived with sexed 
semen grew to 10%. By 2019, calvings to beef 
service sires grew to 9%, and calvings to sexed 
dairy semen grew to 21%. The proportions of 
calvings to beef and sexed semen continued to 
grow through 2023, when the calves born were 
conceived with nearly equal proportions of 
beef, sexed, and conventional semen. 
Additionally, in 2023, about 0.5% of calvings 
resulted from insemination with sexed (Y-
sorted) beef semen to produce terminal beef × 
dairy steers. Lauber et al. (2023) reported a 
similar year-over-year increase in proportion of 
US Holsteins and Jerseys mated to beef and 
sexed semen from 2019 to 2021.  
 
Calf genetic merit 
Calves born in GT-BSC herds had the greatest 
NM$ while calves born in SC herds had the 
least (Table 1). The NM$ breeding value of 
calves born in GT-BSC was $240 greater than 
calves born in BSC herds. A smaller difference
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Table 1. Breeding values of heifers born in 2023 by the mating strategy1 used by the herd they were born in. 

 Herd mating strategy2  
 CON BC SC BSC GT-SC GT-BSC SE 
n heifers  
(n herds) 

25,264 
(1,117) 

26,684  
(786) 

32,902  
(891) 

279,271  
(1,810) 

17,604  
(231) 

296,335 
(778) 

- 

PBV        
Net merit, $ 678d 857c 532e 963b 678d 1203a 37 
Milk, kg 849c 991b 689d 1,019b 714d 1,091a 34 
Fat, kg 30.4d 37.1c 25.1e 42.1b 31.4d 51.6a 1.6 
Protein, kg 27.7d 32.7c 23.1e 35.2b 25.9de 40.1a 1.1 
Somatic cell score 2.90b 2.87c 2.93a 2.86c 2.90b 2.82d 0.01 
Productive life, mo. 3.01d 3.80c 2.57e 4.44b 3.53c 6.01a 0.19 
Livability, % -0.13c 0.53b -1.19d 0.62b -1.04d 1.26a 0.16 
Daughter pregnancy rate, % -0.97bc -0.85ab -1.21d -0.81a -1.23cd -0.71a 0.09 
Cow conception rate, % -0.50d -0.17c -0.98e 0.10b -0.86e 0.60a 0.12 
Heifer conception rate, % 1.83d 2.01c 1.78d 2.35b 1.85cd 2.82a 0.09 
Early first calving, days 8.34d 9.63c 6.97e 10.19b 6.83e 11.36a 0.28 
Body weight composite 0.51b 0.29c 0.86a 0.26c 0.87a 0.00d 0.06 
Udder composite 0.90d 0.85d 1.39b 1.03c 1.69a 1.11c 0.06 
Feet and leg composite 0.54b 0.42c 0.90a 0.48bc 1.05a 0.42c 0.05 
1All included model effects, including herd mating strategy, were significant at P < 0.0001. 
2CON = calves born to conventional semen only; BC = calves born to beef and conventional semen; SC = 
calves born to sexed and conventional semen; BSC = calves born to beef, sexed, and conventional semen; GT-
SC = calves born to sexed and conventional semen and some heifers were genotyped; GT-BSC = calves born 
to beef, sexed, and conventional semen and some heifers were genotyped. 
a,b,c,d,e Values within row with different superscript are different at P < 0.05. 

 ($106) in heifer calf NM$ existed between 
BSC herds and BC herds, while NM$ of calves 
born in BC herds was $179 greater than that of 
calves born in CON and GT-SC herds. 

The PBV of production (milk, fat, protein, 
and somatic cell score), longevity (productive 
life and livability), and fertility (daughter 
pregnancy rate, cow conception rate, heifer 
conception rate, and early first calving) traits of 
heifer calves generally ranked in the same order 
of NM$ by herd breeding strategy. Across these 
trait groups, breeding strategies from most to 
least favorable genetic merit ranked as follows: 
GT-BSC, BSC, BC, CON, GT-SC, and SC 
(Table 1). This is expected because these traits 
are included in the NM$ index (VanRaden et 
al., 2021). 

An unexpected result was that calves born in 
CON herds had similar or greater NM$ and 
PBV of production, fertility, and longevity traits 
than heifers born in GT-SC and SC herds. The 
use of sexed semen in the dairy herd is expected 
to increase the rate of genetic progress by 
increasing selection intensity on the dams of 

cows selection pathway (Weigel, 2004; De 
Vries et al., 2008). Increased genetic progress 
with sexed semen use is clear for GT-BSC and 
BSC herds but not in GT-SC and SC herds. We 
theorize that this is due to the breeding goals of 
SC and GT-SC herd differing substantially from 
the herds using other breeding strategies 
investigated. 

Among type trait composites, genetic merit 
of body weight composite (BWC) ranked by 
herd mating strategy similarly to that of NM$. 
Heifers born in GT-BSC herds had the most 
favorable (least) BWC PBV and those in SC 
and GT-SC herds had the least favorable (Table 
1). Conversely, heifers born in GT-SC herds 
had the greatest PBV for udder composite and 
feet and legs composite, followed by calves 
born in SC herds (Table 1). This may suggest 
that SC and GT-SC herds are selecting 
primarily for improvement in type traits, while 
herds utilizing other breeding strategies select 
for genetic improvement in many economically 
relevant traits. In NM$, increased BWC PBV is 
not economically favorable because heavier 
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cows require additional feed for growth and 
maintenance (VanRaden et al., 2021). 
However, breed association classification 
scores do not penalize animal size and, in elite 
cattle shows, tall, large-framed cows are often 
favored. Thus, in herds prioritizing selection for 
conformation, greater BWC may not be 
considered unfavorable.   
 
Conclusions 
 
Genomic testing of heifer calves and the 
incorporation of sexed and beef semen in 
mating programs have increased rapidly in US 
dairy herds. On average, female dairy cattle in 
the US are genotyped at 6 months of age. The 
odds that a genotyped heifer remained in the 
herd through first lactation increased slightly 
(by 13%) when her NM$ PBV increased by 
$511, suggesting that knowledge of genetic 
merit from genotypes may have informed 
replacement selection. Heifers born in herds 
that used all mating strategies investigated 
(genotyping of heifers, and a combination of 
beef, sexed, and conventional semen) had the 
greatest genetic merit when measured on the 
four merit selection indexes and across most 
PBV investigated. Calves born in SC and GT-
SC had the least genetic merit across 
production, fertility, and longevity traits but had 
the greatest merit for udder and feet and legs 
conformation, perhaps due to different breeding 
objectives. Dairy herds that combine advanced 
mating strategies generally produce genetically 
superior replacement heifers. 
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Abstract 
 
Heat stress is a significant and growing challenge for the Italian dairy industry, adversely affecting milk 
production, fertility, and animal welfare. This study presents a renewed genetic evaluation for heat 
tolerance in Italian Holstein cattle, expanding upon a previous 2021 index that focused solely on milk 
yield. The primary objective was to develop a more comprehensive selection tool by incorporating five 
production traits: milk yield (kg), fat yield (kg), protein yield (kg), fat percentage, and protein 
percentage. Test-day production records were augmented with meteorological data from 137 weather 
stations across Italy to calculate a 7-day average Temperature-Humidity Index (THI) for each record. A 
repeatability mixed model was first employed to identify the specific THI thresholds at which each of 
the five traits begins to decline. Subsequently, a random regression mixed model was implemented to 
estimate genetic parameters and calculate Estimated Breeding Values (EBVs) for both general 
production merit and specific heat tolerance. THI thresholds were identified for all traits, with milk yield 
declining above a THI of 70. Heritabilities for heat tolerance traits were found to be low to moderate, 
ranging from 0.12 for fat yield to 0.37 for protein percentage, indicating sufficient genetic variation for 
selection. An aggregate index, the Heat Tolerance Index (IHT), was developed by assigning economic 
weights to each trait Heat Tolerance EBV. Validation results demonstrated the index's efficacy: 
daughters of high-IHT bulls (+1 SD) lost 0.91 kg/d less milk during summer compared to daughters of 
low-IHT bulls (-1 SD). This renewed evaluation provides a robust tool to select for more resilient 
animals, offering a tangible strategy to mitigate economic losses and improve animal welfare in a 
warming climate. 
 
Key words: heat tolerance, genetic evaluation, Holstein, THI, milk production, regression 

Introduction 
 
Heat stress poses a substantial threat to the dairy 
industry worldwide, leading to significant 
reductions in milk yield, impaired reproductive 
performance, and compromised animal welfare. 
As global temperatures continue to rise, these 
challenges are becoming increasingly 
prevalent, particularly in Mediterranean 
climates like in Italy. The economic 

consequences of heat stress are severe. In Italy, 
with a population of approximately one million 
Holstein cows, summer-related production 
losses are estimated to be around 1.5 kg of milk 
per cow per day over a 180-day period, 
culminating in an annual loss of approximately 
270,000 tons of milk. 

While management strategies such as 
cooling systems can alleviate some effects, they 
represent a recurring cost. Genetic selection 
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offers a cumulative and permanent solution by 
breeding cows that are naturally more resilient 
to heat stress. In 2021, a heat tolerance index 
based solely on milk yield was introduced for 
Italian Holsteins (Finocchiaro et al., 2022). To 
enhance the selection process, a more robust 
and comprehensive evaluation was desired. 

The objectives of this study were therefore 
to: 1) expand the genetic evaluation for heat 
tolerance to include five key production traits: 
milk (kg/d), fat (kg/d and %), and protein (kg/d 
and %); 2) determine the specific Temperature-
Humidity Index (THI) thresholds at which these 
traits begin to decline; 3) estimate the 
heritability of heat tolerance for each trait; and 
4) develop and validate a new aggregate 
selection index (IHT) to improve heat resilience 
in Italian Holstein cattle. 
 
Materials and Methods 
 
Data Source and Preparation 
Test-day production records for milk, fat, and 
protein yields from first, second, and third 
lactation Italian Holstein cows were obtained 
from the national database of the Italian 
Holstein Friesian and Jersey Breeders 
Association (ANAFIBJ). 
 Meteorological data, including daily 
maximum temperature and relative humidity, 
were collected from 137 weather stations across 
Italy for the period starting in 1994. Herds were 
assigned geographic coordinates based on their 
municipality, and each herd was linked to an 
average of 2.3 nearby weather stations, with an 
average distance of 13.5 km. For each test-day 
record, a corresponding Temperature-Humidity 
Index (THI) was calculated using the formula 
from Kelly and Bond (1971). To account for the 
cumulative effects of heat, a 7-day average THI 
preceding the test day was used for all analyses. 
 
Statistical Analyses 
THI Threshold Identification 
To identify the critical THI value above which 
production traits decline, a repeatability model 

was fitted using ASReml software. The model 
was: 

 
𝒀𝒀 = 𝑯𝑯𝑯𝑯𝑯𝑯 + 𝒀𝒀𝒀𝒀 + 𝑫𝑫𝑫𝑫𝑫𝑫 ∗ 𝒂𝒂𝒂𝒂𝒂𝒂 ∗ 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

+ 𝑻𝑻𝑻𝑻𝑻𝑻 + 𝒂𝒂 + 𝒑𝒑𝒑𝒑 + 𝒆𝒆 
 

where Y is the phenotype for a given trait; HYS 
is the fixed effect of herd-year-season of test 
day; YC is the fixed effect of year of calving; 
DIM*age*parity is the fixed effect for the 
interaction of days in milk, age at calving, and 
parity (1, 2, 3); THI is the linear regression on 
the THI value; a is the random additive genetic 
animal effect; pe is the random permanent 
environmental effect; and e is the random 
residual. 
 
Genetic Parameter Estimation 
A random regression model was used to 
estimate genetic parameters and breeding 
values for heat tolerance using MiX99 software. 
The model equation was: 
 
𝒀𝒀 = 𝑯𝑯𝑯𝑯𝑯𝑯 + 𝒀𝒀𝒀𝒀 + 𝑫𝑫𝑫𝑫𝑫𝑫 ∗ 𝒂𝒂𝒂𝒂𝒂𝒂 ∗ 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑+ 𝒂𝒂

+ 𝜶𝜶�𝒇𝒇(𝑻𝑻𝑻𝑻𝑻𝑻)� + 𝒑𝒑𝒑𝒑
+ 𝜷𝜷(𝒇𝒇(𝑻𝑻𝑻𝑻𝑻𝑻)) + 𝒆𝒆 

 
The fixed effects are as described above. The 

function f(THI) models the heat stress effect as 
a linear slope only when the THI exceeds the 
predetermined threshold for that trait:  
𝑓𝑓(𝑇𝑇𝑇𝑇𝑇𝑇)

= � 0, THI ≤  THIthreshold
THI −  THIthreshold, THI >  THIthreshold

 

 
The random effects include the general 

additive genetic merit a, the specific genetic 
effect for heat tolerance α(f(THI)), the 
permanent environmental effect pe, and the 
permanent environmental effect related to heat 
tolerance β(f(THI)). 
 
Heat Tolerance Index (IHT) 
Estimated Breeding Values (EBVs) for heat 
tolerance (α) were calculated for all five 
production traits. These individual EBVs were 
then combined into an aggregate Heat 
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Tolerance Index (IHT). The weights assigned to 
each trait were: 45% for protein kg, 25% for 
milk kg, 15% for fat kg, 10% for protein %, and 
5% for fat %. The final IHT EBVs were 
standardized to a mean of 100 and a standard 
deviation of 5. 
 
Results & Discussion 
 
THI Thresholds and Genetic Parameters 
The analysis identified distinct THI thresholds 
at which different production traits begin to 
decline (Table 1). Milk yield was the most 
resilient, with a decline observed only when the 
THI exceeded 70. Protein and fat components, 
both in kilograms and percentage, were affected 
at lower THI values, with thresholds ranging 
from 52 to 59. This suggests that metabolic 
changes affecting milk composition occur 
before a substantial drop in milk volume. 
 
Table 1: THI thresholds for decline in milk 
production traits. 

Milk production trait Threshold level 
Milk (kg/d) 70 
Protein (kg/d) 59 
Fat (kg/d) 52 
Protein % 55 
Fat % 52 

 
The estimated heritabilities (h2) for heat 

tolerance and genetic correlations are presented 
in Table 2. Heritabilities ranged from 0.12 for 
fat kg to 0.37 for protein %, indicating that there 
is sufficient genetic variation to achieve 
progress through selection. The genetic 
correlations between general production merit 
and heat tolerance were consistently moderate 
and negative (from -0.42 to -0.51). This 
antagonism implies that selection solely for 
high production may lead to a slight decline in 
heat tolerance, reinforcing the need for a 
balanced, multi-trait breeding goal. 
 
 
 
 

Table 2: Heritabilities (h2) for heat tolerance and 
genetic correlations (rg) with general production 
merit. 

Milk 
production 
trait 

Genetic 
Correlation 

(rg) 

Heritability 
(h2) 

Milk (kg/d) -0.51 0.16 
Protein (kg/d) -0.48 0.13 
Fat (kg/d) -0.42 0.12 
Protein % -0.43 0.37 
Fat % -0.50 0.26 

 
Validation of the Heat Tolerance Index (IHT)  
To validate the IHT, the performance of 
daughters from bulls with high heat tolerance 
(IHT ≥ +1 SD) was compared to that of 
daughters from bulls with low heat tolerance 
(IHT ≤ -1 SD). The comparison focused on the 
difference in milk yield between summer and 
winter test days (Table 3) (Flamenbaum, 2016). 

Daughters of low-tolerance bulls 
experienced a substantial drop in production of 
-1.24 kg/d during the summer. In contrast, 
daughters of high-tolerance bulls showed a 
much smaller decline of only -0.33 kg/d. This 
resulted in a net difference of +0.91 kg/d in 
favor of the high-IHT group, providing strong 
evidence that the IHT effectively identifies sires 
whose progeny are more resilient to heat stress. 
This difference represents a significant 
economic advantage and a notable 
improvement in animal welfare. 
 
Table 3: Comparison of summer vs. winter milk 
yield loss in daughters of high and low IHT bulls. 

Group Winter 
milk 

(kg/d) 

Summer 
milk 

(kg/d) 

Difference 
(kg/d) 

High HT 
(≥ +1 SD) 

30.38 30.05 -0.33 

Low HT 
(≤ -1 SD) 

31.14 29.90 -1.24 
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Figure 1. Example of heat stress for low, medium, 
high tolerance cows 
 
Conclusions 
 
This study successfully developed and 
implemented a renewed, multi-trait genomic 
evaluation for heat tolerance in Italian Holstein 
cattle. By analyzing milk, fat, and protein traits, 
the evaluation provides a comprehensive 
assessment of an animal's ability to maintain 
productivity under heat stress conditions. The 
resulting Heat Tolerance Index (IHT) has been 
validated as an effective tool for identifying 
genetically superior animals. The daughters of 
high-IHT bulls demonstrate significantly lower 
milk production losses during hot summer 
months. The adoption of the IHT in the national 
breeding program offers a powerful, 
sustainable, and cumulative strategy to enhance 
the resilience of the Italian Holstein population, 
thereby reducing economic losses and 
improving animal welfare in the face of ongoing 
climate change. 
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Abstract  
 
Since 2019, the Nordic Cattle Genetic Evaluation (NAV) has published breeding values for Saved Feed 
for Holstein (HOL), Jersey (JER), and Red Dairy Cattle (RDC). This trait is integrated into the Nordic 
Total Merit (NTM) index. Previously, the genetic evaluation of energy use for maintenance was based 
on body weight and indicator traits such as stature, body depth, and body width. Metabolic efficiency 
was genetically evaluated by using a two-step model, where the first step is a pre-correction of pheno-
types that introduced challenges. This study developed a one-step genomic model for Saved Feed to 
both address these challenges and improve the use of research and Cattle Feed InTake (CFIT) data. The 
dataset comprised 741,491 weekly records from 4,541 JER, 5,377 RDC, and 8,030 HOL cows. SNP 
genotypes from NAV were used to create breed-specific single-step genomic evaluations. We fitted two-
trait random regression models for each of the traits of dry matter intake (DMI), energy-corrected milk 
(ECM), and body weight (BW) where we treated the first and later lactations as separate traits. The 
breeding values for BW change (ΔBW) were derived from the BW model. Across lactation (2–44 weeks 
in milk), the heritabilities ranged from moderate to moderately high for DMI and ECM (0.22–0.50 & 
0.47- 0.52) and were moderately high for BW (0.46–0.61). The genetic correlations were strong across 
parities (≥0.82). These genetic parameters estimated with pedigree based BLUP, were used in three 
single-step GBLUP models, where lactation-wise breeding values for Saved Feed were calculated within 
each breed as: 

GEBVSaved Feed = 0.40 × GEBVECM + 4.0 × GEBVΔBW – GEBVDMI 
One index unit of Saved Feed corresponds to 18.3 kg of dry matter saved per 305-day lactation, or 183 
kg for 10 index units. Among for candidate bulls born in year 2022, the breeding values for Saved Feed 
had moderate index correlations with the NTM (0.20–0.30), weak to moderate index correlations with 
yield trait (0.07–0.26), and low index correlations with female fertility, udder health, and general health 
(–0.14 to 0.12). For HOL and RDC, the index correlations between Saved Feed and frame size were 
moderately negative (–0.19 to –0.29), while for JER, this correlation was close to zero. In conclusion, 
NTM has been updated with the new NAV one-step Saved Feed index which should promote genetic 
progress for feed efficiency in the Nordic Dairy Cattle breeds. 
 
Key words: Saved Feed, Feed Efficiency, Genomic Prediction, Holstein, Jersey, Red Dairy Cattle.  
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Introduction  
 
Feed is the largest operating expense on dairy 
farms (Stephansen et al., 2021a) and a major 
contributor to dairy farms´ greenhouse gas 
emissions (Kristensen et al., 2015). Conse-
quently, genetic evaluation centers worldwide 
have developed breeding values for feed effi-
ciency. The Nordic Cattle Genetic Evaluation 
(NAV) has introduced breeding values for 
Saved Feed by first including breeding values 
for energy use related to maintenance in 2019 
(Lidauer et al., 2019) and then including breed-
ing values for metabolic efficiency in 2021 
(Stephansen et al., 2021b). The Saved Feed in-
dex has been integrated into the Nordic Total 
Merit (NTM) index since 2020 to support selec-
tion for more feed-efficient cows in Holstein 
(HOL), Jersey (JER), and Red Dairy Cattle 
(RDC) populations. 

Historically, the breeding values for energy 
use related to maintenance was calculated using 
body weight data collected from milking robots, 
heart girth collected with tape measurements, 
and indicator traits such as stature, body depth, 
and chest width. The breeding values for meta-
bolic efficiency were calculated as residual feed 
intakes (RFI) using the data from both commer-
cial farms from Cattle Feed InTake (CFIT) 
(Lassen et al., 2023) and research farms from 
AU-Foulum, Denmark and Luke, Finland. The 
breeding values for RFI were calculated using a 
two-step approach, where the first step was a 
pre-correction using a linear model, from which 
the residual was used in a single-step GBLUP. 
However, this two-step approach presented 
challenges with unrealistic regression coeffi-
cient of feed intake on milk energy, difficulty 
with handling of missing data, and poor correc-
tion of fixed effect when using multiple traits in 
regression models due to different means and 
variances in different levels of fixed effects. 
Such issues have previously been documented 
for this type of RFI model (Tempelman & Lu, 
2020; Stephansen et al., 2024). 

To address these limitations, we propose a 
one-step Saved Feed model that was inspired by 

the works of Khanal et al. (2022) and Abdalla 
et al. (2024). The objective of this study was to 
develop and implement a one-step Saved Feed 
evaluation model that enhanced the accuracy 
and robustness of breeding values for feed effi-
ciency in the NAV evaluation. 
 
Materials and Methods  
 
Animal Care and Ethics Committee approval 
was not required for this study as data was col-
lected using standard dairy herd management 
practices. Furthermore, no treatment or han-
dling of animals were administered during the 
data collection for this study. 
 
Phenotypic data 
The analysis included phenotypic data on all 
breeds from 24 Danish CFIT farms that were 
obtained between January, 2019 and December, 
2024, phenotypic data on HOL that were ob-
tained from the Danish Cattle Research Center 
(DCRC) between January, 2003 and March, 
2022 (Li et al., 2017; Stephansen et al., 2023), 
and  phenotypic data on RDC from Natural Re-
sources Institute Finland farms between Sep-
tember, 1998 and January, 2022  (Luke; Mehtiö 
et al., 2018). The phenotypic data was com-
prised of weekly averages of dry matter intake 
(DMI), weekly averages of body weight (BW), 
and monthly test-day records for energy-cor-
rected milk (ECM). In total, the dataset in-
cluded 741,491 DMI records from 4,541 JER 
cows, 5,377 RDC cows, and 8,030 HOL cows 
(Table 1).  
 
Table 1: Numbers of records, cows, and cows with 
genotypes in the phenotypic data. 

Breed n records 
   DMI        ECM 

n cows (geno-
typed) 

HOL 361,412 202,360 8,030 (5,104) 
RDC 233,867 108,255 5,377 (3,828) 
JER 146,215 84,486 4,541 (3,040) 
Total 741,491 395,101 17,948 (11,972) 

HOL=Holstein, RDC=Red Dairy Cattle, JER=Jer-
sey, DMI=Dry Matter Intake, ECM=Energy Cor-
rected Milk 
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Pedigrees and genotypes  
Both the initial breed-specific pedigrees and the 
genotypic data were provided by NAV using its 
standard operations from routine evaluations. 
The initial pedigree was pruned such that it only 
contained cows with either phenotypic or geno-
typed individuals and their ancestors within 
three generations. Afterwards, we added ge-
netic groups for individuals with unknown par-
ents. The genetic groups were defined based on 
the sex, breed, country of origin, and birth year 
class of the individual. The final pedigrees in-
cluded 1,120,681 HOL, 488,855 RDC, and 
256,551 JER animals. The genotypic data con-
tained information on approximately 45,000 
SNPs. The genotyping rates for animals in the 
pedigree were 58% for HOL, 66% for JER and 
58% for RDC.  
 
Statistical models 
DMI, ECM, and BW were analyzed using 
breed-specific two-trait random regression 
models where primiparous and multiparous lac-
tations were treated different traits: 

 
y = Xb + Za + Wpe + Mp + e, 

 
where y is a vector of phenotypes for DMI, 
ECM, or BW across the two parity groups (pri-
miparous or multiparous) and weeks in lactation 
(week 0-45); b is a vector of fixed effects for 
age at first calving (only primiparous), parity 
(only multiparous), calving herd × calving year 
× calving season, the regression on lactation 
curve (5th order Legendre polynomial terms 
nested within herd); a is a vector of additive ge-
netic random regression coefficients (Legendre 
polynomials: intercept, linear); pe is a vector of 
permanent environmental random regression 
coefficients (Legendre polynomials: intercept, 
linear, quadratic); p is a vector of random ef-
fects for animal × parity (only multiparous); e is 
a vector of residuals nested within trait; and X, 
Z, W, and M are design matrices. The parame-
ters of the model were estimated using AI-
REML in DMU (Madsen and Jensen, 2013) 
with a pedigree-based relationship matrix.  

The estimated (co)variance components 
were used to predict lactation-wise genomic 
breeding values for DMI, ECM and BW using 
the ssGTaBLUP model in the MiX99 software 
(Mäntysaari et al., 2017). For RDC, we pre-
dicted genomic breeding values with (co)vari-
ance components from HOL. The genomic 
breeding values for BW change (∆BW) were 
derived from the BW model as the difference 
between GEBVs at day 30 in milk and day 280 
in milk. 
 
The new Saved Feed calculation 
We used the GEBVs of the traits to calculate 
breeding values for Saved Feed within each 
combination of parity group and breed: 
 
GEBVSaved Feed = 0.40 × GEBVECM + 4.0 × 
GEBVΔBW – GEBVDMI 
 
 Instead of estimating the regression coeffi-
cients for ECM and ΔBW in the equation above 
from genetic parameters, we obtained the re-
gression coefficient for ECM from Abdalla et 
al. (2024), while the regression coefficient for 
ΔBW was based on Lidauer et al. (2023). Par-
ity-specific GEBVSaved Feed values were 
weighted with 1/3 emphasis on primiparous lac-
tation and 2/3 emphasis on multiparous lacta-
tions.  
 The breeding values for Saved Feed were 
standardized to have a mean of 100 and a stand-
ard deviation (SD) of 10 for base animals, de-
fined as three to five years old (rolling base) 
cows with phenotypes. One index unit repre-
sents 18.3 kg of dry matter feed saved in the first 
305 days of lactation.  
 
Results & Discussion 
 
Covariance parameters 
Lactation-wise (2 to 44 weeks in milk) herita-
bilities were moderate for DMI (HOLprimi:0.43; 
HOLmulti:0.49; JERprimi:0.22; JERmulti:0.50), 
moderate for ECM (HOLprimi:0.50; 
HOLmulti:0.48; JERprimi:0.47; JERmulti:0.52), and 
moderately high for BW (HOLprimi:0.52; 
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HOLmulti:0.58; JERprimi:0.46; JERmulti:0.61). The 
heritabilities were in accordance with those re-
ported using a CFIT dataset (Stephansen et al., 
2025) and research data for HOL in US (Khanal 
et al., 2022). The genetic correlations between 
parity groups were high for DMI (HOL: 0.90; 
JER: 0.82), high for ECM (HOL: 0.89; JER: 
0.94), and high for BW (HOL: 0.95; JER: 0.90). 
This is also in accordance with previous studies 
(de Jong et al., 2019; Jamrozik et al., 2022; 
Stephansen et al., 2025). 
 
Index correlations and genetic trends 
The new index for Saved Feed had correlations 
with the previous index of 0.30, 0.50, and 0.25 
for HOL, RDC and JER respectively. The levels 
of these correlations were expected because the 
model changed to a one-step Saved Feed ap-
proach instead of the previous two-step RFI 
model with challenges observed in the precor-
rection step, and because we thereby omitted 
BW phenotypes from cows without DMI and 
ECM information. The NAV Saved Feed index 
has been weighted fully into NTM since Febru-
ary 2025 using the economic weights proposed 
by Sørensen et al., (2018). This has resulted in 
moderate index correlations between Saved 
Feed and NTM at 0.30, 0.26, and 0.20 for HOL, 
RDC and JER, respectively, among candidate 
bulls born in 2022 (Table 2). 

There has been a positive genetic trend for 
Saved Feed among bulls with genotype infor-
mation between 2010 and 2023 with an average 
increase of 4 Saved Feed index units over the 
past decade (Figure 1).   

The correlations between predicted breeding 
values for Saved Feed and DMI were moder-
ately high and negative (-0.55 to -0.75), which 
means that selection for enhanced Saved Feed 
applies selection pressure against feed intake 
(Table 2). The correlations between predicted 
breeding values for Saved Feed and the Yield 
index were low to moderate (0.07 to 0.26), 
which indicates that feed efficient cows 

 
Figure 1: Genetic trends for Saved Feed among bulls 
with genotype information from Holstein (HOL), 
Red Dairy Cattle (RDC), and Jersey (JER). 

 
tend to produce more solids and less fluids. The 
correlations between predicted breeding values 
for Saved Feed and Female fertility, Udder 
health, and General health were low and ranged 
from -0.14 to 0.12 (Table 2). HOL and RDC had 
moderately negative correlations between pre-
dicted breeding values for Saved Feed and 
frame size (-0.19 to -0.29), whereas for JER this 
correlation was approximately zero. For JER, 
the correlation between predicted breeding val-
ues for Saved Feed and Longevity was slightly 
negative (-0.09; Table 2). Lastly, the correla-
tions between predicted breeding values for 
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Longevity and BW were low and negative in 
JER and HOL (Table 3). 
 
Table 2: Index correlations for 2022 candidate bulls 
from Saved Feed to other breeding goals traits. 

 Saved Feed 
 HOL (3,267) RDC (2,592) JER (488) 
DMI  -0.55 -0.75 -0.55 
NTM 0.30 0.26 0.20 
Yield 0.26 0.07 0.23 
FERT -0.02 0.12 -0.14 
MAST -0.11 0.06 -0.11 
GH -0.11 -0.14 -0.08 
Frame -0.19 -0.29 0.01 
Udder -0.15 -0.08 -0.22 
YSS 0.11 0.14 NA 
LONG 0.01 0.17 -0.09 

HOL=Holstein, RDC=Red Dairy Cattle, JER=Jer-
sey, DMI=Dry Matter Intake, NTM=Nordic Total 
Merit, FERT=Female Fertility, MAST=Mastitis, 
GH=General Health, YSS=Young Stock Survival, 
LONG=Longevity, NA=Not available. 
    
 

The slightly negative correlations between 
predicted breeding values for Saved Feed and 
functional traits may originate from the correla-
tions between DMI and ECM, and the func-
tional traits, since these have mostly negative 
correlations (Table 3) to female fertility (DMI: 
-0.05 to -0.30; ECM: -0.20 to -0.30), udder 
health  (DMI: -0.05 to -0.15; ECM: -0.15 to -
0.20), and general health  (DMI: 0.00 to -0.15; 
ECM: -0.20 to -0.30).       
 
Conclusions 
 
The updated NAV Saved Feed evaluation has 
improved utilization of data, and it provides 
more enhanced feed efficiency selection indices 
to Nordic dairy farmers. The updated Saved 
Feed index has been fully weighed into the Nor-
dic breeding goal NTM since February 2025. 
This has resulted in moderate correlations be-
tween the new NTM and the updated Saved 
Feed index which indicates that selection for 
NTM leads to genetic progress for feed efficient 
and profitable Nordic Dairy Cattle.  
Table 3: Index correlations among 2022 candidate 
bulls between component traits for Saved Feed com-
ponent traits and functional traits in the Nordic 
breeding goal. 

 
        
HOL=Holstein, RDC=Red Dairy Cattle, JER=Jer-
sey, DMI=Dry Matter Intake, ECM=Energy Cor-
rected Milk, BW=Body Weight, FERT=Female Fer-
tility, MAST=Mastitis, GH=General Health, 
YSS=Young Stock Survival, LONG=Longevity. 
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Abstract 
 
Sustainability traits, such as feed efficiency and enteric methane emissions, are difficult and expensive 
to measure. Establishing a large national reference population is therefore challenging, and pooling data 
across countries in a joint international evaluation would be beneficial. In beef cattle, data on 
sustainability traits are collected across multiple breeds and in small populations, including crossbred 
animals of various breed composition. In such scenarios, genomic prediction requires modelling the 
individuals’ different genetic background. Additionally, including available data on correlated indicator 
traits could improve the accuracy of genomic prediction for sustainability traits. However, current 
international beef cattle evaluations led by Interbeef are pedigree‐based, performed within each breed 
separately, and use data from one trait, or one group of traits, at a time. The “M3GE” project aims to 
develop multi-trait multi-breed multi-country genomic evaluations for beef cattle, focusing on 
sustainability traits and small populations. The project is the result of a collaboration between WUR, 
ICAR (the Netherlands), Interbull Centre (Sweden), ICBF (Ireland), AHDB, SRUC (Great Britain), and 
FedANA (Italy), involving six national breeding organisations from three countries. The aims of this 
paper are to: i) present the M3GE project and its objectives, ii) give an overview of the status of 
collecting and modelling feed efficiency across participating organisations, and iii) present the first 
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results of the project. Pedigree, phenotypic, and genomic data for feed efficiency, longevity, and 
associated indicator traits have been collected using the Interbull Centre’s GenoEx-GDE and IDEA 
platforms. Initial work will focus on feed efficiency for which individual direct measures have been 
collected on ~13K phenotyped animals (~9K of which are genotyped), from over 15 different breeds 
and crossbreds recorded in Great Britain, Ireland, and Italy. The first steps include the imputation of 
collected genotypes to a common reference panel, population structure analysis, estimation of 
connectedness measures across populations, and estimation of genetic correlations across countries. The 
final step is to develop an international multi-breed single-step evaluation for feed efficiency including 
crossbred animals. This project contributes to the development of sustainable genomic evaluations in 
beef cattle for large and small populations. 
 
Key words: beef cattle, international evaluations, multi-trait, multi-breed, genomic evaluations, feed 
efficiency 

Introduction 
 
Novel and sustainability traits, such as feed 
efficiency and enteric methane emissions, are 
difficult and expensive to measure, making it 
challenging to establish large reference 
populations at the national level. Hence, 
combining data across countries into a single 
international genomic evaluation is an attractive 
solution to build a large reference population for 
genomic predictions. 

International beef cattle evaluations led by 
Interbeef involve up to fifteen countries 
worldwide and are carried out for five major 
popular breeds (Angus, Charolais, Hereford, 
Limousin, Simmental), and four trait groups: 
growth (composed by weaning weight), calving 
(composed by calving ease and birth weight), 
and carcass (composed by weight, 
conformation and fat) (Macedo, 2023; Venot et 
al., 2014; Vesela et al., 2019). Interbeef 
evaluations are performed within each breed 
separately and use data from one group of traits 
at a time. In Interbeef, raw national data 
(pedigree and phenotypes) are pooled at the 
international level and modelled using a 
pedigree-based evaluation following the 
AMACI model (Animal Model Accounting for 
Across Country Interactions) (Phocas et al., 
2005). The resulting estimated breeding values 
(EBVs) and reliabilities (RELs) are distributed 

back to each participating country according to 
their national scale for a list of publishable sires 
(Bonifazi et al., 2023). Bonifazi et al. (2022) 
showed the feasibility and advantages of also 
including SNP genotypes at the international 
level to implement a joint single-breed single-
step beef cattle genomic evaluation for a group 
of traits at a time. 

In the Interbeef context, national beef cattle 
evaluations face different challenges that could 
be addressed through international 
collaboration. Firstly, the implementation of 
genetic evaluations for novel traits is highly 
desirable; however, the high costs associated 
with data recording hinder their widespread 
adoption. Consequently, genetic progress on 
new traits remains limited or is delayed, 
primarily due to the small size of the available 
reference populations at the national level. 
Second, small and local breeds risk becoming 
non-competitive in favour of more popular 
ones. Indeed, small and local breeds are not yet 
considered in current international, and 
sometimes even national, evaluations. Third, 
although crossbreeding is already widely used 
in some countries (e.g., Ireland) and is 
becoming more popular in others with the 
increased use of beef-on-dairy, international 
evaluations are still defined per breed and focus 
on purebred animals. In particular, in the 
presence of crossbred animals of various breed 
composition, genomic prediction requires 
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modelling of the individual’s different genetic 
background. Thus, there is a need to develop 
new and improved services for countries and to 
expand the current Interbeef portfolio to allow 
the inclusion of genomic data, new breeds and 
crossbreeds, and new (novel) traits. 

We conducted a preliminary survey to 
identify which (novel) trait groups were of 
interest to Interbeef participating countries and 
which breeds already had data collected at the 
national level. Results revealed that feed 
efficiency and longevity were the most 
interesting trait groups to implement, alongside 
consideration of crossbred information (e.g., 
beef-on-dairy). Furthermore, the survey 
emphasised that pedigree, phenotypic, and 
genomic data are already available at the 
national level, but collected on different 
purebred and crossbred animals across different 
countries. 

Based on the survey results, the project 
called “M3GE” (multi-trait multi-breed multi-
country genomic evaluations) has been 
launched in 2024. This paper aims to: i) present 
the M3GE project and its objectives, ii) give an 
overview of the status of collecting and 
modelling feed efficiency across participating 
organisations, and iii) present the first results of 
the project. 
 
The M3GE project 
 
The M3GE project aims to develop a multi-trait 
multi-breed multi-country genomic evaluation 
for beef cattle, focusing on sustainability traits 
and small populations. Through such an 
evaluation, the project aims to unlock several 
potential advantages. First, including data on 
new purebred and crossbred animals would help 
expand the reference population for genomic 
prediction, potentially increasing the accuracy 
of genomic EBVs (GEBVs) and providing 
international GEBVs for both purebred and 
crossbred animals. Second, the evaluation 
would facilitate pooling data for new suitability 
traits at the international level, effectively 

harnessing collaboration among countries for 
novel and complex traits such as feed 
efficiency. Third, by involving new numerically 
small and local breeds, the project would 
increase the use of local genetic resources that 
are currently unexplored at the international 
level, as is the case for local transboundary 
breeds (local and genetically similar 
populations separated by national borders). 
Fourth, by leveraging the joint international 
reference population, the evaluation could 
allow countries to deliver GEBVs to their 
breeders for traits that are not yet evaluated at 
the national level due to the small size of their 
national reference population. 

The M3GE project is a private-public-
partnership (PPP) supported by the Dutch 
Ministry of Economic Affairs and is a 
collaboration between Wageningen University 
& Research (WUR), the International 
Committee for Animal Recording (ICAR), the 
Interbull Centre, the Irish Cattle Breeding 
Federation (ICBF), the Agriculture and 
Horticulture Development Board (AHDB), 
Scotland's Rural College (SRUC), and the 
National Federation of National Breeders 
Associations (FedANA). The project involves a 
total of six national breeding organisations from 
three countries: Ireland (IRL), Great Britain 
(GBR), and Italy (ITA). Next to ICBF (IRL), 
and AHDB and SRUC (GBR), there are four 
Italian national organisations involved in the 
project through FedANA: ANABIFJ 
(Associazione Nazionale Allevatori della Razza 
Frisona, Bruna e Jersey Italiana), ANAPRI 
(Associazione Nazionale Allevatori Bovini di 
Razza Pezzata Rossa Italiana), ANABIC 
(Associazione Nazionale degli Allevatori delle 
razze bovine Charolaise e Limousine Italiane), 
ANACLI (Associazione Nazionale degli 
Allevatori delle razze bovine Charolaise e 
Limousine Italiane). 
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Materials and Methods 
 
Data collection 
Individual pedigree, phenotypic, and genomic 
information was collected at the Interbull 
Centre (Uppsala, Sweden). Pedigree and 
phenotypic repeated records were collected 
using IDEA, which was adapted to support the 
submission of repeated records. Genomic 
information was collected using GenoEx-GDE 
(Interbull Centre, 2025a). Data were collected 
for two new traits (feed and longevity) and their 
associated indicator traits. Therefore, two new 
trait groups were defined as follows: 
• FEED, composed of feed itself (FEF) and 

its associated indicator traits: carcass traits 
(weight (CAW), fat (CAF), and 
conformation (CCO)), liveweight (LW), 
and growth traits (average daily gain 
(ADG) and average daily carcass weight 
(ACG)). 

• LONG, composed of longevity (LON) and 
its associated indicator traits: calving traits 
(age at first calving (AFC), and calving 
interval (CAI)). 

Data for FEED were collected for purebred 
beef animals, crossbred animals (both beef-on-
beef and beef-on-dairy), and growing purebred 
dairy males, such as bulls and steers. Data for 
LONG were collected for purebred beef, 
crossbred (beef-on-beef and beef-on-dairy) 
animals. 

 
Genomic information 
Individual genomic information in the form of 
(imputed) single-nucleotide polymorphisms 
(SNPs) was available at medium-high density at 
the national level. Genomic information was 
collected for any animal with genomic and/or 
phenotypic information and their relatives 
(ancestors and sibs) to be later used in a single-
step approach (Legarra et al., 2014). Different 
genotyping chips (i.e., panels) may be used 
within and across organisations. In total, eleven 
chips were collected among all participating 

organisations, with densities ranging from 
30,111 to 777,962 SNPs. For each chip, a map 
file with information on the SNPs' commercial 
names, their physical positions on the genome 
(chromosome and base pair position), and their 
genome assembly version was collected. Chips 
and associated genomic information were 
validated to ensure that the collected genomic 
information followed the same Illumina AB 
coding (Illumina, 2006), and that genotype 
information would agree within- and across-
country as well as within- and across-breed. 
Finally, all genotypes were mapped to the 
UMD3.1 genome assembly (Zimin et al., 2009). 
 
Population structure 
A Principal Component Analysis (PCA; 
Patterson et al., 2006; Chang et al., 2015) for 
FEF was performed using only SNPs 
overlapping across all chips (~4,000 SNPs) and 
including genotyped animals with phenotype 
and their genotyped ancestors. The PCA 
included about 18,000 genotyped animals, of 
which about 9,000 had a FEF phenotype. 
 
Modelling of FEF at the national level 
National information on FEF trait and model 
definitions, including (genetic) parameters, 
were collected using Interbeef 603 files 
(Interbull Centre, 2025b) and extended national 
genetic evaluations forms (Interbull Centre, 
2025c). 
 
Results & Discussion 
 
Data collected 
Table 1 shows an overview of the number of 
phenotypes and genotypes collected within the 
M3GE project for each organisation and trait 
group. Overall, data from GBR and IRL are 
collected on both purebred and crossbred 
animals, while data from ITA are collected only 
on purebred animals. 

For the FEED trait group, about 98.5 
thousand FEF repeated records have been 
collected across all organisations and breeds. 
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The number of records collected on FEED 
indicator traits ranges from 12.9 thousand for 
ADG to 12.9 million for CFA and CCO, with 
the majority of indicator traits’ phenotypes 
being collected in IRL for carcass and live 
weights (Table 1). For FEED indicator traits, 
LW records are available in all organisations 
and countries, except for the Italian local 
breeds. Other indicator traits for FEED are only 
collected in either one or two countries. For the 
LONG trait group, approximately 10.7 million 
LON records have been collected from IRL and 
ITA, with the majority of phenotypes 
originating from the former. For LONG 
indicator traits, phenotypes have been collected  
for IRL and ITA with ~3.3 million and ~9.5 
million records, respectively. 

 
 

 

A total of about 3.1 million genotypes have  
been collected across organisations for both 
purebred and crossbred animals (Table 1). The 
majority of the genotypes are from IRL (~3 
million), followed by GBR (~106 thousand), 
and ITA (~35 thousand). 
 
Recording and modelling feed in different 
national organisations 
 
Ireland 
ICBF collects FEF at the Tully research station 
next to other novel phenotypes (e.g., enteric 
methane emissions). FEF is collected on 
commercial beef animals from targeted 
candidate sires, specifically the offspring of AI 
bulls, ensuring genetic connectedness to the rest 
of the IRL population. FEF recording is done 
close to the finishing period, mainly for steers  
 

Table 1. Overview of the number of collected phenotypes (repeated records included) and genotypes 1. 
Country GBR IRL ITA 

Organization 
(breeds) 2 

AHDB&SRUC 
(PBD & XBD) 

ICBF 
(PBD & XBD) 

ANAFIBJ 
(HOL) 

ANAPRI 
(SIM) 

ANABIC 
(ITA breeds) 

ANACLI 
(LIM & CHA) 

 

Trait 3       Total 
FEED        

FEF 28.4K 8.4K 8.8K 900 27K 24K 98.5K 
CWE  12.9M     42K 13M 
CFA  12.9M      12.9M 
CCO  12.9M      12.9M 
LW1 
LW2 

581K  1.0M  26K 7.6K  6K 1.6M 
 1.0M     192K 1.0M 

LW3  1.3M      1.3M 
ADG    7.6K 5.3K  12.9K 
CDG     355K  355K 

LONG        
LON  10.2M    248K 239K 10.7M 
CAI  8.5M    912K  9.5M 
AFC  3.1M    255K  3.3M 

Genotypes 106K 3.0M 5.3K 3.3K 13.3K 12.9K 3.1M 
1 K = thousands, M = millions. 2 PBD = purebred, XBD = crossbred, HOL = Holstein-Friesian, SIM = Simmental, 
ITA breeds = Chianina, Marchigiana, Romagnola, Podolica, Maremmana, LIM = Limousin, CHA = Charolais. 3 
FEED = feed trait group, FEF = feed, CWE = carcass weight, CFA = carcass fat, CCO = carcass conformation, 
LW1, LW2, LW3 = live weights (different definitions), ADG = average daily gain, CDG = carcass daily gain, 
LONG = longevity trait group, LON = longevity, CAI = calving interval, AFC = age at first calving. 
 
and heifers, and a few young bulls. The age at 
recording ranges from about 200 to 900 days. 
While recording was initially focused on 
purebred animals, it is now mostly conducted  

 
on crossbred animals. Initially, when recording 
focused on purebred individuals, the diet was ad 
libitum (concentrate and hay), while nowadays 
is a TMR (Ryan et al., 2022). A single record 
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per animal is available, with FEF defined as the 
average daily dry matter intake (Kg DMI/day) 
over the whole testing period. The minimum 
length of the testing period is 30 days and the 
average length is 109 days. The national model 
used is a multi-breed, multi-trait, two-step 
genomic animal evaluation including purebred 
and crossbred data for: FEF, three live weights 
(365-450 days, 450-550 days, 550-700 days), 
skeletal development, and three carcass traits 
(CWE, CFO, CCO). In this evaluation, FEF is 
modelled as: 

𝐹𝐹𝐹𝐹𝐹𝐹 = ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑑𝑑ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑑𝑑ℎ𝑏𝑏𝑏𝑏𝑏𝑏 +
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑎𝑎2𝑓𝑓𝑓𝑓 + 𝑎𝑎3𝑓𝑓𝑓𝑓 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝑎𝑎 + 𝑒𝑒, 

where: FEF = daily DMI, hrbxb = heterosis 
beef x beef (covariate), hrbxd = heterosis beef x 
dairy (covariate), dhrbxb = dam heterosis beef 
x beef (covariate), dhrbxd = dam heterosis beef 
x dairy (covariate), dfrac = dam breed fraction 
(covariate), afi, a2fi, and a3fi = age at feeding 
fitted as a linear, quadratic, and cubic covariate, 
respectively, damage = age of the dam 
(covariate), dampar = parity of the dam (fixed), 
byr = birth year of the animal (fixed), twin = 
twinning (fixed), hysfi = hear-year-season 
(random), a = animal genetic effect (random), e 
= residual effect (random). 
 
Great Britain 
AHDB collects FEF data from research and 
mostly commercial farms, using the provided 
equipment and protocol. Recording is done over 
a 63-day period with animals having an ad 
libitum diet. FEF is collected during the testing 
period on purebred and crossbred steers with 
age at recording ranging from about 170 to 560 
days. FEF is defined by SRUC as the average 
daily dry matter intake (kg DMI/day), with one 
record per week, for up to 7 weeks in total. At 
the national level, FEF is modelled using a 
single-trait, multi-breed, ssGBLUP 
repeatability animal model, defined as: 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑙𝑙𝑙𝑙𝑙𝑙 + ℎ13+ ℎ23 +
ℎ34 + 𝑟𝑟12+ 𝑟𝑟13+ 𝑟𝑟23 +  𝑝𝑝𝑝𝑝 + 𝑎𝑎 + 𝑒𝑒,  

where: FEF = daily DMI, fdg = feeding group 
(fixed), brl = birth location (fixed), aaf = age at 
feeding (covariate), lve = live weight 
(covariate), h13, h23, h34, r12, r13, and r23 = 
heterosis (h) and recombination (r) covariates 
between dairy breeds (1), beef breeds (2), 
continental breeds (3), and UK beef breeds (4), 
pe = animal permanent environment effect 
(random), a = animal genetic effect (random), e 
= residual effect (random). 
 
Italy 
In Italy, national breed organisations 
independently collect and model FEF recorded 
at their own test centre for (young) male 
selection candidates. 
 

Holstein. ANAFIBJ collects FEF on 
purebred Holstein growing male selection 
candidates. The age at recording ranges from 
about 100 days to 600 days. Repeated records 
are collected over a minimum 30-day period. 
FEF is defined as daily dry matter intake (Kg 
DMI/day). FEF is modelled using a single-trait, 
genomic BLUP (GBLUP) repeatability animal 
model, defined as: 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑝𝑝 + 𝑎𝑎 + 𝑒𝑒, 

where: FEF = daily DMI, aave = age at 
phenotyping (covariate), bidt = birth date 
(covariate), dtpt = date at phenotyping 
(random), pe = animal permanent environment 
effect (random), a = animal genetic effect 
(random), e = residual effect (random). 
 

Simmental. ANAPRI collects FEF on 
purebred Simmental male selection candidates. 
The age at recording ranges between about 280 
and 340 days. Repeated records are collected 
over a 60-day period and summarised into a 
single record per animal. FEF is defined as daily 
residual feed intake (RFI; Kg DMI/day). FEF is 
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modelled using a single-trait, single-step 
GBLUP animal model as: 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑐𝑐𝑐𝑐 + 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 + 𝑎𝑎 + 𝑒𝑒, 

where: FEF = daily RFI, cg = contemporary 
group (fixed), weight = animal live weight 
(covariate), a = animal genetic effect (random), 
e = residual effect (random). 
 

Italian local beef breeds, Limousin, and 
Charolais. ANABIC collects FEF on purebred 
male selection candidates for three Italian local 
beef cattle breeds: Chianina, Marchigiana, and 
Romagnola. FEF is available over a 30-day 
testing period, and the age at recording ranges 
between about 200 and 400 days. FEF is defined 
as residual feed intake (RFI; kg DMI/day). FEF 
data for the three local beef breeds are jointly 
modelled using a multi-breed, single-trait, 
ssGBLUP repeatability animal model as: 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑐𝑐𝑐𝑐 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 +𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 +  𝑝𝑝𝑝𝑝 + 𝑎𝑎 + 𝑒𝑒, 

where: FEF = daily RFI, cg = contemporary 
group (fixed), breed = breed effect (fixed), 
weight = animal weight (covariate), pe = animal 
permanent environment effect (random), a = 
animal genetic effect (random), e = residual 
effect (random). 

ANACLI collects FEF on purebred 
Limousin and Charolais male selection 
candidates at the ANABIC test centre using the 
same procedure. FEF is defined as residual feed 
intake (kg DMI/day). For FEF and Limousin 
individuals, a single-trait, ssGBLUP 
repeatability animal model was recently 
developed as: 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑐𝑐𝑐𝑐 + 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 +  𝑝𝑝𝑝𝑝 + 𝑎𝑎 + 𝑒𝑒, 

where: FEF = daily RFI, cg = contemporary 
group (fixed), weight = animal weight 
(covariate), pe = animal permanent 

environment effect (random), a = animal 
genetic effect (random), e = residual effect 
(random). The FEF data from ANACLI was not 
included in the PCA as it was not yet available. 

 
Table 2 shows a summary of the national 

trait definitions of FEF, evaluations and model 
used, and genetic parameters estimated at the 
national level by the different organisations. 
Overall, FEF heritabilities are moderate 
(average across organisations of 0.22), ranging 
between a minimum of 0.05 for the Italian local 
beef breeds and 0.32 for IRL. Repeatability 
ranged between 0.22 for the Italian local beef 
breeds and 0.50 for the Italian Holstein. 
 
Population structure 
The first two principal components (PC) 
explained a large proportion of variance 
(24.4 % and 15.3%, respectively). Figure 1 
shows the PCA for purebred individuals. The 
first PC separated purebred individuals into 
several main breed clusters independent of the 
country providing the genotypes: from left to 
right, Holstein, Limousin, Angus, and 
Simmental. The local Italian breeds clustered 
together and separately from other purebred 
individuals following the second PC. The 
remaining purebred individuals clustered 
closely with either the Limousin or the Angus 
breed cluster. Finally, Figure 2 shows the PCA 
including crossbred animals, demonstrating 
how crossbred individuals form a continuum 
across purebred animals, except for the local 
Italian breeds, which remain distinct as they 
were not crossed with other breeds. Such a 
pattern was expected as the majority of the 
crossbred animals are from unstructured 
crosses. 
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Table 2. Summary of national models and genetic parameters for the feed trait group across different countries. 
 

Country GBR IRL ITA 
Organization AHDB&SRUC ICBF ANAFIBJ ANAPRI ANABIC ANACLI 

Breeds1 PBD & XBD PBD & XBD HOL SIM ITA breeds LIM & CHA 
Trait2 DMI DMI DMI RFI RFI RFI 

Model3 
ssGBLUP 

two-step 
genomic 

GBLUP ssGBLUP ssGBLUP ssGBLUP 

multi-breed 
single-trait 

multi-breed 
multi-trait 

 
single-trait 

 
single-trait 

multi-breed 
single-trait 

 
single-trait 

Heritability 0.14 0.30 0.32 0.29 0.05 0.13 
Repeatability 0.26  0.50  0.22 0.24 
1 PBD = purebred, XBD = crossbred, HOL = Holstein-Friesian, SIM = Simmental, ITA breeds = Chianina, 
Marchigiana, Romagnola, LIM = Limousin, CHA = Charolais. 2 DMI = Dry Matter Intake, RFI = Residual Feed 
Intake. 3 ssGBLUP = single-step genomic BLUP, GBLUP = genomic BLUP. 
 
 

Next steps and implications 
The next steps in the project are to impute the 
collected genotypes to a common reference 
panel, and to estimate connectedness and 
genetic correlations across populations and 
breeds. Then, an international multi-breed 
single-step evaluation for FEF, including 
crossbred animals, will be developed. Later, the 
project will focus on developing similar multi-
breed single-step evaluations for LON. In the 
final phase, the project will focus on including 
indicator traits for both FEF and LON using a 
multi-trait approach. 

The M3GE project is expected to improve 
current and future Interbeef evaluations by 
optimising existing services and developing 
new ones. Such improvements include, for 
instance, adapting pipelines to accommodate 
repeated records as well as identifying possible 
bottlenecks, such as the efficient upload and 
routine handling of large volumes of genomic 
data from individuals with diverse breed 
composition. Overall, the M3GE project 
contributes to the development of sustainable 

international genomic evaluations in beef cattle 
across both large and small populations, thereby 
enhancing Interbeef’s capacity to meet future 
demands. 

 
Conclusions 
 
The M3GE project is an international 
collaboration between different partners, 
including six national breeding organisations. 
The project aims to develop beef cattle multi-
trait multi-breed multi-country genomic 
evaluations for sustainability traits and small 
populations. In the first phase, data (pedigree, 
phenotypes, genotypes) have been collected for 
feed, longevity, and their associated indicator 
traits, for both purebred and crossbred animals, 
including (small) local populations. The next 
step is to develop a multi-breed, multi-country 
genomic evaluation for feed efficiency. 
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Figure 1. Plot of the first two principal components (PC) and percentage of explained variance (within brackets) 
of the genomic relationship matrix for purebred animals. Shapes indicate the country sending the genotype and 
colours indicate the breed (Other = other purebred breeds). GBR = Great Britain, IRL = Ireland, ITA = Italy. 
 

 
Figure 2. Plot of the first two principal components (PC) and percentage of explained variance (within brackets) 
of the genomic relationship matrix for purebred and crossbred animals. Shapes indicate the country sending the 
genotype and colours indicate the breed. GBR = Great Britain, IRL = Ireland, ITA = Italy. 
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