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Abstract

A total of 10 traits for three trait groups of claw health, metabolic diseases and calving were included in a
new research run performed in October 2024 with the aim to expand the multiple across-country evaluation
(MACE) portfolio. The traits in each trait group were as follows: digital dermatitis (dde), interdigital
dermatitis (idd), interdigital hyperplasia (idh), sole hemorrhage (soh), sole ulcer (sou) and white line disease
(wld) for claw health; clinical ketosis (cke), sub-clinical ketosis (sck) and milk fever (mfe) for metabolic
diseases and direct gestation length (ges) for calving trait group. Although a total of 13 countries provided
data for the six different breeds evaluated internationally, the research run could be performed only for four
breeds (Holstein (HOL), Brown Swiss (BSW), Red Dairy Cattle (RDC) and Jersey (JER)) as only one
country did provide data for Guernsey (GUE) and Simmental (SIM). The research results for across-country
correlations, international EBVs and reliabilities were all promising for all evaluated traits. Gestation length
was included in the Interbull May 2025 test run and subsequently in the official August 2025 routine run as
the fifth trait in the MACE calving trait group alongside direct and maternal calving ease and still birth
traits. The implementation of claw health and metabolic diseases traits in the MACE portfolio is currently
pending a slightly higher participation rate from countries and it is therefore aimed to happen in the near
future.
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Introduction The results were presented during the 2024
Interbull Business Meeting, Bled, Slovenia,

In accordance with the Interbull new traits’ .
where it was sensed an urgency from the

pipeline introduced in 2021, countries were participating countries to have Interbull Centre

requested to fill in the Performance Recording,
Evaluation and Publication database (PREPdb)
(Interbull Centre, 2025), reporting information on
any potential new traits that could be of interest
for an international evaluation. The collected
information included definitions of the trait, the
availability of a standard International Committee
of Animal Recording (ICAR) definition, the type
of service, recording methods, etc. After
reviewing the information, three main trait groups
stood out, namely gestation length, metabolic
diseases and claw health trait groups.

performing a research run on such traits. Thus, a
data call deadline for the above-mentioned trait
groups was set to October 31, 2024, via the
Interbull Data Exchange Area (IDEA)-new traits.
By the end of the deadline, 13 countries submitted
data for six breeds (Figure 1).

In total, 10 traits were included in the research
run. Three and six traits were included in
metabolic disease and claw health trait groups,
respectively, while gestation length was assigned
as the fifth trait of the calving trait group (Table

).



Table 1. List of the new trait(s) for each trait group along with the abbreviations included in the MACE research run.

Trait group

Metabolic disease
(META)

Claw health
(CLAW)

Calving
(CALV)

Materials and Methods

After the data submission deadline, and a
preliminary screening of the data to identify the
eligible breed-trait combinations, the MACE
pipeline was applied. MACE started at the
Interbull Centre to estimate and assess the across-
country correlations, breeding values (EBVs) and
reliability correlations between the national
evaluations and the MACE research run
Across-country correlation estimations

The data from 13 countries and for four breeds of
HOL, JER, BSW and RDC for the three new trait
groups were used to estimate the across-country
correlations, based on the number of common
bulls between the pair of countries. The default
setting for the bulls’ inclusion was to have a
minimum of 10 daughters in 10 herds for all the
new traits. All bulls born since 1970 were
included in the analysis. The Restricted
Maximum Likelihood (REML) procedure was
used. No subset was applied for HOL-traits, as the
computing time was within the expected range
due to the fact that the number of countries for the
new traits was limited (the highest was eight
countries for ges).

The Interbull post- processing procedure
(https://interbull.org/ib/rg_procedure) was
applied; all countries were assigned in one
group/window of correlations defined as follows:

e Final correlations were estimated by
applying a 10% percentile used for the
minimum correlation

Trait
Clinical ketosis (cke)
Sub- clinical ketosis (sck)
Milk fever (mfe)
Digital dermatitis (dde)
Interdigital dermatitis (idd)
Interdigital hyperplasia (idh)
Sole hemorrhage (soh)
Sole ulcer (sou)
White line disease (wld)

Gestation length (ges)

e The maximum was set to 0.99

e The median was calculated as: Median
[10%:0.99]

One important step in the post-processing
procedure is to assess the magnitude of the
Correlation used in previous run (as there was NO
previous run, it was set to 0.85)

e Magnitude of changes tested was
considered major for all traits meaning
that the applied weight on the final
correlation was equal to 0 (equation
displayed below).

e HOL correlations and common bulls
were used as weighting factors for all
other breeds

The windowed correlation was then calculated
as follows:

/ * *
(mlncb groupmedianvalue +Cbcou1,2 COVVCOM],Z)
COTry,;, =

Mminqp 4 Cbcuu1,2

where ¢b is the number of common bulls
between country 1 and 2.

Then, the Corryin were first bended to ensure
that the matrix was all positive definite, and
weighted against the previous correlations and the
magnitude of the changes made by countries. In
the next step, the results from the preceding step
and the previously used correlations are combined
into a weighted average to avoid large changes in
correlations between consecutive test runs,


https://interbull.org/ib/rg_procedure
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Figure 1. Breeds and countries participated for each trait and trait groups. Red ones show the breed-trait combinations
which were submitted by only one country and were not included in the MACE research run.

weighted by the number of common bulls. The
final correlation was calculated as follows:

blendcorr +wx PTeVpiendcorr
1+w

Final.,,, =

Where w is the magnitude of changes as 0 =
big change (in our case), 1=small and 2 = no
change. If there are no changes in the national
evaluations for the two countries, then the new
processed correlation is not expected to deviate
much from the previous one. However, if one of
the countries has introduced changes in its
national evaluations, it is expected that the genetic
correlation between them would change as well.
It is also expected that an increase in the number

of common bulls would yield a more precise
estimate of the genetic correlation, and in this
case, less weight is given to the previous

correlations. This is achieved by decreasing the
weight on the previous correlations,
proportionally to the increase in number of
common bulls
(https://interbull.org/ib/rg procedure).

Finally, the updated (co)variance matrix is
bended using the bending procedure described by
(Jorjani et al., 2003).
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Estimated Breeding Values (EBVs) calculation
Once all the correlation values were checked to be
in the expected range the evaluation moved
towards the estimation of the international EBVs.
In this step, the correlation between national and
international (MACE) EBVs, along with the
reliability was estimated and compared.

Results and Discussion

Challenges: a) Change in directions of scales

After checking all the initial correlation estimates,
some directions of scales for some countries,
traits, and breeds changed as presented in Table
2, due to some results being on the negative scale.

Challenges: b) Gestation length

After the initial across-country correlation
estimations for ges, two countries, ITA and
CHE, had the lowest correlations with the other
countries.

Table 2. Changes in direction of scale for the affected
country, breed,trait with negative across-countries
correlation estimations.

Change in
Breed(s) Trait(s) Country! Direction of
scale
HOL,
BSW, USA T+-> T-
JER, RDC
HOL NLD B+ 2B-
ges
HOL,
+ -
BSW CHE B+->B
HOL ITA B+ 2>B-
RDC cke,sck - Vor B+ >B-
and mfe

1 United States of America (USA), the Netherlands (NLD),
Switzerland (CHE), Italy (ITA), Norway (NOR)

In order to understand the root cause of the
problem, Interbull Centre initiated an extensive
exchange of information with the two countries
involved until it came out that what those
countries had submitted was maternal gestation
length while all the other participating countries
had provided the direct trait. ITA and CHE were
then asked to submit direct gestation and after
receiving the new data and re-estimating the
across-country correlation the values became
high and in line with other countries (Table 4).

Correlation estimation

All the minimum and median values applied to
post-process the correlations for all breeds-traits
are shown in Table 3.

Direct gestation length (ges)

Across-country correlation for direct gestation
length for HOL breed is shown in Table 4. An
example of number of common bulls and
common ¥ sib groups only for HOL breed is
presented in Table 5. Correlation estimates for
RDC, JER and BSW breeds are reported in Table
6, 7 and 8, respectively. The correlation estimates
ranged from 0.90 between ITA and Czech
Republic (CZE) to 0.995 between USA and Japan
(JPN) for the HOL breed. For the RDC breed
there were four countries and the lowest and
highest values were as 0.961 between NOR and
New Zealand (NZL) and 0.982 between NOR and
USA, respectively.

For JER breed that included three countries,
correlation ranged from 0.953 to 0.983 between
NZL, USA and AUS, USA respectively. The
range for across-country correlation estimates for
BSW breed including three countries ranged from
0.966 and 0.980 for AUS, CHE and AUS, USA
accordingly.



Table 3. Minimum and Median values used for the post-processing correlation estimations for all breeds and new

traits.

. Min (10% Median . Min (10% Median
Breed-Trait percentile) (10%,0.99) | Breed-Trait | entile) (10%,0.99)
HOL-ges 0.90 0.94 HOL-idd 0.77 0.88
BSW-ges 0.96 0.98 HOL-idh 0.35 0.67
JER-ges 0.95 0.97 HOL-soh 0.59 0.79
RDC-ges 0.96 0.97 HOL-sou 0.73 0.86
HOL-cke 0.56 0.78 HOL-wld 0.63 0.81
HOL-sck 0.56 0.77 RDC-dde 0.79 0.89
HOL-mfe 0.44 0.72 RDC-idd 0.79 0.89
RDC-cke 0.54 0.77 RDC-idh 0.60 0.80
RDC-sck 0.45 0.72 RDC-soh 0.81 0.90
RDC-mfe 0.59 0.79 RDC-sou 0.91 0.95
HOL-dde 0.78 0.89 RDC-wld 0.95 0.97
Table 4. Correlation estimation for the ges in the HOL breed.
Country! AUS CHE CZE ITA JPN NLD NZL USA

AUS 1

CHE 0.978 1

CZE 0.901 0.926 1

ITA 0.954  0.952 0.900 1

JPN 0.986  0.982 0.901 0.956 1

NLD 0.989 0986  0.915 0.959 0.989 1

NZL 0.979 0959 @ 0.901 0.929 0.969 = 0.975 1

USA 0.985 = 0.981 0.902 0.962 0.995 0.993 0.974 1

! Australia (AUS), Switzerland (CHE), Czech Republic(CZE), Italy (ITA), Japan (JPN), the Netherlands (NLD), New
Zealand (NZL), United States of America (USA)

Table 5. Number of common bulls (below diagonal) and the common 3/4 sib groups (above diagonal) for the ges and

HOL breed.

Country

AUS
CHE
CZE
ITA

JPN

NLD
NZL
USA

AUS
0

271
431
673
511
691
716
1092

CHE
320
0
227
444
284
488
227
580

CZE
579
333

0
1186
625
1322
520
1530

Table 6. Correlation estimation for the ges in the RDC

breed.

RDC-ges AUS
AUS 1
NOR 0.971
NZL 0.970
USA 0.979

NOR NZL
1

0.961 1

0.982  0.966

USA

1

ITA
854
536

1568
0
935
1396
716
2385

JPN
590
374
917
1325

0
765
397
1586

NLD
823
541

1573
1928
1020
0
1016
1725

NZL
778
270
703
957
528
1228

0
1086

USA
1083

677
1846
3103
1923
2248
1206

0

Table 7. Correlation estimation for the ges in the JER
breed.

JER-ges

AUS
NZL
USA

AUS

1

0.963

0.983

NZL USA

0.953 1



Table 8. Correlation estimation for the ges in the BSW
breed.

BSW-ges AUS CHE USA
AUS 1
CHE 0.966 1
USA 0.980 0.974 1
Claw health

Across-country correlation estimations range for
six claw health traits and for the two breeds of
HOL and RDC are shown in Tables 9 and10. The
highest value for the HOL breed was 0.928 for
dde between NLD and Poland (POL) and the
lowest estimate was 0.356 for idh between Spain
(ESP)-NLD (Table 9).

For the RDC breed, the highest and the
lowest correlations were estimated as 0.953 and
0.619 for wld and idh, respectively, between the
two countries of NLD and Denmark-Finland-
Sweden (DFS) (Table 10).

Table 9. Summary statistics for correlation estimation
for the all six claw health traits in the HOL breed.

Traits Breed Min Mean Max
0.79 0.928
dde  HOL " 7pprsy 0% LDpOL)
0.772
. 0.88
idd  HOL (ESP'- 0.81 '
NLD) (ESP-DFS)
. 0.356 0.881
idh HOL ' popNipy 9% (DEU-DFS)
0.593
0.828
soh  HOL (DEU'- 0.69 :
NLD) (DFS-NLD)
0.732 0.853
sou  HOL - popNipy 7 (Esp-DFs)
0.633 (DEU 0.8
wld |~ HOL " ESP) 071 | LEU-DES)

! Spain (ESP), Germany (DEU)

Metabolic Diseases

For HOL and RDC breeds, the summary statistics
for across-country correlation estimates are
presented in Table 11. For the HOL breed the
correlation estimations ranged between 0.444 (for
mfe and Germany (DEU)-USA)) and 0.946 (sck
and DFS-ITA). The highest and lowest across-
country correlation estimates ranged between
0.493 and 0.605 for sck and mfe, respectively, for

the RDC breed and the two countries of NLD and
DFS (Table 11).

Table 10. Summary statistics for correlation estimation
for the all six claw health traits in the RDC breed.

Traits Breed Min Mean Max
dde RDC (I]\])&S;\I)' 0799
idd RDC | (DFS-NOR) . 0.799
idh RDC | (DFS-NOR) _ 0.619
soh RDC @ (DFS-NOR) _ 0.821
sou RDC @ (DFS-NOR) _ 0917
wld RDC @ (DFS-NOR) _ 0.953

! Denmark- Finland- Sweden (DFS)

Table 11. Summary statistics for correlation estimation
for the all three metabolic diseases traits in HOL and
RDC breeds.

Traits Breed Min 1:1/[ne Max
0.563 0.709
cke  HOL ' ppiiusay %9 (DEU-NLD)
0.565 0.946
sck  HOL ' cypqray %73 (DFs-ITA)
0.444
0.695
mfe HOL  (DEU-  0.55
USA) (DEU-NLD)
Cke RDC NOR-DFS - 0.558
Sck RDC NOR-DFS - 0.493
mfe RDC NOR-DFS - 0.605

EBVs and reliability correlation estimations;
National vs International (MACE) evaluations

Direct gestation length

All the EBVs and reliability correlation
estimations  between the national and
International (MACE) evaluations for ges and all
breeds are presented in Figure 2-3. For the HOL
breed, the highest EBV correlation was 1 for JPN
and for the rest of the countries, the EBVs
correlation were above 0.983 (Figure 2). For the
RDC breed, the highest correlation is for NOR (1)
and NZL (0.999) (Figure 3). For BSW and JER
breeds the highest values are 0.999 for CHE and
1 for NZL, respectively (Figure 3).



Claw Health highest value was 0.997 for idh and wld in NLD

For claw health traits, the EBV correlations (Figure 4). For the RDC breed and having only
between national and MACE evaluation, were two countries of NOR and DFS, the minimum
quite high with the lowest being estimated for dde value was estimated as 0.991 for wld in NOR and
in the HOL breed with value of 0.9 for CZE. The the highest value was estimated as 0.999 for NZL.
HOL- ges
1 0.987 0.993 0.998 0.999 0.968 1 98 0.983 0.999 0.995 5 EBVS
o — o B Reliability
0.8 0.778 0172
0.724
0.6
0.4
0.2
0
AUS CHE CZE ITA JPN NLD NZL USA

Figure 2. Correlations of EBVs and reliability estimates between national and International (MACE) evaluations for
ges in the HOL breed.

RDC- ges BSW-ges
I Y R T A 1 0936 0.9% — 0983 BEBVs
0.783 07m ' .
08 0.8 ogss 0731 N Reliability
0.6 06
04 04 I
0.2
0.2
0
AUS NOR NZL USA 0
AUS CHE USA
JER-ges
0.987 1 0.995

=y

S 0.934
0.8 0672
0.6
0.
0.2
0
AUS NZL USA

Figure 3. Correlations of EBVs and reliability estimates between national and International (MACE) evaluations for
ges in RDC, BSW and JER breeds.



Metabolic disease
Table 12 presents the EBVs and Reliability
correlation estimates for all three metabolic
diseases traits in the HOL breed. For the HOL
breed the EBVs correlations ranged from 0.924
(NLD-mfe) to 0.998 (NLD-sck; DFS-mfe). For
the RDC breed and having only two countries of
NOR and DFS the EBVs correlation estimations
were 1 between these two countries.

May MACE test run(2505t) results- Direct
gestation length (ges)

According to the new MACE service schedule,
introduced in 2025, an extra MACE test run was
conducted in May 2025.

HOL-dde

o973 0.994 0,969 0011 1
0.802 0.813 0.8
0.6
0.4
0.2
0

ESP NLD

POL

0.971

1 ® 0.033
0.8

0.6 I

0

0.4
0.2

0.911

85

HOL-idh

1 0.988 (950 0.977
0.852

0 II II
DEU DFs

HOL-soh

0.9 0.996 0.985
1 0.895

0.8
0.6
0.4
0.2

0

0.996 974
ESP

0.994
1

0.8
0.6
0.4
0.2

HOL wid

1 0991 510
0.8
0.6
0.4
0.2
0
DEU

0.976 5 947

oIII

Six countries participated for direct gestation
length. The list of countries and breeds is
presented in Figure 5. In general, the correlation
estimations were similar to the research run
estimates. The correlation of EBVs and reliability
estimates between National and MACE May test
run 2025 (2505t) evaluations was promising;
Moreover, EBVs and reliability correlation
estimations between May test run (2505t) and
research run were also similar and promising.

HOL-idd

0007 W EBVs
0981 ooc 0.989

I I I I H Reliability

0.997 0.988

NLD

HOL-sou

0947 09 82 g9z 099 0972 W EBVs

0.9
I I I I m Reliability

0.871

0.9970.989

IDsgg II II

Figure 4. Correlations of EBVs and reliability estimations between national and International (MACE) evaluations for

all claw health traits in the HOL breed.



Table 12. EBVs’ and reliability correlation estimates
between National and International (MACE)
evaluations for metabolic diseases traits in the HOL
breed.

Correlation Reliability
Trait Breed  Min Max Min Max

0.925 | 0.997 0.868 ' 0.994

cke (NLD) (USA) (NLD) (USA)

0.965 0998 0.732  0.986
sck HOL (ITA) (NLD) (ITA) (CHE,
NLD)

0.924 = 0998  0.843 | 0.996

mfe (NLD) (DFS) (NLD) (DFS)

Direct gestationlength (ges)

CHE
N

o T
)

CHE

1
o. m

HOL RDC BSW JER

BRD

Figure 5. List of the countries and breeds, participated
for “ges” in MACE May test run 2025.

NUMBER

Conclusion

To conclude, the new traits’ MACE research run
showed promising results which led to the official
May test run 2025 for “ges” trait and its
subsequent inclusion in the official 2025, August
MACE evaluation.

Moreover, the research run results for
metabolic and claw health traits have also shown
the feasibility to include such trait groups in the
current MACE portfolio. The offering of an
official test run for those two trait groups would
require a bit higher participation rate from the
MACE countries/organizations and it is therefore
aimed to happen in the near future. Interbull

Centre will continue reviewing the new
information provided by the participating
countries in the PREPdb so as to timely identify
any new other traits/trait groups that could be
suitable for an international evaluation. In order
to do that, Interbull Centre would gladly renew
the invitation to all countries/organizations to
continue to fill in the PREPdb “other traits”
electronic form. More also can be an inclusion of
more new traits and Interbull services for the new
traits, such as GMACE and Intergenomics.
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Abstract

A genomic evaluation for calf health traits was developed for the Holstein breed in Canada effective August
2025. The new Calf Health index aims to increase resistance to the two most prevalent calf diseases on
Canadian farms, respiratory problems (RESP) and diarrhea (DIAR). Producer-recorded respiratory
problems and diarrhea health events recorded in the first 180d and 60d, respectively, of a heifer calf’s life,
are used in the genetic evaluation. RESP and DIAR, coded as binary traits, are used in a two-trait linear
animal model considering a fixed year-season effect and random herd-year-season, animal, and residual
effects for both traits. Genetic parameters were estimated by the MC EM REML method using 310 662 calf
records from 1 179 herds. Heritability estimates were 0.05 for RESP and 0.04 for DIAR, with a genetic
correlation of 0.53 between the traits. A Single-step genomic evaluation was implemented using the MiX99
software. A June 2025 evaluation test run had 355 355 records for RESP and 144 495 for DIAR, collected
from 1 442 Canadian herds from 2007 to 2025. There were 74 013 calves with health records that were
genotyped and a total of 119 715 genotyped animals in the reference population. The overall prevalence for
RESP and DIAR was 19.5% and 21.1%, respectively. The Calf Health index combines genomic estimated
breeding values for RESP and DIAR at equal weightings. Calf Health evaluations are published as a relative
breeding value, with a mean of 100 and standard deviation of 5 for base bulls, where higher values represent
greater resistance to calf health diseases. No genetic trend was observed and only weak relationships with
other routinely evaluated traits were present. From a sire comparison analysis, clear differences were found
when comparing high and low RBV sires in terms of daughter disease rates, highlighting the potential of
the evaluation. Genetic selection for improved calf health is a valuable tool for animal welfare, lifetime
animal production, and overall herd profitability.

Key words: Calf health, diarrhea, respiratory problems, single-step, genomic evaluation

Introduction shown the potential for improving calf health

through genetic selection, with heritabilities
In recent years, genetic and genomic evaluations ranging between 0.02 to 0.24 (Gonzalez-Pefia et
of dairy cattle have begun to prioritize animal al., 2019; Lynch et al., 2024a). The two major calf
health. In Canada, national genomic evaluations disease classes are respiratory problems (RESP)
for dairy cattle now contain various health-related and diarrhea (DIAR). Both diseases can be caused
traits, including mastitis resistance, metabolic by several pathogens which makes control of the
diseases, hoof lesions, and fertility disorders diseases difficult on farms. Prevalence rates of
(Jamrozik et al., 2013, Jamrozik et al., 2016, RESP are typically reported between 12 and 22%,
Malchiodi et al., 2020, Jamrozik et al., 2021). To while DIAR ranged from 23 to 44% (Windeyer et
date, only traits related to the mature cow have al., 2014, Urie et al., 2018, USDA, 2018;
been included. However, recent studies have Gonzalez-Pena et al., 2019). Furthermore, RESP
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and DIAR account for roughly 75% of
preweaning mortality, highlighting the impact of
calf disease on dairy farms (NAHMS, 2007,
Murray, 2011).

To address this, Lactanet Canada (Guelph,
ON) has developed a new genomic evaluation for
both RESP and DIAR, as part of a new calf health
index, officially released in August 2025 for the
Holstein breed. The objectives of this study were
to describe the current impact of calf diseases on
Canadian farms, the methodology of the genomic
evaluation, and highlight the differences in sire
performance.

Materials and Methods

Data and Trait Definitions

A detailed examination of the calf health (CH)
recording and traits in Canadian Holsteins can be
found in Lynch et al. (2024b). Calf disease data
are recorded by Canadian dairy producers on a
voluntary basis since 2007. The ‘healthy’ herd
mates were determined using herd inventory data.
The two calf disease traits with sufficient records
were RESP and DIAR. Only Holstein records for
female calves were considered for genetic
evaluations. RESP and DIAR are expressed as
binary traits where 0 represents no case and 1
represents at least one disease case occurring
within the defined timeframe. For RESP the first
180d of life is considered while birth to 60d is
used for DIAR. To ensure accurate and
continuous data recording within individual
herds, at least 2 recorded cases for a given disease
were required within the dataset, with a minimum
of 4 months between the 1% and the last record for
a trait. Also, a minimum disease frequency of 1%
within a herd-birth year was required.

Using the above criteria, data used in the June
2025 evaluation included 378 587 total records,
with 355 355 and 144 495 for RESP and DIAR,
respectively. A total of 121 263 records had
values for both traits.

1"

Model

The model is a two-trait linear animal model for
RESP and DIAR. The same model is used for
both traits, considering the fixed effect of year-
season and random effects of herd-year-season
(HYS), animal additive genetic, and residual. In
matrix notation, the model can be written as:

y=Xb+Zh+Za+e,

where y is a vector of observations (binary RESP
and DIAR traits), b is a vector of the fixed effect,
h is a vector of HYS effects, a is a vector of
animal additive genetic effects, e is a vector of
residuals, and X, Zi, and Z,, are the respective
incidence matrices. Random effects
assumed to be normally distributed, with means

WwWere

equal to zero.

Model assumptions are that: v(h) =1 Q HYS,
I is an identity matrix and HYS is the covariance
(2x2) matrix for HY'S effects, v(a) =H ® G, H is
a combined pedigree-genotype relationship
matrix, G is the additive genetic covariance, v(e)
=R, R is a diagonal matrix of residual effects.

Genetic Parameters

Co-variance components and genetic parameters
were estimated by MC-EM-REML as
implemented in MiX99 (MiX99 Development
Team, 2017) using a 2024 data extract including
310 662 records from 1 179 herds. The edits
described above were also applied to the genetic
parameter estimation dataset. The same model as
described for genetic evaluation purposes above
was used, but the combined pedigree-genomic
relationship matrix H was replaced by an additive
relationship matrix A.

Genomic Evaluation

A two-trait component-wise  Single-Step
GTABLUP method (Mantysaari et al., 2017) was
implemented at Lactanet Canada using MiX99
and related software (MiX99 Development Team,
2017), with the assumption that 80% of the total



genetic variance was explained by SNP effects.
The June 2025 data included 119 715 genotyped
animals, of which 74 013 were genotyped females
with phenotypes and 8 570 were genotyped sires
with phenotyped daughters. Animals are
genotyped either with SOK SNP panel or a low-
density panel and imputed to 50K using F-Impute
(Sargolzaei al., 2014). Groups for unknown
parents are not included in the model. The SNP
effects, to be used for calculating Genomic
Estimated Breeding Values (GEBV) for
genotyped animals not included in the single-step
core analysis, are estimated from the GEBV of
reference animals (as in Lourenco et al., 2015).

Reliability of GEBV is approximated by a
weighted (80:20) average of Direct Genomic
Value (DGV) and animal model reliabilities
(Sullivan et al., 2005). The DGV reliabilities are
calculated using SNP prediction error co-
variances with the SNP-BLUP-REL software
(Luke, Finland). Animal model reliabilities are
calculated with the EDC and reliability software
of Sullivan (2023).

Relative Breeding Values

The CH index combines the two individual RESP
and DIAR traits at equal weighting. The index and
the published. The
evaluations are expressed as Relative Breeding
Values (RBV) with a mean of 100 and SD of 5 for
base bulls that for April 2025 are those born 2010-
2019 and with an ‘official’ status. A higher RBV
value means a greater resistance to calf health
diseases. Sire evaluations are defined as ‘official’
for RESP and DIAR when they have at least 20
phenotyped daughters from 5 herds for the

individual traits are

respective trait and a minimum reliability of 70%.
Sires are official for CH when they are official for
both contributing traits.

Sire Comparison Validation

To investigate the difference in performance of
top and bottom performing sires, a random cross-
validation study was conducted. For each trait,
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official sires with at least 30 phenotyped
daughters included in the analysis.
Randomly half of each sire’s phenotyped
daughters had their phenotype changed to
missing, while the remaining half were used to
predict sires’ RBV. Sires were then ranked
according to their RBV. The daughters with their
phenotype set to missing for the evaluation were

Were

used to determine the sires’ daughter disease rate
for both the calf diseases, therefore acting as an
independent sample. Sires with an RBV greater
than 110 and lower than 90 were then compared
based on their percentage of disease daughters for
each calf disease. This process was repeated five
times and averaged across iterations to get an
accurate representation of sire performance across
different sample groups.

Results and Discussion

Incidence Rates

Incidence rates across years for RESP and DIAR
are shown in Figure 1. On average, the incidence
rates for RESP and DIAR were 19.5% and 21.1%,
respectively, which were similar to values
reported in the literature (Lynch et al. 2024a).
Greater fluctuation has been seen in DIAR
incidence rates, whereas RESP has remained
relatively stable. This fluctuation may be due to
several factors, including changes in herds
reporting information and quality of reporting
over time.

30%
25%

20%

Incidence Rate

15%

10%
2007

2011

2015
Year of Birth

2019 2023

Figure 1: Incidence rates across years for Respiratory
Problems (dotted line) and Diarrhea (solid line).
Genetic Parameters



Heritability and genetic and phenotypic
correlation estimates for RESP and DIAR are
shown in Table 1. The heritabilities for RESP and
DIAR were 0.054 and 0.044, respectively.
Estimates were similar to those reported in the
literature for calf disease traits and other health
related traits in the Canadian Holstein population
(Lynch et al. 2024a, Jamrozik et al., 2013,
Jamrozik et al.,, 2016, Malchiodi et al., 2017,
Jamrozik et al., 2021).

Table 1: Heritabilities with standard error in
parentheses, genetic correlations (above diagonal), and

phenotypic  correlations (below) diagonal for
Respiratory Problems (RESP) and Diarrhea (DIAR).
RESP DIAR
RESP 0.054 (0.010) 0.53
DIAR 0.13 0.044 (0.013)
Genomic Evaluations

In the June 2025 preliminary evaluation run there
were 1 393 Holstein sires with an official CH
evaluation. The RBV for CH evaluation ranged
from 78 to 114 for this group and averaged 100.
The average reliability was 87% and ranged from
72 to 99% for official sires. The average
reliability of genotyped, young Holstein bulls
without daughter records that were identified as
being controlled by an Al organization (N=3 744)
was 70%.

Proof correlations were estimated between CH
index, RESP and DIAR and other routinely
evaluated traits in Canada using 937 Holstein
sires born since 2010 with an official LPI and CH
index. The proof correlation between RESP and
DIAR was 0.39, which is similar but slightly
lower than the genetic correlation estimate. This
highlights some difference in the two traits and
that the CH index is useful to make effective
progress in both traits, since the proof correlation
for RESP and DIAR with CH is 0.83 and 0.84,
respectively. For other routinely evaluated traits,
little to no correlations were found. No proof
correlations above |0.20| were found between CH
and RESP for any other trait currently being
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evaluated. For DIAR, the only proof correlations
stronger than 0.20 were for Calving Ability
(-0.20) and Calving Ease of daughters at first and
later calvings (-0.21 and -0.20, respectively).
Direct selection on the CH index is therefore
important to make progress in the calf health traits
analyzed.
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Figure 2: Genetic trend for Holstein females with
records for Respiratory Problems (dotted line)
Diarrhea (solid line).

The genetic trend for CH in females with
records in the evaluation is shown in Figure 2.
The genetic trend has been relatively flat since the
onset of trait recording. Since there is little to no
relationship with other traits under selection in the
Canadian Holstein population, this is expected.

Sire Comparison

On average, daughters born to sires with an RBV
less than 90 were 1.8 times more likely to exhibit
DIAR compared to daughters born to sires with
an RBV greater than 110, while for RESP they
were 1.3 times more likely. These differences
help highlight the difference in sire performance
and show the potential of the evaluation to help
improve the health of young dairy calves. These
results are in line with a similar approach
conducted by Lynch et al. (2024b).



Conclusions

Genetic improvement of Calf Health is highly
valuable as it impacts replacement loss, lifetime
performance, animal welfare, and overall
profitability. The first genomic evaluations for the
Calf Health index and the contributing traits,
DIAR and RESP, were published in August 2025
by Lactanet for the Canadian Holstein breed. The
introduction of the CH index in the Canadian
national selection index LPI within its Health and
Welfare subindex is scheduled for April 2026.
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Abstract

Healthy calves are important to the productivity and welfare of dairy herds. They are potential herd
replacements as well as a source of livestock trading income. Further, healthy calves are important to
the continuous improvement of animal welfare that is valued by farmers and consumers. In our dataset
of ~20,000 calves with health records, the prevalence of stillbirth, preweaning mortality and scours
was 4%, 2% and 6% respectively suggesting that there are opportunities to improve calf health. The
aim of this study was to estimate variance components for novel calf traits and gather the perspectives
of farmers about the relative importance of these traits. Univariate linear models that included a
genomic relationship matrix were used to estimate variance components for stillbirth, preweaning
mortality, scours, respiratory disease and calf vitality where heritability (h”) estimates ranged from 1%
to 11% depending on the trait. Calf vitality is a new, subjectively-scored trait where farmers describe
calves on a scale from A (vigorous) to E (dead). The models included herd-year-season, sex, parity
group and calving ease as fixed effects and these were found to be significant for most breed and trait
combinations. Our survey found that calf traits were valued by farmers similarly to cow survival. They
preferred new traits to be published separately, rather than in multi-trait indexes. As genetic variation
in several calf health traits was measured and the value to farmers has been tested, we conclude that
there is an opportunity to introduce new traits into routine evaluations that target genetic gain for calf
health.

Key words: Calf health, stillbirth, vitality, breeding values

Introduction mortality is a relatively new area of research but
it is a logical progression to the successful

Healthy calves are an important part of a dairy genetic improvement of traits like udder health

herd’s natural cycle. Heifer calves become (Abdelsayed et al., 2017) and fertility (Ooi et

replacements that enable a herd to sustain or al., 2023) in cows and the number of stillborn

grow its size. Replacement heifers are costly to calves (Cole et al., 2007).

rear. In fact, Boulton et al. (2017) reported that This paper reports variance components for

it takes 1.5 lactations to repay the costs calf health traits and industry perspectives about

associated with the heifer rearing period. As trait expression and their relative importance for

morbidity increases, the costs associated with breeding purposes.

extra labour and treatments are expected to rise.

As mortality rises, the total costs are spread over Materials and Methods

fewer surviving animals. There are economic,

productivity and welfare benefits arising from Health records for 19,824 calves were collected

healthier calves. from ~50 Australian dairy herds as previously
Compared to cow health traits, the genetic described by the authors (Axford et al., 2025a).

contribution to improved calf health and lower Calf health events and deaths were coded as
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binary traits for analysis as 0 or 100 for each
trait, where sick or dead was coded as 0 and
healthy was 100. The traits were stillbirth (SB)
(dead at birth or shortly thereafter), pre-
weaning mortality (PWM) (born alive but died
before weaning, estimated to be day 84), Health
(presence of any health event), Scours (presence
of any diarrhea event), Resp (presence of any
respiratory disease). Vitality was a subjectively
scored trait with 5 levels where A was a
vigorous calf, B was a good calf, C was an
average calf, D was a dull calf that lacked
vigour and E was a dead calf.

Genetic parameters were estimated using
univariate linear animal models that included a
genomic relationship matrix (GRM) and fixed
effects in ASReml 4.2 (Gilmour et al., 2022).
The fixed effects were calving ease (CE) with 3
levels (no assistance, slight assistance and
moderate/high assistance), dam parity at
calving where parity was divided into 2 levels
(parity 1 and parity 2+), sex of the calf and Herd
Year Season (HYS) where season was divided
into 2 levels (1 is January-June, and 2 is July-
December). Calving ease was dropped in Jersey
models because there were few cases of
dystocia recorded in the dataset. Due to data
limitations, direct-effect models were used.
Mating data for dams and further detailed calf
phenotypes were unavailable so gestation
length, birth weight and colostrum were not
included in the model. Animals were used in the
EBV predictions if they were genotyped, sire by
arecorded, Al sire and there was a minimum of
5 records in the HYS.

The general form of the model used to
estimate variance components and genomic
breeding values for each trait was as follows:

y=Xb+Zu+te

where y is the vector of the phenotypic records
for each trait (SB, PWM, Health, Scours, Resp,
Vitality); b is the vector of the fixed effects
including HY'S, parity group, CE for Holstein
only, and sex; u is the vector of the random
additive genetic effect and e is the vector of
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random residual effects; X and Z are design
matrices that relate phenotypes to their
corresponding fixed effects (b) and random
additive genetic effects (u). It is assumed that

var(u)=GRMa?2, var(e)=Ic?
where ¢ is the additive genetic variance, 62 is
the residual variance, and I is an identity matrix.

This model was expanded to include two
traits and was used to check the genetic
correlation between calf traits of interest.
Further, to test the relationship with cow traits,
approximate  genetic  correlations
calculated using Peason correlations and then

Wwere

adjusted for reliabilities as we described earlier
(Axford et al., 2025a).

The reliability of prediction for all traits was
calculated using the standard errors of EBV, as

follows:
PEV;

oy

reliability=1-

where, PEVi is the prediction error variance
(squared error of the EBVi for animal i in the
pedigree) and o2 is the estimated genetic
variance in the prediction model.

To gather the perspectives of farmers and
service providers about the importance of calf
traits in breeding programs, an online survey
was conducted between October 2023 and June
2024 using SurveyMonkey
(https://uk.surveymonkey.com/). Respondents
about their business and herd
calf record keeping, trait
preferences and opinions about the expression

were asked
demographics,

of genetic traits. A total of 109 responses were
received, of which 66% were farmers with
further demographic details available in Axford
et al. (2025b).

Results & Discussion

Disease prevalence

Table 1 reports the prevalence of morbidity and
mortality for Holstein and Jersey calves. The
prevalence of SB was lower (4% compared to



almost 7%) to our earlier Australian study of a
larger national dataset (Axford et al., 2024) and
the prevalence of PWM was similar (~2%).
This dataset was more recent (calves born 2020-
2023) and involved farmers that agreed to
participate in this calf research who may
prioritise calf health and recording which could
explain the lower mortality rate. As expected,
scours was the most commonly recorded
disease, followed by respiratory disease. Few
cases of other health events were recorded, for
example miscellaneous (96 cases), deformities
(26 cases), and pink eye (20 cases). Stillbirth
explained five times more deaths than scours
and respiratory disease combined, suggesting
that this was a major calf welfare issue on
participating dairy farms.

The novel trait of calf vitality had fewer
records (n=3,651) as roughly half of the herds
trait. Twenty-one
percent of recorded calves were scored as A -
“vigorous”, 28% B - “good”, 26% C -
“average”, 6% D — “dull”, and 19% E — “dead”.
Many herds (40%) only recorded vitality scores
for dead calves which explains the high
percentage of “E” scores in the dataset.

routinely recorded this

Table 1: Across herd prevalence of morbidity and
mortality in Holstein and Jersey calves, expressed
as a percent.

Holstein Jersey
(n=11,182) (n=949)
Overall Overall
mean % mean %
(SE) (SE)
Pre-Weaning 2.0 2.7
Mortality (0.1) (0.5)
Respiratory 0.4 0.1
disease (lived (0.1) (0.1)
and died)
Respiratory 0.1 0.0
disease (died) (0.0) (0.0)
Scours (lived 5.9 4.8
and died) (0.2) (0.7)
Scours (died) 1.0 1.5
(0.1) (0.4)
Stillbirth 4.1 4.8
(0.2) (0.7)
Genetic parameters
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After editing to include animals with a
genotype, recorded Al sire and at least 5 records
per HYS, there were 7,504-10,513 records for
Scours, SB and PWM. HYS were removed if
the Vitality records included only calves scored
as E — “dead” leaving 1,693 Vitality records
remaining. The heritability ranged between 1-
11% depending on the trait. Either low disease
prevalence, smaller sample size or a
combination of the two meant that variance
components for Jersey cattle could not be
estimated.

Table 2: Genetic variance (VarG), phenotypic
variance (VarP), and heritability (h?) estimates for
calf health traits in Holstein cattle from univariate
linear models.

Trait VarG VarP h?
(SE) (SE) (SE)
Holstein
0.43 76.91 0.01
PWM 038y (1.07) (0.01)
Seours 174839025 0.04
(4.05) (6.44) (0.01)
- 5.68 230.86 0.03
Stillbirth 5 7 (3.59) (0.01)
Vil 466 392,69 0.11
Y (15.16)  (13.82) (0.04)

Stillbirth, as the major cause of early life
mortality, had a heritability estimate of 4% (for
the direct effect). At least in Holstein cattle,
selecting for calving ease contributes to lower
stillbirth rates as the genetic correlation is
favourable (0.7 between stillbirth direct and
calving ease, Axford et al., 2024). However,
other significant effects, such as parity, are
uncontrollable as there will always be heifer
calvings. Therefore, adding stillbirth into sire
selection protocols is an important step in
improving calf welfare.

Calf scours was the most prevalent disease
reported in this study and others (Neupane et al.,
2021, Urie et al., 2018). As is common for
health traits, including mastitis (Abdelsayed et
al., 2017), the proportion of variance explained
by genetics is low. In our case, the heritability
of scours was 4% and this was similar to a
recent Canadian study (4-6%, Lynch et al.,
2024). The mean sire EBV for scours was 0.05



(x1.86 SD) as shown in Figure 1 and mean
reliability was 0.27 (£0.11 SD).
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Figure 1. Distribution of EBV for scours in Holstein
sires

Scours is a major contributor to PWM.
About half of the calves that were born alive but
died before weaning were recorded as having
died from scours in this study. Interestingly, the
genetic correlation between the two was only
0.18. PWM had a very low heritability estimate
of only 1% in this study, which is lower than the
9% reported by Zhang et al. (2022) with a
similar model. Despite significant efforts to
obtain a dataset of sufficient size, traits with low
prevalence are especially challenging in genetic
analysis and emphasise the need for more
systematic approaches to data recording, at
scale, such as automatic milk feeders and calf
health sensors.

Vitality was an experimental trait that is
thought to reflect both health and behavioural
characteristics and the interaction between the
two. For example, a calf that is highly motivated
to drink more milk may achieve higher intakes
that promote good health. Despite having the
least records, the heritability estimate for
vitality was highest (11%). It is likely that the
multiple levels partially explain the higher
heritability compared to the remaining calf
traits. There was a moderate relationship
between vitality and scours (genetic correlation
0.46) suggesting that the trait of vitality is
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capturing different information compared to
scours alone. There were no significant genetic
correlations between vitality and traits of the
cow, such as Cow Survival, Likeability (another
subjectively scored trait) and the Balanced
Performance Index (BPI, national breeding
index).

Survey

From this research, it is clear that genetic
variation from calf health traits can be measured
and EBVs could be incorporated into routine
genetic evaluation. However, the availability of
EBVs is not enough to instigate practice-change
on-farm. As genetic selection decisions are the
domain of farmers, their opinions are important.
On a preference scale of 1-5 where 5 was most
important, the mean score ranged between 3.5
(£1.1) for heifer survival from weaning to first
calving and 3.8 (£1.1) for calf health, as shown
in Figure 2. These scores were lower than
production traits but higher than scores for new
traits such as feed saved and heat tolerance. Calf
trait scores were similar to traits that are
included in BPI, such as cow survival, mastitis
and type traits.

With regard to the expression of calf traits,
respondents preferred that calf traits were
presented so that higher ABVs reflect healthier
calves (88%) and preferred traits to be presented
separately rather than in a multi-trait index. We
suggest that the preference for single trait
presentation is related to the desire for
transparency when new traits are first released.

Conclusions

The genetic selection for calf traits is a natural
extension to the highly successful genetic
improvement of traits affecting the productive
life of cows. Like many other health traits, the
calf traits we studied are characterised by low
heritability yet are highly valued by farmers.
There are opportunities to improve the welfare
of calves and lower the costs associated with
rearing replacements by adding calf health traits
to routine genetic evaluations.



? ab abc béd bk
§ 4 cdecde cde de de de de def def of
= fg fg h
7 "y
g
i I
0
P & & & oy » . > &
Q}Q\ &é.&‘ ({b t:ﬂe‘ éé\
@é F {;.9 &
o &

Trait

Figure 2. Weighted mean scores (bars) and standard error (whiskers) for calf (yellow) and cow (blue)
trait preferences where 5 is most important and 1 is least important. Bars with no common letters identify

scores that are significantly different (p<0.05).
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Abstract

The Nordic (Denmark, Finland, Sweden) General Health (GH) evaluation model was introduced in 2008
and significantly revised between 2017 and 2019. The current GH index includes reproductive disorders,
feet and leg disorders, clinical ketosis, and other metabolic diseases recorded as veterinary treatments.
Acetone and B-hydroxybutyrate (BHB) measurements from milk mid-infrared (MIR) spectra are used
as correlated traits in mixed model equations and supplied primarily from Danish herds. Although the
collection of Swedish acetone and BHB measurements began in 2018, this data has not yet been
incorporated into official evaluations. Furthermore, new Finnish measurements are available only for
BHB and predicted from MIR using a different equation than those used in Denmark and Sweden.

Swedish BHB and acetone, along with Finnish BHB data, were integrated into the official Nordic
evaluation pipeline. Genetic correlations between Finnish and Swedish/Danish BHB were estimated at
around 0.8. Genetic parameters were newly estimated for Holstein, Red Dairy Cattle (RDC), and Jersey
breeds. The largest changes in heritability and genetic correlations between clinical and subclinical
ketosis were observed for RDC and Jersey. Correspondingly, the largest changes in breeding values
were observed for RDC and JER Nordic Al bulls. The updated model is planned to be implemented in
November 2025.

Key words: BHB, Nordic Dairy Cattle Evaluation, Metabolic disorders, Variance component

Introduction hydroxybutyrate (BHB) and acetone (ACE) to
perform selection against subclinical ketosis
Metabolic disorders are commonly observed (Rius-Villarasa et al., 2018).
conditions in high-yielding dairy cattle, Biomarkers show a strong correlation with
affecting health, productivity, and economics of clinical ketosis and other metabolic diseases. In
a herd. Ketosis and subclinical ketosis are DFS, BHB and ACE indexes are not summands
considered as the most prevalent metabolic of the GH index and only used as correlated
disorders in dairy cows (Eduardo and traits in the mix model equation. Phenotypes are
Barrientos-Blanco, 2024). Joint selection for measured using mid-infrared (MIR) milk
resistance to clinical ketosis in Denmark, spectra during the first 60 days of lactation. In
Finland, and Sweden (DFS) began in 2008 the current workflow, biomarker data primary
when the first General Health (GH) model and originates from Denmark; data from Finland is
index were developed (Johansson et al., 2008). a fixed data set collected between 2016 and
In 2017, the GH model was enhanced by 2019, and there is no data from Sweden. Due to
inclusion of milk biomarker traits f- limited data for Red Dairy Cattle (RDC) and
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Jersey (JER) available for variance component
(VC) estimation, parameters were derived from
the Holstein breed (HOL).

The aims of the current project were: 1)
inclusion of Swedish BHB and ACE, and
Finnish BHB data into the Nordic GH model; 2)
estimation of genetic parameters for BHB and
ACE in RDC and JER; 3) investigation of
differences of the BHB and ACE phenotypes
between countries.

Materials and Methods

Data

The Nordic GH model includes five treatment
traits and two biomarker traits (Table 1).
Treatment data was previously described in
Rius-Villarasa et al. (2018) and include
veterinary records for early and late
reproductive disorders (ERP and LRP), feet and
legs disorders (FL), clinical ketosis (KET), and
other metabolic diseases (OMB). Biomarker
data (BHB and ACE) were based on mid-
infrared spectra analyzed by Foss MilkoScan
(MilkoScan FT+, Foss Electric A/S, Hillered,
Denmark). For Denmark (DNK) and Sweden
(SWE) BHB and ACE concentrations in milk
were predicted from the spectra using the Foss
prediction equation. For Finland (FIN) BHB
concentrations in blood were predicted from the
spectra using the approach shown in Kostensalo
et al. (2023). Subset of FIN cows (n=134,232)
had BHB phenotypes predicted using both the
Foss and Kostensalo et al. (2023); however,
BHB from the Foss predictions were not used in
the estimation of genetic parameters or breeding
values.

Table 1: Number of cows with records by trait and
breed.

Trait* HOL RDC JER
erpl 7802789 4366832 668042
Irpl 7712623 4326174 655709
fl1 7712623 4326174 655709
ketl 7712623 4326174 655709
ombl 7712623 4326174 655709
bhbl 1422300 181433 252271
acel 1422300 181433 252271
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erp2 5531607 3166152 462345
lrp2 5463053 3132902 454798
f12 5463053 3132902 454798
ket2 5463053 3132902 454798
omb2 5463053 3132902 454798
bhb2 1121718 147311 200307
ace2 1121718 147311 200307
erp3 3488821 1992511 307564
Irp3 3435200 1966113 301615
f13 3435200 1966113 301615
ket3 3435200 1966113 301615
omb3 3435200 1966113 301615
bhb3 789610 101109 142485
ace3 789610 101109 142485

*erp — early reproductive disorder; Irp — late
reproductive disorder; fl — feet and legs disorders;
ket — clinical ketosis; omb — other metabolic disease;
bhb — B-hydroxybutyrate; ace — acetone.

Data for variance component estimation

For the estimation of genetic parameters subsets
with highly reliable bulls were used. The
subsets were defined as bulls with > 50
daughters in > 25 herds for HOL, and > 25
daughters in > 10 herds for RDC and JER. For
BHB and ACE, records from DNK collected
from 2019 onwards were used. Genetic
parameters for KET, OMB, BHB, and ACE
were calculated using breed x country specific
combinations. Data from DNK were used for
HOL and JER breeds, while SWE data were
used for RDC (Table 2).

Table 2: Number of sires and cows by trait and breed
used for 12 trait VCE.

. HOL RDC JER

Trait* — - p
sires cows** sires cows** sires cows**

bhbl 546 493 295 69 162 109
acel 546 493 295 69 162 109
ketl 528 414 295 65 153 89
ombl 528 414 295 65 153 89
bhb2 515 307 283 35 150 64
ace2 515 307 283 35 150 o4
ket2 459 229 277 32 130 46
omb2 459 229 277 32 130 46
bhb3 447 169 238 17 126 33
ace3 447 169 238 17 126 33
ket3 383 116 230 14 110 21
omb3 383 116 230 14 110 21




*erp — early reproductive disorder; Irp — late
reproductive disorder; fl — feet and legs disorders;
ket — clinical ketosis; omb — other metabolic disease;
bhb — B-hydroxybutyrate; ace — acetone

**Cows are in thousands (*1000)

Mixed model equation

The following mixed model equations were
applied for treatments  and
biomarkers:

Yijte = CHY; + CCAj + CYM, + u; + ey
and

veterinary

+L2ijklm +ul +p€m

+ €jjkim

Where, Yy, and Yy, were individual
observations for veterinary treatments and
metabolic biomarkers, respectively. Fixed
effects were: CHY; — the country-herd-year,
CCA;j — the country-calving-age; CYM; — the

country-heard-month. and

L1ijkim
L2;jjm were regression for lactation stage
modelled as a first and second order Legendre
polynomial. Random effects pe,, and e; j;; were

permanent environment and residual effects,
respectively. Random effect u; is the animal
effect in the breeding value estimation and sire
effect in the variance component estimation.

Variance component estimation

Variance component estimation was performed
using sire model and DMUvV6. 1.5.6 software
(Madsen and Jensen, 2024) in two setups: 1) to
estimate genetic correlations between countries
and establish adjustment factors (k) for BHB
and ACE where each country-parity
combination was treated as a separate trait; 2) to
estimate new parameters for routine use, a 12-
trait model including BHB, ACE, KET, and
OMB in parities 1-3 was used. Newly estimated
parameters for BHB and ACE (6x6 block) were
used to replace current routine estimates. Newly
estimated covariances between BHB[ACE] and
OMB, and between BHB[ACE] and KET were
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used to update routine covariances. The matrix
bending procedure (Jorjani et al., 2003) was
applied to make the 21 trait (co)variance matrix
positive definite.

Biomarkers data adjustment

Prior to breeding value evaluation BHB and
ACE records were multiplied by country-parity
specific k calculated as:

— 2 2
K= \/4as_des/40-s_obser

Where 052_ des 18 sire genetic variance in desired

breed-country-parity strata, and 052_ obser 1S SIT€
genetic variance in observed breed-country-
parity strata. For HOL and JER the variance was
estimated based on DNK data, and for RDC
variance was estimated based on SWE data.
Because sire variance was not possible to
estimate for FIN and SWE JER, variance
(J.SZ_CNTR) was approximated by parity using
following formula:

2
g
2 _ S DNK 2
Os.cNTR = | 52 * Op CNTR>
P_DNK

where O-SZDNK is a sire variance in DNK data,

O'Z?_D vk 18 @ phenotypic (data) variance in DNK
data, and Uﬁ_CNTR is a phenotypic (data)

variance in FIN or SWE.
Results & Discussion

Biomarker data difference

Inter-country genetic correlations of BHB and
ACE in parity 1 for HOL and RDC are shown
in Table 3. The average genetic correlation
between FIN and the other countries was 0.84.
A similar correlation (0.81) was obtained from
regression of FIN cows phenotypes predicted
using the Foss vs Kostensalo et al. (2023)
approach (Figure 1).



Table 3: Inter-country genetic correlations for BHB 0.33. For JER the heritability increased for both

and ACE in parity 1 BHB and ACE, with an average of 0.03.
. HOL RDC . .
Countries BHB Genetic and permanent environment
SWE x DNK 0.95 0.97 correlations increased in the range of 0.02 to
FIN x SWE 0.86 0.88 0.37. Overall changes for HOL were concluded
FIN x DNK 0'84ACE* 0.79 to be limited, but sufficient and positively
SWE x DNK 0.95 097 accepted for RDC agd JER. ‘
*No ACE data available for Finland Genetic correlations between biomarkers

and metabolic traits are shown in Table 5. For
HOL, the largest difference compared to
083 R22: 069, currently used parameters were observed for the

0121 BHB x KET and ACE x OMB combinations,
. with decreases of 0.16 and 0.17, respectively.

For JER, a slight increase (0.13) was observed
for the BHB x OMB correlation. A large
decrease in correlation was observed in RDC
. for BHB x OMB and ACE x OMB pairs - 0.15
0.0z ] and 0.36, respectively. Although the decrease in

Mean BHB (Foss)

. : . . . . ‘ correlation is unfavorable, it is important to note

0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 13
Mean BHB (Kostensalo et al., 2023) that the RDC parameters were previously
Figure 1. Scatter Plot and Linear Regression of first approximated from HOL, whereas they are now

parity mean BHB phenotypes of daughters of HOL directly estimated.
bulls with >50 daughters.

Table 4. Heritability, genetic and permanent

The correlation between milk and blood environment correlation in BHB and ACE parity 1-
BHB concentration was expectedly high. 3.
However, FIN BHB trait is similar, but not Holstein

identical to DNK and SWE. The scale Traits BHB1 ACEl BHB2 ACE2 BHB3 ACE3

. . BHBI 0.08* 0.88 0.85 0.72 0.78 0.66
difference in the phenotype was handled by data ACEL 053 005 073 080 067 070

adjustment factor (K): As BHB and ACE arenot  pres 000 000 009 089 095 086
summand of the GH index it was decided to use ACE2 0.00 0.00 0.60 0.05 0.87 0.94

blended-origin trait. BHB3 0.00 000 000 000 0.08 092
ACE3 0.00 0.00 0.00 0.00 0.62 0.04

Genetic parameters

Newly estimated heritability, genetic and Red Dairy Cattle

permanent environment correlations for BHB ~ Traits  BHBl  ACEl BHB2 ACE2 BHB3 ACE3

and ACE are presented in Table 4. For HOL the BHBL  0.14 0.89 0.93 0.81 0.90 0.85

ACE1 0.68 0.09 0.83 0.89 0.77 0.87

BHB2 0.00 0.00 0.14 0.90 0.93 0.88

ACE2 0.00 0.00 0.71 0.09 0.80 091

i ) ] BHB3  0.00 0.00 0.00 0.00 0.13 0.92
estimates. Changes in correlations ranged from  Acg3 000 000 000 000 072  0.09

-0.10 to 0.14. For RDC the heritability

increased for both BHB and ACE, with a range Jersey

from 0.01 to 0.06. Overall heritability in RDC Traits BHB1 ACEl BHB2 ACE2 BHB3 ACE3
was estimated to be higher than in other breeds. =~ BHBI ~ 0.08 093 086 062 081  0.54
Genetic correlation between BHB and ACE, ACEl  0.56 0.05 0.82 0.74 0.79 0.69
and between parities, also increased by 0.01- BHB2 000 000 0.9 084 094 0.73

heritability was slightly lower for BHB
(average: 0.04) and slightly higher (average:
0.01) for ACE compared to current routine
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ACE2  0.00 0.00 0.60 0.04 0.81
BHB3  0.00 0.00 0.00 0.00 0.08
ACE3  0.00 0.00 0.00 0.00 0.65

0.87
0.84
0.04

*Diagonal — heritability, upper triangle — genetic
correlation, lower triangle — permanent environment
correlation.

Table 5. Genetic correlations between biomarker
(BHB and ACE) and metabolic traits (KET) in first

lactation.
Breed HOL RDC JER
Traits BHB ACE BHB ACE BHB ACE
KET 0.56 059 063 063 0.64 0.67
OMB 047 048 031 026 046 047

Breeding value.

Impact of the new genetic parameters and added
biomarker data on EBVs is presented through;
1) Correlation of the current and new sub-
indexes (Figure 2, 4 & 6), and 2) Reranking of
sub-indexes (Figure 3, 5 & 7) in Nordic Al bulls
with >20 daughters.

Correlation was high (>0.95) and reranking
was limited for HOL bulls born after 2015. The
largest changes were observed for BHB, ACE,
KET, and OMB traits. For this group of traits,
low correlation (<0.95) and a mean reranking >
1 index unit were observed for bulls born 2010-
2014, due to the absence of BHB and ACE data
before 2018 (historic Dannish BHB and ACE
data was discarded from the data).
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Figure 2. Correlation of current and new GH
(sub)indexes in HOL AI bulls with > 20 daughters.
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Figure 3. Mean index difference between current and
new GH model in HOL AI bulls with > 20
daughters.

In RDC, the correlation was below 0.90 for
BHB and ACE across all year classes. For OMB
and KET, the correlation declined from 2016
onwards which can be explained by a gap in
SWE treatment data recording during 2023-
2025 and absence of ACE records in FIN data.
The main sources of RDC data were SWE and
FIN. High reranking (> 1 index unit) was
observed in the BHB and ACE subindexes of
bulls born before 2015.
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Figure 4. Correlation of current and new GH
(sub)indexes in RDC Al bulls with > 20 daughters.




Traits
—a— erp
Irp
-1
—a— mb
—¥— ket
_3 — bhb
ace
—— ind

Mean Index difference
o

2010 2012 2014 2016 2018 2020
Birth Year

Figure 5. Mean index difference between current and
new GH model in RDC Al bulls with = 20
daughters.

For JER, the correlation between current and
new models for BHB and ACE was below 0.9
in bulls born between 2010-2013. The
correlation below 0.95 was also observed for
KET. The highest reranking was seen in BHB,
ACE, OMB, KET, and LRP. Presumably, the
LRP trait was influenced through its correlation
with OMB and KET. The maximum observed
mean reranking was 2 index units.
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Figure 6. Correlation of current and new GH
(sub)indexes in JER Al bulls with = 20 daughters.
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Figure 7. Mean index difference between current and
new GH model in JER Al bulls with > 20 daughters.

Correlation and reranking patterns were as
expected. Stepwise changes to the model
showed that the largest effect was caused by
new genetic parameters and changes in data
structure.

Conclusions

The inclusion of Swedish BHB and ACE
records has expanded data set, especially for
RDC breed. Genetic parameters for RDC and
JER were based on direct estimation rather than
approximation and better align with the data.
The new parameters caused greater reranking in
RDC and JER than in HOL. Aceton records for
RDC will be predominantly based on SWE
data, as FIN has stopped ACE recording.

The updated GH index will be available to
Nordic farmers starting in November 2025. The
presence of national data is expected to increase
trust from Swedish farmers towards the GH
index.
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Abstract

Twinning in Holstein cattle is unfavorably linked to calving difficulties, abortions, milk production
and reduced calf survival. The twinning rate in the Italian Holstein population is 2.2% and appears
relatively stable over time; however, this figure does not account for early abortions and thus it is
underestimated. This study aimed to establish a routine genetic evaluation of twinning rate in the
aforementioned population. The phenotype of interest was the type of calving (0 = singleton; 1 =
twins). The statistical model employed included, as random, herd-year of conception, permanent
environmental effect and the cow’s additive genetic effect. Fixed effects comprised year-season of
conception, herd, synchronization protocol (classified into three categories: yes, partial or no), days in
milk class and parity-age-year of conception. The dataset included 11,329,160 records after filtering,
with age at calving restricted to 18-77 months and parity limited to maximum three. Only fixed effects
levels comprising at least 100 observations were retained. The minimum number of contemporaries
was set to 10. Data editing was loop-based to simultaneously meet all the described restrictions.
Genetic parameters were estimated on a sample of 500 randomly selected herds using
THRGIBBS1F90 software. Posterior mean of heritability for twinning rate was 1%. To validate the
accuracy and stability of the predictions a genomic validation was conducted. Genomic validation
yielded a dispersion of 0.94 and validation reliability of 0.18. This study has laid the foundation for the
implementation of a routine genetic evaluation of twinning rate in the Italian Holstein breed.

Key words: twinning, dairy cattle, genomic selection, codominance, model validation, genetic
parameters

Introduction with low progesterone (P4) concentrations
during the follicular waves (Martins et al,
Twinning in cattle can result from either 2018). This hormonal environment alters the
monozygotic or  dizygotic embryos. secretion patterns of follicle-stimulating
Monozygotic (identical) twins arise when a hormone (FSH), promoting the simultaneous
single fertilized egg splits into two embryos, development of multiple dominant follicles.
whereas dizygotic (fraternal) twins originate Multiple pregnancies increase the risk of
from the fertilization of two separate eggs by reproductive and  metabolic  disorders,
two different sperm cells. In the Holstein stillbirth, freemartinism and early pregnancy
breed, the vast majority of twins are dizygotic, loss: the estimated cost of a twin pregnancy
originating from multiple ovulations and ranges from $59 to $161 (Cabrera et al, 2021).
separate fertilizations. The most likely cause of In the light of the above, the aim of this
twinning is the codominance of multiple study was to implement twinning rate (TWI)
dominant follicles, which is often associated into the routine genetic and genomic

evaluation system for Italian Holsteins.
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Materials and Methods

Data editing

Data after edits consisted of 12M records of
calving events from 1987 onwards. Maximum
parity order was set to three and the following
ranges of age at calving within parity order
were defined: 18-41 moths (parity one), 30-59
(parity two) and 42-77 (parity three). The days
in milk (DIM) range at conception was 21-305
while the gestation length range was 240-315
days. The minimum number of contemporaries
for herd-year of conception was 10. The
minimum number of observations per level of
fixed effect was 100. All the criteria were
assured to be met with a loop-based approach.
The classification of synchronization protocol
application was derived from the weekly
distribution of inseminations in each herd
during each period, considering 2010 as lower
cutoff year. When more than 75% of
inseminations occurred on a specific day of the
week, it was assumed that synchronization was
applied to the entire herd. If the percentage
ranged between 35% and 75%, partial
application of the protocol was assumed.
Below 35%, it was considered that no
synchronization was applied. Farm sizes and
time trends within farms were taken into
account to enhance classification accuracy.
Each group corresponds to different
synchronization strategies and, consequently,
to different expected effects on the phenotype.
Pedigree was traced back to 3 generations.

Statistical model

A single trait repeatability linear animal model
was used, with twinning (TWI1) as dependent
variable. Following a previous study on the
Italian Holstein breed (Katende et al, 2025), it
was possible to apply a linear model with the
cow as the additive genetic effect. The choice
of a linear model did not result in significant
differences compared to the theoretically more
appropriate threshold model.
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The direct effect, that of the sire, was found to
be negligible and was therefore not included in
the model.

The model was the following:

TWIijklmnop = hyL + Sj*Yk + H, + DIM,; +
AGEC_PARw*Y i+ SYNCh+ ao+ peo+ eijkimnop

with  TWljkimnop @S the pth  binary
(singleton/twin) phenotypic observation of
twin calving. Fixed effects were S;xY; as the
crossed effect of season j by year k of
conception, H; as herd of conception, DIM; as
the Ith days in milk at conception class (10
classes of 30 days), AGEC _PARn*Y) as the
mth age at calving by parity class (9 classes: 3
age at calving classes for every parity class) by
year k. Random effects were Ay; as the ith
contemporary group for herd-year of
conception, a, as the additive genetic effect of
the oth cow, pe, as the permanent
environmental effect of the oth cow and
eijkimnop @S the residual of observation p.

Variance components estimation, genetic and
genomic evaluation, approximate genetic
correlations

Variance  components  estimation ~ was
performed with the software THRGIBBS1F90
(Misztal et al, 2002) on a sample of 635,026
animals (500 herds). Convergence was
assessed with R package BOA, Bayesian
output analysis (Smith, 2007). Conventional
estimated breeding values (EBVs) were
estimated with MiX99 software (MiX99
development team, 2015). Genomic evaluation
was performed with a SNPBLUP model using
GS3 software (Legarra et al, 2011). For
estimated deregressed proofs (EDPs), the
method from Degano et al (2016) was applied.
A conventional quality control was applied to
SNP data. For the imputation process,
PedImpute software was used (Nicolazzi et al,
2013). Approximate genetic correlations were
calculated as Pearson correlation coefficients



INTERBULL BULLETIN NO. 61. 21-22 June 2025, Louisville, Kentucky, USA

between genomic estimated breeding values
(GEBVs) of 3,200 heifers born in 2025.

Conventional, genomic and phenotypic
validation
Genomic validation was performed as

described in Finocchiaro et al (2012) and
Galluzzo et al (2022). Briefly, two datasets
were used for EBVs estimation: one full (with
records up to 2504 run) and one reduced (with
a 4-years back cutoff date). For both sets of
EBVs, EDPs were calculated and used as
pseudo-phenotypes for SNP effects estimation.
Bulls with daughters in the full datasets but
without in the reduced one were selected as
validation bulls. Finally, a linear regression
with EDPs of validation bulls from the full run
as dependent variable and their direct genomic
values (DGVs) from the reduced run as the
independent one was fitted.
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average phenotype was evaluated for each
standardized category.

Results & Discussion

The average frequency of twinning across the
entire dataset was 2.2%, in agreement with the
literature (Kirkpatrick et al.,, 2025). The
twinning rate in the Italian Holstein population
is estimated at 2.2% It has remained fairly
constant over time; however, this value is
likely underestimated as it does not include
early abortions. The posterior mean of
heritability was estimated at 0.01 (posterior
standard deviation: 0.001), which falls within
the ranges reported in the literature
(Kirkpatrick et al., 2025; Lett et al., 2018;
Katende et al., 2025; Hiineke et al., 2025).

Genetic trend

2005

—8— GEBV

hd
.V’\\w/ '\\
"'A\,/\ /‘/\r*‘\/’\/\f eeete

2010 2015 2020 2025

Year of Birth

Figure 1. Bulls’ genetic trend by birth year. GEBV=average GEBV.

Parameters considered were the dispersion
coefficient and the reliability of the linear
regression model (validation reliability). To
assess the validity of predictions at phenotype
level, a sample of 1,168 females with
phenotypes in the full run but not in the
reduced run was selected. Their DGVs from
the reduced run were standardized, and the
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This result confirms the potential for
selection on this trait, despite the challenges
posed by its low magnitude. GEBVs are
expressed with a mean of 100 and a standard
deviation of 5, with values above 100 referring
to animals with lower genetic potential for
twinning (and therefore considered favorable).
The trend of GEBVS, reported in Figure 1,
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displayed a decline until the last 10 years,
during which a reversal was observed, likely
linked to improvements in traits related to
female fertility. A similar trend was identified
by Kirkpatrick (2025). Indeed, genetic
selection for reducing twinning rate in dairy
cattle may be desirable, provided it does not
lead to undesirable correlated responses in
other economically important traits. Twin

Phenotypic  validation, represented in
Figure 3, confirms the accuracy of the
predictions in relation to future phenotypes.
Indeed, when considering only the groups with
a sufficient number of observations to ensure a
reliable mean (ranging from -2 to +1 standard
deviations from the mean), we observe that
higher genetic indices are associated with more
favorable future phenotypes.

Approximate genetic correlations - TWI

0.8
0.6
0.4
0.2
: N
-0.2

-0.4

Correlation coefficient

-0.6

-0.8

mkg fpc ppc

cc2

cre ccl hco dlo

Figure 2. Approximate genetic correlations for TWI. Mkg=milk yield, fpc=fat percentage, ppc=protein
percentage, cc2=interval first-last insemination cows, crc=cow recycling, ccl=conception rate cows,
hco=conception rate heifers, dlo=direct longevity.

births in dairy cattle are typically associated
with negative outcomes, such as impaired
reproductive performance and decreased calf
survival.

The approximate genetic correlations are
depicted in Figure 2: for all traits related to
fertility and milk quality, correlations were low
but favorable. Regarding milk yield, a slight
negative correlation was detected, probably
due to a faster metabolism leading to more
rapid degradation of P4.

The genomic validation resulted in a
dispersion coefficient of 0.94, indicating a
negligible overestimation of the DGV and
confirming the accuracy and stability of both
the statistical model and the genetic evaluation
procedure. The validation reliability resulted
0.18.
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Conclusions

In conclusion, this study increased the
knowledge about the genetic aspects of TWI in
the Italian Holstein population and revealed
the possibility to genetically improve the breed
for this trait. Moreover, it confirmed the
stability of the applied model and its ability to
predict future phenotypes through genomic
evaluation. Moreover, it confirmed the stability
of the applied model and the ability of
genomic evaluation to predict future
phenotypes, thus providing solid decision-
making support for the selection of breeding
animals both at the Al center and farm level. A
routine genetic evaluation of TWI will be soon
implemented in Italy for the Italian Holstein
breed.
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Relationship btw DGV reduced and PHE full - females
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Figure 3. Average full-run phenotype (Twinning
rate - full run) and standardized DGV (STD_DGV -
reduced run) for females lacking phenotypes in the
reduced run.
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Abstract

Breeding programs rely on selection of individuals through their breeding values to simultaneously
improve multiple traits of commercial value. In order to adequately select candidates to breed for a next
generation, the genetic relationships between traits are considered in the selection index that summarizes
all the traits for each selection candidate. The methods deployed in genetic evaluations rely strongly in
gaussian distributions describing the data, and consider the genetic relationships between traits in the
form of genetic correlations determining the joint distribution of breeding values from different traits.
In this manner, genetic correlations are treated as parameters, estimated on a base population for
reference. However, genetic correlations depend on the involved traits’ architecture, thus depending on
the genotype presented by each individual, and therefore, different individuals may present different
potential for genetic correlations. Moreover, different potential for genetic correlations may partially
represent a latent physiological trait responsible to balance the phenotypic expression of the measurable
production traits. In practice, individual-specific genetic correlations (iISGC) can be obtained for
individuals with many phenotyped descendants, as the expressed genetic correlation between the
estimated breeding values among their offspring. Since the expressed iISGC depends on the involved
traits’ genetic architecture, part of an individual’s iISGC can be transmitted to the offspring. In order to
study the heritability of iSGC, two-trait genetic evaluations were performed on every pairwise
combination of five traits from a French Holstein dairy cattle population: milk and protein yield (MY
and PY), milking speed (MSPD), somatic cell score (SCS), and conception rate (CR). The iISGC between
every pair of the five traits were obtained for ~1200 bulls with more than 500 phenotyped daughters in
this population, and these iISGC were each evaluated as a phenotype with a single-trait model. This study
confirmed the hypothesis that genetic correlations, when expressed as iSGC, are heritable parameters,
with significant heritabilities ranging from 0.11 (iSGC between SCS and CR) to 0.51 (iSGC between
PY and SCS).

Key words: Selection index, Multi-trait genetic evaluation, Genetic trade-off, Dairy cattle, Latent
phenotype, Physiological traits

Introduction 2006). Therefore, in order to avoid that
selection for one trait is detrimental to the other
Breeding programs aim to select for multiple (Hazel et al., 1994), selection must account for
commercial traits, in order to achieve genetic these negative correlations. This is typically
progress for all of them. Many of these traits are done through a selection index, i.e., a linear
genetically correlated, and a negative combination of traits, whose weights are
correlation means that an antagonism between defined by, among other information, the
two traits exists. In dairy cattle, the genetic genetic correlations between the traits involved
trade-off often lies between production and (Hazel, 1943; Hazel et al., 1994; Miglior et al.,
either fertility or health traits (Boichard & 2017).
Manfredi, 1994; Pryce et al., 1997; Rauw et al., Genetic correlations between traits are
1998; Roxstrom et al., 2001; Windig et al., considered a populational parameter that
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defines the joint normal distribution imposed to
the breeding values in genetic evaluations.
However, in this manner, genetic correlations
are assumed equal to all individuals, an
assumption that ignores the fact that different
individuals may present different physiological
trade-off regulation between traits (Berry et al.,
2016; Cuyabano et al., 2024). This hypothesis
has been revisited by Cuyabano et al. (2024),
who, in a study of the trade-off between
production and fertility in the French
Montbéliarde population, have shown that
different sires could express different genetic
correlations through their daughters, between
these traits.

Because the study of Cuyabano et al. (2024)
had only 247 sires with enough daughters
evaluated so that reliable genetic correlations
could be obtained at the individual level (i.e. for
each sire), no further inferences could be drawn,
with respect to the genetic background of these
individual-specific genetic correlations (iISGC).

This current study hypothesized that if the
different genetic correlations expressed by
different sires are simply a feature of
recombination and different allele frequencies
in different family lines, then none or very weak
heritabilities are expected to be observed for the
iSGC. However, if the iSGC represent, even if
only partially, a latent physiological phenotype,
non-zero heritabilities should be observed for
the iISGC.

To support this hypothesis that non-zero
heritabilities associated to the iSGC may
suggest their representation of a latent
physiological phenotype,
deployed. Breeding values were simulated for
multiple traits, with their genetic correlations
solely due to pleiotropic QTL and linkage

simulations were

disequilibrium between non-pleiotropic sites, in
order to show that when no physiological trait
was involved in the differences between genetic
correlations, no heritability was captured by the
1ISGC.

For the real data analysis, this current study
up-scaled the work from Cuyabano et al.
(2024), by calculating iISGC for 1161 sires from
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a French Holstein dairy cattle population,
between each pair of five traits of commercial
interest (milk and protein yield, milking speed,
cow conception rate, and somatic cell score).
Heritabilities were then estimated for the iSGC,
under the hypothesis that non-zero estimates
suggest the representation of a latent
phenotyped through the iSGC.

Materials and Methods

Bi-variate genetic evaluation model
Two-trait animal models were deployed for the
genetic evaluations in this study, given by:

[ 1=l 4[5 ] m

in which y; and y, are the vectors of
phenotypes for traits 1 and 2 respectively; g; ~
N(0,Ac}) and g, ~N(0,Ac},) are the
vectors of breeding values for these two traits,
with Cov(gq, g;)=Aady,,, such that A is the

. . . . . 2 2
pedigree relationship matrix; o5, and o, are the
additive genetic variances, and o, , is the

genetic covariance between the two traits; &; ~
N (O, Inagzl) and & ~ N(O, Inagzz) are the
random residuals, with Cov (e, £,)=I,0;,; 0821
and 0522 are the residual variances, and g , is
the residual covariance.

The genetic evaluation model in equation (1)
was implemented under a Bayesian framework,
using the GIBBS3F90 module from the
BLUPF90 family of (Misztal et al., 2018), with
the software’s default prior distributions for the
breeding values and (co)variance parameters. A
total of 300,000 samples were generated, with
the first 100,000 discarded as burn-in. On the
remaining 200,000 samples, a thinning
parameter of 200 iterations was applied,
resulting in 1000 effective samples used to
compute the estimated breeding values (EBV)
and (co)variance parameters. To assist
convergence of the (co)variance parameters,
initial values were provided, using the current
genetic (co)variances used for these five traits



in the French national genetic evaluation.
Convergence was assessed visually through
plots of the 1000 effective samples for the
genetic (co)variances.

Heritabilities (h? and h%) and genetic
correlations (p;,) between the traits were
obtained from the estimated (co)variance
parameters, as:

2 6§ 2 63
— 1 — 2
17 42 2 and 27 a2 2 (2)
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Real data

The dairy cattle data used for the present study
was from the French Holstein population. The
bi-variate genetic evaluations were
implemented for every pair of the following five
traits: milk and protein yield (MY and PY),
milking speed (MSPD), somatic cell score
(SCS), and cow conception rate (CR), measured
as artificial insemination’s success/failure on
lactating cows (i.e. heifers excluded). The
phenotypes entered for the
performed in this study were in the form of yield
deviations (YD), issued from the French

evaluations

national genetic evaluation, which evaluates
MY, PY, SCS as 305-day phenotypes corrected
for the duration; performance records comprise
all lactations records per cow, and the model
accounts for the repeatability (i.e., for the
permanent environment of the cow). A total of
4,501,624 cows born between 1991-2020 had
YD deviations available for all five traits, with
a pedigree file containing a total of 8,275,018
animals that traced back three generations from
the cows with performances.

Simulated data

The simulated data consisted of ten replicates of
populations with a founder population followed
by 30 generations under selection. Generations
non-overlapping, each with 1000
individuals, among them 200 males and 800

WwWere

females. Selection was performed at each
generation for the top 20% males, based on a

37

selection index build from their true simulated
breeding values, assuming equal weights for all
simulated traits. Pedigree information was kept
for the simulated populations.

Five traits were simulated with additive
effects associated to them, and genetic
correlations were solely due to pleiotropic QTL
and linkage disequilibrium (LD) between non-
pleiotropic sites. To simulate these traits, 1675
SNP genotypes, already in LD from the founder

in this
serve as

population (average LD of 0.15
population), were simulated to
quantitative trait loci (QTL). At each population
replicate, a random subset of 75 SNPs were
assigned as pleiotropic QTL across all five
traits, five random subsets of 25 SNPs each
were assigned as pleiotropic QTL across four
traits, ten random subsets of 50 SNPs each were
assigned as pleiotropic QTL across three traits,
and ten random subsets of 90 SNPs each were
assigned as pleiotropic QTL across two traits.
The remaining 75 SNPs were finally split in five
groups of 15, to be assigned as QTL exclusive
to each one of the five traits. This distribution
of the QTL per trait is presented in the Venn
diagram in Figure 1.

Figure 1. Venn Diagram describing the number of
QTL shared among the five simulated traits.

Finally, QTL-effects simulated,
correlated between traits, so that the breeding

values at the founder population presented

WEre



genetic correlations matching those obtained
for the traits studied in the French Holstein
dairy cattle population. The additive genetic
variances of the simulated breeding values were
set to 10 x h2, with the heritabilities being
those obtained for the real traits evaluated from
the French Holstein dairy cattle data.

Individual-specific genetic correlations and
their heritability estimates

For both the real and simulated data, individual-
specific genetic correlations (1ISGC) were
calculated for sires, in order to evaluate how
much differences in genetic correlations were
expressed by different sires.

For the real data, iSGCs were calculated for
all pairs of the five traits, evaluated with the bi-
variate genetic evaluations models given by
equation (1). Following the proposed by
Cuyabano et al. (2024), sires with more than
500 daughters evaluated were selected, so that
reliable genetic correlations could be obtained
at the individual level, based on the daughters’
EBVs. A minor change was made to calculate
the iISGC, compared to how it was done by
Cuyabano et al. (2024), who obtained the iSGC
per sire by correlating the EBVs from their
daughters. Here, prior to calculating the
correlations between the daughters’ EBVs from
different traits, half of the dam’s EBVs were
subtracted from their daughters, so that on
average, the iSGC comprised only sire
information. Thus, for each sire s and for any
pair of traits 1 and 2, their i-th daughter’s
breeding values were corrected as:

Q damofi
gli,s:gli'¥, 4)

9244 i
Q2i5=02i- 5L, (5)

for every i=1, ..., ng. Finally, for each sire s:

. Z?:S]_(gﬂ,s‘gl s) (QZi,S'gz S)

SGCy= : .

L S (ns‘l)o'gsl 0.g52 9 (6)

such that gl s:% and EZ = Zi:;gzm are

the mean daughters’ corrected EBVs, and their
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For the simulated data, 1SGCs were

calculated for all pairs of the five traits, only for
the selected sires in the simulation routine.
Since the simulations provided genotypes and
the true simulated QTL effects, instead of using
daughters’ information, for each sire s, 500
gametes were simulated, at which QTL effects
were applied. Thus, for each sire s and for any
pair of traits 1 and 2, the additive genetic values
of the i-th gamete was given by:

Viis= 201> X, (7
Vais= 201 Xittz), (3)

for every i=1, ...,500, such that a;;’s and a;;’s
are the QTL effects (set as zero if the j-th SNP
is not a QTL for each of the traits). Finally, for
each simulated sire s:

Ziszof(Yli,s‘?l_s)(VZi.S'72,s)

ISGCs= @99)8,.6,, ) )
L Vai — 500, .
such that y, s:% and 7, = Lfslo)(/)zl,s are

the mean additive genetic values of the gametes,

2
. . Z?:Olo yli,s'71
and their variance are 872 =M

el 299 and

42 50 (vaisTas)
Ys2 499

Heritability estimates were obtained for the
iSGCs, by treating them as a phenotype in a
variance component estimation routine, using
the pedigree relationship matrix for both the real
and the simulated data, tracing back four
generations from the sires. For the simulated
data, heritability estimates were also obtained
using a genomic relationship  matrix
(VanRaden, 2008) built from the simulated
SNP-genotypes. The following model was used
to estimate variance components:
iSGC=1,utg+e, (10)
in which iSGC is the vector of iISGCs obtained
for the n sires, between any two traits; u is the
overall mean; g ~ N (O,Aagz(l-sac)) is the vector

of breeding values associated to the iSGC, A is
the pedigree relationship matrix (replaced by



the genomic relationship matrix G, for the
simulated data), and ng(isc;c) is the additive
genetic variance associated to the iSGC; and
e~ N(O, Inaez(iscc)) is the vector of random
residuals, and aez(iSGC) is the residual variance.

Variance components for the iSGC were
estimated through the residual maximum
likelihood (REML; Patterson & Thompson,
1971), using the REMLF90 module from the
BLUPF90 family of programs (Misztal et al.,
2018). Finally, heritabilities of the iSGC were
given by:
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Results & Discussion

Genetic parameters on real data

Heritability and genetic correlation estimates
were obtained from the genetic parameters of
the bi-variate genetic evaluations, for every pair
of the five traits studied from the French
Holstein dairy cattle population, and their
values are presented in Table 1. These values
agreed with those used for the French national
genetic evaluation, as expected, and also agreed
with reported heritabilities and genetic
correlations between these traits. Finally, these
values presented in Table 1 were the ones used
as parameters to generate the breeding values
for the simulated data, with genetic variances
equal to 10 X h2.

Table 1: Estimated heritabilities (diagonal bold
values) and genetic correlations (upper triangle of
the table) between the five traits studied in the
French Holstein dairy cattle population. Values in
gray indicate an estimate that was not statistically
different from zero (significance level of 0.05).

MY PY MSP SCS CR
D

MY 022 0.78 -0.15
PY - 038 -0.20

MSP 024 031

D

SCS - 013 -0.26
CR -—- - - 0.01

Distribution of the individual-specific genetic
correlations on real and simulated data
Figures 2-5 present the distributions, in the form
of density curves, of the iISGC obtained between
the five traits studied, both on real and
simulated data, indicating that different sires
did present different potential for genetic
correlations, expressed through their offspring.
The mean iSGCs on the real data presented
bigger differences from the estimated genetic
correlations with the Gibbs sampler, presented
in Table 1 and indicated with dots at the x-axes
of the plots, than the mean iSGCs on the
simulated data. This could be due to the fact
that, on real data, iISGCs were obtained for a
subset of sires that had at least 500 daughters
evaluated, rather than for all sires, potentially
indicating a different mean iSGC for these elite
sires, with respect to the whole population.

°  Pains

- — iSGC on simulated data

|—— iSGC on real dala
MY x PY

20

— MY xMSPD
= PYxMSPD

15

T T T
0z 04 06 08

iSGC

Figure 2. Distribution of the iSGC obtained across
the pairs of the three production traits (MY, PY, and
MSPD), on both real and simulated data.

0 Pars
— — iSGC on simulated fata

T T T
-0.2 00 02 0.4

iSGC
Figure 3. Distribution of the iISGC obtained between
the production traits (MY, PY, and MSPD) and the
health trait (SCS), on both real and simulated data.



Interestingly, on the real data, the overall
iSGC between MY and CR and between PY and
CR were less negative for the elite sires than the
estimated genetic correlations between these
traits, as shown in Figure 4. Conversely, the
overall iSGC between MY and SCS and
between PY and SCS were rather more negative
(i.e. a stronger trade-off between these traits) for
these elite sires than the estimated genetic
correlations between these traits, as shown in
Figure 3. If the hypothesis that iSGCs express a
latent physiological trait holds, even if at least
partially, these results suggest that selection is
favoring a physiological trait that allows a better
trade-off between
in the
detriment of the trade-off between production
and health indicators. Nonetheless, it is
important to note that a strengthening of the
trade-off between traits does not mean that the

w o

management of the

production and fertility, however

©  Pbes
- — iSGC on simulated data
[— iSGC on real data
— MY xCR
— PYxCR
MSPD x CR

10
I

Density

T — T
-03 -0.2 -01 00 0.4 0z
iSGC

Figure 4. Distribution of the iSGC obtained between

the production traits (MY, PY, and MSPD) and the
fertility trait (CR), on both real and simulated data.

SCSxCR
® o
o _|-= ISGC on simulated data
[— iSGC on real data

iSGC

Figure 5. Distribution of the iSGC obtained between
the health and fertility traits (SCS and CR), on both
real and simulated data.
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traits themselves are not achieving genetic
progress.

Heritabilities of the individual-specific genetic
correlations on real and simulated data
Heritabilities were estimated for the iISGC, by
treating them as a phenotype, as in the model
presented in equation (10). These heritabilities
were estimated for the iISGC obtained for both
the real and simulated data. The goal of
comparing these heritabilities of the iSGC on
real data, to those of the iISGC on simulated data
with the same genetic parameters, was to show
that when no latent trait was associated to the
differences between genetic correlations in a
population, no heritabilities would be captured.

The estimated heritabilities are presented in
Table 2, being the presented values for the
heritabilities of iISGCs obtained on simulated
data (lower triangle of Table 2), the obtained
using the pedigree relationship matrix, since
their values were not statistically different from
the obtained with the genomic relationship
matrix (significance level of 0.05). All these
heritabilities of the iSGC on simulated data
were not statistically different from zero
(significance level of 0.05), indicating that
neither family relationships, nor allele
frequencies and LD patterns were enough to
outline a genetic determinism for the different
iSGC expressed by different sires.

With respect to the heritabilities of the iSGC
on real data (upper triangle of Table 2), their
values were significantly different from zero
(significance level of 0.05), with the exception
of the heritability of iISGC between MSPD and
CR. Particularly, heritabilities of the iSGC
between the two main production traits (MY
and PY), between these main production traits
and the health trait (SCS), and between these
main production traits and the fertility trait
(CR), were moderately high for dairy cattle
traits, ranging from 0.38 to 0.51. These
heritabilities suggest a reasonable level of
genetic determinism associated to the different
iSGC expressed by different sires, and these
heritabilities could be due to the genetic



correlations at the individual level expressing,
at least partially, a latent physiological trait.

Table 2: Heritability estimates for the iSGC obtained
on the real data (upper triangle of the table), and for
the iSGC obtained on the simulated data (lower
triangle of the table). Values in gray indicate an
estimate that was not statistically different from zero
(significance level of 0.05).

MY PY MSP SCS CR
D

MY - 045 0.16 045 046
PY -— 0.17 0.51 0.38

MSP -— 023

D
SCS - 0.11
CR -
Conclusions

Genetic correlations, while treated as a
parameter common to all individuals in genetic
evaluations and selection indexes, may present
different values across individuals in a
population. By obtaining individual-specific
genetic correlations for sires from a French
Holstein dairy cattle population, this study has
shown that indeed, different individuals present
different patterns in their genetic correlations
between five traits of interest. Moreover,
individual-specific genetic correlations are
heritable, suggesting that these parameters may
be part of the expressions of a non-measurable
(or latent) physiological trait. When it comes to
traits that present a negative genetic correlation,
the findings from this study may assist to select
individuals better apt to manage the trade-off
between traits. However, it remains a question
of research, how to adequately and optimally
use individual-specific genetic correlations and

their heritability in a breeding program.
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Abstract

In April 2025, Centre for Genetics of Polish Federation of Cattle Breeders and Dairy Farmers (CGen)
implemented single-step genomic evaluation for Polish Holstein-Friesian population. The process of
implementing the new evaluation system started in December 2024 when CGen became the official
provider of dairy genetic evaluations in Poland calculating selection indexes based on breeding values
estimated by the National Institute of Animal Production in Balice using a two-step approach. To
increase the accuracy of breeding value estimations, CGen developed single-step pipelines using
BLUPF90 family of programs. In January 2025 conventional EBVs for all traits were submitted for
Interbull test run and successfully passed the evaluation. Next, the results of genomic evaluations were
submitted for GEBV test and also passed for all traits. In April 2025 single-step evaluation results were
officially published for the industry. In this paper we share the experience from the work undertaken to
implement the single-step approach in Poland. The changes to the genetic evaluation models are
highlighted. The methodology implemented for the integration of external information (MACE proofs)
in single-step evaluations is discussed and results presented. Technical aspects of implementation are
also discussed including model running times for individual traits. Highlights from the validation work
undertaken are also included. The most noticeable impact on genetic evaluation results of the transition
from the two-step evaluation system to the single-step method was increase in reliabilities. For example,
for production traits, reliability increased by 12 percentage points for bulls and 10 percentage points for
cows. The most significant improvement was observed for longevity, with a reliability increase of 40
percentage points for bulls and 35 percentage points for cows. The new system also demonstrated
substantial improvement in the correlation between Polish and international breeding values, as
estimated by the Interbull Centre. The most noticeable improvement was for longevity, where
correlation increases with some countries reached 46 percentage points.

Key words: genetic evaluation, genomic parameters, single-step evaluation, dairy
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Introduction

The implementation of the single-step genetic
evaluation in Poland was a significant project
undertaken by several organizations, led by the
Centre for Genetics of the Polish Federation of
Cattle Breeders and Dairy Farmers (CGen) and
supported by the National Research Institute of
Poznan
Krakow

Balice,
Sciences,

Production  in
of Life
Agricultural University, Wroclaw University of
Life Sciences, and AbacusBio Ltd. This
initiative aimed to transition from a two-step to

Animal
University

a single-step genomic evaluation system for
Holstein-Friesian cattle, using the BLUPF90
family of programs (Aguilar ef al., 2018). The
take-over of the routine genetic evaluation by
CGen followed the European trend in which
breeders' associations are taking responsibility
for the national evaluations. Similar changes
were implemented in France, Netherlands, or
Germany. The final change of the evaluation
accepted by the Ministry of
Agriculture in December 2024, and the
implementation of the new system took place in

unit was

April 2025 after a successful validation at the
Interbull Centre.

The transition to a single-stage system
included: implementing BLUPF90 family of
programs, change in definition of fertility traits
and longevity, changes in models used to
evaluate some traits e.g. production and
conformation, but also introducing new traits
(digital dermatitis (DD), bone quality, and
interval from 1st to last insemination. One of the
main issues was integration of external breeding
values i.e. MACE proofs as bulls’ pseudo-
phenotypes. In this paper we show the results of
implementing the single-step  genomic
evaluation based on a few selected from all the
47 traits included in the Polish national genetic
evaluation system.

Materials and Methods

The population of Polish Holstein-Frisian cows
are under routine recording, performed by
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Polish Federation of Cattle Breeders and Dairy
Farmers (PFHBiPM). The database contained
over 4M cows with phenotypes. The number of
records varied between traits, for example the
data set for production traits had over 76M
records and for DD 270K. The 3-5 generations
of pedigree, depending on the trait, included in
the analyses was created based on own
herdbook data and integrated with Interbull and
EuroGenomics pedigree data including 6M
animals. More than 240K genotypes were used
in the analyses which comprised of genotypes
of Polish cows and bulls supplemented by
EuroGenomics’ data and data from other
international exchanges.

Models

We employed a range of animal models
depending on the analyzed trait. In the case of
production traits, we employed multi-lactation
random regression test-day models with
lactation curve modelled with Legendre

Polynomials. Calving traits multi-

lactation models with maternal effect. Type

were

traits were analyzed using multi-trait models
with correlated traits connected in blocks. For
fertility traits, longevity and digital dermatitis
we used single trait multi-lactation models.
Workability traits were analyzed with single-
trait animal models.

Software

The variance components and breeding values
were estimated using BLUPF90 family of
programs. The variance components were
estimated using Gibbs sampling algorithm with
GIBBSF90+, BLUP90IOD3 to solve mixed
models and ACCF90GS3 to approximate
reliability including genomic information. The
genomic runs utilized APY (Algorithm for
Proven and Young) algorithm for genomic
evaluations (Misztal et. al, 2014, Misztal,
2016). The core for the APY consisted of 18K
animals, which is related to the number of
independent chromosome segments
(haplotypes) in bovine, this number of core
animals allowed to capture 99% of genetic



variation (Pocrnic et al., 2016). The list of the
core animals was created using a strategy that
prioritized animals from the reference
population common across seven different trait
groups. A "reference list" was first built by
randomly sampling animals present in the most
trait groups, with special consideration for key
traits like digital dermatitis, conformation and
fertility. This list was then supplemented with a
selection of the most popular insemination bulls
to finalize the sample.

MACE Integration

MACE breeding values obtained from the
Interbull Centre were used as bulls’ pseudo-
phenotypes in order to integrate international
breeding values in the national genomic
evaluation following Bonifazi et al. (2023). In
short, the international and national breeding
values for bulls were de-regressed using their
reliability. Then the national de-regressed
proofs were used to remove the contribution of
Polish cows to the MACE proofs. The MACE
proofs were used only if they were more
accurate than the national proofs. The converted
MACE proofs were weighted using their
reliability and included in the data as bulls’
phenotypes. All bulls were assigned to one
contemporary group to account for differences
in the average level between phenotypes and the
de-regressed proofs. In the case of random-
regression models, we additionally converted
the de-regressed proofs such that they were on
the level of the test-day records instead of the

full lactation EBV wusing Eding (2024)
approach.
EBYV Standardization

The final breeding values were standardized
using the rolling base population that consists of
cows with phenotypes born 10 years before the
evaluation and will be updated on a yearly basis.
All traits except milk production traits are
expressed on a scale with the mean of 100 and
SD of 10.
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Results and Discussion

Selection of traits for comparison

To show the outcomes of implementing single-
step evaluation system in Poland we present
results for a few selected traits only. We
selected: milk yield, longevity, and digital
dermatitis (DD). Milk yield was included due to
its extensive history
having

in Polish genetic
evaluation, undergone  moderate
modifications (comparing to changes in other
trait groups) regarding data filtering and model
in new system. This provides a stable baseline
for comparison. The heritability for milk yield
was estimated at the level of 0.37. Longevity
was chosen as a trait with a substantial period of
being included in the evaluation in Poland and
a comprehensive phenotypic data set. Notably,
the current evaluation for longevity has
undergone a complete revision, including
changes in trait definition, data filtering and
variance components estimation (Stachowicz et
al., 2024). The heritability level for longevity
was estimated to be 0.16. The third trait, digital
dermatitis, represents a recent addition to the
genetic evaluation with breeding value
evaluation started in 2024. Phenotypic data for
DD have been incorporated into the evaluation
system since 2018. It represents low heritable

traits with a heritability of 0.07.

EBYV correlations with previous system

The introduction of the new single-step system
caused significant re-ranking of animals.
Correlation between indexes from previous and
new system ranged from 0.83 to 0.96 depending
on focal group of animals. In the top 200
ranking bulls only 96 were in common between
the two systems and only 66 females.
Correlations for production traits were the
highest, ranging from 0.88 for protein to 0.94
for fat. The larger changes were observed for
longevity and fertility with correlations of 0.6
and 0.5, respectively.



MACE Integration results

Correlation between domestic pedigree-based
(conventional) evaluations and international
proofs for bulls with daughters in Poland for
milk production was 0.99. The same correlation
for international bulls without daughters in
Poland was 0.79. The inclusion of MACE
proofs in single-step evaluation resulted in an
increase in the correlation with MACE proofs to
0.98. For longevity the corresponding value
increased from 0.72 to 0.96, respectively.

Genetic correlations with other countries

For production traits the correlations between
countries from previous and current system are
high and stable, at approximately 0.9 for milk
yield (ranged from 0.87-0.9). The lowest
correlation was obtained between Poland and
New Zealand 0.66 for both current and previous
This that the
introduced did not significantly impact the
results obtained in Poland and are consistent

systems. means changes

with the evaluation obtained in other countries.
For traits where significant changes were made
in the definition, model, or data editing, such as
longevity, the improvement in correlation is
significant, ranging from approximately 0.2 to
0.45. The highest increase was observed
between Poland and counties: USA, Germany,
DFS and Spain. This means that the changes
introduced positively influenced the estimated
breeding value results.

Digital dermatitis is a new trait evaluated in
Poland since April 2024. Based on results from
the Interbull research run for new traits Poland
received very high correlations for digital
dermatitis with six other countries participating
in the study, with the highest correlation being
0.93 with the Netherlands. These results
confirm that the breeding value estimated in
Poland is consistent with those estimated in
other countries.

Reliability

A notable observation in the current genomic
evaluation system is an increase in reliability,
particularly for genotyped animals and
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reference population. This improvement is
evident in both male and female. For milk yield,
the average increase in reliability was 10 and 12
percentage points for bulls and
respectively, when comparing the previous two-
step evaluation system to the current single-step
approach. In the case of longevity, this increase
in reliability is substantial, averaging 40

COWS,

percentage points for bulls and approximately
35 percentage points for females. As
mentioned, digital dermatitis has not previously
undergone a two-step evaluation, which makes
it impossible to directly compare the reliability
of both systems. However, Figure 1 illustrates
the distribution of genomic breeding value
reliability for females derived from the single-
step system. As shown, females with only
phenotypes showed the lowest reliability, with
an average reliability of 0.4 in this group. In
contrast, females from the reference population
(having both the phenotype and genotype) show
the highest reliability, averaging around 0.7.
Females with only a genotype achieve an
average reliability of approx. 0.6. These
reliability levels are notable given that DD is a
low-heritability trait with a relatively small
number of recorded phenotypes. For all 47 traits
currently under evaluation, an observed
increase in reliability ranged from 5 to 40
percentage points.
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Figure 1. Reliability of the genomic breeding values
for digital dermatitis in three groups of Holstein-
Friesian females.



Run times

The implementation of the APY (Algorithm for
Proven and Young) approach, combined with
multi-core processing options within the
BLUP90IOD3 software, has resulted in
relatively short computational times for full
genomic evaluation runs. The processing time
depending on the trait under
consideration, ranging from (in clock hours):
1.5h for longevity, to 5h for digital dermatitis
(DD), and between 13h to 33h for production
traits.

varies

Conclusions

Implementation of single-step evaluation
system utilizing APY algorithm allowed to
improve the national genetic evaluation system
in Poland. The international
estimated by Interbull Centre for conventional

correlations

proofs, generally, increased. The genomic
breeding reliability  increased
substantially thanks to including phenotyped

values

and genotyped cows in the reference population
while utilizing MACE proofs for bulls
evaluated based on foreign daughters. Including
cows in the reference population allowed for a
successful implementation of hoof health trait
which is not a routinely recorded trait in Poland.
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Abstract

For several years, dairy cattle breeders in the Walloon Region of Belgium have had access to locally
estimated breeding values (EBV) for traits of interest. These evaluations enable Wallonia to contribute
to the Multiple Across Countries Evaluation (MACE) conducted by Interbull. In the current local
genomic evaluation framework, genomic and pedigree data are integrated with local EBV and external
information, MACE-derived EBV (MACE EBV), through a pseudo-single-step genomic evaluation
system, producing genomically enhanced EBV (GEBV). However, this approach may introduce biases.
To address this, the present study aimed to implement a single-step genomic BLUP (ssGBLUP) that
simultaneously incorporates all available national data alongside MACE information and validate this
method using milk production traits. The proposed strategy first involves defining "pseudo-traits" that
represent MACE traits (i.e., 305-day averages for milk, fat, and protein yields over the first three
lactations). MACE EBYV are then transformed into adjusted pseudo-phenotypes (i.e., deregressed proofs)
and effective contributions but avoiding double-counting of Walloon data within MACE EBV. Next,
the variance-covariance matrices from the local random regression test-day model were modified to
include the three MACE pseudo-traits as correlated traits. Finally, a single-step genomic evaluation was
performed, jointly analyzing test-day records and MACE pseudo-phenotypes. Validation of both
pedigree-based and single-step genomic evaluations, both integrating MACE information, was carried
out using data from the official Walloon genetic evaluations of April 2022. Results show that MACE
information is adequately integrated in the local evaluations, because Pearson correlations between
MACE EBV and the integrated EBV were higher than 0.97 across traits. The addition of genomic
information in single-step evaluations resulted in small changes for all individuals, as illustrated by
Pearson correlations ranging from 0.975 and 0.986 for sires with MACE information.

Key words: dairy cattle, single-step GBLUP, multiple across-country evaluation, milk production
traits

Introduction (MACE) system, resulting in MACE-derived
international EBV hereafter called MACE EBV
Walloon Holstein dairy cattle breeders are (Schaeffer, 1994).
provided with locally estimated breeding values In the current Walloon genomic evaluation
(EBV) for production-, conformation-, udder system, these MACE EBV are combined with
health and other functional traits. Nearly all pedigree and genomic information in a pseudo
traits are submitted to Interbull single-step evaluation using a Bayesian
(https://interbull.org, Uppsala, Sweden), which integration procedure, accounting for double-
performs an across-country genetic evaluation counting, to produce local genomically
using a multiple across-country evaluation enhanced EBV (GEBV) (Vandenplas et al.,
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2014; Colinet et al., 2018). This system enables
the integration of external (international)
information across all animals and datasets in
the local system, ultimately enhancing selection
decisions (Vandenplas et al., 2015; Vandenplas
et al., 2017; Bonifazi et al., 2023). Moreover,
post-processing steps are performed to integrate
MACE, GMACE and local EBV/GEBYV before
publication.

However, this pseudo single-step evaluation
this
approach still relies on a first BLUP step which
does not estimate fixed effects accounting

may introduce biases. In particular,

correctly for genetic differences as reflected by
final GEBV. To address this, single-step
GBLUP (ssGBLUP) is the method of choice as
it combines phenotypic data, pedigree and
genomic information simultaneously, resulting
in GEBV that are both more accurate and less
biased (Misztal et al. 2009, Aguilar et al, 2010,
Christensen and Lund, 2010).

The objectives of this study were to develop
and validate a single-step genomic evaluation
that simultaneously incorporates all available
local data alongside MACE information for
milk production traits in Walloon Holstein dairy
cattle. Integration of MACE information in the
current system is very important and had to be
conserved. This study is part of an ongoing
effort to implement this strategy for all our
current evaluations but also for novel traits such
as enteric methane emissions.

Materials and Methods

Data
Phenotypic data
All data were provided by the Walloon breeding
association Elevéo (Awé Groupe, Ciney,
Belgium), which manages performance
recording data in the Walloon region of
Belgium. Data used in the study were from the
official Walloon routine April 2022 genetic
evaluations.

Three types of data were used: 1) 4 851 501
test-day records for 305-day milk (MY), fat
(FY), and protein yields (PY) across three
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lactations, 2) MACE EBYV and reliabilities of 12
547 bulls obtained from Interbull for these
traits, and 3) local EBV and reliabilities of
2230 local Walloon bulls that were sent to
Interbull.

Furthermore, the cleaned pedigree used for
the April 2022 routine evaluation consisted of
4851501 animals. Genetic groups were defined
as in the current evaluations by group of birth
years, origin (Europe vs. USA) and sex.

Genomic data

Genomic data were available for 13 604
and consisted of 30554 single
nucleotide polymorphisms (SNPs), routinely
used in the Walloon genetic evaluation system.

animals

Genotyping was done using the BovineSNP50
Beadchip vl to v3 and EuroG MD (SI) v9
(Illumina) chips. SNPs common across the four
chips were retained, while non-mapped SNPs,
SNPs located on sex chromosomes, and
triallelic SNPs were excluded. SNPs exhibiting
Mendelian conflicts or with a minor allele
frequency less than 5% were excluded. The
difference between observed and expected
heterozygosity was estimated, and SNPs with a
difference greater than 0.15 were excluded
(Wiggans et al.,, 2009). After applying all
quality control measures, non-mapped SNP,
SNP located on sex chromosomes, SNP with
Mendelian conflicts, and those with minor
allele frequency less than 5% were excluded.
Finally, data of 28 470 SNPs located on 29
chromosomes were used.

Definition of MACE Pseudo-traits

Adding external information from MACE
discounting for already contained local
information has been a topic of applied research
for a long time (Gengler & Vanderick, 2008).
Recently, a commonly accepted strategy was
developed that we also implemented. Following
the framework of Vandenplas et al. (2015),
MACE EBYV were transformed into deregressed
proofs (DRP), i.e., “pseudo-phenotypes”, for
MY, FY, PY for MACE bulls excluding local

information. These pseudo-traits captured the



genetic signal embedded in MACE EBV, while
avoiding double-counting of national records.
They were associated to weights called
(ERC),
expressing how many record equivalences
would have generated the same information

effective  record  contributions

content.
Following the strategy developed by
Bonifazi et al. (2023), deregression was

performed using the method of Garrick et al.
(2009) where EBV were adjusted by their
reliability to produce DRP. There are two
inherent issues that Bonifazi et al. (2023)
solved: the elimination of local information in
MACE EBV, and the deregression applied to
EBV corrected for parent averages (PA), i.e.
Mendelian Sampling deviation. Reliability
(REL) of this deviation is needed in the
deregession process. This value can be obtained
by transforming REL to ERC and subtracting
ERC associated with PA REL from total ERC.
This yields dERC, necessary to properly weigh
the DRP used as pseudo-phenotypes in an
evaluation. In a final step double counting is
eliminated by subtracting local information sent
to Interbull generating DRP* and dERC* free
of local information.

Models and analysis

The model currently used in the Walloon region
of Belgium is a three-lactation, three-trait
random regression test-day model (RRTDM)
for milk, fat and protein yields. Average
lactation EBV are generated computing
weighted sums of the underlying genetic
random regression solutions resulting in
aggregate 305-DIM three-lactation EBV that
are sent to Interbull (EBV _sent). Details can be
found in Auvray & Gengler (2002) and Croquet
et al. (2006).

We developed the new model to be as close
as possible to the current Walloon genomic
evaluation, which uses a pseudo-single-step
evaluation as outlined in Vandenplas et al.
(2014) and Colinet et al. (2018). Briefly
explained, local EBV and MACE EBV were
combined in a system using a combined
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pedigree and genomic relationships matrix,
while discounting for local information
included in MACE (EBV_sent), resulting in
local GEBV. An overview of this system can be
found in Figure 1A.

The new developed system relies on the
simultaneous analysis of phenotypic data,
instead of local EBV, the MACE pseudo-
phenotypes (as DRP) weighted by ERC, and
pedigree and genomic information using
ssGBLUP (Aguilar et al., 2010), resulting in
GEBYV (GEBV _ss).

Another problem is that the local traits and
MACE traits are not on the same scale. Recently
some research (e.g. Boerner et al., 2023) has
proposed complex solutions. The complication
is, however, only because one tries to pass from
a 305DIM 3-lactation MACE trait represented
by a single EBV to a large number of genetic
effects (i.e., 3 random regressions) and traits
(i.e. 3 lactations). Complicated and potentially
imprecise backsolving equations can be
avoided by using the following process. The
variance-covariance matrices from the national
test-day random regression model were
modified to include the three MACE pseudo-
traits as correlated traits but initially without
records linking these to the Legendre
polynomials across the 3 lactations. As the
linear function in the direct local evaluation
solutions to MACE EBV is a simple
transformation, transforming by the same
function initial variance-covariance matrices
generates the needed augmented genetic
(co)variance matrices (Vandenplas et al., 2015).
Its singularity was avoided by multiplying the
used (co)variance between random regressions
and MACE traits by a factor of 0.999. An
interesting side effect of this reparameterization
is that the new system of equation generates
natively EBV to be sent to the MACE runs of
Interbull. Moreover, the setting of this equation
system is very flexible, so, one can choose to
add or not MACE bulls. The system of
equations can also be easily modified to keep
fixed effects constant. This will allow us to
provide Interbull with the different requested



unbiased EBV in the future (i.e., computing
EBV sent but using fixed effects that are
obtained by solving with H).
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[ National evaluations [ Polygenic evaluation J

()

EBV & REL Wallonia J

4

[ (G)EBV & REL of other countries

g
Only MACE
(G)MACE evaluation participation ﬂ'lt gration external info \
¥
l [ Walloon Genomic evaluation J
2
International (G)EBV & REL /
~ | EBV MACE
(external info)

Walloon (G)EBV & REL

4
[ Publication according to 1

national decision tree J \L

)

B
Other populations Local evaluation (Wallonia)
[ Phenotypic info + pedigree } [Phenotypic info + pedigree} [Genomic info
[ National evaluations ] [ Polygenic levaluaticm J
[ (G)EBV & REL of c}ther countries ] [ EBV&RI'ELWallonia ]

\
\ —

AN

[ MACE evaluation J / Integration external info
| International DRP & ERC Wallonia
DRP & ERC
[ International EBV & REL }/ | |
( DRP* & dERC* )
Single-step evaluation ]

\ ( EBV & REL _ss ) /

Figure 1. Comparison of the currently applied genomic evaluation system in Wallonia (above, A), compared to
the developed single-step system with integration of MACE information based on DRP (below, B).
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Figure 1B gives an overview of the
developed single-step evaluation system with
incorporation of MACE data based on DRP*
and dERC*. Software wused for these
calculations was based on BLUPF90 family of
programs (Misztal et al., 2014) but with a
certain number of adaptations including
checking of residuals for outliers and other
adaptations to improve its usefulness in the
context of genetic evaluations.

Furthermore, the calculation of genomic
reliabilities had to be adapted as well. First,
pedigree reliability (REL) has been determined
using Effective Daughter Contributions and
following standard procedures employed in the
current genetic evaluations for yield traits in the
Walloon Region of Belgium, as described by
Strandén et al. (2000), but extended to allow
integration of ERC of MACE bulls. Second,
genomic reliability (GREL) was calculated
using an approach adapted from Gao et al.
(2023), using the previously obtained pedigree
REL as a starting value after adjustment for
double-counting due to pedigree information
(Zaabza et al., 2022).

Validation

To assess consistency, we did two types of
comparisons. First, to validate the integration of
MACE information in a genetic evaluation, we
compared for the same bulls MACE EBV with
EBV ss obtained from a pedigree-based
evaluation integrating MACE information as in
the developed ssGBLUP. Theoretically, the
system should yield exactly the same EBV _ss
to MACE EBV. Then, the GEBV from the
current genomic evaluation system were
compared to GEBV ss obtained using the
developed ssGBLUP system (GEBV _ss), both
systems integrating EBV MACE. In this study
we compared correlations
coefficients, the first establishing the
relationship between sets of breeding values,
the later
variances (i.e., inflation of deflation) of the sets
of breeding values that are compared.

and regression

assessing potential changes in
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Results

Validation of integration of MACE
information in the genetic evaluation

Tables 1 and 2 present Pearson correlations
among EBV obtained from the current local
pedigree-based evaluation (EBV_sent), MACE
EBV, EBV obtained from the pedigree-based
evaluation integrating MACE EBV (EBV _ss),
and GEBV obtained from the new ssGBLUP
with integration of MACE EBV (GEBV _ss).
Table 1 specifically shows the correlations for
milk, fat and protein yields for all bulls included
in the MACE evaluation, as well as for own
local bulls participating in MACE.

Table 1: Pearson correlations between (G)EBV _ss
with MACE EBV and EBV_sent, for MACE bulls,
with or without any local information sent to
INTERBULL, for milk (MY), fat (FY) and protein
(PY) yields.

MACEEBV  EBV_SENT

(N=12547) (N=2230)

MY  EBV ss 0.967 0.962
GEBV _ss 0.969 0.960

FY  EBV ss 0.945 0.958
GEBV _ss 0.950 0.955

PY  EBV ss 0.979 0.964
GEBV _ss 0.980 0.961

Table 2 shows the same correlations, but only for
genotyped bulls.

Table 2: Pearson correlations between (G)EBV _ss
with MACE EBV and EBV_SENT, for local
genotyped MACE sires, with or without any local
information sent to INTERBULL, for milk MY), fat
(FY) and protein yields (PY).

MACEEBV  EBV_SENT
(N=2828) (N=1036)
MY EBV ss 0.965 0.961
GEBV ss 0973 0.956
FY  EBV ss 0.951 0.961
GEBV ss  0.967 0.955
PY  EBV ss 0.979 0.967
GEBV ss 0979 0.962

The developed approach enabled integration
of MACE EBV into multi-trait random
regression test-day evaluations. This is shown



by correlations between MACE EBV and
EBV_ss that range between 0.95 and 0.98, and
by regression coefficients close to 1 (Figure 2).

The new ssGBLUP approach enabled multi-
trait random regression test-day ssGBLUP with
integration of MACE EBV. The impact of
genomic correlations on the evaluation of
genotyped bulls is shown by the Pearson
correlations between MACE EBV and
GEBV _ss, ranging from 0.945 to 0.980.
Compared to EBV _ss, we noticed a very small
augmentation of correlations when genomic
information is integrated (Table 1), and this
augmentation is more visible when only looking
at genotyped bulls (Table 2). Additionally,
Figure 3 shows again excellent R? values and
regression coefficients close to 1 (therefore no
bias) with inclusion of genomic information,
indicating a perfectly valid integration. Figures
for fat and protein yields are not displayed but
show the same tendency.

50000
y=0.9807x

40000 R®=0.9922

EBV_SS

10000 20000 30000 40000 50000
MACE EBV

Figure 2. EBV_ss versus MACE EBYV for all MACE
bulls for milk yield (x10) expressed on the same
scale
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Figure 3. GEBV_ss versus MACE EBYV for all
MACE bulls for milk yield (x10) expressed on the
same scales

Validation of the integration of genomic
information

Walloon GEBV obtained from the current and
developed genomic systems are similar. This is
shown by Pearson correlations between GEBV
calculated with the current and developed
systems of 0.975 (fat yield), 0.984 (milk yield)
and 0986 (protein vyield) for the 2828
genotyped MACE bulls. Additionally, Figure 4
shows again a very high R? value. Graphics for
fat and protein yields are not displayed but show
the same tendency.
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Figure 4. GEBV computed with the current (GEBV)
and the developed (GEBV _ss) (x10) genomic
system for all genotyped MACE bulls for milk yield,
not expressed on the same scales.



Discussion

This study aimed to validate a single-step
analysis that simultaneously incorporates all
Walloon national data with available MACE
information for milk production traits in
Walloon Holstein dairy cattle. In recent years,
ssGBLUP has become the preferred approach
for genomic evaluation. Multiple countries are
shifting their evaluations towards single-step
evaluations, which has been reported to
demonstrate less bias and higher accuracies, as
proven by several countries in dairy cattle,
(Zavadilova et al., 2014; Mintysaari et al.,
2020; Alkhoder et al, 2022; Himmelbauer et al.,
2021; Pimentel et al. 2021, Cesarani et al.,
2021); Guarini et al., 2019)) amongst others.
Furthermore, studies in beef cattle (e.g.,
Lourenco et al. 2015, Bonifazi et al. 2023) have
also demonstrated effectiveness. Our results
show very high correlations and regression
coefficients close to one, indicating good
robustness and thus validating the method.

In the step towards practical
implementation, REL calculation will be
performed according to the proposed strategy
hereabove. This strategy has already been

next

validated in our local methane evaluation (Chen
et al., 2025) but has yet to be validated in the
developed Walloon routine evaluation.

The deregression phase of MACE
information is based on the quality of the parent
averages, calculated directly by Interbull using
a sire-grand-sire model. So, for a foreign bull
with little or no information in Wallonia, the
However, as
expected, as the number of daughters for this
bull in Wallonia increases, most of the
information in the bull proof comes from the
daughters and/or sons (Mrode & Swanson,
1999). So, in the future, the quality of the DRP
is expected to further improve.

information is less reliable.
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Conclusions

As a conclusion, the proposed single-step
GBLUP enabled an efficient genomic
evaluation process, with robust validation
statistics, highlighting its feasibility for routine
use in Wallonia’s genomic evaluations. The
comparison between the current and developed
genomic systems ensures that base change
modifications of (G)EBV are acceptable, and
that limited changes will be experienced by
farmers. Future developments will continue to
improve the evaluation system, such as for
example a re-estimation of the variance
components.
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Abstract

In April 2025, we introduced single-step genomic evaluations for all traits that are subject to routine
genetic evaluations in German Holstein. With all models, we estimate the same main effects as with the
former conventional genetic evaluations of Holsteins. In addition, a fixed regression on the inbreeding
coefficient was added to all the models. With the introduction of single-step models, reliabilities of
GEBVs increased for all traits. This increase is especially pronounced in young animals with no own or
offspring performance. As expected, the increase in reliability was greatest for many functional traits:
longevity and direct calving index: +0.11, maternal calving index: +0.13, young stock survival and
health index: +0.14, while it was lower for production traits: production index: +0.04. Additionally,
validations with 2 and 4 years of right-truncated data confirm a substantial increase in the predictive
ability of genomic GEBVs compared to the previous multi-step model: correlations of purely genomic
GEBVs of young bulls with their later daughter-proven GEBVs are higher for all traits with the single-
step model. Again, this increase in predictive ability is highest for the functional traits and lower for the
production traits. With publication dates in April, August, and December, we conduct main runs with
updated phenotypic information three times a year. In these main runs, we include MACE information
from the respective current Interbull MACE run. In addition to these full runs, we conduct weekly
genomic evaluations, for which we use the estimates of the SNP-effects and the residual polygenic
effects from the main runs and apply them to the newly genotyped animals.

Key words: single-step model, genomic evaluation, genomic validation, Holstein cattle

Introduction indices such as German RZG, RZ€ and
RZOeko. To minimize the impact of genomic
A multi-step SNP BLUP genomic model model change on genomic selection, all
(MSM, Liu et al. 2011) was used for routine functionalities and features of the current MSM
genomic evaluations of German Holsteins from conventional and genomic evaluations must be
August 2010 to December 2024. After the first retained as much as possible.
publications of single-step genomic models Although the conventional evaluations in
(Aguilar et al. 2010; Christensen and Lund MSM were multi-trait models for all trait
2010), tremendous efforts were devoted to groups, the genomic evaluations were single-
research and development in Germany with the trait models applied to  deregressed
goal of implementing a single-step SNP BLUP conventional EBV (DRP) of reference bulls and
model (SSM, Liu et al. 2014) for routine cows (Liu et al. 2011). For instance, a multi-
genomic evaluations in German Holsteins. lactation random regression model was used to
There are a total of 10 trait groups evaluated analyze test-day milk yields in the conventional
routinely for German Holsteins. Logically, the evaluation of German Holsteins (Liu et al.
SSM model must be implemented to all the trait 2004), but the evaluated trait in the genomic
groups simultaneously, to maintain the current model of MSM was 305-day lactation milk
weights of individual traits on total merit yields combined over the first 3 lactations,

57



calculated as a linear function of the genetic
random regression coefficients from the
conventional test-day model. In contrast to the
MSM, SSM implicates direct modeling of the
genomic information based on the national test-
day milk yields. With the SSM, we therefore
estimate for the first time SNP effects directly
on the level of test-day random regression
coefficients for production traits (Alkhoder et
al. 2022; Alkhoder et al. 2024).

To enhance the reliability of genomic
estimated breeding values (GEBV) and to
represent foreign genetics in the German
population as unbiased as possible, genotyped
foreign bulls were included in the German
Holstein genomic evaluation under the MSM
model. The trait definitions of all traits
evaluated in the Holstein MACE evaluation
were used for the German genomic evaluation,
e.g., the combined lactation 305-day milk yield
under the MSM model as described above. With
the introduction of the SSM model, phenotypic
data of foreign cows is also included as in MSM
model, via the MACE proofs of their sires,
which increases the reliability of genomic
prediction. In the SSM model, deregressed
MACE EBVs of foreign bulls are treated as the
same trait or a correlated trait as the national
estimation traits, depending on the trait groups.

The objectives of this study were 1) to
describe technical details of the genomic model
upgrade from the MSM to the SSM model; and
2) to compare accuracy and prediction bias of
the two genomic models genomic
validation.

via

Materials and Methods

Data sets for routine single-step evaluations
Phenotype data of cows and bulls

All national phenotypic data as used in the
previous conventional evaluations are now used
in SSM: phenotypic cow data recorded since
01.01.2000. As in the previous conventional
and genomic MSM models, cows or calves with
their own phenotypic records must have their
sire and maternal grandsire known. The breeds
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of sire and maternal grandsire must be
Other
plausibility checks and edits on the data are also
kept with SSM as they were for the
conventional model in MSM. Because of the

consistent with that of the animal.

integration of foreign MACE data in the single-
step evaluation, bulls with foreign daughter
information in MACE are required to be born
in 1995 or later to be consistent with the left
truncation of national phenotype data.

Genotype data

Unlike the previous MSM model, genotype
records of animals born before 2005 are no
longer used in the SSM model to avoid possible
negative impact of selective genotyping in the
early years of genomic selection. Genotype
imputing and routine checks on the genotype
data are kept with SSM.

Pedigree data

In contrast to the trait-dependent pedigree
processing procedures in the previous MSM
evaluations, we now apply the same procedures
to the sub-pedigrees for all trait groups: starting
from youngest genotyped animals (including
embryos) or cows / calves with phenotype
records, a maximum of 20 generations of
ancestors is traced back in the main pedigree.
Additionally, at least 3 generations of ancestors
are included for the oldest animals with
phenotypic data, e.g., bulls with foreign
daughters. Pedigree-based inbreeding
coefficients are computed once, using all
animals present in Germany’s pedigree
database for dairy breeds and the resulting
inbreeding coefficients are then used to build
the diagonals of the inverse relationship matrix
and to define the fixed effect on the inbreeding
coefficient in all SSM evaluations.

Data sets for two genomic validation studies

For a comparison between SSM and MSM, two
comprehensive genomic validation studies were
performed. For a 2-year validation, phenotypic
data from the most recent two years were
removed from the full evaluation 2304 to



simulate an earlier evaluation in April 2021
(2104). The phenotypic, genotypic and pedigree
data for the two evaluations 2304 and 2104
were already described in Tables 1 and 2 in the
paper (Liu et al. 2023). Corresponding to the
two different national cow data sets in
evaluations 2304 and 2104, bull MACE data
were obtained from the MACE evaluations in
April 2023 and 2021.

In addition to this 2-year validation, a 4-year
validation was conducted: with the results of a
truncated conventional evaluation based on data
as of the August 2020 evaluation (2008),
Germany had also participated in Truncated
MACE (TMACE) in October 2024. These
TMACE EBVs were then considered in a
subsequent, reduced SSM evaluation 2008,
simulating an earlier SSM evaluation as of
August 2020. Table 1 describes the data used
for the full SSM evaluation 2408 and the
reduced SSM evaluation 2008 for four test-day
traits.

A genomic validation was conducted for all
evaluated traits of German Holsteins, including
MACE traits as well as national-only traits with
both the 2-year and the 4-year validation data
sets. For the earlier validation with 2304 and
2104 data, a linear regression test (LR, Legarra
and Reverter, 2018) was applied. Using
Interbull’s GEBV Test software made available
in September 2024, we conducted genomic
validation with the second validation data set
2408 versus 2008.

Trait-wise development of SSM

Until today, a total of 10 trait groups are
considered in routine evaluations of German
Holsteins using:
regression test-day model for milk, fat and

a multi-lactation random

protein yields and somatic cell scores (TDMS),
a multi-trait model for 25 conformation traits
(CONF), a multi-trait linear animal model for
direct functional longevity (LONG), a multi-
trait model for six female fertility traits (FERT),
a multi-parity maternal-effect model for calving
ease and stillbirth (CALV), a multi-trait model
for workability traits (WORK), a multi-trait
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model for 16 direct health traits (HEAL), a
multi-trait linear model for calf fitness (CFIT),
a multi-trait random regression model for feed
efficiency (FEFS), and a multi-trait model for
four disposal reasons (DPRS) that serve as
indicator traits for the health traits only.

Table 1. Description of the data sets for the single-
step full and truncated evaluations of test-day milk,
fat and protein yields and somatic cell scores

Single-step evaluation
Frequency 2408 2008
Genotyped 1,631,844 Holstein animals
animals (1,433,599 females and

198,245 males)

Phenotyped 14,189,574 12,195,546
cows or bulls
Test-day 277,884,084 235,578,132
records
Genotyped or 15,165,965 13,565,673
phenotyped
animals
Animals in 22,743,486 20,983,007
pedigree SSM
Reference 604,587 246,910
animals MSM

Starting with the simplest evaluation model
for the conformation trait group CONF with
only 1 record per cow, we tested the SSM for
the genomic evaluation of German Holsteins
(Alkhoder et al. 2021). After a positive
experience with the simplest statistical model,
we extended the SSM test implementation to the
two most complex statistical models: the multi-
lactation random regression test-day model for
milk production traits and somatic cell scores
TDMS (Alkhoder et al. 2022) and the multi-
parity maternal-effect model for calving ease
and stillbirth CALV (Alkhoder et al. 2022a).
Having successfully tested the SSM model for
the three trait groups CONF, TDMS and CALV,
we finally moved on to include all the
remaining 7 trait groups and completed the
SSM testing processes in 2023.



Integration of bull MACE data

Due to the simplicity of this approach, the
previous conventional evaluations from MSM
are still run in parallel to SSM at every main run
(3x per year) to provide genomic-free EBVs to
Interbull as input for MACE.

The current Interbull MACE evaluation uses
a single-trait multi-country model. For instance,
the MACE trait of milk yield for German
Holstein is 305-day lactation milk yield
combined over the first three lactations, which
corresponds to an aggregated linear function of
the 9 random regression coefficients used in the
German random regression test-day model (Liu
et al. 2004; Alkhoder et al. 2024). Unlike the
MSM genomic evaluation that was previously
applied to DRP from the aggregated, combined
traits on lactation basis, the SSM model
analyzes original cow test-day milk yields also
on the genomic level. Another example is the
calving trait model: a multi-parity maternal-
effect single-step model for calving ease and
stillbirth phenotypic records of calving cows in
the first three parities. In comparison, DRP of
first parity calving ease or stillbirth, defined as
official breeding values for publication, were
pseudo-phenotypic records for the single-trait
MSM evaluation.

Across all the trait groups, the trait definition
for the single-trait MSM model was the German
official breeding value for publication as well as
the MACE trait,
aggregated from the original national traits /
estimation variables.

Deregressed MACE EBVs are included in
the SSM for the different trait groups as
correlated traits, using the national genetic
covariance matrices and the weights used to
combine national traits to MACE traits to derive

some of which were

covariances between national and MACE traits.
In most cases, the genetic correlation between
the combination of national traits and the
MACE trait is assumed to be 1. Only in some
cases, this correlation was pruned to 0.97 to
enhance convergence.
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Calculation of indices from the SSM

After completion of the test implementations
for all the 10 trait groups, we upgraded our
calculation procedures for various sub-indices,
and the German total merit indices RZG and
RZE€ for the SSM system slightly.

The previously used non-linear index for
longevity (RZN, Heise 2017; Heise et al. 2016)
was replaced with its linear approximation and
we adapted the genetic standard deviation that
is used to express the production index RZM on
its relative scale, resulting in a reduction of
variance of GEBVs for RZM. The procedures
to calculate all other index breeding values are
retained from MSM.

Modelling inbreeding depression in the SSM
Pedigree-based inbreeding was considered in
the previous MSM evaluations only with its
effect on the pedigree-based relationship matrix
And the
effects of inbreeding depression were ignored.
With SSM, we now include a fixed effect in
form of a linear regression on the pedigree-

for German Holstein evaluations.

based inbreeding coefficient for all traits.

Using sire genotypes for calf fitness

An unexpectedly high genetic trend was
observed in the initial SSM developments for
the early-measured calf fitness CFIT (young
stock survival). Causes for the overestimated
SSM GEBVs were traced back to the delayed
genotyping of female calves and the therefore
extremely limited genotyping of dead or sick
calves for the early survival traits (Alkhoder et
al. 2025). As a validated solution to the inflated
genomic prediction, we use only genotypes of
the sires of the female calves. This contrasts
with all other trait groups, where we use
genotype data of all animals born 2005 or later.

Weekly evaluations with the SSM

In addition to the full SSM evaluations, a
weekly genomic evaluation system was
developed (Alkhoder et al. 2004). From the
SSM evaluation that includes the current
MACE data, SNP effect estimates and residual



polygenic effect estimates for all the genotyped
animals are obtained and then applied to the
newly genotyped animals weekly. Direct
genomic values of the new animals are
computed using the SNP effect estimates and
allele frequencies of SNP markers. Residual
polygenic effects and GEBVs of the newly
genotyped animals are indirectly predicted
based on their pedigree relationship to the
genotyped animals that are included in the main
evaluation.

Parallel SSM genomic evaluations in the testing
phase

The introduction of SSM represented a
significant improvement over the previous
MSM genomic evaluation and caused greater
changes to GEBVs of many animals, especially
the youngest genotyped animals. This imposed
a challenge to breeding organizations and
farmers for adopting to SSM. To help the users
of genomic evaluations adapt to the new SSM
model smoothly, we conducted parallel SSM
evaluations in the testing phase. Starting with
the August 2024 main evaluation, SSM test
evaluation results were provided to the breeding
organizations for the purpose of receiving
valuable feedback from the breeders’
perspective to further optimize all SSM systems
and models. After the development and internal
testing of the SSM weekly evaluation system
(Alkhoder et al. 2024), we also provided the
breeding organizations with test results from
weekly evaluations starting in October 2024. In
multiple workshops with various delegates of
the breeding organizations, we gathered the
feedback and used it to 1) answer yet open
questions from the breeders, 2) to further
improve our communication strategies
regarding the introduction of SSM, and 3) to
further improve SSM  models and
procedures.

our

Results and Discussion

SSM evaluations for all the 10 trait groups are
conducted using the software MiX99 (Strandén
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and Lidauer,1999). Approximate genomic
reliabilities for GEBVs from the SSM are
computed using either APAX99 from the
MiX99 software suite or using own Fortran
programs (Liu et al. 2023), following Interbull’s
Guidelines  for approximating  genomic
reliabilities for SSM (Liu et al. 2024). Similarly,
effective daughter contributions (EDC) of bulls
and effective record contributions (ERC) of
cows or calves are calculated using either
APAX99 or own programs. The sub-indices of
individual trait groups as well as the total merit
indices RZG and RZE are computed with a
central, configurable software, developed in
Python. All workflows are managed with
Snakemake as a workflow management
software

(https://snakemake.readthedocs.io/en/stable/pr

oject_info/citations.html).

Differences in technical steps between the
SSM and MSM models are schematically
described in Figure 1. The SSM model
simplifies the genomic evaluation process with
a joint analysis of genotyped and non-
genotyped animals having or having no
phenotypic data in one single step. In contrast,
genotype data was used at a later stage of the
evaluation process for MSM than phenotype
data.

MsSM S8M
phenotypes pedigree ‘ | genotypes | | phenotypes ‘ ‘ pedigree ‘ genotypes

Step 1 conventional GE

aggregation Y MACE
Step 2 (index EBV calculation) Y

) single-step GE

Step 3
Step 4

EBV GEBV DGV ?EE

Figure 1. Comparison of technical steps between the
single-step and multi-step genomic models

Figure 2 shows the numbers of validation
bulls used in both validation studies: 2408 vs
2008 and 2304 vs 2104. The selection of
validation bulls was conducted, following the
Interbull GEBV test rules (Méintysaari et al.
2010) for the validation study 2408 vs 2008.
However, an additional selection criterion was


https://snakemake.readthedocs.io/en/stable/project_info/citations.html
https://snakemake.readthedocs.io/en/stable/project_info/citations.html

imposed on the validation bulls for the earlier
validation 2304 vs 2104: the validation bull had
to be owned by a German Al organization.
Unlike the 4-year validation 2408 vs 2008, the
2-year validation 2304 vs 2103 did not include
data from TMACE. Instead, the actual MACE
results from 2104 were used, and thus the
results of the validation may likely also be
impacted by model changes between 2104 and
2304 in Germany or in the other countries
participating in MACE. Overall, the numbers of
validation bulls are reasonably high to deduce
reliable and accurate validation results.

Figure 3 shows, based on the 2-year
validation 2304 vs 2104, GEBV correlations of
the wvalidation bulls between the early
evaluation 2104 as young candidates without
daughters and the later evaluation 2304 when
these bulls were evaluated as daughter-proven
bulls. The SSM model has evidently higher
GEBV correlation, i.e., prediction accuracy,
than the MSM model for all traits, RZG and
RZ€. Similar levels of prediction accuracy are
also observed for the validation study 2408 vs
2008.
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Figure 2. Number of validation bulls for all trait
groups in the two validation studies
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Figure 3. GEBV correlations of the validation bulls
between two evaluations 2304 and 2104 (2-year
validation) for the indices
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For a total of 258 German Al bulls born in
2021, we compared their genomic reliabilities
between SSM and MSM in the evaluation as of
April 2023. Figure 4 shows the increase of
genomic reliabilities from MSM to SSM for all
the trait group indices, RZG and RZ€. The
functional traits, like direct health traits
(RZGesund) and calf fitness (RZKalberfit),
gain more in reliabilities than the production
trait index RZM. The traits which already had
high reliabilities under the MSM tend to have a
smaller increase in reliabilities when upgraded
to the SSM model, such as somatic cell scores
RZS.

Prediction bias, measured as the regression
slope from the two validation studies, is given
in Table 2. As mentioned above, Interbull’s
official GEBV test software was used for the
validation 2408 vs 2008, with deregressed
GEBVs as the dependent target variable.
However, for the 2-year validation study 2304
vs 2104, our own software for a weighted linear
regression (Legarra and Reverter 2018) was
applied to the two SSM and MSM models.

Figure 4. Increase of the genomic reliability from the
multi-step to single-step model for German Al bulls
in the 2-year validation

Across all the trait groups and both
validation studies, we can see that both SSM
and MSM give nearly unbiased prediction for
almost all the trait groups, but the SSM has
somewhat less over- or under-estimation, i.€., by
is closer to 1, than the MSM model. Using the
deregressed GEBVs as dependent variable of
the GEBYV test results in b; values deviating
more from 1 than using direct GEBVs as
dependent variable, verified for the new calf



fitness SSM model (Alkhoder et al. 2025). Over
all traits of the 10 trait groups evaluated for
German Holstein, we can see that neither
overestimation nor underestimation seem to be
an issue for the genomic models in German
Holsteins. Relatively poor b; estimates were
obtained for the calving traits, which may
possibly be explained by the fact that very few
stillborn/dead calves are usually genotyped.
Additionally, male calves that have more
problems with calving ease or stillbirth than
female calves are rarely genotyped, in contrast
to female calves that are all genotyped under the
German whole-herd genotyping scheme if the
herd participates in genotyping. Because of the
relatively short history of routine recording of
direct health traits and some new conformation
traits in German Holsteins, the removal of
phenotypic data from the last four years for the
validation 2408 vs 2008t
representativeness of the validation results for

reduces the

these traits, i.e., caution needs to be taken when
interpreting the b; estimates for the direct health
traits in the validation study 2408 vs 2008. No
genomic validation was conducted for feed
efficiency due to the small number of genotyped
cows with dry matter intake records and a lack
of cow sires that qualified for being selected as
validation bulls.

Figure 5 shows GEBV correlations for the
RZG between SSM and MSM for 8,661
genotyped German Holstein Black-and-White
Al bulls born between 2005 and 2023 using the
evaluation results as of December 2024. The
GEBYV correlation for Al bulls with daughters is
about 0.95 and drops to 0.85 for the youngest
purely genomic Al bulls born in 2023, although
GEBYV correlations for the youngest Al bulls are
about 0.95 for individual traits like milk
production and conformation traits (data not
shown here). The lower RZG correlation is
caused, besides the model changes, also by the
changes introduced in the milk production
index RZM and the longevity index RZN.
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Table 2: Regression slope estimates of the GEBV
test of selected traits for the genomic models in the
two validation studies

2408 vs 2304 vs
Trait 2008 2104
SSM SSM MSM
Milk yield 1.02 1.02 1.01
Fat yield 1.06 1.03 1.15
Protein yield 1.05 1.03 1.10
Somatic cell scores 1.11 1.05 1.07
Functional longevity 0.97 1.00 0.95
Heifer fertility HCO 1.17 1.05 1.11
Cow fertility CC2 0.98 0.99 0.88
Stillbirth direct 0.84 0.88 0.97
Calving ease 0.78 0.89 0.96
maternal
Milking speed 1.01 1.06 1.13
Milking 0.97 096 097
temperament
Stature 0.99 1.03  1.07
Udder support 0.98 1.01  1.23
Body condition score 1.07 1.10  1.09
Locomotion 1.01 1.00 1.14
Digital dermatitis 0.88 092 092
Clinical mastitis 0.58 0.86 0.67
Calf fitness 0.95 1.04 092
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Figure 5. GEBYV correlations of the total merit index
RZG between SSM and MSM for German Holstein
Al bulls

Like Figure 5 for Al bulls, Figure 6 shows
GEBV correlations of RZG for 1,478,613
genotyped Black-and-White Holstein female
animals. For all the female animals born from
2016 on and genotyped under the German
whole-herd genotyping scheme, SSM and
MSM have a GEBV correlation of about 0.95
for the total merit index RZG, despite the
above-mentioned additional changes impacting



RZG. The youngest female animals have much
higher RZG GEBV correlation than the
youngest Al bulls, 0.95 vs 0.85, which may be
attributed to the different selection intensities
between the two groups of genotyped animals.

1.00
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GEBV correlation
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055
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Figure 6. GEBV correlations of the total merit index
RZG between SSM and MSM for genotyped
Holstein female animals

With respect to expectation management
during the preparations prior to the introduction
of SSM, we emphasized clearly from the
beginning that the change to SSM was a major
upgrade of the genomic model and would thus
have a profound impact on the breeding
organizations’ selection programs. In addition
to the early research projects on the theory of
the SSM model, we invested huge efforts and
resources to develop the new evaluation
systems as well as to help the breeding
organizations and farmers adjust their programs
for the new SSM model. Besides the numerous
parallel full and weekly SSM test evaluations,
we provided our new results at several meetings
with our customers and improved our SSM
based on their feedback. These
iterations of providing additional analyses and

systems

explanations to our breeding organizations and
including feedback in  the
improvement of our models led to a strong
support of the introduction of SSM by the
German breeding organizations.

As the MSM genomic
deregressed proofs as the dependent variable /

customer

model uses

pseudo-records calculated from the
conventional evaluation which ignores the rapid
genetic progress by genomic selection, the

differences between the two genomic models
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SSM and MSM are likely to increase with time.
A delayed update from MSM to SSM would
make it increasingly difficult for farmers and
breeders to adapt to the one-time model change.

Conclusions

SSM represents a major improvement of our
genomic evaluation compared to the previous
MSM. All genotypic, phenotypic and pedigree
data are jointly evaluated by the single-step
model, resulting in a higher accuracy of the
genomic prediction. With two genomic
validation studies, we have shown higher
prediction accuracy, i.e., correlation between
the early candidate GEBVs and later daughter-
proven GEBVs for Al bulls and higher genomic
reliabilities for all traits from SSM compared to
MSM. GEBVs from SSM have been proven to
be more stable across evaluation runs and to
have substantially increased reliabilities
compared to GEBVs from the previous MSM
for all the trait groups. Because of these major
improvements, the introduction of SSM
received strong support from the breeders and
their breeding organizations, despite the
relatively large one-time changes. Intensive
collaboration with the German breeding
organizations prior to and after the introduction
of SSM led to strong commitment from the
breeders’ community and helped the
introduction of SSM in German Holsteins
become a great success.

Acknowledgments

We thank our colleagues from the German
breeding organizations who supported us with
their honest feedback and their suggestions for
improvements without which the introduction
of SSM in German Holsteins would not have
become the success that it was.



References

Aguilar, 1., 1. Misztal, D. L. Johnson, A.
Legarra, S. Tsuruta, and T. J. Lawlor. 2010.
J. Dairy Sci. 93:743-752.

Alkhoder, H., and Liu, Z. 2021. Interbull
Bulletin 56:30-40.

Alkhoder, H., Z. Liu, D. Segelke, and R. Reents.
2022. Interbull Bulletin 57:74-83.

Alkhoder, H., Z. Liu, D. Segelke, and R. Reents.
2022a. Interbull Bulletin 57:95-105.

Alkhoder, H., Liu, Z., and Reents, R. 2024.
Interbull Bulletin 60:121-126.

Alkhoder, H., Liu, Z., L. Polman, E. Pasman, J.
Heise, and Reents, R. 2025. An optimized
single-step SNP BLUP model for calf fitness
in German Holstein. Interbull Bulletin 61,
88-95.

Christensen, O. F., and M. S. Lund. 2010.
Genet. Sel. Evol. 42:2.

Heise, J., Liu, Z., Stock, K.F., Rensing, S.,
Reinhardt, F., and Simianer, H. 2016. J.
Dairy Sci. 99:1253-1265.

Heise, J. 2017. Dissertation thesis.
http://dx.doi.org/10.53846/goediss-6579.
Legarra, A. and Reverter A. 2018. Genet. Sel.

Evol. 50:53.

Liu, Z., Reinhardt, F., Biinger, A., and Reents,
R. 2004 J. Dairy Sci. 87:1896-1907.

Liu, Z., F. R. Seefried, R. Reinhardt, S.
Rensing, G. Thaller, and R. Reents. 2011.
Genet. Sel. Evol. 43:19.

Liu, Z., M. E. Goddard, F. Reinhardt, and R.
Reents. 2014. J. Dairy Sci. 97:5833-5850.
Liu, Z., H. Alkhoder, and R. Reents. 2023.

Interbull Bulletin 59:150-157.

Liu, Z., 1. Strandén, J. Vandenplas, H. Eding,
M. Lidauer, K. Haugaard, and P. M.
VanRaden. 2024. Interbull Bulletin 60:148-
160.

Maintysaari, E., Liu, Z., and VanRaden P.M.
2010 Interbull Bulletin 41:17-22.

Strandén, 1., and M. Lidauer. 1999. J. Dairy Sci.
82:2779-2787.

65


http://dx.doi.org/10.53846/goediss-6579

Transition of the UK dairy national evaluation to across-breed
and single-step genomic evaluation: somatic cell counts as a case

trait

S. Id-Lahoucine', R. Mrode'?, M. Winters® and M. Coffey’
! Scotland Rural College, Edinburgh EH9 3JG, United Kingdom
2 International Livestock Institute, Box 30709, Nairobi, Kenya
3 Agriculture and Horticulture Development Board, Stoneleigh Park, Kenilworth, Warwickshire, CV8 2TL,
United Kingdom
Corresponding author: Samir.ldLahoucine@sruc.ac.uk

Abstract

Current UK genomic evolutions follow a two-step approach; initially, a genetic evaluation based
solely on pedigree information, followed by a Single Nucleotide Polymorphism Best Linear Unbiased
Prediction (SNPBLUP) analysis for genotyped animals using de-regressed proofs, including MACE
proofs from Interbull. Nowadays, with recent advances in computational feasibility and growing
interest in across-breed genomic evaluations for dairy herds, there is a compelling need to adopt a
single-step across-breed genomic evaluation approach within the UK dairy industry. The single-step
method offers notable advantages by simultaneously incorporating genotypes and both recent and
historical pedigree and phenotypic data into a single analysis. This integration enhances the accuracy
of genetic predictions across diverse breeds, accelerates genetic progress, and improves selection
efficiency. This study aims to evaluate the impact of using genomic information and compare the
prediction ability of single-step genomic evaluation (using ssSNPBLUP method) and pedigree-based
genetic evaluation (PedBLUP) employing cross-validation techniques (Linear Regression method).
The trait analysed was somatic cell count (SCC), using data from the UK national evaluations as of the
December 2024 official run. The dataset included 11,271,959 animals in the pedigree and 19,056,954
SCC records from 7,527,712 cows. Foreign information was incorporated for 182,844 bulls, with
adjustments made to avoid double counting of domestic data. Genotypic data was available for
891,480 animals, imputed at 79,051 SNPs using findhap.f90 V3. Analyses were performed using the
MiX99 V23.1026 software, applying an ssSNPBLUP model with 10% polygenic effects. The
validation group comprises bulls born after 2016 and cows born after 2018, whose records are set to
missing. Results showed a genomic accuracy improvement of up to 54% in cows when comparing
ssSNPBLUP to PedBLUP. Among bulls, the greatest gain was observed in Holsteins (+33%),
followed by Guernsey and Ayrshire (+30%), and Jersey (+20%). Level bias and dispersion bias was
slightly reduced in ssSSNPBLUP relative to PedBLUP. Overall, the findings demonstrate that single-
step genomic evaluation is a promising and efficient approach for enhancing prediction accuracy in
UK dairy cattle.

Key words: single-step genomic evaluation, accuracy, cross-validation, UK dairy industry

Introduction pedigree-based evaluations followed by a

genomic prediction step using Single
The genetic evaluation in the UK dairy sector Nucleotide ~ Polymorphism  Best  Linear
is undergoing a significant transition. Unbiased Prediction (SNPBLUP),
Currently, genetic evaluation has relied on a incorporating  de-regressed  proofs  from
two-step method. This includes conventional Interbull for foreign bulls. Recent advances in
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computational capacity, as well as the growing
interest in across-breed genomic evaluations
for dairy herds, there is a compelling need to
adopt a single-step across-breed genomic
evaluation approach (ssGBLUP) within the
UK  dairy industry. This  approach
simultaneously integrates pedigree,
phenotypic, and genomic information into a
single evaluation model, offering numerous
advantages: inclusion of all available data,
improving prediction accuracy, mitigate the
effects of preselection bias associated with
multi-step  approach, and,

accelerating the genetic progress.

consequently,

This report focuses on somatic cell count
(SCC) as a trait study to evaluate the
prediction ability of ssGBLUP in comparison
to traditional pedigree-based BLUP
(PedBLUP) employing  cross-validation
techniques (Linear Regression method).

Materials and Methods

Data

Somatic cell count data was obtained from the
UK national evaluations as of the December
2024 official run. The dataset included
11,271,959 animals in the pedigree and
19,056,954 SCC
7,527,712 cows. Foreign information was
incorporated for 182,844  bulls, with
adjustments made to avoid double counting of

lactation records from

domestic data. Genotypic data was available
for 891,480 animals, imputed at 79,051 SNPs
using findhap.f90 V3. This reference
imputation panel was derived by USDA (Al-
Khudhair et al., 2021).

Model and analyses

SCC was analyzed as loge SCC and the model
included herd-year-season, lactation, age
nested within parity, month of calving as fixed
effects and random effects of herd-sire
interaction, permanent environment and
animal. A pedigree of five generations was
used in the analysis and UPGs were used for
missing parents based on year of birth, breed,
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country of origin and the four paths of dam of
cows and bulls, and sire of bulls and cows.

MACE proofs were included following
Bonifazi et al. (2023). First, effective record
contribution (ERC) was derived from the
reliability of the animal (ERC=A(
reliability/(1-reliability)); where A=(1-
heritability)/heritability). In second, the de-
regressed proofs (DRP) were calculated as
follow: DRP=PA+(EBV-
PA)/(dERC/(dERC+L)), where PA is the
parent average and dERC=ERC-ERCpa. To
avoid double counting of the national data
(NAT) of bulls with UK daughters from
interbull (international, INT) proofs, DRP were
blended as follow: DRP"=((dERCint-DRPnt)-
(dERCxaT-DRPNaT))/dERC’ where
dERC"=dERCnt-dERCxar. These  de-
regressed proofs were used as pseudo-records
with the corresponding ERC as weights in the
model.

Analyses were performed using the MiX99
V23.1026 software (Strandén et al., 2017),
applying a ssSNPBLUP (Liu et al., 2014)
model with 10% polygenic effects.

Validation

A cross-validation technique, linear regression
method, was used to compare ssGBLUP and
PedBLUP following Legarra & Reverter
(2018). The different estimators’ statistics of
bias (difference of means), dispersion (slope of
the regression) and accuracy were calculated
based on partial and full runs. The validation
group included bulls born after 2016 and cows
after 2018. The phenotypes of these cows
together with the de-regressed proofs of these
bulls were excluded from the “partial” runs.

Results & Discussion

The implementation of the single-step genomic
BLUP model led to substantial improvements
in prediction accuracy over the traditional
pedigree-based BLUP (PedBLUP), with gains
observed across all breeds: Guernsey, Holstein,
Jersey, and Ayrshire. In cows, prediction



accuracy improved dramatically, with Holstein
showing the largest relative gain of +102%
(accuracy increased from 0.32 to 0.648).
Guernsey and Ayrshire cows followed with
increases of +65% and +56%, respectively,
while Jersey cows exhibited a +43%
improvement, but notably had the 2™ highest
ssGBLUP accuracy. Bulls also benefitted from
the use of ssGBLUP, with Holstein bulls
achieving the highest accuracy gain of +33%,
followed by Guernsey and Ayrshire (+30%),
and Jersey (+20%). The advantage of
ssGBLUP is coming from leverages genomic
information to capture Mendelian sampling
more effectively than PedBLUP. The
improved prediction accuracies of ssGBLUP in
both sexes are summarized in Tables 1 (bulls)
and 2 (cows).

Level bias, as illustrated in Figure 1, was
marginally reduced under ssGBLUP relative to
PedBLUP across all breeds and both sexes. For
example, the level bias for Jersey bulls was -
0.001 and -0.056 for both ssGBLUP and
PedBLUP, respectively, reducing the level bias
to mostly null when using ssGBLUP. This
reduction indicates that genetic evaluations
using ssGBLUP are more centered on the true
genetic values, thus improving the reliability of
selection. Although the magnitude of the
reduction was modest generally across breeds
and sexes, it consistently favored ssGBLUP
and supports its use for less biased evaluations.

= | evel Bias ssGBLUP (bulls) = Level Bias PedBLUP (bulls)
= | avel Bias ssGBLUP (cows) = Level Bias PedBLUP (cows)

mgfea

Figure 1. Level Bias for single-step genomic evaluation approach (ssGBLUP) and pedigree-based

BLUP (PedBLUP) accords breeds.
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Figure 2. Dispersion Bias for single-step genomic evaluation approach (ssGBLUP) and pedigree-based BLUP

(PedBLUP) accords breeds.

On the other hand, as shown in Figure 2,
ssGBLUP consistently produced dispersion
bias values closer 1.00. In contrast, PedBLUP
tended to over-dispersion in several cases, for
example, Ayrshire cows displayed a dispersion
bias of 1.17 versus 1.02 for ssGBLUP. Also,
Guernsey bulls presented a dispersion bias of
1.11 in comparison to 0.975 for ssGBLUP.
Overall, ssGBLUP showed more balanced
dispersion across all breeds and sexes,
particularly improving prediction spread in
COWS.

Additionally, within breed ssGBLUP were
performed which in all cases yielded lower
accuracies compared to the across breed
ssGBLUP (results not shown in this paper).

These results highlight ssGBLUP’s ability
to provide more reliable genetic evaluations.
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Comparison of prediction ability in bulls.

Correl
Full
Number PedBLUP
of Accuracy  Accuracy Increase # Partial
Breed animals ssGBLUP PedBLUP % ACC  ssGBLUP
Gue 28 0.50 0.38 29.2 0.50
Hol 6,087 0.79 0.69 13.9 0.90
Jer 453 0.61 0.57 8.3 0.87
Ayr 245 0.51 0.44 14.9 0.79
*QGue: Guernsey; Hol: Holstein; Jer: Jersey; Ayr:
Ayrshire.
Table 2: Comparison of prediction ability in cows.
Correl
Full
Number PedBLUP
of Accuracy  Accuracy Increase # Partial
Breed animals ssGBLUP PedBLUP % ACC  ssGBLUP
Gue 855 0.45 0.27 65.1 0.40
Hol 95,965 0.65 0.32 102.2 0.60
Jer 3,512 0.50 0.35 43.1 0.60
Ayr 382 0.42 0.27 56.1 0.42

*QGue: Guernsey; Hol: Holstein; Jer: Jersey; Ayr:
Ayrshire.



Conclusions

The cross-validation results clearly
demonstrate  that  single-step  genomic
evaluation is a more effective evaluation
method for predicting genetic  merit,
particularly in genotyped animals. The results
support the adoption of a unified Single-Step
Genomic BLUP framework for genetic
evaluation in UK dairy cattle. By combining
genomic, pedigree, and phenotypic
information in a single model, ssGBLUP
improves prediction accuracy, increases
selection efficiency, and accelerates genetic
gain across breeds. A national implementation
would simplify evaluations, allow the
evaluation of crossbreed animals, and help
ensure a more competitive and sustainable
breeding program.
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Abstract

The study examined the impact of incorporating metafounders (MF) in single-step genomic BLUP
(ssGBLUP) models for the genetic evaluation of Holstein (HO) and Jersey (JE) cattle with their
crossbreds (CROSS). The dataset included 23,736,975 records on 8,560,986 cows. Genotypic data on
181,379 JE, 1,905,292 HO, and 53,799 CROSS animals was used for the evaluation. The genetic
evaluation included five production traits, namely milk yield (MY), protein yield (PY), fat yield (FY),
somatic cell score (SCS), and daughter pregnancy rate (DPR), which were analyzed using a five-trait
repeatability model using ssGBLUP with or without MF. Three different MF scenarios were tested:
4MF (based on breed), 24MF (based on the combination of breed, sex, and year of birth), and 32MF
(similar to 24MF but with CROSS as a separate genetic group). The three MF scenarios were compared
to a conventional ssGBLUP model that did not include metafounders (NO_MF). Forward-in-time
validation was carried out to evaluate predictability, inflation, and stability. For purebred Holstein and
Jersey cows, the truncated dataset included phenotypes through December 2018, whereas for crossbreds
the cutoff was December 2015; the complete dataset extended through December 2022. Validation
targeted genotyped cows lacking records in their respective truncated dataset but with at least one record
in the complete dataset, yielding 96, 295 Holsteins 26, 436 Jerseys, and 5,099 crossbreds for analysis.
Results showed that including MF affected prediction metrics differently depending on the trait, breed,
and MF configuration. While certain MF classifications (e.g., 4MF) reduce bias and improved
predictability in crossbreds for some traits, others showed minimal effects, particularly in purebred
Holsteins. For low heritability traits (SCS, DPR), MF scenarios provided better predictive ability in
CROSS animals. In contrast, for high heritability traits (MY, PY, FY), stability tended to decrease in
MF models, suggesting possible overfitting due to added model complexity. Overall, MF offers a
promising strategy to address pedigree gaps in multibreed evaluations, but its application should be
carefully tailored to trait architecture and population composition to avoid overfitting and ensure
accurate genetic predictions.

Key words: base population, genomic evaluation, metafounder, single-step genomic BLUP

Introduction including them in evaluations to improve

management decisions. From 1990 to 2018, the
Traditionally, genomic evaluations for dairy proportion of crossbred cows in the U.S. Dairy
cattle have been conducted on a single-breed Herd Improvement program rose from 0.1% to
basis, often excluding crossbred animals. 5.3% (Guinan et al., 2019). Recognizing this
However, the growing proportion of crossbreds trend, the Council on Dairy Cattle Breeding
in U.S. herds underscores the importance of (CDCB) extended genomic evaluations to
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crossbred animals in 2019 (Wiggans et al,,
2019; CDCB, 2020).

Several methods have been proposed for
joint evaluations of purebred and crossbred
animals (Wei & van der Werf, 1994;
Christensen et al., 2014; Steyn et al., 2021;
VanRaden et al., 2020). A straightforward
approach combines all genotypes in a single
relationship matrix (Lourenco et al., 2016). The
single-step genomic BLUP (ssGBLUP)
approach integrates pedigree (A) and genomic
(G) matrices to estimate genomic breeding
values (GEBV) (Aguilar et al., 2010;
Christensen & Lund, 2010). However,
ssGBLUP requires uniform scaling between A
and G and a consistent base population
(Christensen, 2012). Incomplete pedigrees and
population stratification complicate these
assumptions.

To address these issues, Thompson (1979)
and Quaas (1988) introduced unknown parent
groups (UPG) to account for missing pedigree
information. More recently, Legarra et al.
(2015) proposed metafounders (MF) to model
relationships among base  populations,
improving compatibility between A and G. MF
consider allele frequencies of 0.5 across
markers and estimate relationships among
pseudo-ancestors using a gamma matrix (I').
Studies have shown that MF can improve
prediction accuracy in multibreed populations
(Garcia-Baccino et al.,, 2017; Xiang et al.,
2016).

Despite these advances, limited work has
assessed MF performance in combined
Holstein-Jersey ssGBLUP models, particularly
regarding crossbred evaluations. This study
aims to evaluate different MF classifications
and their effects on accuracy, bias, and stability
in genomic predictions of purebreds and
crossbreds.

Materials and Methods

Official data files from Zoetis Inc. were used for
this study. Phenotypic and pedigree data were
sourced from U.S. dairy producers via backups
from herd management systems (DairyComp
305, PC Dart, and DHI Plus). Quality control
excluded lactations with data collection ratings
(DCR) <0.70 or implausible yields, and
pedigree was traced back 20 generations where
possible. Pedigree completeness varied: 57.2%
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of animals had known parents, 10.3% had
missing sires, 8.6% had missing dams, and
23.8% had both parents unknown.

DNA was extracted and genotyped on
[llumina BeadArray platforms (3K—80K SNPs).
Low-density genotypes (<40K SNPs) were
imputed to 45,245 markers using Flmpute
(Sargolzaei et al., 2011), achieving 97%
concordance.

The genetic evaluation included five
production traits: milk yield (MY), protein yield
(PY), fat yield (FY), somatic cell score (SCS),
and daughter pregnancy rate (DPR). Official
records comprised 23.7 million observations on
8.56 million cows, with genotypes available for
1.91 million Holsteins (HO), 181,379 Jerseys
(JE), and 53,799 crossbred (CROSS) animals.
Table 1 summarises the total number of records
and number of studied animals across traits
defined by breed. Heritabilities (+SE) for the
five traits were 0.35(0.005) for MY,
0.29 (0.008) for FY, 0.31(0.014) for PY,
0.13 (0.008) for SCS, and 0.07 (0.003) for DPR.

Table 1: number of records and cows with
phenotypes and genotypes

Genotyped

animals
G Phenotypes (ssGBLUP
roup

only)

N Cows

Holstein 20,166,782 7,298,374 1,905,292
Jersey 2,868,461 996,353 181,379
*CROSS 701,732 266,259 50,938
Total 23,736,975 8,560,986 2,137,609

*CROSS = Crossbred of Holstein x Jersey, N =
Number of records, Cows = Number of cows with
records

Genomic breed composition was determined
using a supervised admixture model (Zoetis
proprietary pipeline). Purebred HO and JE were
defined as >80% ancestry; CROSS animals had
combined HO and JE ancestry >80%. Three
validation sets were created: 96,295 HO, 26,436
JE, and 5,099 CROSS cows. Reduced datasets
included records until Dec 2018 (HO, JE) or
Dec 2015 (CROSS); complete datasets
extended to Dec 2022.

Models included five-trait repeatability with
random animal, permanent environment, and



herd x sire interaction effects, and fixed effects
included contemporary groups, heterosis and
inbreeding. The genomic relationship matrix
(G) and pedigree matrix (A) were combined in
a single-step GBLUP (ssGBLUP) using the
Algorithm for Proven and Young (APY)
(Legarra et al., 2009; Aguilar et al., 2010) with
a random core size of 30,000: 22,156 females
and 1,931 males for HO, 5,643 females and
181 males for Jersey, and 678 females for
crossbred. Models were solved based on
iteration on data with the preconditioned
conjugate gradient (PCG) in algorithm
BLUP90IOD20OMP1 (Tsuruta et al., 2001).
Forward-in-time validation assessed (1)
predictability as the correlation between
adjusted phenotypes and GEBVs. Adjusted
phenotypes were obtained using PREDICT{90
v1.3 (Misztal et al., 2014); (2) inflation as the
regression slope of phenotypes on GEBVs
(ideal slope = 1); and (3) stability as the
correlation between GEBVs estimated from
reduced and complete datasets. Standard errors
for predictabilities and stabilities were
computed following Bermann et al. (2024). All
regression and correlation analyses were
performed in R software (R Development
Core Team, 2024). The different models
with and without MFs are detailed next.

SSgblup Analyses
All computations with ssGBLUP were done
using the full pedigree with 27 million animals
and the genomic relationship matrix for
2,137,609 animals. The ssGBLUP allows the
creation of a joint relationship matrix for
genotyped and non-genotyped animals by
replacing the inverse of the pedigree
relationship matrix, A~1, with the inverse of the
H matrix that combines the pedigree (A) and the
genomic relationship matrix G (Legarra et al.,
2009; Aguilar et al., 2010):
1 _ a1y |0 0 ]
H™ =A +[0 61— AL/

where A~! is an inverse of the pedigree
relationship matrix; G~1 is an inverse of the
genomic relationship matrix (VanRaden, 2008);
and A5} is an inverse of the pedigree
relationship matrix for genotyped animals only.
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Single-step GBLUP with metafounders

The H! matrix considers relationships among
MF (I') in the MF approach. Hence, it is
replaced with the (H")! matrix, as described by
Legarra et al. (2015) and Christensen et al.
(2014). In this way, the H! matrix is modified
to become:

-t _ Ayt [© 0
R L R

_ _p\T
Where Ggs = M-PYM-P) P)iM P)

matrix of samples with SNPs encoded as 0, 1, 2
(i.e., the number of reference alleles), P is the
matrix where each column is filled with the

, where M is the

value 1 (i.e., assuming allele frequencies of 0.5
for all loci). The denominator k = (0.5, where
s is the total number of SNPs. This corresponds
to the genomic relationship matrix proposed by
VanRaden (2008) with all allele frequencies
assumed to be 0.5. AT is pedigree relationship
matrix formed with a I' matrix, and AL, is the
submatrix of A" for the genotyped animals, and
I' is a variance covariance matrix of the MF
estimated by I' = 8Cov(P), as proposed by
Garcia-Baccino et al. (2017), where P is an m
by r matrix of allele frequencies and r is the
number of MF. Note that this P differs from the
allele frequency matrix used earlier for
individual SNPs in the genomic relationship
matrix. Under ssGBLUP without MF, the
genomic matrix G was constructed using the
allele frequencies observed in the genotyped
data. Conversely, ssGBLUP that included MF
used a fixed allele frequency of 0.5 for all loci.
VanRaden (2008) proposed wusing allele
frequencies from base animals, representing an
unselected population, to create the genomic
matrix. Using an allele frequency of 0.5 in
ssGBLUP with MF represents a relationship
across individuals in the base pedigree
population(s) relative to an unobserved base
population with all allele frequencies equal 0.5
(Legarra et al., 2024). The only modification of
the A matrix to include MF is the assumption
that the MF have a self-relationship denoted as
I' The I' matrix, which models the means
within and across founders, was estimated using



observed genotypes and pedigree under a
generalized least square (GLS) approach
(Garcia-Baccino et al,, 2017) using the
gammaf90 software package (Aguilar &
Misztal, 2008).

Metafounder classification

This study examined four scenarios to assess the
impact of different strategies to build MF for a
given data set and pedigree setting:

1) ssGBLUP without MF (NO_MF):

A ssGBLUP that did not include MF nor
any UPG was implemented so that all unknown
parents in the pedigree are assumed to be
unrelated and from a single population, hence
having unknown breeding values.

2) ssGBLUP with MF defined by breed (I's):

In this approach, four MF were defined
based on the breed of origin, with one MF
assigned to HO, one for JE, another for CROSS,
and a fourth assigned to the rest of the base
animals, assuming their breed of origin was
unknown. This approach treated CROSS as a
distinct genetic group (“breed”) alongside HO,
JE, and Unknown. Thus, in the end, the
variance-covariance matrix among MF was a
4x4 matrix between the means across SNP and
breeds.

3) ssGBLUP with MF defined by breed, sex,
and birth year (I'24):

In this approach, 24 MF were defined based
on breed (HO, JE, Unknown), sex, and year of
birth (<2000, 2001-2005, 2006-2010, >2011).
Here, the CROSS group was modelled within
the covariance between HO and JE.

4) ssGBLUP with MF defined by breed, sex,
year of birth and crossbreds as a breed (I'32):

This approach expanded upon I’z by
explicitly treating crossbred animals (CROSS)
as a distinct genetic group alongside HO, JE,
and Unknown. As a result, metafounders were
defined for each combination of breed (HO, JE,
CROSS, Unknown), sex, and year of birth,
This
with  mixed

resulting in 32 total metafounders.

distinction allowed animals
ancestry and no known parents to be grouped
more consistently, rather than approximating

their breed origin via pedigree tracing. In this
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case, crossbred animals with no parent
information were directly assigned to the
CROSS metafounder group.

Following Legarra et al (2015), genetic
variance parameters obtained from the model
with unrelated founders were used to estimate
corresponding parameters for the models with
MF by scaling it to become;

2
Tunrelated

1+ daag(I‘) _f

2 ~
Grelated ™

where the denominator is the scaling factor £;
62 reiateq 1S the variance among unrelated
founders. The variance of the breeding values
can then be

var{u) = HT. 62,4 Where H' is again the

calculated as

combined relationship matrix described in
Legarra et al. (2015).

Comparisons
The four ssGBLUP scenarios were evaluated,
where three used different MF classifications
and one used a conventional ssGBLUP model
without the inclusion of any MF

To confirm these assumptions, we
investigated the mean differences in the
diagonal and off-diagonals of A, G, A2 and
G " matrices (defined by MF groups) by
correlations and mean differences between
these matrices.

Finally, the of ssGBLUP
predictions were compared using the validation

four sets

metrics described above for each studied trait.
Results & Discussion

Elements of matrices

Table 2 shows the summary statistics for the
different matrices used in the ssGBLUP
computation using APY with a random core
size of 30,000. Values of the diagonal and off-
diagonal elements of Az, and G increased in all
augmentations of A and G that considered I'.
The mean, minimum, and maximum values of
the diagonal and off-diagonal elements of A
124, A%, G™* and G ? were similar. This

similarity implied that the assignment of an MF



to the crossbred base population in I's; resulted
in the little to no effect on the relationship
among individuals when compared with
modeling the crossbred base population within
the covariance between the MF of HO and JE
augmented in I'z.

Incorporating MF in A increased the
correlation between the pedigree and genomic
relationship matrices. Correlation between the
diagonal elements of Ay and G, A "™, and G
AT and G™*, A2, and G ™? were 0.18,
0.64, 0.28, and 0.29, respectively. In the same
way, the correlation between the off-diagonal
elements of Ay and G, A ™, and G™ A%,
and G™*, A%, and G"** were 0.39, 0.66, 0.46,
and 0.47 respectively. In all scenarios, using the
I’y resulted in higher-than-average diagonals
and off-diagonals in the elements of A and G.
These results were expected as including MF
has been shown to improve the similarity
between the pedigree and genomic relationship
matrices compared to the traditional ssGBLUP
model (Legarra et al., 2015).

Furthermore, the off-diagonal elements in a
pedigree relationship matrix containing MF are
expected to be higher than those of a pedigree
without MF (Junqueira et al., 2020; Kudinov et
al., 2020), as shown in table 2.

Table 2: mean, minimum, and maximum element
values of Az, AT, , AT, A2, G, GG
24 /G2 from diagonal and off-diagonal'.

Element Matri Mea Minimu Maximu
X n m m
Diagon  *Ajp 1.00 1.000 1.286
al 4
G 1.00 0.779 1.453
4
AT, 132 1.266 1.551
4
G™ 1.32  1.121 1.568
0
A 1.30 1.008 1.504
r24 6
G™ 1.31 1.120 1.568
9
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A 1.30 1.163 1.504
1"3222 6
G2 1.31 1.120 1.568
9
Oft- A 0.01  0.000 0.666
diagona 6
1
G 0.01 -0.216 1.015
6
A, 061 0532 1.154
3
G 0.63 0.397 1.386
2
A 0.60 0.385 1.073
1"2422 4
G™  0.63 0.395 1.380
1
A 0.60 0413 1.073
F3222 4
G2 0.63 0.396 1.380

1

*Ay is the pedigree relationship matrix of the
genotyped animals; G ™, G™* | and G 2 are the
genomic  relationship  matrices with allele
frequencies equal to 0.5 augmented by the T's, 24,
and I3y, respectively; G is the genomic relationship
matrix obtained using the VanRaden (2008) method
1; AT, A%, AT32,, are the pedigree relationship
matrices of genotyped animals augmented by T,
24, I'3; respectively.

Inflation

The slope (b1) of the regression of adjusted
phenotypes on GEBV from reduced datasets
measures the dispersion of predictions. A slope
close to one indicates no inflation or deflation
in GEBV (Mintysaari et al., 2010). According
to Interbull guidelines, b: should range from
0.90 to 1.10 for large populations, or be within
statistical significance of 1.0 for smaller
populations. Table 3 summarizes slopes across
traits (DPR, FY, MY, PY, SCS), methods
(NO_MF, 4MF, 24MF, 32MF), and groups
(CROSS, HO, JE).

In CROSS, NO MF exhibited severe
overdispersion, with slopes well below one for
MY (0.52 + 0.08), PY (0.42 = 0.09), and FY
(0.37 £ 0.09). Introducing 4MF improved



dispersion (e.g., MY: 0.63 £ 0.06; PY: 0.51 +
0.07). However, finer partitions (24MF, 32MF)
did not consistently improve slopes and, for
MY, slopes declined to 0.45 = 0.04 (24MF) and
0.54 = 0.05 (32MF), suggesting potential
reintroduction of bias. For low-heritability traits
(DPR, SCS), slopes remained far from one and
highly variable across scenarios.

In HO and JE, slopes were closer to one
across models. HO slopes ranged narrowly
(0.68-0.77). For JE, 4MF slightly improved
MY slope (0.67 £ 0.03 [NO_MF] — 0.87+0.02
[4MF]), with minimal differences between
4MF, 24MF, and 32MF. These results suggest
that MF  groupings
overdispersion in CROSS, but finer granularity

coarser can reduce
does not guarantee further improvement and
may exacerbate bias.

Overall, slopes were significantly different
from 1.0 (*P < 0.05), indicating general
inflation in predictions. However, less biased
results for evaluations with MF were observed
as shown in other studies (e.g., Garcia-Baccino
et al.,, 2017). A potential factor is variance
scaling in MF base populations. While Legarra
et al. (2015) described theoretical scaling, its
practical implementation has been inconsistent
(Macedo et al, 2020; Meyer, 2021).
Himmelbauer et al. (2024) reported that scaled
variances tend to slightly overestimate GEBV.
In this study, scaling factors (k) for base animals
were 1.002 (4MF), 1.011 (24MF), and 1.015
(32MF), suggesting variance scaling did not
contribute  to inflation.  Breed-specific
contributions to the base population, as noted by
Kudinov et al. (2022), may explain slope
differences across groups.
Suboptimal reference populations and
limited crossbred genotypes that did not
represent this group in the APY core likely
contributed to the overdispersions observed in
our study, as shown in Khansefid et al. (2020)

and van den Berg et al. (2020).
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Table 3: Regression coefficients (b1) and SE of cow-
adjusted phenotypes on genomic estimated breeding
value from different single-step genomic BLUP
(ssGBLUP) scenarios for validation cows.

Tra
Scenar  Group it
io 2 M PY FY SC DP
Y S R
NO M HO 07 05 0.6 0.6 02
F 7 5 2 5 0
JE 06 0.6 05 04 0.1
7 5 5 9
CRO 05 04 03 0.1 03
SS 2 2 7 0 6
4MF HO 07 05 0.7 0.7 02
7 5 0 9 7
JE 08 0.7 0.6 0.6 02
7 6 9 7 2
CRO 06 05 04 02 03
SS 3 1 9 9 5
24MF HO 06 04 06 0.7 02
8 8 1 8 4
JE 08 0.7 0.6 0.6 02
9 7 9 5 2
CRO 04 03 03 02 0.2
SS 5 7 9 9 8
32MF HO 06 04 06 0.7 02
8 9 7 8 4
JE 08 0.7 0.6 0.6 02
7 6 9 7 2
CRO 05 04 04 02 03

SS 4 3 4 8 0

Scenario!: NO_MF model (single-step genomic
BLUP without metafounders); 4MF (single-step
genomic BLUP with four metafounders); 24MF
(single-step genomic BLUP with 24 metafounders);
32MF (single-step genomic BLUP with 32
metafounders). Group? = HO; Holstein (n = 96,295
animal); JE; Jersey (n = 26,436 animals); CROSS (n
=5,099). MF = Metafounder; 2SE: HO <0.02 for all
traits and scenarios; JE: < 0.06 for all traits and
scenarios; CROSS: <0.18 for all traits and scenarios;
MY =milk yield; FY = fat yield; PY = protein yield;
SCS = somatic cell score; DPR = daughter
pregnancy rate

Predictabilities

Table 4 summarizes predictabilities for MY,
PY, FY, SCS, and DPR across models
(NO_MF, 4MF, 24MF, 32MF) and groups
(CROSS, HO, JE). For MY, HO and JE cows
showed moderate, stable predictabilities across
all models (HO: 0.41-0.44; JE: 0.40-0.50). In
contrast, CROSS animals demonstrated notable
gains with MF inclusion, increasing from 0.33
under NO_MF to 0.44 with 4MF, and further to



0.48-0.49 under 24MF and 32MF. Incremental
gains beyond 4MF were modest, suggesting
diminishing returns with finer metafounder
definitions.

For PY and FY,
observed. JE cows exhibited higher baseline
predictabilities (PY: 0.31 NO_MF — 0.37-0.38
MF), while HO showed smaller changes.
CROSS animals had the largest improvements,
especially under 4MF (e.g., FY: 0.19 NO_MF
— 0.26 4MF). Gains under 24MF and 32MF
were limited.

For SCS and DPR, purebred predictabilities
remained high and stable across all models,

similar trends were

while CROSS animals showed improvements
from low baselines (e.g., SCS: 0.04 NO MF —
0.12 4MF — 0.14 24MF/32MF).

These results highlight that MF effects on
predictability are trait- and breed-dependent.
Coarser MF groupings (4MF) improve CROSS
predictions, while finer partitions do not
guarantee further accuracy and may introduce
unnecessary complexity.

Our findings differ from Cesarani et al.
(2023), reported higher CROSS
predictabilities than purebreds using UPG in
ssGBLUP. They attributed this to genetic
divergence between HO and JE and dense

who

genotype panels (imputed 79K SNPs). In
contrast, our study used a 45K SNP panel and a
random APY core including only 678
crossbreds (<3%). These factors likely reduced
CROSS prediction accuracy despite the
inclusion of MF.

A more balanced APY core design, like the
breed-stratified approach of Tabet et al. (2025),
could better capture genetic variation in small
groups like CROSS while maintaining
computational efficiency. Combining variance-
based core selection with breed stratification
may offer a promising strategy for future multi-
breed evaluations.
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Table 4: Predictive ability (Pearson correlation
between genomic estimated breeding values and
adjusted phenotype) for the validation cows.

Trait
Scenario!  Group? MY PY FY SC5 DR
NO MF HO 041 030 0.33 021 0.07
JE 0.40 031 026 0.17 0.05
CROSS 033 024 0.19 0.04 0.08
4MF HO 044 031 037 025 0.08
JE 0.50 038 0.34 0.22 0.06
CROSS 044 0.33 026 0.12 0.10
24MF HO 041 028 0.35 025 0.08
JE 0.50 037 0.34 0.21 0.06
CROSS 048 0.39 029 0.14 0.09
32MF HO 041 028 0.36 025 0.08
JE 0.50 038 0.34 0.22 0.06
CROSS 049 0.39 030 0.14 0.09

Scenario!: NO_MF model (single-step genomic
BLUP without metafounders); 4MF (single-step
genomic BLUP with four metafounders); 24MF
(single-step genomic BLUP with 24 metafounders);
32MF (single-step genomic BLUP with 32
metafounders). Group? = HO; Holstein (n = 96,295
animal); JE; Jersey (n = 26,436 animals); CROSS;
HOXJE animals (n = 5,099). MF = Metafounder;
2SE: HO <0.003 for all traits and scenarios; JE: <
0.005 for all traits and scenarios; CROSS: < 0.013
for all traits and scenarios; MY = milk yield; FY = fat
yield; PY = protein yield; SCS = somatic cell score; DPR
= daughter pregnancy rate

Stabilities

In HO, stability was high under NO_MF (>0.87
for all traits) as shown in Table 5, reflecting
strong agreement between reduced and
complete datasets. Including 4MF slightly
reduced stability for production traits such as
PY (0.87 — 0.77) and MY (0.87 — 0.80), while
traits with low heritability (SCS, DPR)
remained highly stable (=0.93). Increasing MF
resolution to 24MF and 32MF had negligible
additional effects, with correlations for MY and



PY ranging from 0.76 to 0.80 and SCS/DPR
remaining >0.93. These findings suggest that,
for HO, finer MF groupings increased model
complexity without enhancing stability and
may have even slightly destabilized predictions
for certain traits.

In JE, stability was similarly high across all

traits in NO_MF (e.g., MY and FY = 0.93) and
remained largely unchanged with MF inclusion.
Minor improvements in MY stability (0.93 —
0.94 under 4MF) were observed, but finer MF
resolutions (24MF, 32MF) did not yield further
gains, indicating limited impact of MF on
stability in this breed.
In contrast, CROSS animals showed lower
stability under NO_MF (e.g., MY = 0.59, PY =
0.52, FY = 0.69) compared to purebreds. MF
inclusion modestly improved stability (e.g.,
MY:0.59 — 0.61 under 4MF), with larger gains
observed under 24MF (MY: 0.73) and 32MF
(MY: 0.74). Similar trends were noted for other
traits, suggesting that finer MF groupings may
better account for heterogeneity in crossbred
populations.

These results highlight potential trade-offs.
In purebreds, finer MF schemes increased
model complexity without clear benefits and
may have introduced overparameterization
relative to the data. In CROSS, finer MF
improved stability but did not consistently
translate to higher predictive ability or slopes
closer to one. This decoupling suggests that
stability alone cannot fully evaluate model
performance and must be interpreted alongside
other validation metrics and trait architecture.

As Legarra and Reverter (2018) emphasized,
high stability does not necessarily reflect
improved accuracy. For traits like MY and PY
in purebreds, high stability may partly reflect
that most genetic variance was captured by
earlier data, limiting the impact of new
phenotypes. Conversely, in traits with lower
heritability (e.g., DPR, SCS), MF inclusion
improved stability, indicating that such traits
may benefit more from additional information
introduced by metafounders.
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Stability should therefore be interpreted
While
evaluations, it primarily measures agreement

cautiously. desirable for routine
between evaluations and does not indicate
which evaluation is more accurate. For traits
with low h? high
unresponsiveness to new data, which could

limit genetic progress.

stability may reflect

Table 5: stability (correlation between genomic
estimated breeding values estimated in the complete
and reduced datasets) for validation cows.

Scenario!  Group? Trait
MY PY FY SCS DPR
NO MF HO 0.87 087 0.89 095 091
JE 093 092 093 092 0.89
CROSS 059 0.52 0.69 0.79 0.88
4MF HO 0.80 0.77 083 094 093
JE 094 092 092 092 0.92
CROSS 0.61 0.50 054 0.76 0.88
24MF HO 0.76 0.72 0.78 093 093
JE 092 09 091 092 09%4
CROSS 0.73 0.65 0.62 0.82 091
32MF HO 0.80 0.73 0.80 093 0.93
JE 092 090 091 092 0.93
CROSS 0.74 0.65 0.64 0.83 0091

Scenario': NO MF model (single-step genomic BLUP
without metafounders); 4MF (single-step genomic BLUP
with four metafounders); 24MF (single-step genomic
BLUP with 24 metafounders); 32MF (single-step genomic
BLUP with 32 metafounders). Group?= HO (n = 96,295
animal); JE (n =26,436 animals); CROSS (n = 5,099). MF
= Metafounder; *SE: HO <0.001 for all traits and
scenarios; JE: <0.001 for all traits and scenarios; CROSS:
< 0.011 for all traits and scenarios; MY = milk yield; FY
= fat yield; PY = protein yield; SCS = somatic cell score;
DPR = daughter pregnancy rate

Conclusions

This study demonstrated that incorporating
metafounders (MF) into genomic evaluation
models for Holstein and Jersey cattle, as well as
their crossbreds, can result in differences in
prediction metrics, with the effects varying by



trait, breed, and metafounder configuration.
While certain MF classifications (eg, 4MF)
reduced bias and improved regression slopes in
crossbreds for some traits, others had minimal
effects, especially for purebred Holstein.
However, the added model complexity slightly
stability for with  higher
heritability, such as milk yield and protein yield.
Overall, while MF provides a promising
approach to address pedigree missingness in
multibreed evaluations, its application should
be tailored to the trait heritability and
population composition to avoid potential

reduced traits

overfitting and ensure accurate genetic
predictions.
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Abstract

In Switzerland, a resource project was launched in 2019 to improve claw health in Swiss cattle. This
project marked the beginning for the development of the first genetic evaluation for claw health traits in
Swiss dairy cattle. Data recorded by claw trimmers during routine care was used to develop a single-
step genetic evaluation for the most common dairy cattle breeds Holstein, Swiss Fleckvieh, Simmental,
Brown Swiss and Original Braunvieh.

A key advantage of this dataset is its comprehensive inclusion of all healthy cows observed during
routine care. From 2019 to 2024, a total of 104,276 records were collected for the multi-breed evaluation
of Holstein cattle (encompassing Holstein, Swiss Fleckvieh, and Simmental), while 33,464 records were
documented for Brown Swiss (Brown Swiss and Original Braunvieh). Breeding values were predicted
for four distinct traits: dermatitis digitalis (DD), white-line disease (WL), other infectious claw diseases
(INF), and other non-infectious claw diseases (NINF). The prevalence rates of DD, WL, INF, and NINF
were observed as 20.9%, 9.9%, 45.8%, and 20.7% respectively in the Holstein evaluation, while in the
Brown Swiss evaluation, they were found as 7.8%, 10.2%, 37.6%, and 13.5%.

A multi-trait animal model with binary coding of the trait was fit in the ssGTaBLUP evaluation, with
heritability estimates ranging from 3% to 9% determined for the four traits across both populations. A
top-bottom comparison revealed that daughter prevalence among sires with the highest and lowest
estimated breeding values (EBV) varied by 14% to 35%. An index incorporating breed-specific weights
for the four traits has been developed and is now published for all Swiss breeders.

A primary challenge in developing the genetic evaluation was the scarcity of phenotypic data alongside
a substantial population of genotyped animals that exhibited limited genetic correlation with individuals
supplying phenotypic records.

Key words: Claw health, single-step genetic evaluation, dairy cattle, multi breed evaluation

Introduction A resource project was initiated in 2019 to

enhance claw health in Swiss cattle. The main
Claw health represents the third leading cause objective was to implement systematic
of culling in Swiss dairy cattle, following recording of claw health data by hoof trimmers
mastitis and fertility challenges. Claw diseases during routine care. Hoof trimmers received
and the resultant lameness significantly affect training to ensure standardized and consistent
animal health and welfare as well as herd documentation of claw diseases. In addition to
productivity, primarily due to treatment costs advancing management practices, a key
and decreased milk yield. Previous research has objective of the project and this study was to
estimated that associated economic losses can establish the first Swiss genetic evaluation for
range from several hundred to over one claw health traits and to improve dairy cattle’s
thousand dollars per case and animal claw health. Utilizing the comprehensive
(Dolecheck and Bewley, 2018). genomic data available for dairy cattle, a single-

step evaluation was developed to maximize the
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utility of this information. The resulting
breeding values will support breeders in
sustainably improving the claw health of Swiss
dairy cattle through breeding.

Materials and Methods

Data

Data recorded by claw trimmers during routine
care was collected through the resource project
‘Gesunde Klauen’
(https://gesundeklauen.unibe.ch, access date
2025/07/30) for multiple cattle breeds. The raw
data set included 286,138 records of both
diseased and healthy cases from 2019 to 2024.
Thus, having all sound and diseased records
solved the question of reconstituting the
contemporary groups. Disease recording was
done according to ICAR definitions (ICAR,
2020). Pedigree and genotype data were
obtained from the three Swiss cattle breeding
organizations: Braunvieh Schweiz,
swissherdbook, and Holstein Switzerland.

During quality control, records lacking
identity information, herd information or
disease codes were excluded. Data pertaining to
the principal dairy cattle breeds in Switzerland
— Holstein, Swiss Fleckvieh, Simmental, Brown
Swiss, and Original Braunvieh — were retained.
Typically, animals underwent trimming twice
annually. Phenotypic data were compiled as
records per month and animal. For Holstein
multi-breed evaluation, 104,276 records were
analysed (including Holstein, Swiss Fleckvieh,
and Simmental). 33,464 records were used for
Brown Swiss evaluation (Brown Swiss and
Original Braunvieh).

Genotype data obtained through standard
imputation included 114,640 SNPs for 490,761
animals from Holstein dataset and 146,609
animals corresponding to Brown Swiss
evaluation. The Holstein dataset contained
5,284 cows with both phenotype and genotype
records, while the Brown Swiss dataset
comprised 2,894 cows with these records.
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Trait definition

Due to low prevalence of certain diseases,
genetic evaluation was limited to dermatitis
digitalis (DD) and white-line disease (WL) as
individual traits. Remaining diseases were
combined into two groups: other infectious
diseases (INF) and non-infectious diseases
(NINF). INF comprised heel horn erosions,
interdigital ~ dermatitis, and interdigital
phlegmon.  NINF included interdigital
hyperplasia (limax), asymmetric, corkscrew,
and scissor claws, concave dorsal wall, double
sole, axial, horizontal, and vertical horn fissure,
thin sole, sole hemorrhage, sole bulb and toe
ulcer, and toe necrosis.

Genetic model

A linear multi-trait repeated animal model was
implemented to estimate variance components
and genomic breeding values. Fixed effects
included parity, trimmer by year, stage of
lactation, year-month. Recombination and
heterosis were also incorporated as fixed effects
into the Holstein multi-breed evaluation. The
random effects comprised herd-year-season,
permanent environment, and animal genetic
effect. Traits were coded as binary variables (0
orl).

Variance components were estimated with
the VCE software (version 6.0.2; Neumaier and
Groeneveld, 1998) and the four-trait animal
model, applied separately to the Holstein and
Brown Swiss datasets.

Genetic evaluation

Single-step genomic breeding values were
predicted using the ssGTaBLUP model
(Méntysaari et al., 2017) implemented in the
MiX99 software package (Strandén and
Lidauer, 1999). Reliability estimates for these
breeding wvalues were assessed  with
snp_blup_rel (Zaabza et al., 2020), executed
within the MiX99 environment. Estimated
breeding values (EBV) were standardized to a
mean of 100 and a standard deviation of 12 for
publication.
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Validation of genetic evaluation

A top-bottom comparison was performed to
validate the genetic evaluation process. The
average prevalence among daughters was
calculated for sires with high reliability (Brown
Swiss > 0.35, Holstein > 0.6). These averages
were then compared between the sires within
the top 10% and bottom 10% of EBV.

Results & Discussion

Prevalence rates for the traits DD, WL, INF, and
NINF were observed at 20.9%, 9.9%, 45.8%,
and 20.7% respectively in the Holstein
evaluation, and at 7.8%, 10.2%, 37.6%, and
13.5% in the Brown Swiss evaluation. The
prevalences of DD, WL, and NINF align with
findings from Holstein and Brown Swiss
populations in other countries (Johansson et al.,
2011; Kock et al., 2019; Malchiodi et al., 2018).
The comparatively higher prevalence of INF
may be attributed to trimmers being instructed
to record heel horn erosion with high
sensitivity.

Heritability estimates for the four evaluated
traits and two assessments of Holstein and
Brown Swiss ranged from 3% to 9%, as detailed
in Table 1. The highest estimate was recorded
for DD in the Holstein evaluation, while the
lowest was noted for DD in Brown Swiss. These
findings are consistent with previously reported
heritability values from studies conducted in
other countries (Chapinal et al., 2013;
Charfeddine et al., 2018). The highest
heritability estimate for DD in Holstein is
expected, owing to the more extensive dataset
and greater prevalence observed in the Holstein
evaluation compared to the Brown Swiss
assessment.  Additionally, the trait is
specifically characterized as a single disease
rather than a group trait, enhancing the
precision of the evaluation.
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Table 1: Heritability estimates and standard errors
for claw health traits in the two evaluations

Trait Holstein Brown Swiss
Dermatitis 0.09 0.03
digitalis (0.003) (0.006)
White-line 0.05 0.07
disease (0.004) (0.009)
Other infectious 0.04 0.04
diseases (0.002) (0.004)
Other non- 0.06 0.04
infectious (0.004) (0.007)
diseases

The EBV of genotyped sires for the four
assessed traits ranged from 53 to 139 in
Holstein and from 68 to 123 in Brown Swiss,
following standardization. Among Holsteins,
the mean reliabilities for DD were 0.84 for
proven bulls with a minimum of 20 phenotyped
daughters in 10 herds, and 0.43 for selection
candidates (Figure 1). In the Brown Swiss
evaluation, these averages were 0.67 and 0.24,
respectively (Figure 2). The reliability estimates
were comparable across all four traits.
Generally, the reliabilities observed in Holstein
evaluations exceeded those for Brown Swiss, a
difference attributable to the greater number of
phenotypic records and genotyped animals
available for Holstein analyses.
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Figure 1. Reliability estimates for dermatitis digitalis
(DD) in Holstein for selection candidates (a) and
proven bulls (b).
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Figure 2. Reliability estimates for dermatitis
digitalis (DD) in Brown Swiss for selection
candidates (a) and proven bulls (b).

Validation of the EBV through top-bottom
comparison revealed differences in daughter
prevalence ranging from 14% to 35% across
various traits and evaluations. These results are
influenced by the average prevalence of the
specific disease or disease group under
consideration. For example, the top-bottom
comparison for DD in Holstein indicated a 32%
difference in prevalence between top and
bottom sires (Figure 3), while in Brown Swiss
cattle, the same trait demonstrated a 14%
difference (Figure 4). Both figures illustrate a
distinct separation between the two groups,
providing strong evidence for the validity of the
genetic evaluation for claw health traits. These
findings confirm that selecting sires with higher
EBV will contribute to genetic improvement in
claw health traits.
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Figure 3. Top-bottom comparison for dermatitis
digitalis (DD) in Holstein. The red line indicates the
population mean prevalence.
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Figure 4. Top-bottom comparison for dermatitis
digitalis (DD) in Brown Swiss. The red line indicates
the population mean prevalence.

In pursuit of enhanced overall claw health,
the EBV of the four traits were consolidated
into an index. This EBV index is intended to
streamline farmers’ selection process during
mating decisions. The index weights for these
traits were determined specifically for each
evaluation and established through consultation
with veterinarians involved in the resource
project. Weightings were calculated based on
both the prevalence of each trait within the
respective evaluation and their relative
economic significance.

For the Brown Swiss evaluation, all four
traits were assigned equal weight in the final
claw health index. In contrast, within the
Holstein evaluation, DD received a weight of
0.5, WL and INF each received 0.125, and
NINF was weighted at 0.25. A modest positive
genetic trend is evident for the Brown Swiss
breed (Figure 5), with approximately 8 index
points gained over the past 20 years —
representing three-quarters of a standard
deviation. For the Holstein breed, the trend is
more pronounced, with a gain of 13 index points
or roughly one standard deviation over the same
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period (Figure 6). Despite the absence of a
dedicated selection tool during this time frame,
farmers recognized the importance of claw
health  and made intuitive  decisions
accordingly. While indirect selection through
other traits is theoretically possible, it is
considered unlikely. No high genetic
correlations with previously selected traits
could be identified.
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Figure 5. Genetic trend in the claw health index of
Brown Swiss for individuals born from 2003 to
2022.
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Figure 6. Genetic trend in the claw health index of
Holstein for individuals born from 2003 to 2022.

By providing specific EBV for claw health
traits, this positive trend can be sustained.
Achieving the long-term objectives of the
resource project and study is possible through
careful consideration of the proposed index and
the potential future integration of EBV into the
overall selection index for Swiss dairy cattle
breeds.

The primary challenge in developing the
genetic evaluation was the limited availability
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of phenotypic data. Despite having five years of
recorded information, the database remained
constrained due to the small number of
participating hoof trimmers, the relatively low
population of animals in Switzerland, and their
distribution across various breeds. The genetic
evaluation was made possible by employing the
single-step method and leveraging genomic
information. Nevertheless, the abundance of
genotypes presented an additional challenge, as
most genotyped animals showed weak genetic
and genomic connections to those with
available phenotypic records. The majority of
genotypes were sourced from international
bulls through genotype exchange programs.

Conclusions

The first single-step genomic EBV for claw
health traits in Switzerland have been predicted.
Heritability estimates for four distinct traits
ranged from 3% to 9%, based on data from the
five major Swiss dairy cattle breeds: Holstein,
Swiss Fleckvieh, Simmental, Brown Swiss, and
Original Braunvieh. These EBV were used to
develop a claw health index, considering
evaluation-specific weights to provide Swiss
dairy breeders with a straightforward selection
tool. Given the observed positive genetic trend,
there is potential to further strengthen the
genetic improvement of claw health in the
future. The next phase involves participating in
the development of the new MACE EBV for
claw health traits. Following successful
validation, we intend to integrate the MACE
EBV into our single-step pipeline, leveraging
international data to further enhance our genetic
evaluation.
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Abstract

A single-step SNP BLUP was introduced in routine official evaluation of German Holstein in April
2025 for all traits, including an early-measured trait, calf fitness, defined as calf survival between day
3 and 15 months after birth. Prior to the single-step model implementation, a mixed reference
population of bulls and calves was set up for the calf fitness genomic evaluation using a multi-step
genomic model. During the testing phase of the single-step model, an unrealistic, strong genetic trend
of calf fitness was observed in genotyped animals, when compared to the multi-step genomic model or
pedigree-based conventional model. Having searched for plausible causes for the overestimation, we
detected a much lower mortality rate for genotyped calves than non-genotyped ones, particularly for
the early periods from day 3 to 120 after birth. Although all female calves were genotyped under the
whole-herd genotyping scheme in Germany, farmers did not always take genotyping sample right after
the birth of a calf, causing a delay in genotyping for the early periods of the trait calf fitness. In
addition, there were limited economic incentives for farmers to genotype dead calves. To solve the
overprediction bias of the calf fitness evaluation, we developed a new single-step model by using only
genotypes of sires of all female calves with phenotypic data. Genomic breeding values of the
genotyped calves and all other genotyped animals were indirectly predicted based on SNP effect
estimates and residual polygenic effect estimates of all the genotyped sires from the new single-step
model. Genomic validation showed a slightly higher accuracy of the new single-step model using sire
genotypes than the original model using genotypes of all animals. In comparison to a significant over-
prediction for the original model, the new single-step model using only the sire genotypic records gave
an almost unbiased genomic prediction. Genetic trends in genotyped Al bulls or female animals were
no longer overestimated with the new single-step model. The problem of inflated genomic prediction
of the original single-step model seems to be solved by using only the genotypic data of sires of
female calves.

Key words: single-step model, calf fitness, genomic evaluation, prediction bias

Introduction with a multi-trait linear animal model (Heise et
al. 2016).
Calf fitness (CF) is an economically important Prior to the official implementation of a
trait for dairy farmers which was defined as single-step SNP BLUP genomic model (SSM,
female dairy calf survival from day 3 to 15 Liu et al. 2014) for all evaluated traits in
months / 458 days after birth for German dairy German Holstein in April 2025, genotype
cattle breeds. The whole-time span was records of all animals born from 2005 onwards
divided into five periods: days 3 to 14, 15 to were used also for trait CF in the testing period
60, 61 to 120, 121 to 200, and 201 to 458, that of the model SSM. Thanks to the whole-herd
were treated as genetically correlated traits female calf genotyping scheme introduced in

2019, more than 1 million German Holstein
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female calves with phenotypic CF records had
also genotype data available for genomic
evaluations. An unexpected overestimation of
genetic trend in the genotyped animals was,
however, identified for trait CF during the test
phase of the SSM model. To solve the problem
of overestimated genetic trend in trait CF, an
alternative single-step model needed to be
developed.

The objectives of this study were 1) to
identify causes of the inflated genomic
prediction of the single-step model using all
genotype data; 2) to develop a new single-step
model for removing the overestimation bias;
and 3) to conduct genomic validation for the
two single-step models with a full and a
truncated data set.

Materials and Methods

Phenotypic, genotypic and pedigree data from
August 2024 (2408) were obtained for the
investigation on the trait CF. Following the
Interbull GEBV test rules (Méintysaari et al.
2010), four years of phenotype data were
deleted to simulate a genomic valuation in
August 2020 (2008t). Two SSM models were
compared: using genotype data of all animals
including all female calves and using only
genotype data of sires of female calves with
phenotypic records. Table 1 describes the
genotype and phenotype data for the full
evaluation 2408 and the truncated evaluation
2008t.

Table 1. Phenotype and genotype data for the full
(2408) and truncated evaluation (2008t)

Female
Data calves with | Genotyped | Genotyped
set phenotypes | calves sires
2408 13,273,996 | 1,075,268 36,325
2008t 10,733,873 501,653 26,578
Ratio 81% 47% 73%

The total number of genotyped Holstein
animals in both evaluations was 1,631,843,
including 1,433,599 females and 198,244 male

animals. All the genotyped animals were born
in 2005 and later due to the left truncation of
genotype data (Alkhoder et al. 2024). Figure 1
shows the numbers of female dairy calves with
trait CF and genotyped Holstein female calves
with trait CF. The solid lines represent the
numbers of female dairy calves in the full
evaluation 2408 with phenotypic CF records
(in blue) and genotyped Holstein female calves
(in orange). The dotted lines denote the
numbers of female dairy calves with
phenotypes in the truncated evaluation 2008t
(in black) and with both phenotype and
genotype data (in orange).
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Figure 1. Numbers of female calves in the full
evaluation 2408 and truncated evaluation 2008t

Figure 2 shows the number of genotyped
sires of the female calves with phenotypic CF
in the full evaluation 2408 (solid line) and in
the truncated evaluation 2008t (dotted line).

Genotyped sires of calves 2408 ~ ssssse Genotyped sires of calves 2008t
3500

3000

~
@
S
S

1500

No. genotyped sires
o
5]
<]
IS]

Year of birth

Figure 2. Numbers of genotyped Holstein sires of
female calves in the full evaluation 2408 and
truncated evaluation 2008t

Mortality rate of dairy female calves

Germany has run a whole-herd genotyping
scheme in participating herds since 2016,
where all newborn dairy female calves are to



be genotyped. For legitimate reasons, farmers
do not always samples
immediately after birth of a calf, causing a
delay in genotyping. Furthermore, there is
limited incentive for farmers to genotype dead
or even sick calves. Based on all 615,927
Holstein female calves born in 2022 which had
opportunity to reach the end of CF trait
definition (458 days) in the evaluation of April
2025. Figure 3 shows the mortality rates of
148,427 genotyped and 467,500
genotyped Holstein calves with respect to the
five periods of trait CF. For the first period of
CF, non-genotyped calves have a mortality rate
of 2.46% that is six times higher than that of
genotyped calves, 0.41%. Similarly, the non-
genotyped calves are 3 times more likely to die
than the genotyped ones in the second period.
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Figure 3. Mortality rates of genotyped and non-
genotyped Holstein female calves

A multi-step SNP BLUP genomic model

Under the multi-step genomic model (MSM)
for all other evaluated traits in German
Holstein (Liu et al. 2011), a SNP BLUP model
was applied to deregressed EBV of reference
bulls and calves for trait CF. In the full
evaluation 2408 there were 1,055,144
reference calves and 13,077 reference bulls
representing their non-genotyped calves.

Two single-step SNP BLUP genomic models

For trait CF, we compared two SSM models:
one using all genotype records including all
calves and the other using only genotype data
of sires of the female calves. A single-step
SNP BLUP model (Liu et al. 2014) was
applied to the phenotype data and the two
genotype data sets. For the SSM with sire
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genotypes, GEBV of all the other genotyped
animals were indirectly predicted, following
the weekly genomic evaluation procedure
(Alkhoder et al. 2024a).

Genotyped Holstein Al bulls and female calves
For trait CF two main groups of genotyped
animals were chosen to investigate the impact
of the two SSM models: genotyped Holstein
Al bulls and genotyped Holstein female calves.
Both animal groups were highly relevant for
breeding and most affected by the SSM model
change as well. Figure 4 shows the number of
Al bulls by year of birth with a total of 8,391
genotyped Holstein Al bulls owned by German
Al studs born from 2005 to 2023. Numbers of
the genotyped Holstein female calves having
trait CF born in 2010 and later are shown in
Figure 5. The total number of the genotyped
Holstein calves 1s 1,072,492 in the evaluation
2408.
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Figure 4. Number of genotyped Holstein Al bulls
owned by German Al studs
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Figure 5. Number of genotyped Holstein female
calves with phenotypic records

Genomic validation via GEBYV Test
Following Interbull GEBV Test rules, a total
of 980 validation bulls were defined based on

the full and truncated data sets. The most



recent version of the GEBV Test software
from September 2024 was used at the time of
conducting the genomic validation. To
investigate the impact of dependent variable on
the validation results, both deregressed GEBV
and GEBV were used as target variable. For
the MSM model, an earlier genomic validation
with a linear regression model (Legarra and
Reverter, 2018) was performed using data
from a full evaluation in April 2023 (2304) and
from a truncated evaluation in April 2021
(2104). For this special validation, the original
SSM with genotype data of all animals was
evaluated besides the MSM  model.
Furthermore, GEBV of 355 validation bulls
from the full evaluation 2304 were regressed
on GEBV from the truncated evaluation 2104
for the regression analysis.

Results & Discussion

The single-step genomic full evaluation, 2408,
was run using the two genotype data sets of
German Holstine for trait CF: using genotypes
of all animals and using only genotypes of
sires of the female calves with own phenotypic
records in CF. For the GEBV test, the single-
step evaluation based on the truncated
phenotypic data, 2008t, was conducted for the
two genotype data sets as well. In addition, we
further ran the MSM model using the full data
set 2408 and truncated 2008t. All the SSM
evaluations were run with software MiX99
(Strandén and Lidauer, 1999), whereas our
own programs were used for the MSM
evaluations.

Earlier genomic validation results

Table 2 shows results of the earlier genomic
validation using the linear regression method
(Legarra and Reverter, 2018) by comparing the
full evaluation 2304 to truncated evaluation
2104. It can be seen for both SSM and MSM
models that the model R? value is relatively
high and b; value close to 1. However, caution
needs to be taken when interpreting the
validation results, because the validation bulls
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have low reliability values in comparison to
other traits, between 0.5 and 0.6 in the full
evaluation 2304, for the low heritability trait
CF. The high R? values may also be attributed
to the lower contribution of own calves’
phenotypic data to the total reliability of the
validation bulls. Using GEBV as dependent
variable for the linear regression may partially
lead to the b; values close to 1, too.

Table 2. Genomic validation results using data from
the full evaluation 2304 and truncated evaluation
2104

Genomic Number of R? b

model validation bulls | value | value
Single-step 355 0.61 1.04
Multi-step 355 0.40 0.92

Genomic validation results of the two single-
step models

Tables 3 and 4 give results of genomic
validation for both SSM models via Interbull
GEBYV Test software using data from the full
evaluation 2408 and truncated evaluation
2008t. The total number of validation bulls
980. The two SSM models
significantly lower R? values than those in

was show
Table 2, indicating that the dependent variable
deregressed GEBV results in a lower R? value
than the dependent variable GEBV. Another
explanation for the lower R? values is the
number of years in the data truncation, 4 years
for the validation in Table 3 versus 2 years for
the validation in Table 2. Based on the
regression slope b; values, we can conclude
that the SSM model using genotype data of all
animals failed the GEBV test, leading to
overestimated candidate GEBV.

Table 3. Genomic validation results of the two
single-step models using data from the full
evaluation 2408 and truncated evaluation 2008t

Deregressed GEBV as R? by

dependent variable value | value | Pass
Using only sire genotypes | 0.191 | 0.954 | PASS
Using all genotypes 0.164 | 0.849 | FAIL

As an alternative form of dependent

variable in the GEBV Test, GEBV of



validation bulls from the full evaluation 2408
were regressed on those of the truncated
evaluation 2008t. Table 4 shows genomic
validation results of the two SSM models with
GEBYV as dependent variable. The R? values of
both SSM models are nearly equal and higher
than the validation using deregressed GEBV in
Table 3. Based on the regression slope b
estimates, the two SSM models pass the
GEBY test. However, the b; value of the SSM
using all genotype data, 0.933, deviates more
from its expected value of 1.

Table 4. Genomic validation results of the two
single-step models using GEBV as dependent
variable for the regression analysis

GEBYV as dependent R? by

variable value | value | Pass
Using only sire genotypes | 0.444 | 0.963 | PASS
Using all genotypes 0.436 | 0.933 | PASS

GEBYV of the genotyped Holstein AI bulls
Figure 6 shows genetic trends of GEBV in the
genotyped Holstein bulls born between 2005
and 2023. GEBYV of the Al bulls are expressed
in genetic standard deviations (o) in Figure 6.

— Single-step sire genotypes ssss e e Single-step all genotypes

e M ulti-step model

1

1

1

1

1

1

1

1

1

1
2020
2021
2022
2023

w O~ ® O
o © o 9o o
S © © © ©
SRS SO )

Figure 6. Genetic trends of the three genomic
models in the genotyped Holstein Al bulls

The SSM model using all genotype data
(dotted black line) which failed the GEBV Test
(see Table 3) has too high genetic trend, with a
genetic progress of 1.4 genetic standard
deviations in las 10 years between 2013 and
2023, despite the fact no direct selection has
been imposed on this trait CF in German
Holstein. The new, optimized SSM model
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using only sire genotype data (solid black line)
has  brought the genetic
significantly, to a level much closer to the
MSM model. For information, the genetic
trend of the MSM model is equal to
conventional evaluation for the genotyped Al
bulls with calf phenotype data.

GEBV variances of the Al bulls by birth
year are given in Figure 7. All the three

down trend

genomic models have nearly equal GEBV
standard deviations within the birth years.

Single-step sire genotypes sssssse Single-step all genotypes

Multi-step model

GEBV std dev (% of o)
8

2005
2006
2007
2008
2009
1
1
1
1
1
1
1
1
1
1
2020
2021
2022
2023

GEBYV standard deviations of the three
models for the genotyped Holstein Al

Figure 7.
genomic
bulls

Figure 8 shows GEBV correlations between
all pairs of three 3 genomic models. The new
SSM model with only sire genotype has high
GEBYV correlations with either the SSM model
using all genotype data (solid black line) or the
MSM model (dotted green line). The MSM
model and the SSM with all genotypes (dashed
blue line) have the lowest GEBV correlations.
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Figure 8. GEBV correlations between the genomic
models for the genotyped Holstein Al bulls



GEBV of the genotyped Holstein female
animals

Regarding the genetic trends of the 3 genomic
models in the genotyped Holstein female
calves, we can see in Figure 9 that the SSM
using all genotype data (dotted black line) has
severely overestimated GEBV of the female
calves, due to the much lower mortality rate of
genotyped than non-genotyped calves (see
Figure 3). However, the unrealistically high
genetic trend is reduced significantly for the
SSM model when only the genotype data of
sires were used (solid black line). The GEBV
averages by birth year of the new SSM with
only sire genotypes are now only slightly
higher than those of the MSM model (solid red
line).
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Figure 9. Genetic trends of the three genomic
models in the genotyped Holstein female animals

GEBV variances in the
genotyped female calves are compared among
the genomic models (Figure 10). Despite the
large trend difference in genotyped animals
between the two SSM models, the genotyped

In addition,

Holstein female calves have nearly equal
GEBYV variances (dotted and solid black lines),
probably due to the rather low heritability of
trait CF. The MSM model has lower GEBV
variance (solid red line) than the two SSM
models, which may be explained by the
contribution of non-genotyped relatives with
phenotype data to the female calves GEBV of
the SSM model.
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Figure 10. GEBV standard deviations of the
genomic models in genotyped Holstein female
calves

GEBV correlations between the genomic
models are shown in Figure 11 for the
genotyped Holstein female calves. The highest
GEBV correlations are found between the
MSM model and SSM with only sire
genotypes (dotted green line), whereas the
GEBYV correlations between the MSM model
and the SSM using all genotypes are lowest
(dashed blue line).
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Figure 11. GEBYV correlations between the genomic
models for the genotyped Holstein female calves

The MSM model with a mixed reference
population of bulls and calves did not show the
problem of overestimated GEBV for the early
measured trait CF, partly due to the reference
bulls whose EBV containing phenotype data of
both live and dead calves. As another
contributing factor, the pseudo-phenotype data
of reference bulls or calves in the MSM
genomic  evaluation were  deregressed
conventional EBV of bulls and calves, which
had been preceding

conventional evaluation without consideration

estimated in the

of any genotype data. Thus the problem of



genotyped calves having a much lower
mortality rate than the non-genotyped calves
could not have any impact on the conventional

EBV at the preceding step and on the

subsequently generated deregressed
conventional EBV of the reference bulls or
calves.

Conclusions

The single-step genomic model using genotype
data of all animals appears to give biased
genomic prediction for the early-measured trait
calf fitness, when genotyping of some calves
are delayed with respect to the trait definition
or there is a limited genotyping of dead calves.
The inflated genomic prediction, observed in
the single-step evaluation using all genotype
data for calf fitness in German Holstein,
occurred even under the whole-herd female
genotyping scheme in Germany, where all
female calves are systematically genotyped.

A strategy for solving the problem of
inflated genomic prediction was developed by
using only genotype data of sires of
phenotyped female calves, because the sires
have both dead and live calves and almost all
the phenotyped calves have a genotyped sire.
Following Interbull GEBV rules,
phenotypic data in the last four years were

test

removed from the full evaluation to perform a
genomic validation. The new, optimized
single-step model resulted in a slightly higher
accuracy and a nearly unbiased regression
slope estimate than the original single-step
model. For the low heritability trait calf fitness
where validation bulls have a relatively low
reliability, we found that the deregressed
GEBV are clearly more appropriate as
dependent variable of the linear regression
than the GEBV of validation bulls. In case of a
high number of reference animals for the
reduced genomic evaluation, 4-year data
truncation is preferred to a 2-year data cut to
achieve more realistic validation results.

By comparing the new single-step model to
the previous one using genotype data of all
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animals, we found that the genetic trends in Al
bulls and genotyped female calves were
reduced significantly and GEBV become more
with  slight in GEBV
variances. Finally, we can draw a conclusion

accurate, change
that the inflated single-step prediction problem
of the early-measured trait calf fitness has been
solved by using only genotype data of calf
sires.
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Abstract

In many countries, single-step genomic models are replacing conventional pedigree-based models for
routine valuation. Those models use all available information on the animals’ phenotype, genotype, and
pedigree. Pedigree data still has a huge impact on estimated genomic breeding values (GEBV), and it is
also important to consider information about the structure of the pedigree. The foremost aspect of
pedigree editing is dealing with missing parents' information. The choice of method of handling missing
parents can affect the prediction of breeding values. This work investigates three scenarios of pedigree
data: 1) Pedigree real (P_Real) — pedigree from the routine evaluation, 2) Pedigree 2010 (P_2010) —
at least 20 and 10 percent of dams and sires born before 2019 were set randomly to missing, respectively,
3) Pedigree 4020 (P_4020) — at least 40 and 20 percent of dams and sires born before 2019 were set
randomly to missing, respectively. Moreover, for those pedigrees, three approaches to defining missing
parents were used: 1) Raw pedigree (RP) — missing parents IDs set to missing, 2) Genetic groups (GG)
— missing parents replaced by unrelated GG, which are defined based on year of birth, sex, and country
of origin, 3) Metafounders (MF) — missing parents replaced by MF, which correspond to genetic groups.
Relationships within and between metafounders were estimated from genomic information of
descendants. The genomic breeding values for fat yield were estimated using the single-step test-day
SNP-BLUP model, implemented by the MiXBLUP software. Although GEBV prediction was similar
across scenarios, expressing missing parents by GG or MF impacts the genetic trend, especially in
situations of limited pedigree completeness. Removing parent information led to reduced precision
results across the methods of handling missing parents, since P_Real scenario demonstrated highest
accuracy results. Compared to RP and GG, MF scenarios resulted in higher genetic trends. Insufficient
pedigree completeness, especially among ungenotyped individuals, leads to an overestimation of the
genetic trend. Completeness of pedigree information and a large number of genotyped individuals
improve the reliability of evaluations. Modeling missing sires with MFs is less effective than assuming
unrelated GGs if pedigree information is very incomplete. Therefore, the best method to model missing
parents depends on completeness of pedigree.

Key words: single-step models, genetic groups, metafounders, validation

Introduction genotype, and pedigree. Invariably, one of the
The single-step model becomes the standard main components in routine genomic evaluation
procedure of most national routine evaluations of dairy cattle is the structure of the pedigree
of dairy cattle (Legarra et al., 2014, Méntysaari (Bradford et al., 2019). To reduce the bias due
et al. 2017). The single-step model combines all to missing information in the pedigree, genetic
available  information, 1i.e., phenotype, groups are used to associate individuals with
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missing parents with different categories
(Westell et al., 1988, Legarra et al., 2007). An
alternative to genetic groups to deal with
missing information in the pedigree are the so-
called metafounders (Legarra et al., 2015).

In this study, we focused on a single-step
random regression SNP-BLUP test-day model
for fat yield in the Polish Holstein population.
The primary objective of this study is to
evaluate various methods for handling missing
parents and different levels of incompleteness
in the pedigree data based on validation results,
average GEBV trends, and GEBV comparisons.

Materials and Methods

This study is based on Polish national
evaluation data for fat yield from April 2024
(Table 1). Two phenotype files were analysed:
full data set— 63,615,019, and truncated data set
— 58,446,695 test-day records. A truncated data
set was created by removing the records for the
youngest individuals, i.e., the last 4 years from
the phenotype file. Genotypes that include
48,118  single-nucleotide = polymorphisms
(SNPs), were available for 113,019 cows and
68,972 bulls, that is 181,991 animals. The
pedigree was extracted up to the third
generation from animals with phenotypes and
genotypes, including 4,712,143
(4,569,044 cows and 143,099 bulls).

animals

Table 1: Number of test-day records, genotypes, and
animals in the analysed data sets for fat yield.

Data Sex Number of  Number of

animals records

Phenotype Cows 3,707,727 63,615,019

Full data set

58,446,695

Truncated

data set

Genotype Cows 113,019 181,991
Bulls 68,972

Pedigree Cows 4,569,044 4,712,143
Bulls 143,099
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To deal with missing parents we used three
approaches: 1) RP — raw pedigree with missing
parents IDs set to missing; 2) GG — genetic
groups with missing parents replaced by
unrelated genetic groups, which are defined
based on year of birth, country of origin and sex;
3) MF - metafounders with missing parents
replaced by metafounders, which can be
considered as genetic groups with relationships
estimated from genomic information of
descendants. Based on pedigree from routine
evaluation, the three approaches of different
pedigree completeness was used: 1) P_Real —
pedigree from routine evaluation, with ~ 5.6%
of missing sires and ~ 15.3% of missing dams;
2) P_2010 — minimum 20% of dams and 10%
of sires born before 2019 was set to missing
based on P_Real; 3) P 4020 — minimum of
40% of dams and 20% of sires born before 2019
was set to missing based on P_Real. Only the
parents' IDs were removed, as the manipulation
involved animals born before 2019; therefore,
the pedigree of the youngest validation animals
remains the same across scenarios.

For animals with missing parents in the
pedigree, the genetic groups were implemented
based on country of origin, year of birth, and
sex. Individuals born before 1961
removed from the pedigree data. Over 70% of
individuals included in the pedigree had both

WwEre

parents. Each genetic group contained a
minimum of 20 animals. Group “-31” (Polish
males born between 2010-2019) had the largest
number of missing sires (1,002,069), whereas
group “-32” (Polish females born between
2010-2019) had the most missing dams
(174,954).The following single-step random
regression test-day SNP-BLUP model (Liu et
al., 2004; Liu et al., 2014) was applied:

y=Xh+W f+Vp+Vu+e,

where y is a vector of cows’ test day records for
fat yield from the first three lactations, A is a
vector of fixed effects of herd-test-day-parity-
milking frequency, f is a vector of fixed
lactation curve coefficients which was modelled
by the Wilmink function (Liu et al., 2004), p is
a vector of permanent environmental effects



expressed as random regression coefficient
coefficients of the Legendre polynomials, u is a
random additive genetic effects also described
by the random regression coefficients of the
Legendre polynomials.

The GEBVtest method was used for
validation (Méntysaari et al., 2010). The full
and truncated data sets have been prepared for
validation. The full data set contains all
phenotypic data, while the truncated data set
includes all phenotypic data except for the last
4 years of data. Validation cows were defined
as cows whose records were removed for a
truncated data set; however, validation bulls
were defined as sires born between 2017 and
2019, and having more than 20 validation
daughters. The test was implemented separately
for validation cows and bulls, used the linear
regression:

GEBVf=b+ b GEBVp +e,

where GEBVT represents the vector of GEBVs
predicted based on the full data set, while
GEBVp represents GEBVs predicted based on
the truncated data set, by represents the
intercept, which indicates a systematic bias in
the model’s prediction, and b; represents the
regression slope, the dispersion of prediction
compared to actual results. The R coefficient is
one of the results of linear regression and serves
a measure of prediction accuracy, it indicates
the percentage of variance in the GEBVp
explained by GEBVT.

Validation results were computed for the
first three lactations, and the total genomically
enhanced breeding value (GEBV) defines as:

GEBVt=0.5GEBV,;+0.3GEBV,+ 0.2GEBV;

where GEBV; is GEBV for the 1y lactation,
GEBV, is GEBV for the 2,4 lactation and
GEBV; is GEBYV for the 3,4 lactation.

Single-step genomic evaluations were
conducted using MiXBLUP 3.0 (Vandenplas et
al., 2022)

Results & Discussion

Validation results are reported for 482,810
validation cows and 562 validation bulls.
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Figures 1-3 show validation results for all
divided by method,
genotyping status. Figure 1 shows the by of the

scenarios sex, and
dam and sire. We observed similar results for all
scenarios; the values are close to 0, which is
expected. Figure 2 shows the by value, which is
similar for every scenario for validation cows,
with b; in the range of 0.96 (P_Real MF
ungenotyped) to 1.1 (P_2010 MF genotyped).
However, for validation bulls, all results are
similar, except for ungenotyped validation bulls
in the scenarios P_4020 and P_2010 for MF.
For these latter categories, we observed an
overestimation of by at 1.27 (P_2010) and 1.33
(P_4020). This may be due to a lack of pedigree
connection for ungenotyped bulls, due to a
higher percentage of incomplete pedigrees.
Figure 3 shows the R? ranging from 0.66 to
0.90 for every scenario. Lower values were
observed for ungenotyped validation cows;
however, for genotyped validation cows, R? is
more stable and similar across scenarios. For
ungenotyped validation bulls, we observed a
trend where R? increased from RP through GG
and MF. However, for genotyped validation
bulls, the R? value is similar for P_Real. In
contrast, for MF, the R? values for P_4020 and
P 2010 are lower than in other scenarios
involving missing parents.

Figure 4 compares full and truncated data
sets for validation bulls divided by scenarios
and genotyping status. In each case, the points
cluster together to form an extended cloud
centered on the diagonal; however, as parental
information is gradually eliminated, the cloud
dispersion becomes wider, especially for
ungenotyped individuals. The effect is slight
under P_Real, becomes evident in P_2010, and
reaches its peak in P_4020, when ungenotyped
validation bulls from the RP, GG, and MF
deviate the most from the diagonal. All of these
that
protects the accuracy of prediction when the
incompleteness of pedigree is high: prediction

patterns  show genomic information

for genotyped validation bulls remains strong
even when up to 40% of dams and 20% of sires
are set to unknown, whereas missing parental



information links weaken the stability of GEBV
for ungenotyped validation bulls.

Figure 5 shows the average GEBV trend for all
scenarios divided by sex. Since 2000, the mean
GEBYV has increased gradually; however, after
2010, when genotyping became widely used in
Poland, the increase became more pronounced.
Compared to cows, bulls exhibit a steeper
trajectory, indicating that the sire pathway is
under more selection pressure. Both sexes show
the same scenario ranking, with MF producing
the highest averages, followed by GG and RP.
However, as pedigree completeness declines,
the gap between scenarios widens, underscoring
the fact that the way missing parents are handled
can significantly skew the perception of genetic
progress. It is crucial to handle incomplete

Validation Cows

pedigrees robustly to prevent overestimating or
underestimating the selection response.

Conclusions

The results demonstrate that the method used to
close pedigree gaps can significantly affect the
predictions of GEBV. Regardless of the
pedigree scenario used, the real pedigree
yielded the most reliable validation results.
However, for individuals without genotypes,
with pedigree
incompleteness introduced observable over-

scenarios increased

dispersion; this effect was more pronounced for
sires than for dams and was most noticeable in
the MF group.
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Abstract

Routine single-step genomic evaluations can be costly in time and computer resources. Hence, newly
genotyped animals initially receive a genomic prediction of their direct genomic values (DGV). If
genomic predictions of DGVs of animals become available, it may be convenient to estimate GEBV of
such animals using some form of integration into conventional pedigree BLUP evaluations. DGV-
PBLUP is a novel method of integration of DGV from genomic predictions, into a conventional pedigree
BLUP (PBLUP) evaluation. This is done by setting the prior mean of the animal genetic effect (which
usually is zero in linear mixed models) to the DGV to be incorporated. In this paper we report on the
application of this methodology to the Dutch-Flemish genetic evaluation. Results showed a high
correlation (0.99 or higher) between GEBV of animals associated with a genotype in single step SNP-
BLUP and a GEBV in DGV-PBLUP. Run time of DGV-PBLUP evaluations were comparable to
conventional pedigree evaluations and much shorter than routine single-step SNP-BLUP evaluations.
DGV-PBLUP promises to be a convenient method of integration of genomic information into pedigree
BLUP evaluations, without the need for sharing or accessing SNP genotypes.

Key words: Single-step, pedigree BLUP, integration, genomic evaluations

Introduction share genotypes or allele substitution effects.
The cooperative and the corporation have
Routine single-step evaluations can be costly in entered in an agreement, where the corporation
time and computer resources. Hence, newly supplies the cooperative with DGV  for
genotyped animals initially receive a genomic inclusion in the national evaluation. If such
prediction of their direct genomic values DGV are to be used in national genetic
(DGV). If for some animals genomic evaluations, integration is still required.
predictions of DGV become available it still Integration of genomic data into genetic
may be convenient to compute their GEBV evaluations has been a long standing subject in
using some form of integration into the field of animals quantitative genetics and
conventional pedigree BLUP evaluations. breeding. Methods of integration saw an
There may also be cases where only DGV of evolution from linear post-processing after
animals are available for evaluation, without evaluation, via methods using pseudo-records
genotype data, due to legal or legislative during evaluation, where DGV are fitted as
considerations. This is the case at CRV, which observations on a pseudo-trait added to the
consists of a commercial half, the corporation, evaluation and correlated to the target trait
and a cooperative half, with dairy farmer (Stoop et al.; 2014) to single-step models,
membership. The cooperative  publishes where genotypes are fitted in the statistical
national genetic evaluations. However, the model of evaluations. Integration methods of
single step evaluation is corporately owned. For genomic information were successful in
reasons of IP protection, the corporation cannot achieving their stated goals, but true
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equivalency between such methods and single-
step evaluations were not achieved.

In this paper we present a model of
integration that is mathematically equivalent to
single-step SNP-BLUP (ssSNPBLUP) models,
but only requires DGV of genotyped animals, in
addition to conventional phenotypic and
pedigree data.

Materials and Methods

Model

The equations of the model were derived from
the ssSSNPBLUP linear equations proposed by
Liu et al. (2014). If we assume that estimates of
SNP effects g are known before performing a
single-step genomic prediction, then the vector
d with predicted DGV of genotyped animals
can be computed as d = Zg, where Z is the
genotyped matrix centered with observed allele
frequencies, and we can assume the following
prior multivariate normal (MVN) distribution
for the genetic additive effects u:

[u]i, A"] ~ MVN(fi, A"07,)

with

-1
= [AngAgg] d
I

and

ATLTL ATLg
A* -1 = [ gn g9 ( 1 ) -1 l 5

A A% + - = 1)Ay,
where the subscripts n and g refer to
ungenotyped and  genotyped  animals,

respectively,

Al = [Ann Ang]-l _ [Ann Ang]
A gn A 99 A9 A99

is the inverse of the pedigree relationship matrix
partitioned between genotyped and
ungenotyped animals, w is the proportion of
additive genetic variance explained by the
residual polygenic effects, o2 is the genetic
variance, d is the vector with DGV of
genotyped animals, and I is an identity matrix.
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The system of equations associated with
these assumptions, hereafter called DGV-
PBLUP, is written as follows:

X'R7IX X'R™1Z Bl _
(1)[Z’R‘1X Z'RZ+ A*_lau_z] [ﬁ] B
X'R™1ly
[Z'R—ly + A*—lagzﬁ]
where P is the vector of estimated fixed effects,
y is the vector of records, R™1 is the inverse of
the residual variance structure matrix, and X and
Z are incidence matrices relating records to the
fixed and additive genetic effects, respectively.

The system of equations of DGV-PBLUP is
equivalent to a single-step genomic evaluation,
provided that the SNP effects g were estimated
using the same phenotypic, genomic and
pedigree information (Vandenplas et al, 2021).
The system of equations of DGV-PBLUP can
also be considered as an application of the
Bayesian procedure to integrate external
information into genetic evaluations (Legarra et
al., 2007; Vandenplas and Gengler, 2012),
where, in essence a prior mean is fitted for all
animals, based on the (imputed) DGV of
(un)genotyped animals.

Data

The DGV-PBLUP method was tested on a
dataset and associated variance components of
the milk production test day model (TDM),
which is a 5 lactation, 4" order random
regression with Legendre polynomials (5
regressions per lactation), analyzing milk, fat,
protein and lactose yield, as well as somatic cell
score and urea content of milk.

Phenotypic data were taken from the April
2025 evaluation of CRV. DGV for each of the
25 regressions were taken from a genomic
prediction based on SNP effect estimates from
a single-step SNPBLUP evaluation on the same
phenotypic data (April *25). The latter included
828,590 genotyped animals. The data in the
DGV-PBLUP  evaluation consisted of
16,382,568 pedigreed animals, 13,662,463 of
which had phenotypic data. Also included were
DGV of 851,704 animals.



GEBV from DGV-PBLUP were compared
to results from the corresponding single-step
SNPBLUP run. GEBV from the -current
pseudo-record evaluation (Stoop et al., 2014)
were also contrasted to these. GEBV were
produced for the following traits or trait groups:

1) Milk production (lac. 1-5 and overall)
2) Fat production (lac. 1-5 and overall)

3) Protein production (lac. 1-5 and overall)
4) Lactose production (lac. 1-5 and overall)
5) Somatic cell score (lac. 1-5 and overall)
6) Urea content (lac. 1-5 and overall)

Presented in this paper are the comparison of
GEBV from ssSNPBLUP and DGV-PBLUP
for young bulls without progeny, born after
2020, since this group of animals is the most
sensitive to changes in genomic information in
an evaluation. For the overall traits the Pearson
correlation were calculated, as well as the
fraction of animals whose GEBYV differed less
than a quarter genetic standard deviation, as an
indication of GEBYV stability. For reference the
same statistics were produced from the current
pseudo-record (PSR) method of integrating
into the national

genomic information

evaluation.

Results & Discussion

Breeding values

A comparison of the GEBVs from DGV-
PBLUP and the current PSR system for overall
GEBYV of traits in the milk production test-day
random regression model are presented in Table
1. Correlations with ssSNPBLUP GEBV were
clearly improved with DGV-PBLUP, with all
correlations > 0.99. Changes in GEBV from
ssSNPBLUP to integrated GEBV were also
considerably smaller for DGV-PBLUP, with
virtually all GEBV with % genetic standard
deviation. This also indicates a considerable
improvement in GEBV stability compared to
the PSR system, where the fraction of animals
changing more than % s.d. was considerably
larger.
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An attractive feature of the DGV-PBLUP
method is that no extra correlated traits have to
be fitted to incorporate DGV information in a
pedigree BLUP evaluation. Neither does it
require a post-processing step to integrate
DGV.

Table 1. Number of selected bulls, correlations with
ssSNPBLUP GEBYV and fraction of animals whose
GEBV changed less than ' genetic standard
deviation for the DGV-PBLUP method (dgv) and the
current pseudorecord method of integration (psr).

Trait Correlation <1/4s.d.
N dgv psr dgv psr
Milk 5,629 0.999 0.928 100.0% 72.2%
Fat 5,629 0999 0.964 100.0% 80.1%
Protein 5,629 0.998 0.934 100.0% 74.8%
Lactose 5,629 0.995 0972 99.8% 85.3%
SCS 5,629 0999 0.994 100.0% 98.3%
Urea 5,629 0999 0.918 100.0% 70.5%

Selected were young bulls without progeny born
after 2020.

Table 2. Run times of genetic evaluations of the
milk production test day model. Run times are given

in  hours:minutes for routine ssSNPBLUP
evaluations, DGV-PBLUP and conventional
pedigree BLUP evaluations.

DGV-
Trait ssSNPBLUP PBLUP PBLUP
Milk 51:28 18:17 17:53
Fat 47:26 18:39 17:37
Protein 49:05 19:20 18:08
Lactose 48:47 19:02 19:30
SCS 56:02 18:22 18:31
Urea 63:00 18:49 19:45

All evaluations were run using 5 threads for parallel
computing on a server with Intel(R) Xeon(R) Gold
6448H 64bit chips at 4000MHz.

Run time

The wall clock times of all evaluations are
presented in Table 2. All evaluations were run
without starting values. The run times of DGV-
PBLUP were comparable to the run times of
conventional pedigree BLUP evaluations, as
expected. The run times of routine single-step
SNPBLUP evaluations on average were 2.4
times longer than either conventional or DGV-
PBLUP evaluations.



Conclusions

DGV-PBLUP presents itself as a superior
method of integrating genomic data into
conventional pedigree BLUP evaluations, in the
sense that it replicates more closely the results
of a routine single-step SNPBLUP run than the
PSR method of integration currently
implemented at CRV. DGV-PBLUP promises
to be a convenient method of integrating
genomic information into pedigree BLUP
evaluations, without the need for sharing SNP
genotypes.
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Abstract

Single step methods use a blended relationship matrix that contains a fraction (typically 5%-20%) of
pedigree-based relationships, called Residual Polygenic Effect (RPG). Indirect predictions of animals
not included in the Mixed Model Equations (MME) are composed by a Direct Estimated Genomic Value
(DGV), a sum of SNP readings times their solutions, and an RPG. Computation of RPG is not
straightforward, and involves some complicated algebra and software, including separate relationships
for genotyped and non-genotyped animals. We propose an alternative, equivalent computation that
infers RPG for genotyped animals in the MME as RPG=GEBV-DGYV, and then solves BLUP equations
with RPG as “record” with heritability close to 1. The solution is the RPG for all animals in the MME,
from which Parent Average can be used for Indirect Predictions. We show feasibility in practice with a
US data set with millions of animals genotyped and in pedigree.

Key words: single step, residual polygenic effects

Introduction A, A;id, which solves RPG for non-
genotyped animals.

Genomic evaluations typically include a New animals with genotypes (selection
fraction of pedigree-based relationships usually candidates) are typically evaluated, at least at
called Residual Polygenic effect (RPG). This first, based on solutions from the previous
fraction considers the relationships not well Single-step run. The DGV part is easily
covered by markers, regress the genomic computed from the newly read genotype z as
relationships towards pedigree ones, and 2* = za. The RPG part can be obtained as
generally prevents the evaluations from Parent Average of RPG from the ancestors,
overdispersion (VanRaden, 2008; Liu et al, proceeding in pedigree order if needed from
2011). The resulting final GEBV u = " can be animals in the Single Step equations. This needs
separated into genomic-based and pedigree- all solutions of RPG for non-genotyped
based parts that we will call DGV (Direct animals, e.g. from d,, = A, A;,%q‘ig-

Genomic Value). For genotyped animals g this
is equal to the sum of SNP solutions Uy = Za,

The last equation can be a bit cumbersome
to obtain, and Vandenplas et al. (2023) propose

and the RPG part that is Cig = A, G, a few equivalent expressions, which need to be

(Legarra and Ducrocq, 2012, eq [8]). programmed. Here we propose an alternative
RPGs are conceptually transmitted as an shortcut that uses BLUP to obtain d,, and

infinitesimal ~ trait and therefore their therefore “regular” BLUP solvers can be used.

covariances are modelled using pedigree-based
relationships A. The RPG of non-genotyped
animals n as a function of genotyped ones can
be obtained using some equivalent expressions
(Vandenplas et al. 2023) which involve
dedicated programming, among them d, =
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Materials and Methods

We arrange all animals (and Unknown Parent
Groups or Metafounders) in the single step
evaluation into non-genotyped and genotyped
animals. Consider the following MME:

(A"'"A A™9) ) d, :<9> (1
A"} A99)+ U\ d;, dg

32
F0r1=1hg .Whenh? - 1,1 - 0and

(ig ~ (ig. From the top equation we obtain
< MN-lamgd 14
d, = —(A"")""A™d, = A, Ay gdg . In
other words, we obtain RPG solving BLUP
equations.

Convergence of this iterative system is slow,

as it will be shown later, because there are many
more non-genotyped than genotyped animals.
Thus, a second, approximated model and
associated MME are:

11 0 1’ H

(0 AML A9 ) d,

1 A9"2 A992+1/\d;
1d,

= 0 [|[2]

d

g
upon solution of this system, we should add

back [ to &; and d,,.

After running a single step evaluation with
US data, at CDCB we tested both [1] and [2]
with the “yield” group of traits (milk, fat and
protein yields) with ~50M animals in pedigree,
~2.5M animals genotyped. Therefore there are
2.5M RPG “records” (obtained as d, = 1, —
Z3) and 48M animals with “no records”, for a
total of 150M equations. We used PCG iteration
in blup90iod3 from the BLUPF90 suite
(Lourenco et al., 2022), with 8 threads. We tried
several convergence criteria from 107° to
107'*, and we considered 1071* as pseudo-
true. Then we computed the correlation with the
pseudo-true solutions.

In addition, we verified number of rounds
needed to achieve PCG convergence of 10712
for all traits evaluated by CDCB except calving
ease and stillbirth.
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Results & Discussion

Results for yield traits are presented in Tables 1
and 2. Time per round is 20 seconds so 1000
iterations take ~5h, and this is a post-processing
step after the single step run that need not be run
again. For model [1], the convergence with the
pseudo-true solution is quite fast, with a
correlation of almost 1 at a PCG convergence of
10710,

On the other hand, model [2] is of faster
apparent convergence but of actual slower one
— good correlations with the pseudo-true
solution appear at PCG convergence levels of
10~1* and smaller. So the total computing time
is about the same, and the convergence is more
misleading. Model [2] is not recommended.

Table 3 shows number of rounds to reach
PCG convergence of 10712, Trait groups that
take longest time (over 1,000 iterations) are
those with large number of animals and lowest
proportion of animals genotyped. For instance,
“Fertility” has 50M animals in pedigree, 2.2M
of them genotyped; “Health” has ~10M animals
in pedigree, 1.2M of them genotyped; and
“Residual Feed Intake” has 60K animals in

pedigree, 9K of them genotyped.

Table 1: correlation of the solution for RPGs using
[1] with the pseudo-true solution, yield traits.

PCG correlation with | iteration
convergence pseudo-true

10E-06 0.916 113
10E-07 0.958 244
10E-08 0.978 381
10E-09 0.995 655
10E-10 0.9995 898
10E-11 0.999988 1177
10E-12 0.999999 1385
10E-13 1 1549
10E-14 1 1808




Table 2: correlation of the solution for RPGs using
[2] with the pseudo-true solution, yield traits

PCG correlation with | iteration
convergence pseudo-true

10E-10 0.872 31
10E-11 0.895 46
10E-12 0.914 79
10E-13 0.950 213
10E-14 0.995 568
10E-15 0.9992 712
10E-16 0.9996 804

Table 3: rounds to reach PCG convergence of 10E-
12, all trait groups

Trait group | iteration

Fertility 1476

Gestation length 384

Heifer livability 460

Health 397

Livability 1751

Productive life 1537

Residual feed intake 104

Somatic cell score 1040

Yield 1385
Conclusions

In absence of dedicated software, the RPG
solutions for animals in the single step
equations can be computed using BLUP with
h? ~ 1. Computing time is a few hours and it
depends on the ratio genotyped animals/non-
genotyped animals. This BLUP gives a simple
and competitive solution to backsolve RPGs for
all animals considered in the evaluation. Those
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RPGs can be used later for candidates to
selection through “indirect predictions”.
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Abstract

Accurate approximation of genomic estimated breeding value (GEBV) reliabilities is vital in single-
step genomic prediction as reliable predictions of GEBV facilitate effective selection decisions.
However, calculating exact reliabilities by inverting the left-hand side matrix of the mixed model
equations is computationally infeasible for large datasets. In this study, we compared two approaches
from Luke and Interbull for approximating genomic reliabilities for both genotyped and non-
genotyped animals. The Luke approach uses effective record contributions (ERC) derived from the
conventional EBV reliabilities as weights to approximate GEBV reliabilities for genotyped animals. A
blended approach is used to implicitly account for residual polygenic (RPG) effects. Subsequently,
genomic information is propagated to non-genotyped animals using ERC weights derived from the
reliabilities of the genotyped animals. In contrast, the Interbull approach requires the derivation of a
constant parameter, denoted ¢, which is the genomic effective daughter contribution (EDC) gain via
the Interbull GEBV test. This parameter is used to propagate genomic information to non-genotyped
relatives through the pedigree. The final genomic reliabilities are obtained by combining conventional
reliabilities with the genomic reliability gain. Notably, accuracy of reliabilities by this method highly
depends on the precise estimation and regular updating of ¢.. In addition, this approach requires
validation-based adjustments to correct inflated theoretical reliabilities observed in extremely large
reference populations. In this study, both approaches were assessed and compared against exact
reliabilities using a real dataset from the Finnish Red dairy population under a single trait model. The
results demonstrated that the approximated reliabilities from both approaches were in close agreement
with the exact reliabilities. Thus, both approaches can offer effective strategies for obtaining the
reliabilities of GEBV in practical large-scale single-step evaluations.

Key words: single-step model, GEBV reliability, SNPBLUP, EDC, ERC

Introduction reliabilities by inverting the left-hand side of the
mixed model equations (MME) becomes

Single-step methods (Legarra et al., 2009, computationally infeasible for large-scale
Christensen and Lund, 2010) allow computing datasets. Thus, efficient approximation methods
genomic estimated breeding values (GEBV) for are needed.

both the genotyped and non-genotyped Several methods for approximating the
individuals simultaneously. Their adoption in reliabilities of GEBV have been proposed and
routine genetic evaluations has become implemented (Misztal et al., 2013, Edel et al.,
increasingly widespread in dairy cattle 2019, Ben Zaabza et al., 2022, Bermann et al.,
breeding.  Consequently, the  accurate 2022, Gao et al., 2023). In particular, to ensure
computation of GEBV reliabilities has gained the international comparability of national
importance for supporting effective selection genomic reliabilities, an Interbull working

decisions.  However, computing  exact group was established in 2016 to develop a
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standardized procedure for estimating GEBV
reliabilities in dairy cattle genetic evaluations
(Liu et al., 2017). A corresponding guideline
targeting large-scale genotyped populations has
recently been released (Liu et al., 2024).

In this study, we compared two approaches
for approximating genomic reliabilities for both
genotyped and non-genotyped animals. The
first approach, hereafter referred to as the Luke
approach, uses effective record contributions
(ERC) as weights within simplified SNPBLUP
and PBLUP models to approximate GEBV
reliabilities (Gao et al., 2023). The second
approach, hereafter referred to as the Interbull
approach, combines the genomic reliability gain
with the conventional EBV reliability to obtain
the final GEBYV reliability for all animals (Liu
etal., 2024).

Materials and Methods

The Luke approach

This is a three-step approach to approximate
GEBV reliabilities in a single-step model that
includes a residual polygenic (RPG) effects
(Gao et al., 2023).

Step 1: Compute reliabilities of direct genomic
values (DGV) for the genotyped animals

A simplified single-trait weighted SNPBLUP
without RPG effects was used:
y=1lu+17Zg+e (1)
where y is an n x 1 vector of (pseudo)
phenotypes; W is the general mean; 1isann x
1 vector of ones; Z is an n x m matrix of SNP
marker covariates centered and scaled using
VanRaden method 1 (VanRaden, 2008), g is an
m x 1 vector of the SNP marker effects; e is a
vector of residuals. It is assumed that

g~ N(0,1,,62),and e ~ N(0,D;;162), where
Dn is a diagonal matrix with elements d;i equal
to the ERC; value for genotyped animal i,
computed by reversing the method of Tier and
Meyer (2004) using the conventional EBV
reliabilities for the genotyped animals, and o2
and o2 are the additive genetic and the residual

variances, respectively. The MME for model
Q) is:

[1’Dn1 1'D,Z [ﬁ] _ [1’Dny @
Z2’D,1 Z'D,Z+L,]I|8 Z'D,y

with A = ;’—E We partitioned and denoted the
inverse of the LHS matrix of the MME as

CHH  (CHs o
cen ng]. The reliability of DGV for

. .. 2% _ Zicggzl{
genotyped animal iis7;,; =1 — AG—u’

where Z; represents row i in Z, and G;; is the
diagonal element i of the genomic relationship
matrix G = ZZ'.

Note that the RPG effects were not explicitly
included in model (1) to preserve the
dimensionality and computational advantages
of SNPBLUP model, particularly in scenarios
where the number of individuals (n) greatly
exceeds the number of markers (m).

The RPG effects were accounted for by
blending the above DGV reliabilities with the
traditional EBV reliabilities:

2 2
P2 (1 - @)GiiTpgy,; + WA22;TEBY,i A3)
9.9, (1 - w)Gj; + (A)Azzﬁ

where A, is the submatrix of A corresponding
to the genotyped animals, A, ; is the diagonal
element i of the Az matrix which is equal to
1+F with Fi equal to the pedigree-based
inbreeding coefficient of animal i,; 5y, ; is the
DGV reliability for animal i and rZgy ; is the
EBYV reliability for animal i. o is the proportion
of the RPG effects.

Step 2: Calculate the genomic ERC for the
genotyped animals

The ERC accounting for the genomic
information for all genotyped animals can be
calculated as:

1 - hz ( TDZGV

)

ERC, = ERCoony +

2
TeEgy

1 -1y

(4)

where ERC,,y,, 1S the conventional ERC for the
genotyped animals. Note that these genomic
ERC values are included as weights for the
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genotyped animals when computing the GEBV
reliabilities for non-genotyped animals in Step
3.

Step 3: Compute reliabilities of GEBV for the
non-genotyped animals

A simplified single-trait weighted PBLUP
model was used:

y=1u+a+e (5)
where y is a p x 1 vector of pseudo phenotypes
with p equal to the number animals in the
pedigree; W is the general mean; 1isap x 1
vector of ones; a represents a p x 1 vector of
additive genetic effects; e is a vector of
residuals. It is assumed that a ~ N(0, Ac?) and
e~ N(0,D,%c2), where A is the numerator
relationship matrix and D, is a diagonal matrix
with elements of ERC from vector of
I:ERCCOTL‘U

ERC,

genetic and residual variances, respectively.

, and o2 and o2 are the additive

The Interbull approach

This approach is a three-step approach which
requires the Interbull GEBV test (Méntysaari et
al., 2010), thus it has been feasible for routine
single-step genomic evaluation with millions of
genotyped animals (Liu et al.,, 2024). The
approach uses a parameter called genomic
effective daughter contribution (EDC) gain (¢,)
for genotyped animals and the propagated EDC
(pF™°"9) for non-genotyped animals, to
combine the genomic reliability gain with the
conventional EBV reliability to obtain the final
GEBYV reliability.

Step 1: Calculate the genomic EDC gain (¢,)
This step comprises five sub-steps:

1) compute the DGV reliabilities for all the
genotyped animals were computed using the

model (1).

2) compute theoretical gain in genomic EDC as:
1-r*  1hev épv

b= (1—7“56V B 1—T§Bv) ©)

we denoted the mean of ¢; as ¢.
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3) compute ¢P"P9 using @ as input to
propagate the genomic information from
genotyped animals to their non-genotyped
relatives via pedigree (VanRaden and Wiggans,
1991, Liu et al., 2004).

4) compute the combined total theoretical EDC.
For genotyped animals:

oot = pfom + g, )
For non-genotyped animals:
(pitotal — (piconv + (plpropg (8)

5) convert to the final theoretical GEBV
reliability:

total
i

2 _ ¢
Rl - (pfotal_'_l—hz (9)

Y3
Note that sub-steps 1 through 5 must be applied
to both the full and reduced datasets.

6) compute an adjustment factor (f) based on the
validation bulls:

E
f =52 (10)
where E(¢@g) is the expected EDC value:
_ 1—h? E(R%)
E((PE) - h2 X 1—E(R12;) (11)
where
E(RE) = R} — E(AR?) (12)

where RZ is the mean reliability of GEBV of the
validation bulls from the full dataset, E (AR?) is
the expected change in reliability of GEBV:
E(AR?) = var(4, — i) /o2 (13)
where 11; and i1 are the GEBV of the validation
bulls from the evaluation using the full and
reduced datasets, respectively; o2 is the
additive genetic variance. @y is the theoretical
EDC value of the validation bulls from the
reduced dataset:

2

R%.
) (14)

1—R§i

_ 1 1-h?
Pg = ;Z?ﬂ(T X

7) compute the adjusted genomic EDC gain

a

(o; 4 ) for all the genotyped animals with the f
factor derived from equation (10):
. 1—h2 2 2
(V=T xS - By (15)
The constant parameter of ¢,. is the mean of the
adjusted genomic EDC gain (¢°"):

1
0= -3 00" (16)
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Step 2: Propagate genomic information

This step is the same as sub-step 3) above to
obtain ¢P"P9 for the non-genotyped animals
but using ¢, as the input data.

Step 3: Compute the final reliability of GEBV
for all animals

For genotyped animals:
total

P =" + @ (17)
For non-genotyped animals, use the equation
(8). The final reliability of GEBV for all the
animals can be calculated via equation (9).

Data

To evaluate the approaches, a dataset
comprising 47,124 Finnish Red dairy cows with
305-day milk yield records from first lactation
was used. The analyses included 19,757
genotyped animals with 46,914 SNPs, and the
pedigree encompassed 64,808 animals. The
heritability of the trait was set to 0.44, and the
proportion of RPG effects was assumed to be
0.30.

Results & Discussion

Reliabilities of the genotyped animals

The mean (SD) reliability of GEBV were 0.66
(0.09), 0.66 (0.09), 0.57 (0.10) from the exact,
Luke, and Interbull approach for the genotyped
animals, respectively. Figure 1 shows the
GEBV reliabilities from the exact method
versus those from the Luke method (left panel)
and the Interbull method (right panel). Overall,
the correlations between Luke/Interbull and
exact method were close to one.

Luke method Interbull method (f:0.58)

3
9
g

R2

Interbull R2

L
00 02 04 06 08 10
00 02 04 06 08 10

T T T T T T T T T T
0.0 0.2 04 08 08 1.0 0.0 02 04 0.6 08 1.0

Exact GEBY R2 Exact GEBV R2

Figure 1. Scatter plot and Pearson’s correlation
coefficients (r) of the reliabilities of genomic
estimated breeding values (GEBV) for genotyped
animals via the Luke method (y-axis) versus the

113

exact method (x-axis) (left panel) and via the
Interbull method (y-axis) versus the exact method
(x-axis) (right panel). The solid red line acts as a
reference line with intercept 0 and slope 1

Reliabilities of the non-genotyped animals

The mean (SD) GEBV reliabilities for non-
genotyped animals were 0.48 (0.17), 0.44
(0.15), and 0.43 (0.17) using the exact, Luke,
and Interbull approach, respectively. Figure 2
presents the GEBV reliabilities from the exact
method against those from the Luke approach
(left panel) and the Interbull approach (right
panel). While the correlations between the
Luke/Interbull and exact approaches were
slightly lower than those observed for
genotyped animals, they remained high overall.

Luke method Interbull method (f:0.58)

Interbull R2

00 02 04 06 08 10

L
00 02 04 06 08 10

T T T T T T T T T T
0.0 02 04 06 08 1.0 0.0 02 04 0.6 08 1.0

Exact GEBV A2 Exact GEBV R2

Figure 2. Scatter plot and Pearson’s correlation
coefficients (r) of the reliabilities of genomic
estimated breeding values (GEBV) for non-
genotyped animals via the Luke method (y-axis)
versus the exact method (x-axis) (left panel) and via
the Interbull method (y-axis) versus the exact
method (x-axis) (right panel). The solid red line acts
as a reference line with intercept 0 and slope 1

In this study, we compared the Luke and the
Interbull approaches for approximating GEBV
reliabilities. Both approaches computed GEBV
reliabilities separately for genotyped and non-
genotyped animals and required conventional
EBYV reliabilities for all animals in the pedigree.

The Luke approach used the information
from a PBLUP model to derive ERC which
served as weights in a SNPBLUP model that
incorporates genomic information  when
computing GEBV reliabilities for genotyped
animals. Similarly, for non-genotyped animals,
the genomic information was included
indirectly by applying additional weights
derived from the genotyped animals within a
weighted PBLUP model. An important feature
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of this approach is that the models for
computing GEBV reliabilities include only a
general mean and genetic effects, while the
weighting scheme and relationship structure
differ between genotyped and non-genotyped
groups.

The Interbull approach employed a constant
parameter (¢.) derived from the Interbull
GEBYV test, to simplify computations in large-
scale genotyped populations. The ¢, was
propagated to the non-genotyped relatives via
pedigree to obtain their respective propagated
EDC gain (¢ °"9). The final EDC values were
then calculated by combining the conventional
EDC with ¢, for genotyped animals and
@ P9 for non-genotyped animals. GEBV
reliabilities were subsequently derived from the
total EDC using equation (9).

The results showed that the approximated
GEBV reliabilities from both approaches were
in close agreement with the exact values,
supporting their applicability in practical
genetic evaluations.

It is important to note that a key feature of
the Interbull approach is the derivation and use
of the genomic EDC gain parameter (¢.), which
can be repeatedly applied to approximate
GEBV reliabilities. However, because ¢, is
directly linked to the Interbull GEBV Test, it
must be re-estimated and updated each time a
new GEBV test is conducted. This feature
offers the computational simplicity and
efficiency. In contrast, the Luke approach
requires precise calculation of ERC weights for
each computation of reliabilities, which may
increase computational demands.

The RPG effects need to be considered to
avoid overestimating the reliability of GEBV;,
however, these effects were not explicitly
incorporated in either approach. The Luke
approach employed a blended method to
approximate GEBV reliabilities for genotyped
animals, thereby retaining the primary
advantage of the SNPBLUP model, that is, even
as the number of genotyped animals increases,
the dimensionality of the coefficient matrix of
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the MME remains fixed, depending solely on
the number of SNPs. The Interbull approach
implemented an adjustment factor (f) to scale
down the theoretical GEBV reliabilities to
ensure an appropriate genomic reliability level
for young selection candidates.

This study used a relatively small dataset to
ensure the feasibility of computing the exact
GEBV reliabilities by directly inverting the
coefficient matrix of the MME. However,
routine single-step genomic evaluations in
practice often involve millions of genotyped
animals, thus, a larger and more representative
datasets might be more appropriate to further
evaluate these approaches.

Conclusions

This study compared two approaches for
approximating genomic reliabilities for both
genotyped and non-genotyped animals. The
results demonstrated that both approaches
produced reliability estimates in close
agreement with the exact reliabilities computed
using the full dataset in a ssGBLUP evaluation.
Importantly, both methods indirectly accounted
for residual polygenic (RPG) effects without
explicitly including them in the model.
Although the Interbull method relies on the
Interbull GEBV test, both approaches offer
effective strategies for obtaining GEBV
reliabilities in practical large-scale single-step
evaluations.
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Abstract

Many publications requiring access to large datasets from commercial conditions, such as dairy genetics,
note challenges with access to and quantity of data. Challenges include insufficient records and

inconsistent trait definitions. This could be improved through developing closer relationships between
farmers and researchers. In the same way that scientists innovate to develop the fields of genomics,

phenomics, metabolomics, etc., can we advance our research by developing ‘farmeromics’ — defined as
the study of farmer-driven, biological data recording, at scale? The purpose of this investigation was to
compile examples of research studies that involved farmers in their co-design, including the calf vitality

project, Feeding the Genes and ImProving Herds These examples could spark discussion on ways to
strengthen collaboration between farmers, scientists and stakeholders to reach shared data-gathering

objectives.

Key words: Co-design, farmer engagement, phenotyping, farmeromics

Introduction

It is likely that a reader of this Bulletin will
intuitively recognize the importance of
phenotypic data to drive genetic gain in dairy
cattle and will easily recall Professor Mike
Coffey’s famous phrase, ‘in the age of the
genotype, phenotype is king’ (Coffey, 2020).
Yet, data availability remains a stumbling block
in many research activities. Once example of
this is calf health. For instance, in 2022, 1 in 5
Australian dairy herds systematically recorded
calving traits (Axford et al., 2023). This low
participation rate is inconsistent with trait
preference data suggesting that farmers value
calving ease similarly to mastitis, type traits and
temperament - traits that are so essential that
they are often included in national breeding
indices (Axford et al., 2025a). Similarly, in
Canada, up to 15% of farms had accessible calf
health records (Hyland, 2022) suggesting that
the problem isn’t isolated to a particular
country.

It’s no surprise, then, that publications on the
genetics of dairy health traits often include
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data-related  challenges.

under-reporting,

commentary  on

Authors  frequently
inconsistent trait definitions, and a lack of
standardization (Cuttance & Laven, 2019;
Lombard et al., 2019; Lynch et al., 2024).
Additional concerns include non-digitised
storage and inaccessible data sources (Edwards

cite

etal., 2024). These issues are so widespread that
they are frequently cited, yet solutions remain
elusive. Proposing meaningful solutions
remains far more difficult.

This raises an important question. What role
can researchers play in getting closer to the
source of the data - the farm and the farmer?
Just as scientists have pioneered the fields of
genomics, phenomics, metabolomics, etc., can
we advance our research by developing
‘farmeromics’ — the study of farmer-driven,
biological data recording, at scale?
Encouragingly, both farmers and scientists have
a strong history of driving change. Involving
farmers more directly in research may unlock
to more effective,
practical improvements in research practice.

innovation that leads

This investigation aims to compile examples
of studies that involved farmers in their co-



design and to highlight the impact that emerged
from these collaborations.

Materials and Methods

Defining Farmeromics?

As introduced earlier, ‘farmeromics’ refers to
the study of farmer-driven, biological data
recording, at scale. To clarify this concept, it
can be broken down into three components.

1. Farmer driven. This aspect focuses on
listening to farmers to understand the
motivators for data collection. Key questions
include:

e  What problems do farmers want to

solve using data?

e What motivates farmers to record data
in the first place?

2. Biological data. This refers to the type
of data that is relevant to both farmers and
researchers. It prompts consideration of:

e What data do researchers need to

answer scientific questions?

e What data might already be available
on farms?

3. Recording at scale. This component
addresses the practicality of large-scale data
collection efforts. It asks:

e Do current recording practices align
with the standard operating procedures
common on today’s farms?

e Have researchers actively sought out
this data from farmers?

The Approach

Retrospectively, a selection of successful
projects that incorporated elements
of “farmeromics” was compiled. These

examples are not intended to be comprehensive,
but rather illustrative and are offered to spark
conversation. Each case demonstrates how
farmer involvement in data collection and
research design contributed,
meaningful outcomes.

in part, to
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Results & Discussion

In Table 1, we introduce 3 research activities
that featured a close association with farmers
that are discussed in this paper.

Table 1. Project overview

Project Aim

Calf vitality | Estimate variance
components for calf health
traits

Feeding the | Study genetic by

Genes environment interaction in
herds that varied by feeding
system

ImProving Compare the cows’

Herds contribution to profit between
cows differentiated by
national index rank.

Example 1: Calf vitality

Australia’s Calf Vitality Project aimed to
estimate variance components for calf health
traits in a country without obligatory or
habitual recording practices (Axford et al,
2025b). During the initial stages of the project
when farmer recruitment was underway to
build a bespoke dataset, farmers proposed an
additional phenotype which was a subjective
score. In their words, they wanted to record
calves that were ‘rippers’ or ‘duds’. These
colloquial terms were formed into a subjective
scoring tool trait with 5 levels where A was a
vigorous calf (a ‘ripper’), B was a good calf, C
was an average ‘ok’ calf, D was a dull calf that
lacked vigour (a ‘dud’) and E was a dead

calf. The approach was modelled on the
familiar system for recording workability traits
(milking speed, temperament and likeability)
that was initiated thirty years ago and still well
used today (Beard, 1993). Images reflecting
the scoring tool were developed, as shown in
Figure 1, to introduce the idea to project
participants.



Coiladilad

Dead Ripper

Figure 1. Visual descriptions of the calf vitality

Scores

What was the outcome?

Over 50 farmers participated in the calf vitality
project contributed detailed health
phenotypes and genotypes from ~20,000 calves.
While it is difficult to apportion the success of
the data collection activity to one or more
factors, it is likely influenced by the high level
of farmer interaction during the initiation of

and

data collection. At the completion of data
collection, about half of the participating
farmers actively recorded this new trait. Of all
the calf traits, calf vitality had the highest
estimated heritability (11%) as described, along
with more detailed genetic parameters in
Axford et al. (2025b). Further, this trait
attracted farmer engagement to the project and
generated the most conversation of all the calf
traits during industry events.

Why did it work?

Underpinning the definition of ‘farmeromics’ is
the principle of co-design. In this context, co-
design’ means involving farmers and advisors
in a project from the beginning to increase
engagement, acceptance, transparency and
reduce the possibility of failure. Fleming et al.
(2023) extends co-design to include ‘co-
development’ and ‘co-delivery’ as part of a
Co-3D spectrum for project delivery. Calf
vitality was ‘co-designed’ by first listening to
the problems as farmers expressed them. Then,
we developed a mechanism of recording data
that fitted with their routines and targeted a
problem that farmers wanted to solve. When the
value proposition was strong (ie, breeding for
healthier and the barriers to
participation were low (ie, simple recording),

calves),
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farmers were willing to provide data that was
earlier though to be unavailable.

Example 2: Feeding the Genes

With hindsight, ‘Feeding the Genes’ (Morton et
al., 2015) was successful, in part due to
elements of ‘Farmeromics’. The aim of this
project was to investigate the interaction
between genetic merit and feeding system on
the performance of cows in Australia herds. A
feature of the Australian dairying system is a
heterogeneity of feeding systems. Dairy
Australia has identified five broadly defined
feeding systems ranging from predominantly
with
concentrate use, through to total mixed rations.
Farmers were asking questions about the

pasture and conserved fodder low

performance of high genetic merit animals in
each of these systems, especially for phenotypic
measures of milk production and longevity.

This study required feeding system data that

was not routinely recorded and stored for herd-
recorded herds. A survey was conducted to
gather the required data and it is here that that
we find principles of ‘Farmeromics’. The
survey was:

e focused on questions that farmers were
asking,

e short — with just 5 questions,

e targeted — candidate herds with selected
on the basis of production and
longevity data, and

e Dbacked by industry advocates — a multi-
disciplinary team that included well-
known spokespeople were leading the
survey.

What was the outcome?

The survey attracted a high response rate of
24% meaning that ~300,000 lactations from 505
herds were able to be used in the milk
production analysis. The ability to link feeding
systems and herd performance enabled research
that concluded there were clear benefits to using
high genetic merit sires in each of the five
feeding systems.



Why did it work?

In this example, the availability of feeding
system data was critical to the research but not
readily available. By asking farmers for this
information in a way that was simple and with
a clear value proposition, the response rate
exceeded expectations. ‘Simple’ for the end
user shouldn’t be confused as ‘easy’ for the
researcher. Significant effort was required to
develop the survey questions with a multi-
disciplinary team of advocates in order to
achieve success.

Example 3: ImProving Herds

Many models that are used to derive economic
indexes target an outcome based on a definition
of profit, for example Pro$ in Canada (Van
Doormaal et al., 2015), Balanced Performance
Index (BPI) in Australia (Byrne et al., 2016),
Net Merit in the United States of America (Van
Raden et al., 2025) and others. Farmers and
advisors often seek information that validates
the profit predicted in indices with practical,
‘real’ herd examples. One of the aims of
Australia’s ImProving Herds project was to
compare the cows’ contribution to profit
between cows differentiated by BPI rank. This
required a comparison of individual cow
lifetime performance information with farm
financial data to calculate margin over feed and
herd costs (MOFH) as a measure of contribution
to farm profit (Newton et al., 2017). However,
detailed farm financial records are rarely
captured in routine herd recording. In this
project, two disparate datasets were initially
combined from different agencies, with
agreement from farmers. Later, consultants
with specific expertise in compiling and
assessing farm financial data were engaged to
collect this data for a diverse range of herds with
high value herd performance and genomic data
that were important to the study. This
information enabled an analysis that linked
farm financial performance with genetic merit
at an individual cow level resulting in the
calculation of each cow’s contribution to profit.
This formed the basis of a series of practical
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case studies that appealed to farmers and service
providers.

What was the outcome?

On average, high-BPI cows contributed ~AU
$300 per cow per year more to margin-over-
feed and herd costs (MOFH) than did their low-
BPI herd mates (Newton et al, 2021).
Additional milk income easily compensated for
the higher feed costs associated with high BPI
cows. Further, a sensitivity analysis showed that
this result holds true even if milk price fell by
50% while feed cost stayed the same or feed
cost doubled and milk price stayed the same. As
the case studies were conducted in a range of
environments, this project generated many
stories that formed a well-used extension
resource.

Why did it work?

In this project, looking beyond the traditional
data sources revealed opportunities previously
thought ‘too hard’. As discussed by Newton et
al., (2021), iterative discussions with dairy
farmers, economists, service providers and
technical independent geneticists from overseas
were required to develop this research study.
with principles,
communication and early extension activities

Consistent co-design
were incorporated within a research project and
this enabled the involvement of representatives
from across the herd improvement industry
throughout the project. While challenging to
manage, the iterative feedback cycles on the
project methodology and messaging created
new opportunities.

Conclusions

In these three examples, involving farmers

* revealed new data that was not previously
unknown to exist, through discussion,

» fine-tuned the research question, through
conversations, so that the project’s discoveries
were more meaningful to the intended audience,
+ ensured that proposed practice changes had

considered practical implications, and,



* benefited communication and extension
activities that raised awareness of the research
findings.

At its heart, ‘farmeromics’ is a prompt to
ask, ‘how can we do a better job of working
with farmers to capture important data and
make great research projects
meaningful?’

cven morec
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Abstract

In this study, we integrated Multiple Across Country Evaluation (MACE) information for Interbull
(ITB) bulls into the Swiss Test-day model (TDM). The 9-trait TDM includes test-day records of milk,
protein and fat from the first three lactations, while total yield indices submitted to ITB are averages of
305d yields for lactations. A bull was considered to have relevant MACE information if its reliabilities
for all indices in MACE were at least 0.1 units higher than its reliabilities from the Swiss TDM. With
this integration, the Swiss TDM gained information for round 5,800 bulls with MACE index reliabilities
exceeding 0.5.

The integration process had three steps. 1) For selected bulls, the multitrait reversed reliability
approximation was used to estimate effective record contributions (ERC) for Swiss and MACE vyield
indices, based on their respective reliabilities. 2) Yield indices and ERCs were used to calculate
multitrait deregressed proofs (DRP) separately for Swiss and MACE evaluation. Correlations between
the evaluated indices and pedigree relationships were accounted during the ERC and DRP calculations.
3) Based on the DRPs and ERCs for domestic and MACE indices, pseudo-observations approximating
the additional information in the MACE evaluation were calculated for the selected bulls. As a result,
for each selected bull a DRP and ERC for milk, protein, and fat were obtained.

The original Swiss TDM describes breeding values using 45 random regression coefficients. The DRP
was included in the model as a separate trait, weighted by its ERC. The genetic correlation between
pseudo trait and lactation averages of the original traits was assumed to be 1. MACE inclusion improved
correlations between MACE and Swiss indices to 0.99 (from 0.78-0.80 for milk, fat, protein). This
demonstrates a good alignment between the two evaluation systems. Integration of MACE is now
implemented successfully in the Swiss single-step routine genetic evaluation.

Key words: Test-day model, MACE integration, three-step approach, production

Introduction selection decisions in an increasingly
Accurate genetic evaluation is essential for globalized dairy industry (Sullivan, et al. 1999,
accelerating genetic improvement in dairy Boerner et al., 2022).

cattle breeding programs (Schaeffer, 1994). Recent research has proposed several
Integrating multiple across-country evaluation strategies to incorporate MACE information
(MACE) proofs into single-step genomic into single-step evaluations. For instance,
analyses enables the inclusion of reliable Nieuwhof et al. (2023) developed a method
international information, particularly for using deregressed proofs (DRPs) that account
foreign progeny-tested sires with no or only few for relationships among MACE  bulls,
domestic offsprings. This integration improves improving reliability and reducing bias
the accuracy of estimated breeding values compared to approaches that assume
(EBV), enhances the genetic connectedness unrelatedness of bulls. Similarly, Bayesian
between countries, and supports more robust methods such as ssGBayes and trait-specific
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deregression techniques have shown promising
results in Canadian and Walloon Holstein
populations (Strandén et al., 2022; Splichal et
al., 2023)

While approaches simplify the
relationship between international and domestic
genetic effects, e.g., by treating MACE DRPs as
auxiliary traits or integrating them into reduced-
rank test-day models, these often compromise
consistency with the full model structure. In

some

contrast, the approach presented here integrates
MACE-derived pseudo-observations directly
into the full Swiss multi-trait test-day model
(TDM). These pseudo-observations are treated
as weighted, trait-specific contributions aligned
with the genetic lactation curves, ensuring
consistency with the model’s structure and
preserving trait definitions across data sources.

This study describes a three-step approach to
integrating MACE information into the Swiss
TDM and demonstrates its validity through
comparisons of EBV and reliabilities from
pedigree-based BLUP (PBLUP) and single-step
GBLUP (ssGBLUP) before and after blending.
Furthermore, it evaluates the impact of genomic
information on the blending procedure,
particularly genotyped  bulls.  The
implementation is now part of the Swiss routine

for
single-step evaluation pipeline.
Materials and Methods

Data

The raw phenotypic dataset encompassed
49,744,608 test day records for the yield traits:
milk, fat and protein each in kg for days in milk
(DIM) between 5 and 365. Different milk
testing methods (A4, ATM4 and AT4) were
used to record the data on 1,753,643 cows born
between 1984 and 2023.

The total number of herds was 34,896. The
number of herd-test-day-parity (HTD) classes
was 4,437,539 and the number of time-region-
age-parity-season (TRAPS) classes was 476.
Time was divided into half-year groups based
on the test day, starting from year 2000. Region
was defined via geographic classification. Age
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was divided into monthly classes (<19 month,
20-24 month, 25-28 month and = 28 month).
Parity was divided into first, second and third
and ongoing. Season was divided in January-
March, April-June, July-September, October-
December.

Genotypes of 153,499 animals were
included in the single-step evaluations. As
animals were genotyped with different SNP
panels, all genotypes were imputed together
(one reference panel) to 125K SNP following
the routine imputation process at Qualitas with
FImpute (v3.0; Sargolzaei et al., 2014).

The pedigree was built up using cows with
phenotypes as well as young, genotyped
animals and pruned to three generations and
finally included 2,367,788 animals. Genetic
groups were divided by breed but also separated
over different periods of time and sex.

Swiss test-day model
A multi-trait (yield traits), multi-parity (5
lactations) random regression model, defined as

Yy =XB+Zyp+Zza+e, (D)
was used, where y is the vector of observations,
p represents the fixed effects of HTD and the
fixed lactation curve for TRAPS, p is the vector
of random permanent environmental effects, a
is the vector of random genetic effects, and €
represents the random residuals. X and Z,,Z,
are respective incidence matrices.

To account for the accuracy of the
phenotype, different weights were used for
different milk testing method (1=A4,
0.94=ATM4, 0.88=AT4).

The TRAPS effect was modeled using a six-
order Legendre polynomial. Both the genetic
and permanent environmental lactation curves
were modeled using fourth-order Legendre
polynomials. Lactations 4 and 5 were treated as
repeated measures of the third lactation for the
fixed effects and the genetic effect, while
lactation-specific effects were included for
permanent environmental effects. Assumptions
were that



a G, ®A 0 0
var[v]=< 0 IQP 0>, 2)

€ 0 0 R
where G, is the covariance (45%45) matrix for
the random genetic effects, assumed to be the
same for each cow. A is the pedigree
relationship matrix between the animals used
for pedigree BLUP (PBLUP). To include
genomic information, the A matrix was
replaced by an augmented matrix (H) that
includes both pedigree and genomic
information, and was incorporated by applying
ssGTABLUP (Méntysaari et al., 2017), where
the genomic relationship matrix (G) was
constructed using VanRaden method I
(VanRaden, 2008) and blending the G matrix
with a 5% residual polygenic component.
Pedigree  inbreeding  coefficients

incorporated into both A™' and Az'. Genetic

were

groups were accounted for in the single-step
models through a partial QP transformation that
excluded G from the QP matrix (Koivula et
al., 2021).

P is the covariance (75%75) matrix for the
permanent environmental effects.

R is the covariance matrix of the residuals,
composed of 3x3 matrices
corresponding to four lactation periods based on
DIM: 5-45, 46-115, 116265, and 266-365.
Each period was associated with its own 3x3

covariance

residual covariance matrix.

Lactation specific breeding values were
calculated by summing up the breeding values
for DIM 5 to 305. Combined breeding values
were calculated as a weighted sum of lactation
specific breeding values by using weight of 1/3
for each lactation. The combined breeding
value was standardized by subtracting the mean
EBV of cows aged between 6 and 8 years.
Standardized breeding values for milk, protein
and fat and their reliabilities were submitted to
Interbull for all bulls.

Bulls Chosen to be Blended

After performing MACE, ITB returned MACE
breeding values and reliabilities. Bulls were
selected for blending if their MACE reliability
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exceeded 0.5 and exceeded their domestic
reliability by more than 0.1 units, irrespective of
whether the bull was genotyped or not.

In total 5,864 bulls were selected per yield trait,
whereof 5,466 were genotyped and 247 had
information in domestic evaluation.

Calculation of pseudo-observations
Integration of additional information in MACE
breeding values for milk, protein and fat to
domestic  evaluation
deregressed  proofs

was done using
(DRP) as pseudo-
observations and effective record contribution
(ERC) as weights. The integration process
includes calculating ERCs from reliabilities and
DRPs from EBV based on domestic and MACE
proofs (Pitkdnen et. all 2020, Pabiou et. all
2018, Vandenplas et. all 2014).
DRPs and ERCs were calculated assuming that
EBYV and reliabilities are from linear multitrait
animal model:

Ym
Yo
Yr

where yp,, ¥, and yr are combined 305d

=ut+a-+te, 3)

observations for milk, protein and fat, u is
intercept, a is random genetic effect, containing
breeding values for combined milk, protein, and
fat for each animal, and e is the residual effect.
The variance components for a and e were
derived for 305d yields based on test-day model
components. Residual
covariance matrix included variation due to
residual and permanent environment effects in
the test-day model.

variance variance

In the first step, two sets of reliabilities—one
from the domestic evaluation and one from
MACE—were used to calculate effective
record contributions (ERC D and ERC M) for
combined milk, protein, and fat.

In the second step, DRPs for combined milk,
protein and fat for domestic (DRPp) and MACE
(DRPy) were calculated based on combined
EBYV from evaluations and using ERCs from the
first step as weights. The standardized EBV



were back transformed to original scale before
calculations.

Since DRP,,, contains information also from
domestic animals, it can’t be directly included
in the model due to double counting of
information. In the third step, the double
counting was removed by calculating DRP5,
ERCB, within trait as:

ERCB = ERCy, — ERC), 4)

DRPB (35)

_ DRPM'ERCM_DRPD'ERCD

B ERCB '
Blending Model

Pseudo-observations for milk, protein and fat
yield were included as separate traits for the
test-day  model the pseudo-
observation is a weighted sum of 305d breeding
values of lactations 1 to 3. The model for

assuming

pseudo-observations for animal 7 is:
DRPE,
DRP},
DRP};

where
C =1;8C3s,

and
ai,ml
a; = !ai,pl ]
aif1
The vector €35 is sum of covariable values for

=u + Cail + Cal-z + Cal-3 + e;,

genetic lactation curve between DIM 5 to 305.
Residual covariance matrix for pseudo-
observations was the same as used in model
(3). The genetic regression coefficients, a; ¢,
for trait ¢, and lactation /, are the same as for
the test-day observations. Hence, the genetic
correlation between MACE and domestic
evaluation was assumed to be 1. All
calculations were done using MiX99 software
suite, Release X/2023.

Results & Discussion

In the following only the results for milk are
shown (Figure 1, 2 and 3) and discussed,
because they are similar for the other traits.
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PBLUP reliabilities
Integrating  MACE  proofs  improved
correlations between MACE and domestic

reliabilities (R2) towards the expected value of
1 (Figure 1). The intercept of the reliabilities
decreased, and the slope increased indicating
that the reliabilities after blending are not
biased.

R2 BEFORE BLENDING MILK

y =0.103x + 0.745
corr =0.128

sd (X) =0.105

sd (Y) = 0.0846
n=5814

o -
~ o
(6] o

R2 MACE Milk EBV
o
3
S

0.25
0.00
0.00 0.25 0.50 0.75 1.00
R2 Domestic Milk EBV
R2 AFTER BLENDING MILK
y = 0.967x + 0.030
corr = 0.998
sd (X) =0.0873
sd (Y) = 0.0846
n=5814
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=025 -
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o -
000 . 7
0.00 0.25 0.50 0.75 1.00
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Figure 1. Comparison plots between PBLUP

reliabilities (R2) before (top) and after blending
(bottom) with MACE reliabilities. The red, dotted
line represents the expectation if blending works.

PBLUP breeding values

Integrating ~ MACE proofs improved
correlations between MACE and domestic EBV
(Figure 2). The intercept of the EBV increased,
while the slope of the EBV decreased.

The intercept deviates from 0. However,
compared to the scale of the EBV ranging from
-2000 to +2000 this deviation is small. More
important is the slope which is quite close to the
expectation. Traits are modelled independently



in MACE but dependently in the domestic ERC
and DRP calculation, which might explain the
deviation from the expectation.

Overall, the results are in accordance
Pitkénen et al. (2019 and 2020), where similar
blending strategies were applied to Nordic
Holstein evaluations, and Vanderick et al.
(2025). In contrast to this study, their approach
sets the residual correlation for DRP
computation to zero.

EBV BEFORE BLENDING MILK
y = 1.158x + 45.088

corr = 0.799

sd (X) = 420

sd (Y) = 609
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y =1.062x + 119.188
corr = 0.989
sd (X) = 567
sd (Y) = 609
n=5814
2000 — <
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w
=
s 0
w
g
= -1000
-2000
-2000 -1000 0 1000 2000
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Figure 2. Comparison plots between PBLUP
breeding values (EBV) before (top) and after
blending (bottom) with MACE EBV. The red, dotted
line represents the expectation if blending works.

ssGBLUP reliabilities and breeding values

The integration of genomic information led to a
higher standard deviation of the ssGBLUP
compared to their MACE
equivalent (Figure 3). All genotyped bulls
gained in reliability. The reliability of non-

reliabilities

genotyped bulls has not changed after blending.
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The standard deviation of the EBV increased
when integrating genomic information.

These findings are consistent with the
observations of Rostellato et al. (2024) who
demonstrated that genomic-free Single-Step
EBVs used for MACE derivation increase
reliability, particularly for genotyped animals.
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Figure 3. Comparison plots between ssGBLUP — and
MACE reliabilities (R2) on top and ssGBLUP — and
MACE breeding values (EBV) on bottom. The red,
dotted line represents the expectation for PBLUP.

Conclusions

The three-step approach integrates well MACE
results into PBLUP and ssGBLUP and allows
recovering indirectly a large amount of
phenotypic information. All available external
sources of information are correctly propagated
avoiding double counting of contributions due
to relationships and due to own records.
Furthermore, the results are in accordance with
the findings from the literature. Therefore, the



approach proves to be a good choice for the
Swiss genomic evaluation system integrating
domestic and MACE EBV and
implemented successfully in the routine genetic

is now
evaluation.
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Abstract

The increasing level of inbreeding in dairy cattle populations can be a concern for researchers,
producers, and artificial insemination (AI) companies. High inbreeding levels can lead to the
accumulation of deleterious recessive variants, depression of the mean value of economically important
traits, and a reduction in available genetic diversity in the population. Advancements in reproductive
technologies and the integration of genomic information into genetic evaluations have contributed to
rising inbreeding levels. Given the global interest in inbreeding, there is a need to monitor inbreeding
trends and develop strategies to manage its adverse effects while ensuring continued genetic progress.
The objective of this study was to measure the current trends in genetic and genomic relationships among
Canadian Holstein cows and international Holstein bulls. Pedigree and genotype data were provided by
Lactanet Canada (Guelph, ON). Genotype information was available for 168,995 animals, for which a
pedigree of 616,258 animals was extracted. Among genotyped animals, 8,491 bulls were born between
2000 and 2023, and 131,139 cows were born between 2010 and 2024. The average pedigree
completeness index of all genotyped animals was greater than 99%, with a maximum pedigree depth of
30 generations. Genetic relationship values were estimated using pedigree data (R-value) and genomic
data (GR-value). R-value and GR-value represent the expected and realized percentage of shared DNA
between an animal and a defined reference population, respectively. This was done by iteratively tracing
back the gene contribution of an animal to the reference population. In this study, the reference
population was defined as currently active cows and heifers enrolled in milk recording without a
documented left-herd date on the latest test day in April 2024. Results show a yearly increase in
relationship within the reference and bull populations. The average genetic relationship between bulls
and the reference population ranged from 9.3% to 26.5% (R-value) and from 12.9% to 40.8% (GR-
value). Among bulls, those with United States registration codes had the highest relationship value with
active Canadian cows and heifers, with R-value and GR-value estimates of 20.8% and 30.4%,
respectively. Conversely, bulls registered in the Czech Republic had the lowest average relationship
values, with R-value and GR-value estimates of 17.1% and 24.3%, respectively. Selecting sires with
low average relationship values among defined reference populations as a mating strategy could reduce
or maintain inbreeding at acceptable levels while preserving genetic diversity.

Key words: Genetic relationship, inbreeding diversity, Holstein, dairy cattle
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Introduction

The availability of genotype information has
driven rapid advancements in breeding
programs across most intensive dairy producing
particularly following  the
implementation of genomic selection (Garcia-
Ruiz et al.,, 2016; Miglior et al., 2017).
Moreover, the international exchange of
genotypes among partner countries has been
reported to produce higher gains in reliability

countries,

estimates of breeding values for economically
important traits (Schenkel et al., 2009). These
exchanges contribute not only to the increase of
genetic progress, but also to greater genetic
relatedness of animals across and within
countries. This increased genetic connectedness
leads to rising levels of inbreeding within a
given population.

Increased inbreeding can reduce genetic
variation, which may limit the response to
selection, lower the mean value of
economically important traits, and promote the
accumulation of deleterious recessive alleles.
Ultimately, this can increase the frequency of
genetic defects and result in substantial
economic losses for producers. Therefore,
monitoring relatedness and inbreeding levels
within a population is important for sustainable
genetic progress. One approach to monitoring
genetic relatedness within a population is by
estimating genetic relationship values between
actively producing cows and currently available
sires. Genetic relationship values measure the
proportion of DNA an animal shares with a
predefined reference population and can be
estimated using either pedigree information (R-
values) or genomic data (GR-values).

As pedigree and genotype information
accumulates, genetic relationships among
animals in a population can be more accurately
estimated. These relationships depend on both
the number of descendants an animal
contributes to the active population and the
that
active

number of ancestors have many
the population.

Consequently, genetic relationships are bound

descendants in
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to change continuously as actively producing
animals are culled or lost from the population.
Increased availability and wuse of young
genomic sires can reduce the heavy reliance on
proven sires, which may subsequently lower the
average relationship values for proven sires. An
analogous way to capture this dynamic is
through the expected future inbreeding (EFI),
which is approximately half the average genetic
relationship between a sire and a random
sample of active cows. The objective of this
study was to assess the current average genetic
relationship trend between active foreign and
domestic sires and currently active Canadian
Holstein cows using both pedigree and genomic
information.

Materials and Methods

Data

Pedigree and genotype data were provided by
Lactanet Canada (Guelph, ON, Canada)
following the April 2024 evaluation release. In
addition, herdbook records for active milk-
recorded cows and heifers were provided. The
reference population used for analysis was
defined as active cows with a recorded test date
in April 2024, as well as heifers up to 30 months
of age that were registered in the herdbook and
had no recorded left-herd date.

In total, there were 616,258 animals in the
pedigree, which included all known ancestors
for the genotyped animals traced back 20
generations. The pedigree completeness index
(PCI) for all animals in the pedigree was
estimated going back five generations and only
animals with a PCI greater than or equal to 90%
were retained for further analyses.

Genotype data were available for a total of
146,698 animals linked to the pedigree. Of
these, 8,504 were bulls with birth year between
2000 to 2023 and 138,194 were active cows or
heifers that had not been culled from the herd
with birth year between 2010 to 2024. All
animals had genotypes on the S0K SNP panel
(Illumina Inc., San Diego, CA, USA). Quality
control was performed to retain autosomal SNP



with a call rate greater than 95%, a minor allele
frequency (MAF) greater than 5%, and a
difference between expected and observed
heterozygosity less than 0.15 (Wiggans et al.,
2009). In addition, only genotyped animals with
a five generation PCI greater than or equal to
90% were included in the final dataset, resulting
in 8,491 bulls and 131,139 active cows and
heifers retained for further analyses.

Statistical analyses

Genetic relationship values between each
animal and the reference group were estimated
in accordance with the method developed by
Van Doormaal et al. (2003). This was then
modified to incorporate genomic information
for estimation of GR-values. The first step was
iterative  estimation of progeny gene
contribution of each animal to the reference
population for the sire and dam separately.

m m
Csi =Zl/2€l, Cdi =Zl/2€l
i=1 i=1

where C,; and Cy; are the i individual progeny
gene contribution to their sire and dam,
respectively, C; is the contribution of the i

€y

individual with an initial starting value of 1 for
all active animals and 0 for all other animals,
and m is the number of animals in the pedigree.

C; if S;=0andD; =0
0.75C; + 0.5C;; if S;#0andD; =0 @
0.75C; + 0.5Cy; ifS;=0andD; £ 0
0.75C; + 0.5Cy; + 0.5C;; if S;#0and D; =0

where R; is the total value of the i* individual
that reflect the genetic relationship to the
reference group, and S;and D; are the sire and
dam of the /" individual, respectively, and when
0 it indicates unknown parent. The R-value is
then defined as:

(3

R;
Rval; = o
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where Rval; is the percentage
relationship value of the i individual and 7 is
the total number of animals in the reference
group.

For

genetic

the genomic relationship values,
equation (1) was modified to use the realized
marker-by-marker similarity between progeny
and parent, instead of assuming the expected
value of 0.5 used for pedigree. In this case,
actual SNP genotypes were used to estimate the
proportion of identical-by-state (IBS) alleles
shared between parent and offspring.

Results & Discussion

The distribution of genotyped active cows and
heifers is presented in Table 1. Notably, 45.7%
of the reference population represents heifers
that have not calved. Including heifers in the
reference group is essential to represent the
expected future breeding population of active
females. Furthermore, approximately 7% of
cows were seven years of age or older,
suggesting that older animals tend to leave or
are culled from the herd. This dynamic turnover
contributes to ongoing changes in the genetic
relationship values estimated within the
population.

Among genotyped bulls, those under the age
of four accounted for 30.7% of the total
genotyped bulls (Figure 1). This attests to the
impact of genomic selection, which allows for
early selection of bulls rather than the expected
five years for progeny proven time (Schaeffer,
2006). This could contribute to diversification
of the pool of available bulls and influence the
estimated genetic relationship values within the
population.



Table 1: Age distribution of the reference group as
of April 2024.

Age (year)  Number of Percentage of
active cows and  total
heifers

<1 3,394 2.6%

1 28,073 21.4%

2 28,499 21.7%

3 23,775 18.1%

4 18,264 13.9%

5 12,620 9.6%

6 7,947 6.1%

7 4,155 3.2%

8 2,169 1.7%

9 1,214 0.9%

10 527 0.4%

>10 502 0.4%

The average annual genetic relationship per
year (Figure 2) trend showed a steady increase
over time, mirroring the pattern observed in the
estimated increase in pedigree inbreeding
reported by Van Doormaal (2024). Although,
genomic relationship values were
approximately 1.5 times higher than the
pedigree relationship values, both increased in
parallel from 1990 to 2024. Specifically, R-
values increased from 14.6% in 2010 to 21.4%
in 2024, while GR-values rose from 20.7% to

31.3% over the same period (Table 2).

800
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MLEE RN | I

Number of genotyped bulls

Birth year
Figure 1. Distribution of the number of genotyped
sires across birth year from 2000 to 2023.
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Increase in both genomic and pedigree
relationships suggest a concurrent increase in
inbreeding levels within the population over
time. Based on the estimated genetic
relationships, the expected pedigree future
inbreeding (EFI) and genomic future inbreeding
(GFI) was estimated as half the R-values and
GR-values, respectively. The EFI increased
from 7.0% in 2010 to 10.6% in 2024, while GFI
increased from 9.9% to 15.5%. These estimates
aligned with the estimated pedigree inbreeding
coefficients for the corresponding period and
ranged from 6.6% to 11.1%.
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Figure 2. Annual average genetic relationship values
per year based on pedigree and genomic information
from 1990 to 2024. Blue line with triangles and red
line with circles are pedigree and genomic
relationship values, respectively.

Additionally, the observed correlations for
pedigree inbreeding coefficients (Fped) with R-
values and GR-values were moderately high at
0.77 and 0.76, respectively (Table 3). These
findings suggest that genetic relationship
measures can serve as a sufficient proxy of
inbreeding levels and can be effectively used to
inform mating strategies and selection decisions
with the consideration of reducing inbreeding
within the population.



Table 2: Average pedigree and genomic
relationship values, pedigree and genomic future
inbreeding estimated from relationship values and
inbreeding coefficients across birth year from 2010
to 2024.

Birth R-value GR- EFI GFI Fped
Year (%) value (%) (%) (%)
(%)
2010 14.6 207 7.0 9.9 6.6
2011 152 214 73 10.3 6.8
2012 15.6 22.1 7.6 10.7 7.1
2013 16.3 23.1 7.8 11.0 74
2014 16.7 23.8 8.1 11.6 7.5
2015 177 254 84 119 78
2016 18.2 262 89 12.7 8.1
2017 189 27.3 9.1 13.1 8.6
2018 19.3 280 95 13.7 838
2019 19.8 288 9.7 140 93
2020 20.3 29.6 99 144 97
2021 20.6 30.0 10.1 14.8 10.1
2022 21.0 30.6 10.3 15.0 10.4
2023 21.2 30.9 10.5 15.3 10.8
2024 214 31.3 10.6 15.5 11.1

This analysis identified the degree of
relationship between each countries’ bulls and
the active Canadian cows and heifers. Results
showed that bulls registered to the United
States, Belgium, and the Netherlands had the
highest average genetic relationship with the
Canadian reference population, with R-values
0f20.8%, 20.7%, and 20.2% and corresponding
GR-values of 30.4%, 30.1%, and 29.3%,
respectively (Table 4).

Table 3: Correlation coefficients between pedigree
and genomic relationship values and pedigree
inbreeding.

R-value  GR-value Fped
R-value 1
GR-value 0.99 1
Fped 0.77 0.76 1

These findings indicate frequent exchange
of genetic materials between these countries
and Canada. In contrast, two decades ago, bulls
from Spain (11.4%), Japan (9.4%), and Italy
(9.4%) had the highest R-values with active
Canadian cows in 2004, which may indicate a
shift in bull selection (Van Doormaal et al.,
2005). in 2004, the average
Canadian bull R-values with active Canadian

Moreover,

cows was estimated to be 11.7% and currently
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in 2024 it has increased to 19.4%, indicating an

increase in genetic relatedness and, by
extension, inbreeding. Additionally, a wider
range of R-values (4.2% to 11.4.%) was
observed between international bulls and active
Canadian cows in 2004, which had substantially
narrowed by 2024 (17.1% to 20.8%). This
pattern indicates that the Holstein breed across
countries has become increasingly similar over
time, which is likely due to the frequent
international exchange of genomic material and

the widespread adoption of genomic selection.

Table 4: Properties of countries with genotype bulls
that are connected with the active Canadian cows
and heifers.

Country Number Number R- GR- EFI GFI

of Bulls of value value (%) (%)

Daughters (%) (%)

CAN 3,022 50,107 194 281 97 140
AUS 14 902 9.1 273 96 137
BEL 10 8 20.7 30.1 103 15.1
CHE 50 361 20.0  29.1 10.0 14.6
CZE 10 0 17.1 243 85 122
DEU 121 461 196 284 98 14.2
DNK 21 57 175 253 88 126
ESP 5 50 194 280 9.7 14.0
FRA 82 108 19.1 27.7 9.6 13.9
GBR 49 415 194 279 97 139
HUN 19 3 174 249 87 124
ITA 111 571 19.0 275 9.5 13.7
NLD 225 3,944 202 293 10.1 147
USA 4,745 57,120 20.8 30.4 104 152

The average genetic relationship values
varied across bulls, ranging from approximately
10% to 25% for R-values and 14% to 36% for
GR-values (Figure 3). This variation highlights
the opportunity for strategic selection of bulls
that are less related to the reference population
to manage and minimize inbreeding levels.
Additionally, Al companies can support this
effort by diversifying bull selection pools and
offering sires that are less genetically related to
specific herds or producers. Figure 4 presents
the genetic relationship values of the top 100
lifetime performance index (LPI) bulls, with R-
values ranging from 19% to 25% and GR-
values from 28% to 36%, reflecting a
considerable genetic contribution to the
population. This is expected because bulls with



high LPI tend to have more daughters and
shared ancestry, which ultimately increases
their genetic relationship with the active cow
and heifer population.
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Figure 3. Distribution of relationship values of genotyped bulls with the active cows and heifers in the Canadian

Holstein population using pedigree and genomic information.
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Figure 4. Distribution of relationship values for the top 100 LPI bulls in April 2024 with the active cows and
heifers in the Canadian Holstein population using pedigree and genomic information.
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Conclusions

Genetic  relationships ~ within ~ Canadian
Holsteins have steadily increased over time,
corresponding with the observed rise in
Additionally, genetic
relationships between international bulls and

and heifers have

inbreeding levels.
active Canadian cows
increased, with differences between countries
narrowed. The United States remains the major
contributor of bulls to the active Canadian
population. Among available bulls, variation
exists in the genetic relationships with the active
cows and heifers. This variation affords the
opportunity to select less related bulls that could
help manage and minimize inbreeding at the
population level without trading-off the desired
genetic gain. Finally, preventing the continued
rise in inbreeding will require collaborative
efforts from academia, Al companies, and
producers.
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Abstract

The genetic evaluation of Brown Swiss cattle has undergone a significant methodological
improvement with the introduction of a new algorithm designed to enhance the accuracy and stability

of genetic indices for productive traits. This innovation addresses issues observed in previous models,
particularly the significant variability in early evaluations of genomic bulls. The updated model
incorporates a classification system for herds based on productivity differences between primiparous

and multiparous cows, ensuring more precise genetic assessments. The new approach has resulted in
greater stability in genetic indices and reduced the impact of initial data distribution biases. This
advancement strengthens the reliability of genetic evaluations, supporting breeders in achieving their

productivity goals.

Key words: Brown Swiss, Test days, Stability, primiparous, production traits, genomic

Introduction

Genetic evaluations in Italian Brown Swiss
have been based on a test-day repeatability
model since the early 2000s. This system was
designed to support evaluations in a diverse
environment with many small and mountain
herds (Dal Zotto 2000). Genomic selection was
introduced in 2011 (Rossoni 2009), and since
2019, the single-step genomic evaluation based
on deregressed EBVs has
(Vicario 2016).

However, over time, several issues related
to index instability have emerged, particularly

been adopted

for widely used young genomic bulls. This
instability undermines breeder confidence and
complicates selection decisions.

This study investigates potential sources of
instability and proposes a revised model
incorporating a herd-level classification to
better account for structural differences in herd
productivity.
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Materials and Methods

Data from routine national evaluations were
analyzed to identify patterns and potential
biases affecting the stability of early genetic
indices.

We investigated several potential sources of
instability, including:

— A high proportion of short lactations

— Predominantly first-parity records

— Cows calving at very young ages

However, none of these factors were found
to be the actual source of the observed
instability. In addition, we considered the non-
random distribution of daughters across herds
with varying management levels as a possible
source of bias. As a first step, we tested
whether heterogeneity of variance across herds
could be responsible for the observed
instability. However, this hypothesis was ruled
out, as the observed pattern was exactly the
opposite of what would be expected under
heterogeneity.  Typically, such
heterogeneity leads to an overestimation of
bulls whose daughters are mostly in high-

variance



producing herds. In contrast, in our case, bulls
with  daughters
appeared underestimated.

in high-producing herds

This led us to focus more closely on the
average production difference between first-
and later-parity cows within herds, which
could with the distribution of
daughters and contribute to the observed

interact

instability. To address these, a new herd-level
classification was introduced based on the
average milk yield gap between primiparous
and multiparous cows in the previous three
years period. Three levels were defined:

- High: Top 25% herds with the largest
production differences

- Medium: Middle 50% of herds

- Low: Bottom 25% with
differences

smallest

This level was included in interaction with
year, lactation number, age at calving, days in
milk, and pregnancy status in the linear model:

y=htd + Ye x L x nlat x age x dim x prg +
peta+te

Where:

htd = herd test day

Ye = quinquennium of production

L = herd level based on production gap

nlat = number of lactations

age = age of calving

dim = days in milk

prg = days of pregnancy

pe =permanent environmental

a = additive effect

€ = error.

As shown in Figure 1, the thresholds used
to classify herds into Low, Medium, and High
groups remained relatively stable until around
2010. After that point, particularly for the
upper threshold separating Medium and High
herds, a marked upward trend can be observed.
This indicates an increasing divergence over
time, with High-level herds showing a
progressively larger milk yield gap between
primiparous and multiparous cows compared
to the others.
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Figure 1. Herd average milk yield gap (kg) between
primiparous and multiparous cows across herds
classified Low (below the dashed line), Medium
(between the dashed and solid lines) and High
(above the solid line)

Results & Discussion

The updated model improved the stability of
EBVs by reducing the influence of biased early
data distributions. As shown in Figure 2,
correlations between subsequent evaluations
increased, and the advantage of the new model
becomes more evident as the time interval
between evaluations grows, reaching a
difference of up to 0.03 when comparing

evaluations four years apart.
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Figure 2. Correlations between estimated breeding
values (EBVs) for sires across consecutive years,
comparing the new model (white bars with diagonal
hatching) and the previous model (solid black bars).

The updated model shows its greatest
advantages in improving the stability of
genetic evaluations for young bulls. As



illustrated in Figure 4, which highlights the
bulls with the largest changes in EBV between
their first publication and the most recent one,
the new model consistently produces smaller
variations compared to the previous approach.
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Figure 4. Difference between the first daughter-
based evaluation and the most recent available
evaluation for the 10 sires with the largest changes.
Solid bars refer to the previous model, while white
bars indicate the new model.

This increased stability is largely due to the
model’s improved handling of non-random
herd distribution, a common issue when
genomic bulls are initially used intensively in
high-performing herds. By classifying herds
according to the productivity gap between
primiparous and multiparous cows, the new
model incorporates both management level and
its interaction with parity, thereby reducing
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bias and enhancing the reliability of early
predictions.

Conclusions

Incorporating farm classification based on
production differences between primiparous
and multiparous into the genetic
evaluation model substantially improves the

COwS

reliability of early evaluations in the Italian
Brown Swiss breed. This helps breeders make
more confident decisions when selecting
genomic bulls and enhances the credibility of

the national genetic evaluation system.
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Abstract

The Council on Dairy Cattle Breeding provides four female fertility evaluations for U.S. dairy
producers: daughter pregnancy rate (DPR), cow conception rate (CCR), heifer conception rate
(HCR), and early first calving (EFC). These evaluations were first introduced in 2004 for DPR, 2009
for CCR and HCR, and 2019 for EFC. Currently, these traits are expressed on six different breed
bases: Ayrshire, Brown Swiss, Guernsey, Holstein, Jersey, and Milking Shorthorn. Over time, the data
and methods used to calculate these traits have evolved in response to changes in availability,
recording practices, and management systems. In recent tri-annual evaluations, unexpected season
fluctuations have been observed in the Sire Estimated Breeding Values (EBV) of recently born bulls.
The objective of this project was to identify the cause of these fluctuations and implement changes to
improve stability across evaluations. In collaboration with the USDA Animal Genomics and
Improvement Laboratory, this project also involves the research and development of a potential new
trait to be added to the fertility evaluation, First Service to Conception (FSC), and re-estimation of
genetic parameters for all five traits. Comprehensive tests were conducted to refine models, pre-
adjustments, and data edits, including the use of both truncated and full datasets. Although data
truncation showed promise in mitigating historical biases, it introduced higher variability in smaller
breeds (Guernsey and Ayrshire). Additional tested changes included stricter calving year restrictions,
improved data extraction procedures, updated CCR and HCR pre-adjustments, the inclusion of a days-
in-milk covariate at first insemination for CCR and FSC, and the addition of a random herd-by-sire
effect. Tests also examined whether modeling days open to pregnancy rate as a linear or non-linear
trait, modeling traits as uncorrelated, performing unweighted analyses, or stricter convergence criteria
of the traditional evaluation mixed model equations solver were appropriate. While the findings
suggest that current methodologies provide a robust foundation, ongoing work is required to address
the persistent slight negative trends reported in young bulls, where the underlying causes remain
unclear. The project team is well-positioned to further enhance the stability of female fertility trait
evaluations for U.S. dairy producers.

Key words: conception rate, pregnancy rate, predicted transmitting ability, breeding value
fluctuations, trait stability

Introduction (DPR) was introduced in 2004 (VanRaden et

al., 2004; Van Raden et al.,, 2002), Cow
Female fertility traits play an important role in Conception Rate (CCR) and Heifer
dairy cattle breeding by offering insight into Conception Rate (HCR) in 2009, and Early
the reproductive performance of animals First Calving (EFC) in 2019, providing
across diverse management systems. In the producers with tools to select for female
United States (U.S.), Daughter Pregnancy Rate reproductive  performance (CDCB, 2025a;
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Miles et al., 2023). DPR is calculated by a
non-linear transformation of days open to
pregnancy rate. The trait predicts the
percentage of non-pregnant cows that will
become pregnant during each 21-day period
(VanRaden et al., 2004). CCR and HCR
predict the ability to conceive at each
insemination for lactating cows and maiden
heifers, respectively. EFC predicts the animal’s
ability to alter their female offsprings age at
first calving in days. All traits are scaled to
their breed base of six breeds: Ayrshire (AY),
Brown Swiss (BS), Guernsey (GU), Holstein
(HO), Jersey (JE), and Milking Shorthorn
(MS). Traits
continued

are often re-evaluated for
improvement as management
changes or more data becomes available
(Hutchison et al., 2013; Miles et al., 2023;
Wiggans et al., 2005).

In recent years, subtle but consistent
seasonal patterns have been observed in
fertility evaluations, especially in
(April) The dairy
industry raised concern after noticing that the

spring
tri-annual evaluations.
estimated breeding values (EBV) of individual
young bulls, particularly for DPR, were
gradually, but consistently declining from
these bulls
This s
unexpected because some bulls should change
upwards and some downwards. These trends

evaluation to evaluation as

accumulated more information.

prompted a deeper look into whether the
current evaluation system reflected modern
management practices and phenotypic data
accurately, or whether aspects of the modeling
might be contributing to these shifts.

To investigate, the Council on Dairy Cattle
Breeding (CDCB), in collaboration with the
United States Department of Agriculture
Animal  Genomics and  Improvement
Laboratory (USDA AGIL), launched a
focused review in early 2024. The objective
was not to overhaul the fertility evaluation
system, but to understand the source of these
trends, test updates to improve consistency,
and determine whether any adjustments were
needed.
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This paper outlines the investigative
process, highlighting data handling
improvements, model refinements, and

ongoing questions that emerged over the
course of this project.

Materials and Methods

Data:

Phenotypic records are routinely extracted
from the National Cooperators Database
managed by the CDCB every tri-annual
evaluation (OFFICIAL; CDCB, 2025b). In
order to make a direct comparison against four
OFFICIAL that have already been conducted,
the test-runs utilize the database from
December 2023 (2312), April 2024 (2404),
August 2024 (2408) and December 2024
(2412) to extract new phenotype files. As of
the most recent extraction, 2412, phenotypes
were available for 94,528,060 DPR,
39,599,925 CCR, 13,311,667 HCR, and
37,300,141 EFC records. Heifer records, HCR
and EFC, only have one record per animal
whereas DPR and CCR can have up to 5
records per animal, one per lactation.
Lactational CCR and HCR are aggregated
values from events, usually inseminations or
diagnostics, that happened within the lactation.
The earliest available calving dates were
January 1960 for DPR and EFC, December
2002 for CCR and October 2003 for HCR.
Insemination dates required for CCR and HCR
calculations were not collected nationally until
2003 (VanRaden et al., 2004).

Modeling:

For each test, traditional evaluations were
generated by the fertility pipeline which
includes data extraction, phenotype creation,
pre-adjustments, and mixed model analysis.
Animal effects were calculated using a
pedigree-based BLUP with a multiple-trait,
animal model. DPR, CCR, and HCR were
developed using single-trait models, but were
developed into a multi-trait model in 2015
(VanRaden et al., 2014). DPR, CCR, and HCR



are treated as correlated traits (Kuhn et al.,
2006; VanRaden et al., 2014), while EFC is
treated as uncorrelated. These tests followed
the same steps as the traditional evaluation
conducted during the OFFICIAL.

Test Scenarios:

Two sets of scenarios were developed for
testing. The first included changes applied to
the full datasets (CHG), and the second used
the same changes, but truncated the historical
DPR and EFC records to December 2002
(CHG_TR). This allowed the same period of
data to be used across all four traits. Both test
scenarios were compared to traditional results
from OFFICIAL.

Changes Applied to Tests:

Several changes were applied in both CHG and
CHG_TR. A stricter calving date restriction
was implemented so that only records with at
least 365 days between calving and data
extraction were included compared to the
current edit of >70 days described by
Hutchison et al., 2013. If calving dates or days
open information were missing, those records
were removed from DPR rather than estimated.

Extraction programs were revised for
efficiency and formatting. Pre-adjustments
applied to individual inseminations were

updated for both CCR and HCR and were
estimated within each evaluation instead of
fixed across evaluations. A DPR record was
removed if the cow’s sire was unknown,
aligning it with existing edits for CCR, HCR,
and EFC. A new covariable, days-in-milk at
first insemination, was added to the CCR
model. Additionally, the convergence criteria
for the mixed model equations solver
(described in VanRaden et al., 2014) were also
made stricter.

A proposed additional trait, days from First
Service to Conception (FSC), developed by
USDA AGIL, was included in the tests
evaluation pipeline and modeled alongside the
other four traits. Updated variance components
were estimated for all traits by USDA AGIL
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and University of Connecticut collaborators as
part of this work. However, results related to
FSC and the re-estimated variance components
are not presented here and will be reported
separately.

Additional changes were explored but were
excluded from further testing due to limited
benefits or failure to converge. These included
modeling DPR as a linear function of days
open, using unweighted analyses, treating all
five traits as correlated, and including a
random herd-by-sire effect.

Results

Impact of Data Edits:

Applying a stricter calving date restriction
removed 2-4% of records from recent years
across traits. Removing records with missing
days open or calving dates for DPR had a
minimal effect on overall record count but was
important for ensuring consistency in how
phenotypes
records with unknown sires reduced record

were calculated. Removal of

counts primarily in earlier years and among
smaller breeds, with little effect in Holstein
data.

Pre-adjustment updates for CCR and HCR
led to moderate shifts in phenotype
distributions, especially in the most recent
years, where older adjustment factors may no
longer have reflected regional and seasonal
differences in management. The inclusion of
days-in-milk at first insemination as a
covariate also influenced the distribution of
CCR values, likely among high-producing
herds where voluntary waiting periods may be
longer. Research on voluntary waiting periods
by herd and years is in-progress.

Phenotypic Trends:

Phenotypic trends by year of calving were
broadly consistent across OFF, CHG, and
CHG_TR. For most traits, the use of truncated
data slightly reduced phenotypic variability in
early years but had limited impact in recent
years. Among smaller breeds (Guernsey and



DPR EBV

Ayrshire), the truncation of pre-2002 data for
DPR and EFC led to a more noticeable
reduction in  available records and
corresponding shifts in average values.

The updated edits resulted in smoother
trends in recent years, especially for DPR and
raw CCR (cow conception rate without pre-
adjustments applied). Raw CCR or raw HCR
values were easier to interpret and more
transparent in terms of seasonal or year-based
shifts. However, these trends without pre-
adjustments on individual inseminations also
showed greater variability, especially in recent
The
application of updated pre-adjustments within
each evaluation test helped reduce this
instability and produced smoother trends over
time.

years when data volume is lower.

2312 s, 2404

OFFICIAL

2404 ws, M08

EBYV Trends:

The EBV of young cows with phenotypes were
averaged by birth year and segmented by their
sire’s breed. Figure 1 has 9 graphs of
OFFICIAL (top), CHG (middle), CHG TR
(bottom) and 2312 vs. 2404 (left), 2404 vs.
2408 (center), and 2408 vs. 2412 (right) for
Holstein DPR by year of birth.

Across all test scenarios, the applied
changes did not substantially alter the
consistency of these breed-level averages. The
seasonal fluctuations originally observed in
these figures, especially in April evaluations,
remained present to some extent but were not
worsened by the new edits or data truncation.

2408 vs 1412

- 232

- 2404
2408
2412

CHe )
i
i\
|
+

CHG TR
b

Birth Year

Figure 1. Mean daughter pregnancy rate (DPR) estimated breeding value (EBV) of young cows with
Holstein sire official tri-annual evaluations (OFFICIAL; top), full data set with changes applied (CHG;
middle), and truncated dataset with changes applied (CHG TR; bottom) for multiple evaluations:
December 2023 (2312), April 2024 (2404), August 2024 (2404) and December 2024 (2412).
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Sire EBV Trends:
Although not shown in this report, future work
will focus more directly on trends in the EBV
of male animals. The industry concern
prompting this investigation was centered on
recent declines in DPR among young bulls.
The exploratory analyses presented here did
not fully resolve that concern but laid the
groundwork for evaluating where those trends
data,

originate whether from the model

assumptions, or something else.
Discussion

The goal of this review was to understand
whether changes to the data pipeline or model
structure could explain the seasonal variation
observed in EBV for female fertility traits.
While the test scenarios introduced several
improvements, the comparisons among OFF,
CHG, and CHG TR suggest that the core
evaluation system is already relatively robust,
and that no single edit tested fully accounts for
the observed patterns.

Across most traits and breeds, the CHG
scenario which applied updated edits and
model refinements without removing historical
data showed the greatest internal consistency.
Phenotypic trends were smoother, and changes
to the pre-adjustments and model covariates
helped reduce irregularities in CCR and DPR
that often appear in more recent years. The
edits removed relatively few records overall
but targeted potentially less reliable data such
as data including missing calving dates or
undefined sires.

The CHG_TR contrast,
introduced greater variability, particularly in
the smaller breeds. Truncating DPR and EFC
records prior to 2002 ensured a uniform time

scenario, In

range across traits, but the loss of early data
reduced the sample size enough to destabilize
trends for breeds like Guernsey and Ayrshire.
For Holstein and Jersey, the impact of
truncation was smaller, though not negligible.
These results suggest that while historical data

may introduce bias, it also contributes
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information for estimating trends, especially in
populations with less data.

None of the edits tested in CHG nor
CHG TR substantially changed the EBV
trends which reflect mean EBV of daughters
grouped by their sire’s breed. While these
figures have been wuseful for monitoring
population-level trends, they are not a
substitute for direct evaluation of individual
young male animals. The continued presence
of seasonal fluctuations in these plots, even
after updates, indicates that the source of
variation may lie elsewhere.

The investigation also highlighted a
recurring challenge in fertility evaluations:
edits and model refinements often improve
internal consistency but do not necessarily
resolve the deeper patterns observed in young
animal EBV. The inclusion of more refined
covariates, like days-in-milk at first
insemination, potentially helped account for
some management-driven variability in CCR,
but did not have an effect large enough to shift
overall trends. Similarly, pre-adjustments
estimated within each evaluation for CCR and
HCR produced more stable results, but did not
fully explain the seasonal fluctuations of
interest.

The updates applied in CHG improved the
evaluation pipeline and represent meaningful
refinements. However, they did not resolve the
underlying concern of declining EBV with
consecutive evaluations in recently born bulls.
Truncation (CHG TR) introduced more
variability than it removed and may be better
suited for targeted applications rather than as a
universal solution.



Conclusions

This project reviewed and tested a range of
updates to the U.S. female fertility evaluation
pipeline, with the goal of improving stability
and addressing concerns about seasonal trends
in the EBV of recently born bulls. While these
trends remain an interest, the changes tested
here did not appear to be the direct cause.

Edits implemented in the CHG scenario
including stricter calving date filters, updated
pre-adjustments, and improved handling of
incomplete records contributed to smoother
trends in phenotypes and improved consistency
in recent years. These changes strengthened
the overall foundation of the system and are
candidates  for  future = implementation.
the comparison with CHG_TR
showed that truncating historical data can
introduce additional variability, especially for

However,

smaller breeds. This suggests that while older
data may have some unanticipated effect, it
continues to play a stabilizing role in multi-
trait fertility evaluations.

Although the updates improved internal
consistency addressed specific
improvement opportunities in the evaluation

and

process, they did not resolve the seasonality of
the trend observed in young bull EBV. Further
work is needed to explore this issue more
directly, particularly by evaluating how the
actual EBV of male animals change across
evaluations and whether changes in herd
management, data recording practices, or
model assumptions are contributing to the
trend.

The results presented here represent a step
forward in refining female fertility trait
evaluations, but additional investigation is
needed to fully understand and resolve the
ongoing patterns observed in young animals.
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Abstract

Small reference populations hinder prediction accuracy in minor breeds, thereby limiting genetic
progress. In response, the World Ayrshire Federation (WAF) initiated an international collaboration
through the Interbull Centre (IBC) to enhance genomic evaluations for Ayrshire-based populations
across countries. This initiative is primarily to ensure breed sustainability by addressing the challenge
of limited reference population sizes in individual countries, which affects the reliability of national
genomic evaluations. The aim of this study is to adapt IBC’s Multiple Across-Country Evaluation
(MACE) to include female estimated breeding values (EBVs) alongside male data while leveraging the
Interbull Data Exchange Area (IDEA) and GenoEx-GDE platforms for data management.

The participating countries initially include Australia, Canada, Colombia, the United Kingdom, New
Zealand, South Africa, and the United States. A total of 22,383 genotyped Ayrshire animals (4,403
males and 18,880 females) have been identified, with Canada contributing 46% of the genotypes.
Adding cow data is envisioned to accelerate reference population growth, boost genotyping returns and
improve the reliability of both national and international genetic and genomic evaluations over time.
The first phase of implementation involves integrating cow EBVs into MACE while sharing genotypes
among participating countries using the GenoEx-GDE platform. The second phase envisions extending
these evaluations through InterGenomics for interested countries and those that cannot perform their
own national genomic evaluations. This collaboration paves the way to faster growth of reference
population sizes and improves genetic and genomic prediction accuracy for not only Ayrshire
sustainability, but also the opportunity exists for other small breed populations like Guernsey, among
others.

Key words: Ayrshire, genomic evaluation, MACE, small populations, international evaluation

Introduction genotypic and phenotypic information. For
numerically small dairy breeds such as
As genotyping costs continue to drop, the Ayrshire, Guernsey, and others, a limited
number of genotyped animals worldwide is on national reference population remains a
the rise. This creates an opportunity to persistent challenge that restricts the potential
significantly accelerate genetic gain through gains from genomic selection (Méntysaari et al.,
genomic evaluations on both national and 2010; Wiggans et al., 2011).
international levels. However, the reliability of Traditionally, international genetic
genomic predictions depends heavily on the evaluations for dairy breeds have relied on the
size of the reference population, which links MACE system implemented by the IBC, which
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bull
genetic evaluation centres (Schaeffer, 1994).
However, MACE has typically excluded cow
EBVs, omitting valuable data that could
enhance prediction accuracy. With IBC’s data
sharing platforms, such as the Interbull Data
Exchange Area (IDEA) and GenoEx-GDE, it is
feasible to exchange raw genotype data and
expand genomic reference sets across countries
under agreed-upon terms.

In this context, the WAF, in partnership with
the IBC, initiated a collaborative project to
investigate the possibility of including cow data

integrates evaluations from national

into MACE. We hypothesise that incorporating
female EBVs into the MACE system while
the IDEA and GenoEx-GDE
infrastructures will enable broader, more
reliable international evaluations. This work
holds
sustainability but also as a model for other
numerically small or geographically dispersed

leveraging

potential not only for Ayrshire

dairy breeds. This paper outlines the proposed
approaches and data management strategies for
an international  Ayrshire-based  genetic
evaluation that includes female EBVs, building
on existing IBC services such as MACE and
thus the future possibility of InterGenomics.

Materials and Methods

The first step of the project involves the
modification of the existing MACE pipeline to
incorporate female EBV records. This involves
evaluating the accuracy of current de-regression
methods for female data and ensuring no
information overlaps between bulls and cows.
Contributing organisations will supply female
EBVs and pedigree data, alongside bull EBVs,
while the Interbull Centre will conduct the
necessary research to adapt, test, and validate
the MACE pipeline and its outcomes.

Data Collection and Management

Data for the proposed research will include
pedigree, genotypes, and EBVs (for both cows
and bulls), managed through the IDEA and
GenoEx-GDE platforms. Pedigree data utilises
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the Interbull International ID format, ensuring
consistency across countries. Genotypes will be
stored in GenoEx-GDE, with organisations
controlling data-sharing permissions. Cow
EBYV and pedigree data uploaded to IDEA will
undergo quality checks and verification of data
integrity, together with bull data, before being
included.

In 2023, participating countries shared
genotype counts with CDCB, revealing a total
of 22,383 genotypes for Ayrshire animals, with
Canada contributing 46% of the total (Table 1).
These data form the basis for evaluating
sizes and potential
when

reference population
genomic
females are added.

evaluation improvements

Table 1: Number of Ayrshire genotypes by sex
and participating country

Country Female Male Total
Canada 8,670 1,806 10,476
United States 3,107 1,973 4,180
South Africa 2,761 19 2,780
New Zealand 2,105 41 2,146
United Kingdom 1,175 468 1,643
Australia 1,062 96 1,158
Columbia N/A N/A  N/A
Total 18,880 4,403 22,383
Source: Brian Van Doormaal, 2024
MACE with Female EBVs

MACE, a multi-trait evaluation treating each
country-trait combination as a separate trait,
uses de-regressed proofs from national
evaluations. Including female EBVs requires
modifications to account for heterogeneous
variance and potential double-counting of
Proposed  changes
adjusting data verification and checking
programs in IDEA and establishing the
threshold criteria for cow data inclusion (e.g.,
minimum number of daughters, herds, and

information. include

status). Preliminary estimates of descriptive
statistics from the data are expected to follow.
Additionally, the research phase of the project
will involve the investigation of the technical
aspects below:



e The best method to deregress cow
EBVs for MACE

e Adjustments to the MACE model

e Possible bias, double counting

e Changes in reliability

e Accurate conversion equations that
include females

InterGenomics
After a successful MACE evaluation that
includes cow data, international EBVs will be

1). For those countries that cannot perform

national genomic evaluations, and those
interested in international genomic evaluations,
they might then have an opportunity to
participate in a new InterGenomics service from
IBC. With InterGenomics, MACE EBVs are
used as phenotypes, and together with GenoEx-
GDE genotypes, international genomic
breeding values and their reliabilities can be
estimated and provided to countries that request

the service. It is also possible to obtain

provided to the participating countries (Figure information on duplicate genotypes, SNP
conflicts, and parentage conflicts.
Interbull Centre
Pedigree } L — Natlonal EBVs, RELs De-regressed EBVs + complete pedigree ]
Ph National Pedlgree
[ rrercpes JES Phase |
Genotypes l
[ De-regressed International EBVs ]
GenoEx-GDE l
InterGenomics (IG)

Phase Il

De-regressed International EBVs
+ Complete genotypes

I

International Genotype Exchange Platform

[ International GEBVs ]

Figure 1. Proposed workflow showing the two implementation phases of including females in MACE project.

Results and Discussion

The
genomic evaluations for Ayrshire populations,

international collaboration to enhance

as proposed by the participating countries
involved in the World Ayrshire Federation
(WAF), represents a significant step toward
improving the reliability of genomic predictions
for a breed with historically small reference
populations in many countries. The initiative
leverages the Interbull Centre’s infrastructure
and expertise to integrate genotypic and
phenotypic data from multiple -countries,
including Australia, Canada, Colombia, the
United Kingdom, New Zealand, South Africa,
and the United States. The preliminary data
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reveal a substantial pool of 22,383 Ayrshire
genotypes currently available, with 84% being
females, providing a robust foundation for
expanding  national reference
populations.

This section discusses the potential benefits,
challenges, and considerations of the proposed
methodologies, adapting MACE to include
female EBVs addressing  their

implications for Ayrshire breed sustainability.

genomic

while

Benefits of International Collaboration
The primary advantage of this collaboration is

the significant increase in reference population
size, which directly enhances the accuracy of
genomic predictions. National evaluations for
Ayrshire populations often suffer from limited



reference populations, resulting in lower
reliabilities for genomic estimated breeding
values. By pooling genotypes from across
countries, the reference population for bulls
alone exceeds 2,900, a marked improvement
over any single country’s capacity. This aligns
with findings from Bonifazi et al. (2020), who
demonstrated that increasing the number of
genotyped animals in international evaluations
improves across-country genetic correlation
estimates, thereby enhancing prediction
accuracy.

For countries like Colombia and South
Africa, where genomic evaluations are not yet
established, this collaboration could enable the
implementation of genomic selection, fostering
breed sustainability. The inclusion of female
EBVs in MACE further amplifies the reference
population by incorporating cow data, which is
particularly valuable given the high proportion
of genotyped females, allowing faster genetic
gains. Méntysaari et al. (2011) showed that de-
regressed cow EBVs can be effectively used in
national genomic evaluations, suggesting
potential for international applications.

The IDEA and GenoEx-GDE platforms
facilitate secure permission-based data sharing,
allowing countries to control access while
benefiting from collective data (Figure 1). This
infrastructure supports the standardisation of
data formats and quality control, critical for
ensuring evaluation consistency across diverse
national systems (Nilforooshan and Jorjani,

2022).

Challenges in MACE with Female EBVs

Adapting MACE to include female EBVs
presents technical challenges, particularly the
risk of double-counting information from cows
and their sires. This issue arises because cow
EBVs may partially reflect sire contributions
already included in MACE, potentially biasing
results. Thus, careful de-regression methods are
needed to mitigate bias. The Interbull Centre
has outlined steps to address this, including
defining thresholds for cow data inclusion, such
as minimum daughter numbers, the type of cow,
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among others. These modifications involve
research to develop de-regression techniques
and validate data integrity. Additionally,
heterogeneous variance across countries must
be addressed, as differences in national
evaluation models could affect the
standardisation of EBVs (Nilforooshan and
Jorjani, 2022).

Including cow data also necessitates updates
to the IDEA database and verification
programs, such  as the
CheckProofsPara.py and verify proofs.F90
programs to accommodate cow-specific metrics
like genotyping status (codes “00” or “40” for
non-genotyped or  genotyped  animals,
respectively). These updates need to ensure that
only valid female records are included and are
subject to changes as the research goes on.
While these changes are feasible, they require
careful  coordination with  participating
countries to establish consistent data
submission protocols.

those in

Strategic Considerations
Both methodologies require agreements on data
sharing and result distribution, which involve
political and legal considerations. The GenoEx-
GDE platform allows countries to control data
access, but consensus on sharing female
genotypes and EBVs is critical. The IBC’s
experience with InterGenomics for Brown
Swiss and small Holstein populations provides
a model for establishing an Ayrshire-specific
service, potentially managed by a Global
Ayrshire Services Management Committee.
This committee would facilitate ongoing
discussions to address emerging opportunities
and challenges,
national priorities.
The choice to participate in MACE or

ensuring alignment with

InterGenomics with cow data depends on
computational resources, data availability, and
country  preferences. MACE is less
computationally and leverages
existing infrastructure, making it a faster option.

intensive

However, InterGenomics may offer superior
accuracy for small populations by directly



incorporating genomic data (Bonifazi et al,
2023). A hybrid approach, combining MACE
with InterGenomics, could balance feasibility
and accuracy, as proposed for Brown Swiss
(CDCB 2024).

Implications for Ayrshire Sustainability

This collaboration has the potential to transform
Ayrshire breeding by enabling genomic
evaluations in countries without national
systems and enhancing existing ones. By
maximising reference population sizes, the
initiative addresses the breed’s risk of declining

relevance due to limited genomic progress.
Conclusions

This study presents a novel and collaborative
approach to enhancing genomic evaluations for
numerically small dairy breeds by adapting the
IBC MACE system to include cows. Future
research will focus on optimising the
integration of female EBVs into MACE and on
piloting InterGenomics services tailored to the
Ayrshire population. Currently, a data call has
gone out to participating countries, together
with an agreement for collaboration that
includes data sharing. This work may reshape
how global evaluations are designed for
underrepresented breeds.
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Abstract

Enteric methane (CH4) emissions from cattle account for 70% of livestock GHG emissions in Sub-
Saharan Africa. Also, climate change has impact on smallholder livestock-based food systems in terms
of feed resources and emergence of new diseases. Direct selection for CHy is one of the approaches to
mitigate the effects of climate change and this requires estimation of genetic parameters. Moreover, the
amount of CH, emitted is influenced by the activity status (ACTs) of the cow such as feeding,
ruminating, sleeping, and standing idle during time of measurement. The aim of this study was to
evaluate CH4 emissions under different activities, estimate variance components and compare accuracies
of predicting CH4 emissions using MIR information. The data consistent of over 14500 point-
measurement of methane emissions measured by laser methane detectors with minimum duration of 3
minutes from 940 cows in 29 small-holders dairy farms in Ethiopia under various cow activities from
July 2023 to March 2025. Records obtained under different ACTs for feeding, ruminating, sleeping, and
standing idle were 2382, 7885, 660, and 3494 respectively. Pedigree information was also available for
435 cows with observation for CH4 and the remaining 459 cows were genotyped using a 90k SNP chip.
Overall average CH4 production was 341 g/day. CH4 production in feeding status was highest with 517
g/day on average. Pedigree BLUP (PBLUP), and single step combining both pedigree and genomic
information (HBLUP) were applied to estimate variance components (VCs) using different modelling
approaches. A repeatability animal model (full model (FM)) was fitted with ACTs, year-season, and
average farm milk yield as fixed factors and permanent environmental effects a random effect in addition
to animal. Also, records averaged within year-season subclasses (average model) were also analyzed
with fixed effects of year-season and average farm milk yield and random effects of animal and
permanent environmental effects. Heritability estimates for the FM were 0.09 (0.03), and 0.10(0.02) for
PBLUP and HBLUP, respectively. The corresponding estimates for the average model were 0.14 (0.06),
and 0.19 (0.04). For the indirect prediction of CHy, a partial least square modelling approach was applied
using milk mid-infrared data obtained in one-week period around the CH4 measurements. The model
with data restricted only to cows feeding gave higher prediction accuracy of 0.41 compared to 0.28 when
using all data. In summary, heritabilities were low and consistent with published estimates, indirect
predictions accuracy of CHs; were moderate. In general, feeding status not only had the highest
production average but also highest prediction accuracy and has influence on genetic parameters.

Key words: methane emission, animal activity, variance components
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Introduction

Enteric methane (CHs) emissions from cattle
account for 70% of livestock GHG emissions in
Sub-Saharan Africa years (GLEAM 2023), and
it is of critical climate concern due to methane's
short atmospheric lifespan of 12 years.
Therefore, strategies to reduce enteric methane
are vital for the 1.5°C global warming target and
to mitigate the impact of climate change on the
smallholder agri-food systems and livestock-
based food in most developing
countries in terms of feed resources, emergence
of new diseases, increased levels of heat and

systems

humidity and related stresses. Studies have
shown that methane emission is heritable and
selective breeding for low emitting individuals
through genetic selection is feasible (De Haas et
al. 2021). Therefore, direct selection for
methane is one of the approaches to mitigate the
effects of climate change and this requires
estimation of genetic parameters and variance
components for methane and the capture of
These recordings
should be accurate and reflect overall methane

methane measurements.

production of individuals to maximize the
accuracy of selection. The amount of the
Methane (CHy) emitted by cattle is not constant
but varies with different activities because each
activity changes the animal’s rumen function,
respiration rate, and gas release pathways
(eructation, respiration).

Highest CHa production may occur during
and after feeding. Rumen microbes ferment
carbohydrates into volatile fatty acids and
hydrogen which then methanogens convert
hydrogen into methane. Methane peaks happen
typically post-feeding especially after forage-
rich diets (Rooke et al. 2014). Factors such as
feed type (forage vs. concentrate), intake level,
and feeding frequency strongly influence
methane emission (Jiao et al. 2014).

Various technologies have been proposed to
measure methane emission in cattle, each with
different levels of accuracy, cost, practicality,
and suitability for on-farm vs. research use
(Sorg 2021). Most of these technologies record
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CH4 when animals are in a particular state such
as feeding or milking. These short time
measurements of several minutes a day over a
week are then generalized to estimate the
methane production per day. Since animals may
be different state of activities, such as feeding,
drinking, milking, lying/resting, standing,
walking or ruminating, CH4 production may
vary under different activities (ACTs).
Therefore, to estimate an accurate amount of
CH4 production during a day, a comprehensive
recording which includes these activities is
needed for accurate predictions.

Methane recording in small holders’ cattle
farms is challenging and extra care needs to be
taken for accurate and practical recording in
scale. Laser Methane Detectors (LMD) are
portable devices which has comparatively low
purchase and running costs and results in only
low-to-moderate behavioural changes of the
animals but requires relatively high labour
resources and has a moderate throughput in
terms of the number of records per time (Sorg
2021).

Of the various technologies proposed to
measure methane emissions in dairy cattle, the
most commonly used include the GreenFeed
and Fourier-transformed infrared (FTIR) breath
analysers (sniffers) installed in feed bins (Sorg
2021).

Unlike GreenFeed or Sniffers which are
installed in feed bins for recording methane
only in the feeding status of cows, LMD can
record methane during any cow activity,
thereby providing the potential for a better
estimation of overall methane produced by a
cow.

As recording methane emission is still
challenging and expensive, proxy traits such as
milk mid-infrared (MIR) profiles are studied to
indirectly predict CHs4 as an easy and cost-
effective approach to record the trait. Training
models for predicting methane emissions
through proxy traits, relies highly on the
accurate measurements of methane emissions
under various the animal activities.



The aim of this study was to evaluate
methane emissions under different activities,
estimate variance components and compare
accuracies of predicting methane emissions
using MIR information under different ACTs.

Materials and Methods

About 14500 point-measurement of methane
emissions from 940 cows recorded using
handheld laser methane detectors in 29 small-
holders dairy farms spanning a wide range of
environmental conditions in Ethiopia were used
for the study.

The duration of each point measurement
was 3 to 5 minutes under various cow activities.
Data was recorded at random times and days
once or twice a month from July 2023 to March
2025. Each animal had between 2 to 32 records
from farms with different management systems.
The animals were of different ages, stages of
lactation and were crossbreds resulting from
crossing local cattle breeds with mostly
Holstein and Jersey. After quality control 14421
records were analyzed and were recorded under
different ACTs. A total of 2382, 7885, 660, and
3494 measurements were taken during feeding
or ruminating or sleeping or standing idle
respectively.  Pedigree  information
available for 435 cows with observation for CHy

was

and 459 cows were genotyped using a 90k SNP
chip.

Initially a fixed effect model consisting of
ACTs, age at recording, breed proportion,
lactation number, lactation stage, year-season,
and average farm milk yield as management
criteria were fitted to determine the factors with
significant effect on methane.

Pedigree BLUP (PBLUP) and single step
combining both pedigree and genomic
information (HBLUP) were applied to estimate
variance components (VCs) fitting significant
effects from the fixed effect model.

An initial analysis indicated that repeatability of
methane measurement was low at 0.26. Given
this low repeatability, two sets of models were
considered for estimation of genetic parameters.
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One set of models used the individual records
of cows as the dependent variable or methane
averaged year-season subclasses. The latter
represents the average of subsequent
measurements methane for a cow over a season
3-6 months and
of methane

SO mimics
from other

of about
measurements
equipment such as the GreenFeed.

The full model (FM) including ACTs, year-
season, and average farm milk yield as fixed
factors and permanent environmental effects a
random effect in addition to animal is:

y=Xb+Za+Wp+ e
where y is the observed CHs measurements, b
is the vector of fixed effects, a is the random
animal effect, p is the random permanent
environmental effect, and e is the residual.
Matrices X, Z, and W are the incidence
matrices connecting fixed and random effects to
the observations.

The model based on CH,4 records overaged a
subclasses  (average model)
consisted of fixed effects of year-season and
average farm milk yield and random effects of

ycar-s€ason

animal and permanent environmental effect.

Indirect prediction of methane using MIR data
A corresponding 7714 milk mid infrared
profiles from 608 individuals were available
within £7 days of LMD records. Out of 930
spectral points, three spectral regions were
considered for the calibration process (968-1
577 cm-1, 1 720—1 809 cm-1, and 2 561-2 966
cm-1), resulting in the selection of 289 data
points.

Savitzky-Golay filtering approach with 3rd
order polynomial and a window size of 5 data
points was used to improve the spectra
resolution by eliminating constant baseline, and
to obtain robust prediction models by restricting
the insertion of bias into the model. We used
Sgolay function implemented in R Signal
package for this calibration process.

A partial least square modelling approach
using 10 principal components to predict the
methane emission using MIR information using
R PLS package was used for prediction.



The full model to predict CH4s by MIR
information was as below:

CH4 ~ MIR + milk fat% + milk protein% =+ body
weight + milk yield.

The reduced model included only MIR
information performed as below:

CH4 ~ MIR.

A 5-fold cross validation approach was used
so that one fifth of data was sampled randomly
as validation set and the rest was used to train
the model for prediction of methane emission
by MIR data. One hundred sampling and
prediction were performed and the average
correlation value between predicted and actual
measurements were calculated as accuracy of
prediction.

Results & Discussion

Overall average methane production was 341
g/day. Methane production in feeding status
was highest with 517 g/day on average.
Average methane production under other
activities were 296, 303, and 332 g/day for
ruminating, and idle,

sleeping, standing

respectively.

Table 1: Summary statistics of data used in this study

trait No. of No. of mean SD
animals records

CH4 940 14427 341 122
Milk yield 608 6423 125 4.7
Fat % 608 7714 297 144
Protein % 608 7714 336 0.6
MIR* 608 7714 - -
genotypes 459 - - -

*Milk mid-infrared profiles.

The fixed effect model indicated that animal
activity significantly influenced the methane
production followed by age at recording.

Heritability estimates for the full model were
0.09 (0.03) for PBLUP and 0.10(0.02) for
HBLUP models. Genotypic data increased the
heritability estimates by only 0.01 which may
be due to low genetic connectivity between
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animals in the pedigree. The corresponding
estimates for the average model were 0.14
(0.06), and 0.19(0.04), which are higher than
those from the full model, showing a significant
difference in variance components in the two
models with and without ACTs fitted. The
heritability estimates are in the range of
estimates from other publications for methane
emission in cattle (Van Breukelen et al. 2023;
Lassen and Levendahl 2016; Ghavi Hossein-
Zadeh 2022; Pszczola et al. 2017). Moreover
averaging over several point measurements as
is common in other studies may increase the
heritability estimates (Van Breukelen et al.
2023; 2022).

The partial least square modeling approach
to predict methane emission by proxy traits
using data restricted to only feeding activity had
a higher accuracy of 0.41 compared to when
using all data with accuracy of 0.28. studies
show prediction of methane emission using
MIR data in the range of 0.25 to 0.7 (McParland
et al. 2024; Shadpour et al. 2022; Shetty et al.
2017). No study was found to compare
prediction on methane emission recorded across
various ACTs in cattle. Interestingly feeding
status not only had the highest production
average but also the highest prediction accuracy
and a substantial influence on variance
components estimation.

The accuracy of prediction using repeated
records were studies to find the optimum
number of records using LMD device. We
examined animals with 1 to 12 records for the
prediction. The results showed that 6 records
per individual is the optimum number of records
as show the highest accuracy while is value of
accuracy is comparable to individuals having
more records (Table 2).



Table 2: Changes in accuracy of predicting methane
emission using milk mid infrared data in different
number of records.

Average Accuracy RMSE
records

1 0.24 168
2 0.28 149
3 0.29 133
4 0.37 124
5 0.39 122
6 0.45 116
7 0.47 116
8 0.45 109
9 0.45 107
10 0.45 106
11 0.46 105
12 0.45 106

*Residual mean square error.
Conclusions

The results indicate that heritability estimates
for CH4 using LMD were low at 0.09 to 0.14 but
consistent with estimates reported using other
more expensive equipment. The indirect
prediction accuracies using MIR data were
moderate and are encouraging. Furthermore,
animal activities play an important role not only
in terms of correctly measuring methane
production but also influences estimation of
genetic parameters and accuracy of prediction
of CH4 from MIR data.
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Abstract

In the context of data sharing for genetic evaluation, such as enteric methane emissions in cattle,
quantifying the effective contributions of phenotypic records to genetic evaluations is essential. This
research introduces a framework for estimating the effective contribution of phenotypic records to
genetic evaluations, using the concept of effective record contributions (ERCs). Our three-step
approach involves: 1) computing reliabilities of a pedigree-based genetic evaluation using phenotypic
information, 2) approximating ERCs due to own records, free of contributions due to relationships,
from reliabilities of phenotyped animals using a reverse reliability algorithm, and 3) calculating the
total effective contribution of phenotypic records as the sum of ERCs associated with all phenotyped
animals. We apply this approach to a Dutch dataset comprising 187 219 records of weekly enteric
methane emissions from 8 668 Holstein cows measured between March 2019 and April 2024. The
pedigree spans five generations. Estimated heritability and repeatability were 0.18 and 0.47,
respectively. We evaluate the effective contribution of weekly enteric methane emission records using:
1) the entire dataset, 2) a subset spanning until October 2023, instead of April 2024, 3) a dataset
reduced by over 30% and limited to 20 records per animal, and 4) the entire dataset but considering
the weekly enteric methane trait as an indicator trait genetically correlated to a hypothetical trait of
interest with a heritability of 0.20 and a genetic correlation of 0.80. Results show that the entire dataset
corresponds to 12 671 ERCs for the weekly enteric methane emission trait, which remains similar after
reducing the number of weekly records by over 30%. The subset spanning until October 2023
corresponds to 10 870 ERCs. The reduction of ERCs can be explained by a smaller amount of records,
but also by a smaller amount of recorded animals. Finally, when calculating the effective contribution
to a correlated trait of interest, the entire dataset with weekly methane emission records corresponds to
only 3 286 ERCs. Our approach provides a flexible framework for quantifying the effective
contribution of phenotypic records to genetic evaluations. The proposed framework can be extended
for optimizing data collection schemes when aiming to optimize the accuracy of genetic evaluations.

Key words: effective record contribution, phenotype, genetic evaluation, methane emissions

Introduction Several strategies have been proposed to

mitigate enteric methane emissions, including
Global climate changes pose significant threats management  practices, feed additives,
to ecosystems and human societies, with rising vaccination, and genetic selection (Knapp et
temperatures and altered weather patterns. al., 2014). Genetic selection is particularly
Livestock, particularly ruminants, contribute to appealing due to its low implementation costs
greenhouse gas emissions, with enteric as well as its permanent and cumulative effects
methane  emissions  accounting for a (Bishop and Woolliams, 2004). However, the
considerable portion of their emissions. success of genetic selection in breeding
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programs depends on several factors. A key
factor is the definition of the breeding
objective that will guide the designs of the
breeding program and of the trait recording
schemes (Banks, 2024). For traits difficult or
expensive to measure, such as methane
emissions in ruminants, a special attention for
the design of the trait recording scheme is
required, as the main limiting factor is the
availability of sufficient phenotypes to create a
reference population to estimate sufficiently
reliable genetic parameters and breeding
values required for informed breeding
decisions.

Worldwide, research groups and breeding
organizations are exploring the integration of
methane mitigation into breeding programmes,
requiring a clearly defined trait that is
recordable, cost-effective, exhibits phenotypic
variation, and is heritable. Recent studies (e.g.,
Manzanilla-Pech et al., 2021; van Breukelen et
al., 2023) have explored various phenotyping
methods and trait definitions. For instance, van
Breukelen et al. (2023) compared daily and
weekly means of methane
(grams/day) by

methane concentration (ppm) by sniffers,

production
GreenFeed units and of

recorded on commercial dairy farms in the
Netherlands. These differences in terms of
phenotyping methods and trait definitions may
limit the effectiveness of collaborations across
research groups and breeding organizations,
hindering the success of genetic selection for
methane mitigation (Manzanilla-Pech et al.,

2021).
In this context, the Global Methane
Genetics (GMG) initiative

(https://www.wur.nl/en/project/global-
methane-genetics-initiative.htm) was launched

in 2024 as a global initiative to accelerate
genetic progress in reducing methane
emissions in ruminants (Gredler-Grandl et al.,
2024). The GMG initiative is coordinated by
Wageningen University and Research-Animal
Breeding and Genomics and funded by the
Global Methane Hub and the Bezos Earth
Fund. It aims to enhance genetic progress by
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establishing standard operating procedures for
data  collection, harmonizing protocols,
facilitating the sharing of methane phenotypic
and genotypic data, and increasing methane
data recording in large and small ruminants
across the world.

A key task of the GMG initiative is to first
establish a GMG database for sharing data and
protocols to support
population expansion, breeding program
design, and genetic evaluations for enteric

research, reference

methane reduction. The effective amount of
information of phenotypic records provided by
any party to the GMG database varies,
impacting the composition of
populations and the effectiveness of genetic
and breeding programs with
clearly defined breeding objectives. Factors
that the
information of phenotypic records for a genetic
evaluation are, of course, the number of

reference
evaluations

influence effective amount of

phenotypic records provided, but also the
definition of the recorded trait, the recording
scheme and associated factors (e.g., the
contemporary group sizes), and the accuracy of
recording (reflected by heritability and
repeatability), among others.

The objective of this research is to develop
a framework to the effective
contribution evaluation of

quantify
to a genetic
phenotypic records submitted to a database.
The framework considers the number of
records provided, recording scheme properties,
and the accuracy of recording (heritability and
repeatability). Then, we apply our framework
to a Dutch dataset including individual cow
enteric methane emissions measured with
sniffers in automatic milking systems (AMS).
Results demonstrate the flexibility of our
framework to quantify the effective
contribution of phenotypic records to a genetic
evaluation.


https://www.wur.nl/en/project/global-methane-genetics-initiative.htm
https://www.wur.nl/en/project/global-methane-genetics-initiative.htm

Materials and Methods

This section introduces the framework for
quantifying the effective contribution of
phenotypic records to genetic evaluations. We
first define the concept of effective record
contribution (ERC) to quantify the effective
amount of information of phenotypic records.
Second, we outline our proposed framework
which leverages this concept. Finally, we
present scenarios  assessing the
framework using a Dutch dataset.

various

Effective amount of information

The concept of effective amount of
information  contributing to a  genetic
introduced in the 80s to
approximate reliabilities (REL) associated
with estimated breeding values (e.g., Wilmink
and Dommerholt, 1985; Robinson, 1986;
Misztal and Wiggans, 1988; Meyer, 1989).
The main goal of all these approaches is to

evaluation was

summarize all information of an individual in a
single value that is a diagonal element of a
diagonal matrix D such that the diagonal
elements of the inverse of (D + A''A) are
approximately equal to the prediction error
variances obtained from the inverse of the
absorbed coefficient matrix, (Z’MZ + A'p),
where Z is the incidence matrix relating
phenotypes to animals, M is the absorption
matrix including all fixed and random effects
other than the random additive genetic effect,
Al is the inverse of the pedigree relationship
matrix, and A is the ratio between the residual
variance and the additive genetic variance.
Several measures have been proposed for
summarizing the effective information, varying
by application context. For sire evaluations,
these measures focus on the records of progeny
of a sire, and are called "daughter equivalent”
(VanRaden and Wiggans, 1991), "effective
number of daughters" (Wilmink and
Dommerholt, 1985; Van Vleck, 1987), or even
"effective daughter contribution" (Fikse and
Banos, 2001). Similarly, for animal models,
the proposed measures focus on the records of
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the animals themselves and are called "record
equivalent" (VanRaden and Wiggans, 1991),
"effective number of records" (Misztal and

Wiggans, 1988) or ‘effective record
contribution" (Meyer, 1989; Pribyl et al.,
2013).

In line with VanRanden and Wiggans
(1991), and for our context of quantifying the
effective contribution of phenotypic records to
genetic evaluations, we define one ERC as the
amount of information contributed by a
standard animal to its genetic prediction. This
standard animal is defined as having one
record and an infinite number of contemporary
group mates. The total ERC for a standard
animal (ERC_total) can be computed for a
trait of interest using its REL, as follows:

ERC _total = (1-h?)/h? * REL/(1-REL),
with h? being the heritability of the trait of
interest.

Notably, ERC total is the sum of two
components: ERC due to own records
(ERC own) and ERC due to relationships
(ERC rela). ERC own represents the amount
of information contributed by the own records
of an animal, excluding information from
relatives. ERC own is influenced by factors
such as the number of records, the
contemporary group size, and the repeatability,
among others (Misztal and Wiggans, 1988;
VanRaden and Wiggans, 1991). In contrast,
ERC rela the
information contributed by relatives (through
the parents and progeny) to the genetic

represents amount  of

prediction of an animal.

From a phenotypic dataset, algorithms for
approximating REL and ERC total involve
accumulating information from an animal 's
performance records or those of its relatives,
and adjusting for finite contemporary group
sizes, and potentially accounting for other
fixed and random effects, such as random
permanent environment effects in case of
repeated records (Misztal and Wiggans, 1988;
1991;

VanRaden and Wiggans, Tier and

Meyer, 2004).



From REL, algorithms for approximating
ERC own and ERC rela involve reversing
REL or ERC total (Harris and Johnson, 2010;
Vandenplas and Gengler, 2012; Ben Zaabza et
al., 2022). Such algorithms are often used to
calculate appropriate weights for integrating
deregressed proofs in a genetic or genomic

evaluation (Harris and Johnson, 2010;
Vandenplas and  Gengler, 2012) or
approximating genomic reliabilities (Ben

Zaabza et al., 2022; Bermann et al., 2022).

Quantification of the effective contribution of
phenotypic records to genetic evaluations

The framework for quantifying the effective
contribution of phenotypic records to genetic
evaluations consists in a three-step approach:
(1) approximation of REL using a pedigree-
based evaluation and the model associated
with the phenotypic records; (2) estimation of
ERC_own using a reverse reliability algorithm;
and (3) calculation of the total effective
of phenotypic by
summing the ERC own of all phenotyped

contribution records

animals.

Step 1: Approximation of pedigree-based
reliabilities

The first step consists of approximating
pedigree-based REL for the trait of interest
using the provided phenotypic records, the
pedigree, and the associated model and
variance components. If the phenotypic
records are available for an indicator trait
correlated with the trait of interest, pedigree-
based REL for the trait of interest can be
approximated
between the indicator trait and the trait of
interest, and the heritability of the trait of
interest. For this study, pedigree-based REL
are approximated using the Tier and Meyer
(2004) algorithm, as implemented in the
software MiX99 (Lidauer et al., 2013) and
MiXBLUP (Vandenplas et al., 2022).

using genetic  correlations
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Step 2: Estimation of ERC due to own records
The second step involves estimating the
ERC own for animals with phenotypes, using
pedigree-based REL of the trait of interest
approximated in the first step. We assume
these REL are from a univariate animal model
including only the additive genetic and
residual effects, and with variance components
reflecting the heritability of the trait of interest.
The estimation of ERC own is performed
using a reverse reliability algorithm, which
aims to estimate ERC own for phenotyped
animals, independent of ERC due to
relationships (that is, contributions through the
parents and progeny). For this study,
ERC own for phenotyped animals are
estimated using the reliability
algorithm proposed by Ben Zaabza et al.
(2022) and based on Tier and Meyer (2004).

reverse

Step 3: Calculation of the total effective
contribution of phenotypic records

The final step involves calculating the total
effective contribution of phenotypic records to
a genetic evaluation for a trait of interest by
summing the ERC own associated with all
phenotyped animals. This measure allows for a
comprehensive understanding of the overall
impact of the phenotypic records on genetic
evaluations.

Data and software
Enteric methane emissions were recorded by
sniffers (WD-WUR version 1.0, Carltech BV)
installed in AMS on 62 commercial dairy
farms located throughout the Netherlands,
between March 2019 and April 2024. Pedigree
and other cow information were provided by
CRV (Arnhem, the Netherlands). For further
details on the data recording scheme and data
editing, see van Breukelen et al. (2024).

After editing, the dataset used in this study
comprises 187 219 records of weekly averaged
enteric methane emissions for 8§ 668 animals in
62 herds. The pedigree, extracted from the
with  phenotypes, spans

animals five



generations and includes a total of 31 471
animals.

The same model and variance components
as estimated by van Breukelen et al. (2024) are
used in this study. It is worth noting that the
model includes as random effects, additive

genetic, within-lactation permanent
environment, across-lactation ~ permanent
environment and residual effects. The

heritability is 0.18, and the repeatability is
0.47, respectively (van Breukelen et al., 2024).
The software MiXBLUP (Vandenplas et al.,
2022) was used for approximating pedigree-
based REL and for reversing REL to estimate
ERC own.

Description of the scenarios

Using the Dutch dataset with weekly enteric
methane emissions, the proposed framework is
investigated using four scenarios. The first
scenario simulates an initial submission of the
entire Dutch dataset (i.e., 187 219 records for 8
668 animals) to a database.

The second scenario simulates a subsequent
submission of a second dataset to a database.
In this scenario, the entire Dutch dataset is
submitted to a database in two subsets: 1) the
first subset includes 125 169 records up to
October 2023 for 8 034 animals, and 2) the
second subset includes 62 050 records from
October 2023 to April 2024, including 634
animals that are not present in the first subset.

The third scenario simulates a subsequent
submission of a dataset with additional records
for animals that already have some records in
the database. In this scenario, the entire Dutch
dataset is submitted to a database in two
subsets: 1) the first subset includes 125 484
records for all the 8 668 animals, with at most
20 records per animal, and 2) the second subset
includes the remaining 61 735 records. It is
worth noting that the subsets have a similar
number of records in the second and third
scenarios.

For the first three scenarios, the weekly
enteric methane emission trait is considered as
the trait of interest. In the fourth scenario, the
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weekly enteric methane emission trait is
considered as an indicator trait genetically
correlated to a hypothetical trait of interest
with a heritability of 0.20 and a genetic
correlation of 0.80. In this scenario, the
proposed framework is applied on the entire
Dutch dataset to estimate its effective
contribution to genetic evaluations for the
hypothetical trait of interest.

Results & Discussion

Scenario 1 — Entire Dutch dataset

Applying the first and second steps of the
framework on the entire Dutch dataset results
in ERC_own ranging from 0 to 2.7 ERCs per
animal with phenotypes, with an average of 1.5
ERCs (Table 1). First, ERC own equal to 0
indicate that certain animals and their
associated phenotypic records do not
contribute to a genetic evaluation at all. This
can be explained, for example, by animals
being part of contemporary groups that are too
small.

Second, these ERC own illustrate that the
number of phenotypic records, ranging from 1
to 80 records per animal, and averaging 21.6
ERCs (Table 1) does not linearly translate to
an effective contribution of a dataset to genetic
evaluations. This can be also observed in
Figure 1 showing that, beyond a certain
threshold (approximately 8 to 10 records),
ERC own no longer increases substantially
with an increase number of records, indicating
diminishing returns on investment in collecting
more records.

Table 1. Number of records, and effective record
contributions due to own records for the entire
Dutch dataset.

Min. Average Max. Total
Number of 1 21.6 80 187 219
records
ERC_own! 0.0 1.5 27 126714
ERC _total® 1.0 3.2 6.3  25724.0

'"ERC_own = Effective record contributions due to
own records.

'ERC total = Effective record contributions due to
own records and due to relationships.
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Figure 1. Effective record contributions due to own
records (ERC own) according to the number of
records per animal.

Applying the third step of the framework
on the entire Dutch dataset results in a total
effective contribution of phenotypic records to
a genetic evaluation for weekly methane
emissions equal to 12 671 ERCs (Table 1).
This sum of ERC own is substantially lower
than the number of records in the entire Dutch
dataset (i.e., 187 219 records; Table 1),
illustrating again that additional records do not
linearly translate into effective contribution to
genetic evaluation.

It is worth noting that ERC _own are lower
than ERC total because it include both
contributions due to own records and due to
relationships. Computed from the REL as
ERC total = (1-h?)/h?> * REL/(1-REL), the
ERC total range from 1 to 6.3 ERCs per
animal with phenotypes, with an average of 3.2
ERCs (Table 1). The additional ERCs are due
to relationships (ERC rela), depend on
contributions of relatives, and will therefore
vary with a new submission of phenotypic
records to the database.

Scenario 2 — Two subsequent submissions

For the second scenario, the entire Dutch
dataset is divided into two subsets, with the
first subset up to October 2023, and the second
subset from October 2023 until April 2024.
The first subset includes 8 034 animals and
125 169 records, and corresponds to a total
effective contribution of phenotypic records of
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10 870 ERCs, as estimated with the proposed
framework.

The second subset dataset includes the
remaining records of the entire Dutch dataset,
as well as 634 animals that were not included
in the first submission. Given that the entire
Dutch dataset comprises 12 671 ERCs, we can
estimate with the proposed framework that this
second subset corresponds to 1 801 ERCs,
calculated as the difference between the total
effective contribution of the entire Dutch
dataset (i.e., 12 671 ERCs) and the total
effective contribution of the first subset (i.e.,
10 870 ERCs). This effective contribution of
the second subset can be explained by the
additional records and also by the addition of
634 newly recorded animals.

Scenario 3 — Two submissions with no new
animals
The framework is further investigated by
dividing the entire Dutch dataset into two
submissions, such that no new animals with
phenotypes are added to the database. The first
subset comprises 125 484 records for 8 668
animals with at most 20 records per animal and
corresponds to a total effective contribution of
12 137 ERCs. Notably, this total effective
contribution is comparable to that of the entire
Dutch dataset, despite this first subset
representing only 67% of the entire dataset.
Given that the entire dataset comprises 12
671 ERCs, the second subset corresponds to
534 ERCs only, calculated as the difference
between the total effective contribution of the
entire dataset (i.e., 12 671 ERCs) and the total
effective contribution of the first subset (i.c.,
12 137 ERCs). These total ERCs illustrate that
this second subset will have a limited
contribution to a genetic evaluation that
already includes the first subset, even if it
includes 61 735 records.

Scenario 4 — A hypothetical trait of interest

For the fourth scenario, the weekly methane
emission trait is considered as an indicator trait
genetically correlated to a hypothetical trait of



interest with a heritability of 0.20 and a genetic
correlation of 0.80. Applying the proposed
framework on the entire Dutch dataset results
in a total effective contribution of the Dutch
phenotypic records to a genetic evaluation for
this hypothetical trait of interest of 3 287
ERCs. This sum of ERC own represents the
effective contributions that flow from the
indicator trait to the trait of interest through the
genetic correlation.

A flexible framework

The different scenarios demonstrate the
flexibility of the proposed framework to
quantify the effective contribution of

phenotypic records to genetic evaluations for a
trait of interest. Our scenarios involve
submission of datasets that include either
records for a trait of interest, or records for an
indicator trait.

Our framework can be easily extended to
datasets that include records both for the trait
of interest and for indicator traits. In such a
scenario, pedigree-based REL for the trait of
interest are approximated using phenotypic
records of all traits with the first step of the
proposed framework. Then, ERC own are
approximated for the trait of interest with the
second step by reversing REL of the trait of
interest assuming that they are approximated
from an univariate model. The obtained
ERC own for the trait of interest include
therefore ERC _own of the trait of interest, but
also ERC own of the indicator traits
transferred through genetic correlations.
Finally, the sum of all ERC_own of the trait of
interest represents the effective contribution of
all records of the trait of interest and of
indicator traits to a hypothetical univariate
genetic evaluation for the trait of interest.

Our framework can be also easily extended for
estimating the effective contribution of
phenotypic records to genetic evaluations of
relatives of the phenotyped animals, such as
selection candidates. By focusing on
ERC own of phenotyped animals, this study
illustrates  how  individual  phenotypic
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contributions can be aggregated to understand
their cumulative impact on their genetic
evaluations for a trait of interest. However, the
aggregate effective contribution obtained from
our framework does not reflect the effective
contribution or phenotypic records to genetic
evaluations of another group of animals, such
as selection candidates. It has been shown that
the accuracy of genomic prediction for
selection candidates depends on the
relationships among the reference animals and
on the relationships between the reference
animals and the selection candidates (Pszczola
et al., 2012). Such contributions can be easily
considered with our framework by estimating
ERC own for the selection candidates using
the phenotypic records of the reference
population with the second step of the
framework, and then by aggregating these
ERC own to estimate the effective
contribution of phenotypic records to genetic
of selection candidates. The
ERC own of a non-phenotyped selection

evasluations

candidate is 0. However, the second step will
estimate for selection candidates non-zero
ERC own that represent the effective
contribution of relatives’ phenotypic records to
their genetic evaluations, without considering
ERC rela among them.

Finally, future research could aim to adapt
the proposed framework for designing optimal
recording schemes when aiming to optimize
the accuracy of genetic evaluations. Such an
optimization framework could integrate prior
knowledge on the traits to be recorded (e.g.,
but
knowledge on environment, management (e.g.,
seasons and herds), and recording costs
(Banks, 2024). Future research could also aim
to extend the proposed framework to consider

heritability, repeatability), also prior

genomic relationships, instead of pedigree
relationships, in the first step of the
framework. Considering genomic relationships
will allow, for example, to estimate the
effective contribution of phenotypic records of
one breed to the genetic evaluation of another
breed. That is currently not possible with the



proposed framework because it is based on
pedigree information only.

Conclusions

This study presents a flexible and
comprehensive framework to quantify the
effective contribution of phenotypic records to
genetic evaluations using the concept of
effective record contribution. This method
relies on reversing reliabilities of estimated
breeding values for a trait of interest by
accounting for finite contemporary group
sizes, and potentially other fixed and random
effects, such as random environment
permanent effects, as well as genetic
correlations among the trait of interest and
indicator.

Acknowledgments

This work is part of the Global Methane
Genetics Initiative, funded by Bezos Earth
Fund and the Global Methane Hub. The use of
the HPC cluster has been made possible by the
RegioDeal Foodvalley (through  Shared
Research Facilities Wageningen UR).

References

Banks, R.G. 2024. Has genomic selection
fulfilled its promise?. CABI Reviews 19.
doi:10.1079/cabireviews.2024.0028.

Ben Zaabza, H., M. Taskinen, E.A.
Maéntysaari, T. Pitkénen, and G.P. Aamand.
2022. Breeding value reliabilities for
multiple-trait single-step genomic best
linear unbiased predictor. J. Dairy Sci.,
105:5221-5237. doi:10.3168/jds.2021-
21016.

Bermann, M., D. Lourenco, and 1. Misztal.
2022. Efficient  approximation  of
reliabilities for single-step genomic best
linear unbiased predictor models with the
Algorithm for Proven and Young. J. Anim.
Sci, 100:skab353. doi:10.1093/jas/skab353.

Bishop, S.C., and J.A. Woolliams. 2004.
Genetic approaches and technologies for
improving the sustainability of livestock
production. J. Sci. Food Agric., 84:911—
919. doi:10.1002/jsfa.1704.

van Breukelen, A.E., M.N. Aldridge, R.F.
Veerkamp, L. Koning, L.B. Sebek, and Y.
de Haas. 2023. Heritability and genetic
correlations between enteric methane
production and concentration recorded by
GreenFeed and sniffers on dairy cows. J.
Dairy Sci., 106:4121-4132.
doi:10.3168/jds.2022-22735.

van Breukelen, A.E., R.F. Veerkamp, Y. de
Haas, and M.N. Aldridge. 2024. Genetic
parameter estimates for methane emission
from breath during lactation and potential
inaccuracies in reliabilities assuming a
repeatability versus random regression
model. J. Dairy Sci., 107:5853-5868.
doi:10.3168/jds.2024-24285.

Fikse, W.F., and G. Banos. 2001. Weighting
factors of sire daughter information in
international genetic evaluations. J. Dairy
Sci., 84:1759-1767.

Gredler-Grandl, B., C.I.V. Manzanilla-Pech,
R. Banks, H. Montgomery, and R.F.
Veerkamp. 2024. Global Methane Genetics:
a global program to accelerate genetic
progress for reduced methane emission in
ruminants. Pages 163-163 in Book of
Abstracts of the 75th Annual Meeting of
the European Federation of Animal Science
The 75th EAAP Annual Meeting (2024):
Global quality: environment, animals, food.
EAAP.

Harris, B.L., and D.L. Johnson. 2010.
Genomic predictions for New Zealand
dairy bulls and integration with national
genetic evaluation. J. Dairy Sci., 93:1243—
1252.

Knapp, J.R., G.L. Laur, P.A. Vadas, W.P.
Weiss, and J.M. Tricarico. 2014. Invited
review: Enteric methane in dairy cattle
production: Quantifying the opportunities
and impact of reducing emissions. J. Dairy



Sci., 97:3231-3261. doi:10.3168/jds.2013-
7234,

Lidauer, M., K. Matilainen, E. Méntysaari, T.
Pitkdnen, M. Taskinen, and I. Strandén.
2013. MiX99. General program for solving
large mixed model equations with
preconditioned conjugate gradient method.
Release VII/2013 beta.

Manzanilla-Pech, C.I.V., P. Levendahl, D.M.
Gordo, G.F. Difford, J.E. Pryce, F.
Schenkel, S. Wegmann, F. Miglior, T.C.
Chud, P.J. Moate, S.R.O. Williams, C.M.
Richardson, P. Stothard, and J. Lassen.
2021.
emission and feed-efficient Holstein cows:
An international response. J. Dairy Sci.,
104:8983-9001. doi:10.3168/jds.2020-
19889.

Meyer, K. 1989. Approximate accuracy of

Breeding for reduced methane

genetic evaluation under an animal model.
Livest. Prod. Sci., 21:87-100.
do0i:10.1016/0301-6226(89)90041-9.

Misztal, 1., and G.R. Wiggans. 1988.
Approximation of prediction error variance
in large-scale animal models. J. Dairy Sci.,
71(Suppl. 2):27-32.

Ptibyl, J., P. Madsen, J. Bauer, J. Ptibylova,
M. Simeckova, L. Vostry, and L.
Zavadilova. 2013. Contribution of domestic

records, Interbull estimated

and single nucleotide

to the
single-step genomic evaluation of milk
production. J. Dairy Sci., 96:1865—-1873.

Pszczola, M., T. Strabel, H.A. Mulder, and
M.P.L. Calus. 2012. Reliability of direct
genomic values for animals with different
relationships within and to the reference

95:389-400.

production
breeding values,
polymorphism genetic markers

population. J. Dairy Sci.,
doi:10.3168/jds.2011-4338.

165

Robinson, G.K. 1986. Group Effects and
Computing Strategies for Models for
Estimating Breeding Values. J. Dairy Sci.,
69:3106-3111. doi:10.3168/jds.S0022-
0302(86)80774-3.

Tier, B., and K. Meyer. 2004. Approximative
Schitzung  der  Standardfehler  der
Kovarianzen zwischen additiv genetischen
Tiereffekten in  Mehrmerkmals- und
zufilligen Regressionsmodellen. J. Anim.
Breed. Genet., 121:77-89.
doi:10.1111/j.1439-0388.2003.00444 x.

Van Vleck, L.D. 1987. Contemporary Groups
for Genetic Evaluations. J. Dairy Sci.,
70:2456-2464. doi:10.3168/jds.S0022-
0302(87)80309-0.

Vandenplas, J., and N. Gengler. 2012.
Comparison and improvements of different
Bayesian procedures to integrate external
information into genetic evaluations. J.
Dairy Sci., 95:1513-1526.
doi:10.3168/jds.2011-4322.

Vandenplas, J., R. f. Veerkamp, M. p. 1. Calus,
M. h. Lidauer, I. Strandén, M. Taskinen, M.
Schrauf, and J. ten Napel. 2022. MiXBLUP
3.0 - software for large genomic
evaluations in animal breeding programs.
Wageningen Academic Publishers.

VanRaden, P.M., and G.R. Wiggans. 1991.
Derivation, calculation, and use of national
animal model information. J. Dairy Sci.,
74:2737-2746.

Wilmink, J.B.M., and J. Dommerholt. 1985.
Approximate Reliability of Best Linear
Unbiased Prediction in Models with and
Without Relationships. J. Dairy Sci.,
68:946-952. doi:10.3168/jds.s0022-
0302(85)80913-9.



Genomic prediction of methane emissions in Danish Holstein using

single step and multi-trait prediction models

H. Schneider'’, R.B. Stephansenj, M. Bjerringz, P. Lovendahl’, M.S. Lund', T.M. Villumsen'
!Center for Quantitative Genetics and Genomics, Aarhus University, C. F. Mollers Allé 3, 8000 Aarhus C,
Denmark
’Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
3Present address: SEGES Innovation, Agro Food Park 15, 8200 Aarhus N, Denmark
Corresponding author: H. Schneider, hesc@seges.dk

Abstract

Enteric methane emissions from ruminants are a major contributor to global greenhouse gas emissions
and pose a significant challenge to the sustainability of livestock production. To mitigate these
emissions, breeding strategies have been mentioned as a promising tool, but prediction accuracies of
methane emission traits are still limited by the size of datasets with records. Hence, using methane
concentrations (MeC) in Danish Holstein cows as target trait, this study evaluated the predictive
performance of pedigree-based BLUP (pBLUP) and single-step genomic BLUP (ssGBLUP) in
univariate and multi-trait models, the latter including milk production traits. Previously, both ssGBLUP
as well as multi-trait models have been shown to enhance prediction accuracies. The dataset included
1,744 primiparous (PP) and 2,989 multiparous (MP) cows from 15 Danish dairy farms, with over
600,000 daily records of MeC, fat yield (FY), and energy-corrected milk yield (ECM). Methane
concentrations were measured using sniffers, and milk production data was acquired from milking
robots and national milk recording data. At first, a pedigree-based variance component estimation
revealed heritabilities between 0.17 (SE=0.03) for MeC in PP and MP cows to 0.38 (SE=0.06) for ECM
in PP cows. Similarly, repeatabilities ranged from 0.32 (MeC, SE=0.01) to 0.81 (ECM, SE=0.01).
Genetic correlations between MeC and production traits were positive but unfavorable, i.e., in a range
from 0.15 (SE=0.13) between MeC and ECM in PP cows to 0.41 (SE=0.09) between MeC and ECM in
MP cows, indicating a genetic antagonism between reducing emissions and maintaining milk yield.
Prediction accuracies were generally higher for ssGBLUP compared to pPBLUP models (up to 61.90%
increase), and for MP cows compared to PP cows. Multi-trait models outperformed univariate models,
particularly when phenotypic data for FY and ECM were available in both the reference and validation
populations. The highest accuracy for MeC prediction in PP cows was 0.38 (ssGBLUP), while MP cows
reached up to 0.51, both for the multi-trait model including both, ECM and FY. While incorporating FY
and ECM improved MeC prediction, the unfavorable genetic correlations highlight the risk of
compromising milk production when selecting for reduced emissions. Therefore, future breeding
strategies should aim to expand methane phenotyping, develop methane traits independent of milk
production, and implement multi-trait selection indices that balance environmental and economic goals.
This study demonstrates the potential of multi-trait genomic prediction to enhance the genetic evaluation
of methane emissions and supports its integration into sustainable dairy cattle breeding programs.

Key words: methane concentrations, single-step genomic prediction, multi-trait genomic prediction,
predictor traits

Introduction times greater than that of carbon dioxide (IPCC,
Methane is a potent greenhouse gas (GHG) with 2024). At this, a significant proportion of
a global warming potential approximately 28 anthropogenic methane emissions originates
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from enteric fermentation in ruminants, where
microbial digestion of fiber in the rumen
produces methane as a by-product (Knapp et al.,
2014). Effective and sustainable mitigation
strategies have thereby become imperative,
given the fact that the European Union has
committed to reducing GHG emissions by 55%
by 2030 and achieving climate neutrality by
2050 (European Commission, 2019). Among
the various approaches to reduce enteric
methane emissions, such as feed additives and
improved management practices, genetic
selection offers a particularly promising long-
This is,
management-based strategies, genetic
improvement can lead to cumulative and

term solution. because unlike

permanent reductions in methane emissions
across generations (Knapp et al., 2014;
Manzanilla-Pech et al., 2022a). However, the
success of breeding programs targeting
methane emissions depends on the availability
of reliable phenotypic data for large populations
of genotyped animals. Recent advances in
phenotyping technologies have enabled the
development of non-invasive, high-throughput
methods for measuring methane emissions.
Here, the sniffer method has gained popularity
world-wide and measures methane
concentrations (MeC) in the breath of cattle
during routine milking or feeding (Garnsworthy
et al., 2019; Lassen and Difford, 2020). This
approach facilitates large-scale data collection
at relatively low cost and has been shown to
result in heritable phenotypes, with heritability
estimates of MeC around 0.14 (e.g.,
Manzanilla-Pech et al., 2020). Despite these
advances, accuracies of genomic prediction for
methane emissions that are sufficiently high to
enable genetic progress, remains limited,
primarily due to the relatively small datasets.
Different strategies to improve prediction
of genomic evaluations, e.g.,
simultaneously exploiting genotypic,
phenotypic and pedigree information, as in

accuracies

single step genomic prediction (Christensen and
Lund, 2010), or by applying indirect
information from correlated predictor traits, as
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in multi-trait prediction, have been proposed.
Multi-trait genomic prediction methods are
thereby exploiting genomic information from
predictor traits that are highly correlated with
the target trait and have earlier been shown to
outperform univariate prediction methods
(Calus and Veerkamp, 2011).

The objective of this study was to evaluate
the predictive ability of pPBLUP and ssGBLUP
as well as univariate and multi-trait models to
estimate genetic breeding values (GEBV) for
MeC. Fat yield (FY) and energy corrected milk
yield (ECM) were included as predictor traits in
multi-trait models, since they were previously
shown to be genetically correlated with
methane emissions (Lassen and Difford, 2019).
Moreover, these traits are directly recorded on
the large scale, as they are part of the national
milk recording scheme (Danish Cattle Database
(SEGES, Skejby, Denmark)). To account for
physiological differences between growing and
mature animals, presumably leading to a
different covariance structure between the

conducted
(PP)

traits, were

for

applied analyses

separately primiparous and

multiparous (MP) cows.

Materials and Methods

Data collection

The dataset used in this study comprised daily
records from 1,744 PP and 2,989 MP Danish
Holstein cows, housed on 15 commercial dairy
farms in Denmark. In total, 182,288
(PP) and 424,888 (MP) daily records were
available for MeC, ECM and FY, collected
between March 2021 and December 2024.
Additional
including pedigree, genotypic  data, days in
milk (DIM; 0-365 days), week in milk
(WIM), parity, and age at first calving (AFC),
was retrieved the Danish ~ Cattle
Database (SEGES Skejby,
Denmark). The pedigree was pruned using
the DMU trace software (Madsen, 2012) to
include only animals with records and their

animal-level information,

from
Innovation,

ancestors born after 1970, resulting in a final



pedigree of 47,383 animals. Genotypic data
were provided by Nordic Cattle
Evaluation (Skejby, Denmark). Most animals
were genotyped using the Illumina
BovineSNP50 BeadChip or imputed from
lower-density ~ panels.  Imputation

Genetic

was
performed by SEGES Innovation as part of
routine evaluations resulting in a total of 46,342
single nucleotide polymorphisms available for
the analysis. The majority, i.e. 97.31% of PP
cows were genotyped, whereas the genotyping
rate was lower for MP cows (73.00%).

Methane concentration measurements

Methane concentrations were recorded every
second during the cows’ visits to the automatic
milking system (AMS) using sniffers, i.e.,
nondispersive infrared sensors (Guardian NG,
Edinburgh Sensors, Livingston, UK) that were
installed in the AMS feed bins and had a
measurement range of 0—10 000 ppm for MeC.
Since the sniffers themselves did not record
animal identification numbers, which, however,
are required to extract the abovementioned
additional information about the cows from the
Danish Cattle Database,
approach (Milkevych et al., 2022) was applied
to link each measurement to the corresponding

a matching filter

cow. Next, we applied a method to correct for
background gas concentrations, head-lifting
and diurnal variation, as described in detail in
Levendahl et al. (2024). For each visit, the mean
MeC was calculated and then averaged across
all visits per day to calculate daily MeC records,
that are applied in this study.

Milk production traits
Daily milk yields (MY) were calculated from
AMS data by using all milkings within the

previous 96 hours, following ICAR
standards (ICAR, 2023). Moreover, milk
component data, i.e., fat percentage

(FPCT) and protein percentage (PPCT), from
monthly milk recordings were obtained from
the Danish Cattle Database and linearly
interpolated between two consecutive milk
component

recordings to  generate daily
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values in alignment with the daily methane
records. Next, daily FY and protein yield
(PY) were computed by multiplying MY with
FPCT and PPCT, respectively, in order to
calculatet ECM as ECM (kg) = 0.25 =
MY (kg) + 12.2 = FY (kg) + 7.7 = PY (kg),

using the formula from Sjaunja et al. (1991).

Variance components and GEBYV estimation
At first, variance components for MeC, ECM,
and FY were estimated using the AI-REML
algorithm  implemented in  the DMU
software (Version 6, Release 5.4; Madsen and
Jensen, 2014), thereby applying the following
linear mixed model
y=XB +Za+ Wpe + Ie.

Here, y is the vector of phenotypic
observations for MeC, ECM, or FY. The
vector f§ includes the overall mean and fixed
effects, i.e., the WIM, as well as the AFC for PP
cows (20-30 months), and parity 2™ to 8"
parity) for MP cows. Moreover, a combined
fixed effect of herd-year-season x AMS x
sniffer box (HYS x AMS x sniffer) was
included for MeC, while for ECM and FY,
only HYS was modeled as a fixed effect. The
corresponding incidence matrix that links the
trait records to the fixed effect was denoted with
X, and the terms a and pe are the random
additive genetic as well as the permanent
environmental effect with their corresponding
matrices Z and W. The residual was denoted
with e. It was assumed that these three terms
with
and

follow a  normal  distribution
a~ N(0,Ac?), pe ~ N(0,105,),
e ~N(0,Ic2), where A is the pedigree-based
relationship matrix and [ an identity matrix.
Conversely, the additive genetic, permanent
environmental and residual variance were
denoted with o2, 6, and 6Z. The heritability
was calculated as h* = 03/(05 + 05, + 03), and
the repeatability as t = (65 + 05.)/(05 + 05 +
02). Genetic and phenotypic correlations were
estimated from multi-trait analyses for MeC,
ECM, and FY.



Table 1 Overview over the different scenarios performed per method (pBLUP, ssGBLUP).

Information included in

Traits included in GEBV Type of Scenario —
.. . validation reference
estimation analysis name . .
population population
MeC Univariate 1 - MeC
2 FY
MeC-FY Bivariate zi MeC, FY
3 ECM
MeC-ECM Bivariate 32 MeC, ECM
. 4a ECM, FY
MeC-ECM-FY Trivariate m MeC, ECM, FY

GEBYV: genomic EBV, pBLUP: pedigree-based BLUP, ssGBLUP: single-step genomic BLUP, MeC: methane
concentrations, ECM: energy corrected milk, FY: fat yield

Next, different pBLUP and ssGBLUP
methods, divided into seven univariate and
multi-trait scenarios, were applied to estimate
GEBYV for MeC. An overview of the different
scenarios can be taken from Table 1.

Briefly, the basic scenario, i.e., scenario 1,
scenario where
phenotypes were only available for animals in

was a simple univariate
the reference population. Multi-trait scenarios
included FY, ECM, or both as predictor traits,
each with two sub-scenarios: one where
predictor trait phenotypes were available in
both reference and validation populations, and
one where they were restricted to the reference
population. All scenarios were applied
separately to PP and MP cows. GEBVs for MeC
were estimated using DMU, applying the same
fixed and random effects as in the variance
component estimation. For ssGBLUP, the
inverse of the H matrix was computed following
Aguilar et al. (2010) and Christensen and Lund
(2010):

H'= a4 ) 0

0 (w6 +(1—-w)dy)™"— Az
where G is the genomic relationship matrix
(VanRaden, 2008), computed using
the invgmatrix software (Su and Madsen,
2011), A, is the pedigree relationship matrix
0.81is the
weight assigned to the genomic information.

for genotyped animals, and ® =
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Cross-validation groups

A 10-fold cross-validation strategy was used to
assess the prediction accuracy of each scenario.
Validation groups were constructed by sire
using stratified random sampling to ensure
balanced representation of paternal half-sibs.
Sires were ranked by the number of genotyped
daughters with MeC records, and one sire from
each group of ten was randomly assigned to one
of the ten folds. For each fold, MeC phenotypes
were excluded from the validation group, and
GEBVs were predicted using the remaining
data as the reference population.

Accuracy calculation

Prediction accuracies were obtained following
the approach of Manzanilla-Pech et al. (2020).
At first, adjusted phenotypes for MeC were
computed as the sum of the estimated genetic
and permanent environmental effects from the
full dataset, providing a single phenotype per
animal. Then, accuracies for cross-validation
group were calculated as the correlation
between the adjusted phenotype and the GEBV
for MeC divided by the following formula
adapted from Mrode (2013) computed to
calculate the accuracy for repeated records.

Accuracy =
nh2
J1+(n-1t
Here, the correlation between the adjusted
phenotype and GEBYV is denoted with r. The
average amount of repeated records for each
animal, specified per cross-validation group, is



defined as n, and h? (t) is the heritability highest repeatability with 0.81 (SE=0.01), while

(repeatability) of MeC, taken from the variance MeC was found to have low repeatability in
component estimation (Table 2). Then, the both PP and MP cows, i.e., 0.32 (SE=0.01).
accuracy for each scenario was calculated as the Genetic  correlations between MeC and
average of all cross-validation groups, and production traits were moderate to weak and
corresponding standard errors were obtained by varied by parity. In MP cows, the genetic
dividing the standard deviation of accuracies correlation between MeC and ECM was 0.41
across cross-validation groups by the square (SE=0.09), and 0.37 (SE=0.09) between MeC
root of the number of validation groups, i.e., 10. and FY. In PP cows, these correlations were

lower and accompanied by larger standard
Results & Discussion errors: 0.15 (SE=0.13) for MeC and ECM,

and 0.18 (SE=0.13) for MeC and FY.
The estimation of variance components Importantly, these positive genetic correlations
revealed moderate heritability estimates for are considered unfavorable, as they suggest that
MeC, FY, and ECM. Specifically, the selection for increased milk production may
heritability for MeC was estimated at0.17 inadvertently lead to higher methane emissions.
(SE=0.03) in both PP and MP cows. In contrast, A similar structure has been reported in
ECM in PP cows exhibited the highest previous studies, including a genetic correlation
heritability at 0.38 (SE=0.06). These findings of 0.35 between MeC and ECM (Manzanilla-
are consistent with previously reported Pech et al, 2022b) and a correlation
estimates in the literature, such as heritabilities 0f 0.27 between GEBV for MeC and FY
ranging from 0.26 to 0.37 for ECM (Li et al., (Lopez-Paredes et al., 2020). A detailed
2018) and 0.14 for MeC (Manzanilla-Pech et al. summary of the estimated genetic parameters is
2020). Moreover, ECM in PP cows showed the provided in Table 2.

Table 2 Genetic parameters for methane concentrations (MeC), energy corrected milk (ECM) and fat yield (FY).
Shown are the heritabilities (h?), repeatabilities (t), and the genetic correlation (ry) with MeC together with the
corresponding standard errors in parentheses.

. Primiparous Multiparous
Trait . .
h? t 1, with MeC h? t 1, with MeC

MeC 0.17(0.03)  0.32(0.01) 0.17(0.02)  0.32(0.01)

ECM 0.38(0.06)  0.81(0.01)  0.15(0.13)  0.24(0.03)  0.74(0.01)  0.41 (0.09)

FY 0.31(0.06)  0.74(0.01)  0.18(0.13)  020(0.03)  0.65(0.01)  0.37(0.09)

Regarding the different prediction scenarios, multi-trait models, but only when phenotypic

accuracies were generally higher for ssGBLUP information on predictor traits was available for
than pBLUP models and for MP compared with the animals in the validation population. For PP
PP cows. For PP cows, the increase from cows, the highest accuracy of 0.38 was found
pBLUP to ssGBLUP was largest, i.e., 61.90% for the ssGBLUP scenarios 4a (SE=0.03), 4b
for the univariate scenario. Two scenarios and 2b (SE=0.05, respectively), whereas the
resulted in a decrease in accuracies between lowest accuracy was observed for the pBLUP
pBLUP and ssGBLUP, i.e., -4.55% for scenario scenario 1 (0.21, SE=0.04). In MP cows,
3a in MP cows and -3.58% for scenario 3b in prediction accuracies ranged from 0.31
PP cows (Table 3). However, the observed (SE=0.04) in pPBLUP  scenario 2bto a
difference was only small and might be owed to maximum of 0.51 (SE=0.03) in ssGBLUP
the generally rather small dataset. Moreover, we scenario 4a. A comprehensive overview of.

found an increase in accuracy from univariate to
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Table 3 Overview over the different pPBLUP and ssGBLUP scenarios’ accuracies (Acc), corresponding standard
errors (SE, in parentheses), and difference between pBLUP and ssGBLUP (in %).

Traits included in pBLUP ssGBLUP
GEBYV estimation ) PP MP PP MP
Scenario
Acc Acc Acc Difference to Acc Difference to
(SE) (SE) (SE) pBLUP (in%) (SE) pBLUP (in%)
0.21 0.35 0.34 61.90 0.43 22.86
MeC 1
(0.04) (0.02) (0.03) (0.03)
24 0.27 0.43 0.37 37.04 0.49 13.95
MeC-FY (0.03) (0.04) (0.03) (0.04)
% 0.28 0.31 0.38 35.71 0.42 35.48
(0.05) (0.04) (0.05) (0.03)
3a 0.24 0.44 0.36 50.00 0.42 -4.55
(0.03) (0.04) (0.03) (0.05)
MeC-ECM
3b 0.28 0.33 0.27 -3.58 0.41 24.24
(0.05) (0.04) (0.04) (0.04)
4a 0.28 0.44 0.38 35.71 0.51 15.91
0.03 0.04 0.03 0.03
MeC-ECM-FY ( ) ( ) ( ) ( )
ab 0.28 0.33 0.38 35.71 0.43 13.16
(0.05) (0.04) (0.05) (0.03)

GEBV: genomic EBV, pBLUP: pedigree-based BLUP, ssGBLUP: single-step genomic BLUP, MeC: methane
concentrations, ECM: energy corrected milk, FY: fat yield, PP: primiparous, MP: multiparous

prediction accuracies across all scenarios is
presented in Table 3

As anticipated based on previous results in
dairy cattle (Hayes and Goddard, 2008;
VanRaden et al., 2009), the accuracies of
GEBV using ssGBLUP were
consistently higher than those obtained using
pBLUP. This trend was observed across all

obtained

scenarios and parities. Furthermore, multi-trait
prediction scenarios yielded mostly higher
GEBV accuracies compared to the univariate
scenarios, which is in alignment with e.g.
Tsuruta et al. (2011) for linear type traits.
Notably, the
accuracy  was
phenotypic information for the predictor traits,
ECM and FY, was available in both the
reference and validation populations. This
observation is consistent with the results of

improvement in prediction
most pronounced when

Pszczola et al. (2013), who reported enhanced
prediction accuracy for dry matter intake when
information on predictor traits was included in
both populations. It is important to emphasize
that the gain in GEBV accuracy for the goal trait
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in multi-trait genomic prediction depends on the
extent of genetic correlations between the goal
and predictor traits. Additionally, as noted by
Jia and Jannink (2012), the relative heritability
of the goal trait compared to the predictor traits
also influences the extent of accuracy
improvement. Specifically, the benefit of multi-
trait prediction is more substantial when the
goal trait has a lower heritability, as the
contribution of genetically correlated traits
becomes more impactful. Interestingly, both PP
and MP cows exhibited increased prediction
accuracies when FY and ECM were included in
the genomic prediction models, despite the
relatively low and imprecise genetic
correlations between MeC and the predictor
traits in PP cows. This may be explained by the
larger difference in heritability between MeC
and the predictor traits in PP cows, which could
enhance the relative contribution of the
predictor traits to the accuracy of MeC
predictions.



Conclusions

In conclusion, using ECM and FY records can
improve accuracy of MeC breeding values,
especially for individuals without MeC records.
However, it is important to keep in mind that the
genetic correlations between MeC and both FY
and ECM are unfavorable, indicating that
selection for reduced methane emissions may
reduce genetic progress in milk production.
Since multi-trait prediction models are designed
to exploit, but not to disentangle genetic
correlations, selection based on these models
may lead to genetic gains in MeC at the expense
of economically important traits such as milk
yield. Hence, further efforts are urgently needed
to record methane emissions in more animals;
to develop methane emission traits that are
genetically independent from economically
important, correlated traits like FY or ECM; and
to design a multi-trait selection index including
all economically important.
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Abstract

Dairy cows contribute to the emission of methane (CH4), a strong greenhouse gas, into the
atmosphere. Reducing CH4 emissions from dairy cows will lower the impact of livestock on global
warming. Breeding could be an effective reduction method, and estimating breeding values was the
objective of this work. The CH4 emission of 11,595 dairy cows in 89 Dutch herds was measured with
sniffers in parts per million (ppm) of exhaled air. The CH4 emission of 397 dairy cows from 1 Dutch
herd was measured in grams per day (g/d) of exhaled air using GreenFeed. CH4 measurements took
place from 2019 to 2025 (sniffer) and from 2022 to 2025 (GreenFeed). All observations during a week
on a cow were averaged into week observations. There were 226,449 week observations for ppm and
11,824 week observations for g/d. Genetic parameters were estimated with ASReml 4.2 using an
animal multi-trait repeatability model. Heritabilities (h2) were 0.14, 0.14 and 0.19 for ppm and 0.34,
0.37 and 0.37 for g/d, for respectively parity 1, parity 2 and parity 3 and later (3+). Genetic
correlations between different parities for ppm were 0.74, 0.47 and 0.79, and for g/d 0.73, 0.38 and
0.69, between respectively 1 and 2, 1 and 3+, and 2 and 3+. An overall breeding value was calculated
for g/d based on traits in parity 1, 2 and 3+. By using a selection index, extra information was added to
the overall breeding value in g/d. Traits in the selection index were kg milk production, kg fat
production, feed intake and body weight with genetic correlations of respectively 0.39, 0.19, 0.20 and
0.09. The average CH4 emission of a dairy cow was 435 gram per day with a genetic standard
deviation of 36 grams per day. The heritability of the trait, the size of the genetic standard deviation,
and the fact that genetic correlations with health traits were estimated to be small, makes breeding an
effective and powerful tool to mitigate CH4 emissions from dairy cattle in the Netherlands and
Flanders. The overall breeding value for CH4 in grams per day is published in the Netherlands and
Flanders from April 2025 onwards.

Key words: methane, methane emissions, sustainable dairy breeding, dairy, genetics

Introduction and is therefore an effective measure against
climate change (Cottle et al., 2011; Pachauri et

In Europe, 10.8% of total greenhouse gas al., 2014).

(GHG) emissions is from agriculture (EEA, Around 85% of the CH4 coming from cows

2023). Methane (CH4) is the second most is formed by enteric fermentation in the rumen,

important GHG, with a warming effect that is and is emitted by breathing and belching. The

about 28 times more powerful than carbon other 15% of CH4 coming from cows is from

dioxide. CH4 has a half-life in the atmosphere manure storage and management.

of 12.4 years, and reducing CH4 production Breeding is one of the CH4 mitigation

leads directly to less GHG in the atmosphere strategies to reduce emissions from dairy cows.
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Selecting animals that emit less CH4 than
average as parents for the next generation,
leads to a future generation that emits less CH4
than the previous generation. To know which
animals have the lowest CH4 emissions,
phenotyping animals on their CH4 emissions is
necessary.

Phenotyping dairy cows on their CH4
emissions is  challenging, since those
techniques are often expensive and have low-
throughput. Recently developed air analyzers,
so-called ‘sniffers’, made it possible to
phenotype dairy cows on their methane
emission on a relatively large scale. Sniffers
measure the CH4 emission of cows in parts
CH4 per million of analyzed air. GreenFeeds
are another CH4 measurement system, and are
relatively high-throughput, although they can
measure less animals compared to a sniffer,
but with more accurate

GreenFeeds measure the CH4 emission of

measurements.
cows in grams CH4 per day.

Materials and Methods

Data

A total of 89 herds, located all over the
Netherlands, were selected to phenotype their
cows with sniffers (Carltech B.V., Maarheeze,
the Netherlands). The sniffers were located in
the milking robot (automatic milking system,
AMS), so cows were phenotyped during
milking. Each herd had only one sniffer
installed, so on herds with more than one
AMS, there was only one AMS equipped with
a sniffer. Because there were not enough
sniffers to phenotype on all herds at the same
time, sniffers rotated between herds. The first
herds started phenotyping in 2019, and by
2025, all herds had a phenotyping period of at
least two years.

The sniffer was not connected with the
AMS, so observations from the sniffer were
merged with AMS data afterwards to assign
the sniffer measurements to the correct cow,
based on date and time.
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Next to the 89 herds that phenotyped their
cows with sniffers, data was used from one
herd in the Netherlands that phenotyped their
cows with GreenFeeds (C-Lock Inc., Rapid
City, South Dakota, USA). Three GreenFeeds
were installed in this herd, and measurements
started in 2022.

There is in CH4

emissions. Cows emit more CH4 after eating,

diurnal  variation
and CH4 emissions are decreasing after a long
period without eating. The diurnal variation is
dependent on the management/ feeding
strategy, and is therefore herd specific.

All sniffer observations were corrected for
diurnal variation (van Breukelen et al, 2023).
In addition to correction for diurnal variation,
GreenFeed observations were also corrected
for GreenFeed unit since there were three units
on the farm where measurements took place.
The correction for diurnal variation and unit
was based on the estimated effects for # and
unit; according to formula 1:

1

Vijkimnop = M+ Zj(sin jO2m + cos jO2r) + unit;

=

+ year*season, + animal, + dim; + pary, +
aan + e, (1)

where yiumnop 1S the measurement of CH4
emission, j is the order of regression, and in
this analysis an order of 1 was used, 6 is a
decimal fraction of the time of measurement
during the day following a 24-h diurnal cycle,
unit; is the GreenFeed unit i within the herd,
year*season, is year and season p, animaly is
the kth animal, dim; is days in lactation /, par,
is the mth parity, afc, is age at first calving in
months # and e, is the residual error o.

The residual error was a random effect, the
diurnal variation was a covariable using a fifth
order polynomial, all other effects were fixed
effects. The estimated effects for diurnal
variation are shown in figure 1.



Diurnal variation in CH4 emissions (g/d)

50

Effect on Methane (g/d)
-50

-100

Half Hour

Figure 1. Diurnal variation in CH4 emissions (g/d)
on herd with GreenFeed measurements relative to 0
a.m.

All measurements on a cow during a week
were averaged into a week observation for
both sniffer and GreenFeed.

In April 2025, 457,036 week observations
for sniffer from 14,089 dairy cows on 89
different herds were available, and 11,889
week observations from the GreenFeed on 404
cows were available.

For the breeding value estimation, only
herdbook animals were allowed and the
minimum number of measurements in the
week observation was four for sniffer and three
for GreenFeed. After those selection criteria,
226,449 weekly sniffer observations from
11,595 cows with 1,380 different sires and
11,824 weekly GreenFeed observations from
397 cows with 154 different sires were
selected for the breeding value estimation.

Parameters

Parameters were estimated for parity 1, parity
2 and parity 3+ (parity 3 and higher) and were
based on 139,098 weekly sniffer observations
and 9,974 weekly GreenFeed observations.
The total number of cows was 7,175. The
distribution over the parities was 38,934,
33,097 and 67,067 for sniffer observations, and
was 5,450, 3,589 and 935 for GreenFeed
observations, for respectively parity 1, parity 2
and parity 3+. All cows were at least 87,5%
Holstein. Parameters were estimated using an
animal model, including a H?! pedigree-
genomic augmented inverse matrix (Aguilar et
al., 2010; Christensen & Lund, 2010).
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Model
The statistical
emissions was split up into a model for parity 1

model wused for methane

and parity 2 and a model for parity 3+. The
model for parity 1 and parity 2 is given in
formula 2:

Y Lijimnopr = HY'S; + DIM; + AACk + HET,, +
REC, + INB, + A, + PME; + Rest;jimnopr 2)

The model for parity 3+ is given in formula

3:

Y 2iikimnopr = HYS; + DIM; + PARx + HET,, +

REC, + INB, + Ap + PME, + ReStijklmnopr (3)

In which:

Y1 observation on methane for cows in
parity 1 and parity 2;

Y2 observation on methane for cows in
parity 3+;

HYS herd x year x season i (for sniffer
observations) or farm x year x month i
(for GreenFeed observations);

DIM days in lactation j;

AAC age at calving in months £;

PAR parity number £;
HET
REC
INB
A additive genetic effect of animal p;
PME permanent environmental effect /;

Rest

heterosis effect m;
recombination effect #;
inbreeding effect o;

residual term r» of that which is not
explained by Y lijimnop and Y 2iikimnop.

The effects A, PME and Rest were random,
the effects HET, REC and INB were
covariables, the other effects were fixed.

Correlations with other traits

Genetic correlations between the methane
traits and traits in the Dutch/ Flemish total
merit index were estimated using the MACE
procedure. The MACE procedure can be used
to estimate genetic correlations between
deregressed sire estimated breeding values
(EBVs) of different traits (Larroque and
Ducrocq, 1999; Schaeffer, 1994). The initial



function of the MACE procedure was to
evaluate bulls for one trait across countries by
Interbull (Interbull Centre, 2017).

The genetic correlations were estimated for
both the overall breeding value for CH4 ppm
and CH4 g/d. The breeding values for the
methane traits were estimated using a single
step approach, and only Holstein bulls with a
reliability of at least 40% were used to
estimate genetic correlations.

Results & Discussion

Model effects

Figures 2 to 4 show the effects of lactation
stage, age at calving and parity number on
methane emissions for gpd. These effects
resulted from the model solutions.
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Figure 2. Effect of lactation stage in weeks on
methane emissions in grams per day for parity 1,
parity 2 and parity 3+. Solutions are standardized
with week 10 within each lactation.
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Figure 3. Trendline of solutions for effect of age at
calving in months on methane emissions in grams
per day for parity 1.
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Figure 4. Effect of parity number on methane
emissions in grams per day.

For lactation stage, the difference between
the top of the graph in mid-lactation and the
bottom of the graph in early and late lactation
stage is about 30 grams per day. The estimates
per week are relative to week 10.

Heifers calving at an older age have higher
methane emissions. The effect of age at
calving is about 15 grams per day difference
between animals calving at a young and those
calving at an old age. The effects are relative
to a calving age of 27 months.

For parity number, animals in parity three,
four, five and six have higher methane
emissions compared to the older cows in later
parities. The difference is about 10 grams per
day. The effects in the figure are relative to
parity 3.

Genetic parameters

Genetic parameters were estimated for weekly
CH4 emissions in ppm measured with sniffers
(CH4 ppm) and weekly CH4 emissions in
grams per day measured with GreenFeeds
(CH4 g/d) for parity 1, parity 2 and parity 3+.
Table 1 shows the heritabilities, repeatabilities
and genetic standard deviations of the methane
traits. Table 2 presents the genetic correlation
between parities for the methane traits.



Table 1. Heritabilities (h2), repeatabilities (12), and
genetic standard deviation (c,) for methane traits in
parity 1 (par.1), parity 2 (par.2), and parity 3+

(par.3).

Trait h? r? Ca
CH4 ppm par.1 0.14 049 21.1
CH4 ppm par.2 0.14 055 233
CH4 ppm par.3 0.19 0.55 283
CH4 g/d par.1 034 0.60 432
CH4 g/d par.2 0.37 0.60 504
CH4 g/d par.3 0.37 0.60 504

The heritabilities in table 1 shows that CH4
emissions have a moderate heritability, with
heritabilities between 0.14 and 0.19 for weekly
measurements with sniffers and heritabilities
0.34 and 037 for
measurements with  GreenFeeds.

between weekly
Higher
heritabilities for CH4 emissions measured with
GreenFeeds are expected since measurements
of GreenFeeds are of a higher quality.

The measurements for CH4 ppm are re-
scaled and converted to a mean of 0, what
makes that the standard deviations given in
table 1 cannot directly be related to the
measurements in ppm.

The genetic standard deviations of CH4 g/d
in table 1 are based on the real observations.
These are different from the genetic standard
deviation of EBV CH4 g/d on an absolute
scale, as that one is taken into account the
reliability of the EBVs.

Table 2. Genetic correlations for methane traits
between parity 1 and 2 (par.1-2), parity 2 and 3+
(par.2-3), and parity 1 and 3+ (par.1-3).

genetic correlations

trait par.1-2 par.2-3  par.1-3
CH4 ppm 0.74 0.79 0.47
CH4 g/d 0.73 0.69 0.38

The genetic correlations in table 2 between
parity 1 and parity 2 and between parity 2 and
parity 3+ are considered as moderate to strong
genetic correlations with values in the range
0.69 —0.79.

Between parity 1 and parity 3+, the genetic
correlations were lower and considered as
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moderate with a value of 0.47 for CH4 ppm
and 0.38 for CH4 g/d. This lower correlation
can be expected based on the estimated
correlations between the other parities.

The genetic correlation between CH4 ppm
and CH4 g/d was not estimated in this
research, since the number of cows and
observations was relatively small for CH4 g/d
and there were no cows with observations on
both CH4 ppm and CH4 g/d. This genetic
correlation was already estimated for the
Dutch population Holstein cows, based on a
dataset with more CH4 g/d observations
compared to this research, at 0.76 (van

2023). This
used in the
variance/covariance matrix between CH4 ppm
and CH4 g/d for all combinations of parities.

Breukelen et al., genetic

correlation  was genetic

Overall breeding values

Breeding values were estimated for both CH4
ppm and CH4 g/d for parity 1, parity 2, and
parity 3+. An overall breeding value was
calculated for both traits based on the EBV in
parity 1, parity 2, and parity 3 with a weight of
respectively 0.423, 0.288, and 0.227.

Correlation with other traits

The genetic correlations with the total merit
index and the underlying traits of this index are
presented in Table 3.

Table 3. Genetic correlations for overall methane
traits with production, health, and conformation
traits. (EBVs for methane traits: higher EBV is
lower methane emission)

trait

CH4 ppm CH4 g/d

NVI (total merit index) -0.00 -0.06
milk production -0.08 -0.39
fat production -0.28 -0.19
protein production -0.01 -0.18
longevity 0.12 0.03
udder conformation -0.08 -0.01
feet & legs 0.02 0.04
fertility index 0.00 0.04
udder health index 0.05 -0.07
claw health 0.01 0.07



-0.11
-0.03

feed intake -0.20

body weight -0.09

Higher breeding values for methane reflect
lower CH4 emissions, since lowering the CH4
emissions is desirable. Therefore, the genetic
correlation with production is negative,
meaning that a higher breeding value for
production corresponds to a lower breeding
value for methane. Animals that are more
productive, will on average emit more CH4.

The correlations of CH4 g/d with the other
traits are somewhat larger than the correlations
of CH4 ppm with the other traits. This is
expected given the fact that the GreenFeed is
able to measure CH4 emissions more precisely
compared to the sniffer.

All the
correlation between CH4 g/d and milk
production can be considered as moderate. The

correlations are small, only

largest genetic correlations for CH4 g/d are
found with milk production (-0.39), fat
production (-0.19), protein production (-0.18),
feed intake (-0.20), and body weight (-0,09).
The correlations with health and conformation
traits are small and very close to zero, meaning
that it is possible to breed for less CH4
emissions without affecting the health and
conformation of the animals.

Selection index

Because the number of phenotyped animals is
relatively small compared to other traits, the
reliability of the EBVs is rather low. To
increase this reliability, indicators traits are
used in a selection index.

The methane trait used in the selection
index is CH4 g/d because the unit of this trait
makes it possible to calculate the genetic
progress, reduction of CH4 emissions, as a
quantity. This will also be the trait that is
published to farmers and bull-owners. CH4 g/d
does still contain information about CH4 ppm
by using the genetic covariance between both
traits.

Next to CH4 g/d, the other traits in the
selection index are milk production, fat
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production, feed intake, and body weight.
These traits have the largest correlations with
methane, and that is also expected from a
biological point of view.

Table 4 presents the genetic standard
deviations and heritabilities of the traits in the
selection index and the genetic correlations
between them. The correlations between the
traits are all estimated based on bull breeding
values. The genetic standard deviations are
based on the EBVs, with for relative EBVs a
fixed genetic standard deviation of 4.5.

Table 4. Genetic standard deviations of EBV (o,)
and heritabilities  (diagonal) and  genetic
correlations (below diagonal) of the traits in the
selection index.

E
it s 5 F &8 32
CH4 g/d (-) 4.5 0.56

milk production (kg) 745 -0.39 0.58

fat production (kg) 28 -0.19 0.50 0.57

feed intake (kg) 1.37 -0.20 0.56 0.67 0.20

body weight (-) 4.5 -0.09 0.05 0.15 041 0.60

The heritability for CH4 g/d, 0.56, is based
on the heritability for the overall trait, which
takes into account that there are multiple
measurements on CH4 emissions, in multiple
parities.

Daughter proven bulls will not profit much
from the selection index. The reliability of
their breeding value for CH4 g/d will,
depending on the number of phenotyped
daughters, increase with 0 to 3% by using the
correlation structure with the other traits in the
selection index.

Genotyped animals without progeny
information on CH4 emission will increase
their EBV with 5 to 10%, depending on their
reliabilities for the traits in the selection index.



Publication

The breeding value that is published by CRV
is overall CH4 g/d after the selection index.
This is a relative breeding value with mean of
100, based on animals born in 2020, and a
genetic standard deviation of 4.0 (assuming a
reliability of 80%).

The mean CH4 emission for Dutch and
Flemish Holstein cows is 435 grams per day
(van Breukelen et al., 2023), with a genetic
standard deviation of 36 grams per day. This
genetic standard deviation is on the scale of
relative breeding values and is standardized to
80% reliability, so 4 points breeding values is
equal to 36 grams per day. The true genetic
standard deviations are given in table 1.

Mating an average cow (EBV 100) with a
bull with an EBV of 104 for CH4 g/d will, on
average, result in offspring with EBV 102,
which corresponds to 18 grams less CH4
emissions per day.

The average reliability for daughter proven
bulls is 46.5%, with reliabilities up to 83%.
Number of daughters is in the range of 1 — 576.
The average reliability for genomic bulls is
32.2%, with reliabilities up to 43%. These
reliabilities will increase as more animals are
phenotyped in the coming years.

EBVs will be published for bulls with at
least one phenotyped daughter, and for
genotyped bulls if the bull-owners give CRV
permission to do so. The EBV should have a
reliability of at least 25%. If not, a parent
average is calculated and published when the
reliability of the overall EBV before selection
index is at least 10%.

Cow EBVs are published for all cows with
phenotypic information and all cows with
genotypic information. If not, parent averages
are calculated and published if the reliability of
the EBV after selection index is at least 10%.

EBVs will only be estimated and published
for Holstein Friesian (HF) cows, as there is
only phenotypic data available from HF cows.
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Conclusions

CH4 emissions in dairy cows can be measured
large-scale. More than 14,000 dairy cows were
phenotyped with sniffers in the period 2019-
2025 on 89 Dutch herds, and more than 400
dairy cows were phenotyped with GreenFeeds
in the period 2022-2025 on one Dutch herd.

CH4 emissions of dairy cows is a heritable
trait. CH4 ppm has a heritability of
respectively 0.14, 0.14 and 0.19, while CH4
g/d has a heritability of respectively 0.34, 0.37
and 0.37, for parity 1, parity 2, and parity 3+.

The EBV that is published is overall CH4
g/d. A mean EBV, 100, corresponds to a CH4
emission of 435 grams per day. The genetic
standard deviation is 4 points and corresponds
to 36 grams per day. Lower CH4 emissions are
desirable, so EBVs above 100 reflects animals
with below average daily CH4 emissions.
Mating a cow with EBV 100 with a bull with
EBYV 104 results, on average, in offspring with
EBV 102. The CH4 emission of the offspring
will be, on average, 18 grams per day lower
than her dam.

More productive animals tend to have a
somewhat higher CH4 emission. So, animals
with high EBVs for production tend to have
lower EBVs for CH4 emission on average.
However, genetic correlations with production
are small to moderate (-0.39, -0.19, and -0.18
for respectively milk, fat, and protein),
indicating that there is still enough variation
between animals that makes it possible to
select animals that are productive with lower
CH4 emissions. Also higher feed intake and
more body weight are related to somewhat
higher CH4 emissions. So, animals with higher
EBVs for feed intake and bodyweight tend to
have lower EBVs for CH4 emission. Genetic
correlations on EBVs are -0.20 and -0.09 for
respectively feed intake and body weight.

Genetic correlations with health, longevity,
and conformation traits are estimated to be
small. So breeding on lowering CH4 emissions
from dairy cows will not affect the health,
longevity, and conformation of the animals.



The reliabilities for bulls are ranging from
25 to 83%, depending on their pedigree,
daughter information, and genomic
information. The average reliability is 46.5%
for daughter proven bulls and 32.2% for
genomic bulls. Reliabilities will increase when
more cows are phenotyped.

Estimating breeding values CH4

emissions made sustainable dairy breeding

for

possible in the Netherlands and Flanders.
Farmers can breed for dairy cows which emit
less CH4 without compromising on production
and health.
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Abstract

For several years, dairy cattle breeding in the Walloon Region of Belgium has increasingly focused on
sustainability, including strategies for reducing methane emissions. Genetic selection provides a viable
long-term approach to mitigating methane emissions while maintaining economic viability. The
current study aimed to present a single-step genomic evaluation framework for methane efficiency
(ME) based on predicted methane (PCH4) derived from milk mid-infrared (MIR) spectra and its
integration into the existing genomic evaluation system for Holstein dairy cattle. The study
incorporated data from 285 530 first-parity, 224 643 second-parity, and 160 226 third-parity Holstein
cows across 1 520 herds. Genomic information from 9 631 animals, including 1 823 bulls, was
integrated using a single-step GBLUP approach with a three-trait model (PCH4 across three parities).
The predictive accuracy of the genomic evaluation framework was validated using a set of 2 038
youngest genotyped animals. Approximate genetic correlations (AGC) were calculated between PCH4
and 37 traits included in the Walloon breeding goal. Three methane efficiency (ME) indices were
evaluated: relative ME based on production (RMEP), relative ME based on functionality (RMEF), and
relative ME based on a global economic index (RMEG). The results demonstrated that the mean daily
PCH4 ranged from 324 to 367 g/day, with mean daily heritability estimates between 0.20 and 0.23 for
the first three lactations. The genomic prediction accuracy for PCH4-GEBV was 0.83. The AGC
between PCH4 and the 37 traits ranged from -0.16 (milk yield) to 0.53 (fat percentage), highlighting
the importance of balancing methane reduction with economic performance. Among the three ME
indices, RMEG exhibited the most favorable balance, supporting its integration into genomic
evaluations. Bulls with higher ME indices produced progeny with lower methane emissions,
demonstrating the potential for genetic selection to contribute to sustainability goals. In light of these
findings, we propose that INTERBULL considers methane for international genetic evaluations as
many countries start to generate breeding values. These and other MACE breeding values would allow
us to generate ME indices locally. Further discussions should focus on integrating reducing methane
into breeding programs while maintaining productivity and functionality traits, as well as exploring
strategies to incorporate direct methane measurements. Alternative thinking and use of tools like
desired gain index will be required, but most important will be better knowledge about economic value
of methane and its genetic relationship to other traits of interest. These initiatives will support
sustainable dairy breeding strategies, aligning environmental and economic objectives for the future.

Key words: methane index, mid-infrared spectra, genetic correlation, single-step random regression
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Introduction

Reducing methane emissions from dairy cattle
is a critical component of sustainable livestock
production. In the Walloon Region of Belgium,
breeding  programs  have  increasingly
prioritized environmental sustainability
alongside productivity. Genetic selection offers

a long-term, cumulative solution to mitigate

methane emissions without compromising

economic performance.

Genomic  evaluations  for  methane
emissions faces three major challenges in a
breeding context:

e Availability of adequate phenotypic data
representing methane emissions.

e Development of an adapted genomic
evaluation system.

e Reporting methane EBV to breeders in a
way that allows to mitigate methane
emissions while maintaining breeding for
increased economic performances.

Therefore, the objective of this document was
to report the latest on how the Walloon Region
is overcoming these challenges in the
development of a genomic evaluation system
for methane efficiency in Walloon Holstein
cattle towards its proceeding
implementation. It will report complementary
elements to submitted peer reviewed papers.

current

Materials and Methods

Used Data:

Phenotypic, pedigree and genomic data were
acquired in collaboration with Elevéo (Aw¢é
groupe, Ciney, Belgium).

Methane Phenotypes:
Direct measurements of methane using
respiration chambers, which are widely

regarded as the gold standard, are costly, labor-
intensive, and constrained by logistical
challenges. Garnsworthy et al. (2019)
compared chambers and various other direct
methane measurement methods, noting that

183

while each had its and
limitations, all face significant barriers to
large-scale implementation. Breath

sampling during milking and feeding (i.e.,

own strengths

really

sniffers) was considered the one able to
generate highest throughput but still needing
high levels of maintenance of the installations
that have to be distributed in many commercial
farms. In contrast, mid-infrared spectrometry
(MIR) is already used routinely in milk
recording for phenotyping fat, protein and
other milk components. Any novel predictions
can be easily added as they exploit this
existing infrastructure. Therefore, this enables
low-cost, high-throughput phenotyping for
CHa emissions, crucial for large-scale breeding
programs. In order to differentiate from direct
methane emission measurement MIR predicted
methane emission will be called PCH4 (g/d).
Milk samples were collected between 2007
and 2023 during the official milk recording of
Walloon Region of Belgium. The milk samples
analysed by MIR spectrometry
(commercial instruments from FOSS) to
generate MIR spectra. The milk spectra were
standardized as described by Grelet et al.
(2015). The development of MIR based PCH4
is an ongoing process. In this study the best
equation developed by Vanlierde et al. (2021)
with coefficient of determination (R?),
standard error, and root mean square error
(RMSE) of cross-validation of 0.68, 57 g/d,
and 58 g/d, respectively. The PCH4 records
were extracted for Holstein cows divided into

Wwere

3 traits according to parity: PCH41 for the first,
PCH42 for the second, and PCH43 for the
third parity. Records on DIM lower than
5 d and over 365 d were eliminated. The PCH4
records were limited to 100 to 800 g/d. In total,
methane data (PCH4, g/d) on 285 530 first-
parity (1920 130 test-day records), 224 643
second-parity (1 516 843 test-day records), and
160 226  third-parity (1 072 725 test-day
records) Holstein cows distributed in 1520
herds in the Walloon region of Belgium were
used. On average, 6.72, 6.75, and 6.70 test-day
records were available per cow per parity.



Pedigree Data:

The cleaned pedigree from the Walloon
genetic evaluation was used. Genetic groups
were defined as in the evaluations by group of
birth years, origin (Europe vs. USA) and sex.
The pedigree used consisted of 439214
animals, including 13 834 bulls.

Genomic Data:

Genomic data of 30 554 SNPs was available
for 9 631 animals, including 1 823 bulls (either
directly phenotyped or represented in the
analysed pedigree) from the routine genetic
evaluation system of Holstein cattle in the
Walloon region of Belgium. After applying all
quality control measures, non-mapped SNP,
SNP located on sexual chromosomes, SNP
with Mendelian conflicts, and those with minor
allele frequency less than 5% were excluded.
Finally, data of 28 513 SNPs located on 29
chromosomes were used.

Genomic Evaluation System:

A random regression test-day model (RR-
TDM) was implemented, using the existing
model for milk, fat, and protein yields as
reference. As the used phenotype PCH4 is
available at each test-day for each milk-
recorded cow in the Walloon Region by direct
substitution of milk, fat, protein by PCH4 as
the target trait compatibility with established
post-evaluation procedures was maintained,
particularly for the estimation of reliability
(REL). The model was applied jointly for first,
second, and third lactations, treating each
parity as a distinct trait.

Variance Component Estimation

Due to the large size of the dataset, variance
components were estimated using a subset-
based approach. Six random subsets were
generated by sampling 10% of herds with
replacement. Each subset analyzed
independently, with corresponding pedigree
data extracted to include an average of 45 343

was

animals per subset. Variance components were
estimated using the Expectation-Maximization
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Restricted Maximum Likelihood (EM-REML)
algorithm. The estimates for each
component were obtained by averaging the
results across the six subsets. Heritability was

final

calculated daily across the lactation period and
subsequently averaged. Genetic, permanent
environmental, and herd-year variances were
derived from the covariance matrices, while
residual variances were modeled as trait-
specific.

Genomic Evaluation and GEBV Computation
The RRTDM was solved as a ssGBLUP Model
integrating pedigree relationship and genomic
relationship matrix using an iterative on-data
preconditioned conjugate gradient solver,
enabling allowing efficient computation of
genomic estimated breeding values (GEBV).
Daily genetic random regression solutions
standard 305-day
lactation period for each of the three lactations
to derive GEBVs.

were averaged over a

Genomic Reliability (GREL) Estimation

Initial reliability estimates were computed
using pedigree-based REL, following the same
single-trait procedure used for traditional
production traits. These REL values were then
transformed into genomic reliability (GREL)
using the methodology described by Gao et al.
(2023) and Ben Zaabza et al. (2022). This
transformation replaced the pedigree-based
relationship matrix (A™') with the genomic
relationship matrix (H™') for genotyped
animals. allowing for improved accuracy and
the propagation of genomic data to non-
genotyped animals.

Integrating Methane in a Breeding Program:
There are several options to consider methane
in a breeding program. Achieving a full
integration in the breeding goal is currently
limited by missing economic values—except
in Denmark. A desired gain approach has also
been considered, though it poses difficulties in
optimization. We opted for a temporary
solution, where animals would be ranked for



methane emissions while keeping productivity,
functionality, or economic outcomes constant
while maintaining breeding for increased
economic performances. This approach leads
to a residual-based efficiency trait, which can
also be interpreted as correcting methane

emissions for those specific performance levels.

In this context, we tested three approaches:

1. Relative to production traits, leading to a
Residual Methane Efficiency Production
(RMEP) index;

2. Relative to functional traits, summarized
in the Walloon V€F sub-index, leading to
Residual Methane Efficiency Functional
(RMEF);

3. Relative to all traits, using the Walloon
VEG global index, leading to Residual
Methane Efficiency Global (RMEG).

Higher values of RMEP, RMEF, and
RMEG indicate more efficient animals.
Therefore, these indices were expressed
relative to all cows born in 2020 with records,
standardized to have a mean of 100 and a
standard deviation of 10.

Needed genetic parameters were estimated
using 1,020 bulls, each meeting the following
criteria: a minimum of 30 daughters
phenotyped for PCH4, a reliability (REL or
GREL) of at least 0.50 for PCH4 but also
across all other 37 investigated traits or indices
evaluated in our routine. Approximate genetic
correlations were estimated based on birth year
trend adjusted GEBV of the selected bulls
using the procedure proposed by Blanchard et
al. (1983).

Evaluating the Impact of Each Index:
The impact of the use of the RMEP, RMEF,
and RMEG indexes was evaluated by plotting
the PCH4 averages by daughter groups.

Comparing to other Genetic Evaluations:
Some other countries have started to produce
GEBYV for methane emissions based on breath
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measurements. However, public access to this
information remains limited. We are reporting
here only for two countries, one relying on
sniffers and GreenFeed systems (Country A)
and one using sniffers (Country B). Even if the
available data was limited, and a few bulls
have GEBV were reliable enough for
meaningful comparisons. Despite this, this
small study allowed them to compare our
GEBYV that are only milk composition based.

Results & Discussion

Descriptive Statistics and Genetic Parameters
Lactation curves of PCH4 for the first 3 parties
are presented in Figure 1-A. The average daily
PCH4 in the first parity was lower than in the
second and third parities, ranging from 324 to
367 g/d. Estimated heritability (h?) of PCH4
throughout lactation for the first three parities
is presented in Figure 1-B. The results show
that h? varies over lactation, peaking around
DIM 200. The mean (SD) h? estimates for
daily PCH4 were 0.23 (0.05), 0.21 (0.05), and
0.20 (0.05) in the first, second, and third parity,
respectively. Figure 1-C presents the genetic
correlations between lactations,
across the whole lactation. For a major part of
the lactations the observed genetic correlations
were very high, close to 1.
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Figure 1. (A) Lactation curves for methane
emissions (PCH4) in first (blue), second (red), and
third (green) parity, (B) Heritability of PCH4 across
lactation for each parity, and (C) genetic correlation
across parities across the lactation.
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Figure 2. Distribution of average methane emissions (PCH4) for the 1020 daughter groups, sires sorted
according to their relative GEBV, the consistency of the impact of selection being reported through R? values for

RMEP, RMEF and RMEG.

When comparing the impact of selection
base on the distribution of daughter groups for
the different indexes (Figure 2), the RMEG
showed the strongest impact.

For Country A, 382 of their published sires

were in common to our 1020 animals. Most of
these bulls were born in NLD (105), USA
(103), CAN (57), DEU (46), ITA (23) and
FRA (21). As illustrated in Figure 3, many of
these bulls had low to very low reliabilities.
This illustrates a common issue in methane
phenotyping based on breath measurements,
the scarcity of data.
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Figure 3. Distribution of reliability (REL) of
common sires from Country A
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Figure 4. Visualization of the Blanchard et al.
(1983) adjusted rank correlation based on common
sires from Country A.

Figure 4 illustrates the rank correlations we
observed with this population, based on
different levels of foreign REL. Please note
that we expressed PCH4 in its natural scale
from low to high methane emissions, all other
indexes, local or foreign, are defined from least
to most desirable. After adjusting for the
direction of correlation (SE) for the sires over
REL of 0.50 were 0.41(0.19), 0.40 (0.21), 0.40
(0.19) and 0.17 (0.23) for PCH4, RMEP,
RMEF and RMEG. These moderately positive



values when comparing to a pure emission
foreign EBV are encouraging that even totally
different phenotyping strategies generate EBV
that show the same tendency.

Figures 5 and 6 show similar figures but for
Country B. However, only 14 sires were in
common therefore the presented results should
be considered in a very cautious manner.
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Figure 5. Distribution of reliability (REL) of

common sires from Country B

As shown in Figure 5 the mean level of REL in
the common bulls is extremely low.
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Figure 6. Visualization of the Blanchard et al.
(1983) adjusted rank correlation based on common
sires from Country B.

After adjusting for the direction of correlation
(SE) for the sires over REL of 0.10 were
0.71(0.64), 0.27 (0.66), 0.61 (0.67) and 0.46
(0.68) for PCH4, RMEP, RMEF and RMEG
(Figure 6). Even if these results are pure
indication of a common trend, this trend is
again positive, showing rather similar results.
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Conclusions

We presented in this paper companion material
shown at the INTERBULL Meeting 2025 to
more detailed publications illustrating the
novel genomic evaluation system for Methane
Efficiency in Walloon Holstein cattle. Despite
having a completely different approach to
other countries which use sniffer and / or
Greenfeed technology we estimated EBV that
showed similar positive direction in terms of
rank correlations.

We tested several residual-based efficiency
indexes that could also be interpreted as
correcting methane emissions for those
specific performance as an interim solution for
the integration of methane in breeding
programs. The one relative to all currently
selected traits, using the Walloon VEG global
index, showed the most promising results and
it the easiest to communicate. Indeed, it allows
breeders to decide after selection the best
animal based on VEG which one can be
considered the most efficient.
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Abstract

Reducing methane emissions from dairy cows has been a key area of research in recent decades. This
study aimed to identify genomic regions associated with methane intensity (Mel) in Chinese Holstein
cattle. Mel phenotype was either predicted by mid-infrared spectra (MIRS, R2cv= 0.66) or directly
measured by sniffer. Data were collected from eight commercial farms in Beijing between 2017-2020
and 2024. A weighted single-step genome-wide association study (WssGWAS) was performed based
on 1,120 genotypes, 4,995 phenotypic records, and pedigree of 10 911 individuals.

The mean Mel was 7.67 £+ 1.52 (g/kg milk yield). The estimated heritability of Mel was 0.15+0.04, and
the repeatability was 0.42+0.02. Eleven 10-SNP windows harboring 19 protein encoding genes
explained 2.17% of the genomic variance, with genomic regions on BTAI, 5, 8, 15, 19, 20, 24, 26, and
27. Five of the windows were also associated with milk production or milk component traits, while one
window contained the QTL linked to metabolic body weight. The region explaining the highest
proportion of variance (0.34%) was located on BTA15, which included five protein encoding genes.
Among them, SCN4B and MPZL3 are proposed as candidate genes.

In total, the preliminary results show that Mel is a heritable, repeatable, and polygenic trait in Chinese
Holstein population. The identified Mel-related genomic regions provide an insight for breeding dairy
cows with lower methane emissions.

Key words: dairy cattle, genetic parameter, WssGWAS, methane intensity

Introduction difficult to measure, and only few methods can

costly generate large amount of data, such as
Methane emissions from ruminants are a sniffer and milk mid-infrared spectra (MIRS).
significant contributor to greenhouse gas With sniffer, individual cows can be recorded
emissions  in  agriculture. In  China, on a wide scale and at a reasonable cost
approximately 24% of total methane emissions (Garnsworthy et al., 2019). Using sniffers
come from the production of livestock (Wang et placed in the feed bin of automatic milking
al., 2024). In the past 30 years, the contribution systems (AMS), this method measures the
of dairy cattle has notably increased, rising from concentrations of gases. The present study also
1.9% to 7% of the total emissions (Wang et al., employed MIRS to predict the methane
2024). Reducing methane emissions from cows intensity of dairy cows. It is simple, high-
is an issue that requires worldwide attention. throughput, and shows a great deal of
As we all know, animal breeding is a helpful potential for predicting methane emissions
method to reach this goal. To apply breeding from dairy animals. The ability of MIRS to
techniques, large-scale recording of individual predict methane emissions has been widely
enteric methane emissions is essential (de Haas reported (Coppa et al., 2022, Dehareng et al.,
et al., 2017). However, methane emission is 2012).
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Among the various methane emission traits,
the definition if methane intensity (Mel) is
methane output relative to output such as milk
production (de Haas et al., 2017). Specifically,
Mel measures the amount of methane (CHa4)
emitted per kilogram of output product, such as
milk (g/kg), and is strongly influenced by both
the milk production levels and the energy
required for this process.

The main objective of this study is to 1)
measure sniffer-based methane intensity and
predict methane intensity based on MIRS in
Chinese Holstein population; 2) estimate
genetic parameters for methane intensity and, 3)
identify candidate genomic regions for methane
intensity.

Materials and Methods

Data and Sampling

Animals

Data were collected from July 2024 to
November 2024 at two commercial farms in
Beijing. A total of 208 cows were recorded
during experiment.

Breath Sampling
All cows had access to an AMS (DeLaval

International AB, Tumba, Sweden) for milking.
Each barn was equipped with two AMS, but
only one of them was installed with a sniffer.
Cows were free to enter either AMS, with or
without the sniffer (Guardian NG/Gascard,
Edinburgh Instruments Ltd, Livingston, UK).
Data segments with no record of a cow
entering the AMS within 5 minutes before or
after were classified as ambient values. The
ambient values recorded on a given day were
averaged and used as the daily ambient mean.
While cows were inside the AMS, their heads
could approach the gas collector positioned in
the feed bin, as shown in Figure 1. Records of
cows spending less than 2 minutes inside the
AMS were excluded from the analysis. The raw
data were preprocessed in four steps: (1)
matching data from the AMS and sniffer to

match a sniffer measurement with an
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identification number; (2) removing the first
minute of each record; (3) using the ‘findpeaks’
function in R v4.3.2 to identify belching peaks.
At least one peak must be found (exceed the
mean ambient CHa concentration for the day by
200 ppm); (4) deleting consecutive when CO:
concentration dropped below the lower 25%

collector

Figure 1. Gas collector in the feed bin

quartile of the mean CO: concentration for more
than 10 seconds, indicating that the cow’s head
had left.

After processing, ambient-corrected gas
concentrations for CHs and CO: were obtained
by subtracting the ambient mean from the
measured concentrations. The mean values of
the gas concentrations and their ratio were
calculated for each measurement. Subsequently,
a three-step data quality control process was
employed: (1) daily averages for the ambient-
corrected gas concentrations were calculated
after collecting all records for a single day. A
twofold standard deviation quality control was
used to eliminate records with excessively high
or low gas contents; (2) records for
measurement days with fewer than 10 cows
were removed to avoid potential machine errors;
(3) records with concentration ratios greater
than the mean + standard deviation of the
concentration ratios for the same cow were
removed.

Milk Yield, Body Weight, and Feed

For milk yield, the 3-day average was used as
the daily milk yield (DMY). Milk composition
data, including milk fat percentage, lactose
percentage, and protein percentage, were
collected from DHI. The closest DHI record to
the methane measurement date (within 15 days)

was selected for subsequent calculation.



Records with milk fat >7% or <2%, milk
protein >5% or <2%, and daily milk yield <5 kg
or >100 kg were excluded. Additionally,
records with days in milk (DIM) <15 or >300
were removed. Energy-corrected milk was
calculated using the formula from Sjaunja et al.
(1990).

Body weight was expressed as weekly

averages after a two-step quality control process:

(1) cows whose body weight exceeded the
upper or lower limits were removed (first parity:
450-750 kg; 2+ parities: 500-900 kg); (2)
measurements within a single parity that
differed by >50 kg from the mean were
removed. After this, weekly averages of body
weight were calculated. Since first-parity cows
have greater weight variability, their weekly
body weight average only represented the
current week's weight. In contrast, body weight
data from cows of later parities can represent
the averages of the current, previous, and next
week’s body weight.

Feed data was provided by farm. Descriptive
statistics of individual information, daily milk
yield, body weight and diet crude fat for dairy
cows is shown in Table 1.

Table 1: Descriptive statistics of individual
information, daily milk yield, body weight and
diet crude fat in Chinese Holstein cattle.

Trait mean SD min max
parity 2.46 1.33 1 7
days in milk 132.81 77.81 15 299
daily milk
yield (kg) 42.85 9.03 17.14  66.48
bodyweight  ¢9y 53 g781 481 888
(kg)
diet crude fat

(%DM) 5.58 0.42 491 6.42

Methane Intensity

Following the ‘Model 2’ developed by Kjeldsen
et al. (2024), CO: production (CO:P) was
calculated. Subsequently, the methane and CO-
concentrations from each measurement were
averaged. Since the gases originated from the
breath, their
multiplied by their molecular weights before

same concentrations were
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calculating the ratio to obtain the mass ratio
(CH4:CO2). Methane
calculated as:

intensity (Mel) was

CH4:CO; X COLP

Mel = DMY

Given the variability in methane emissions
at different times of day, a single measurement
cannot accurately reflect an animal’s true
methane emission level. Therefore, weekly
averages were used as the methane emission
traits in this study. Weekly averages were
calculated by retaining records from weeks with
more than 4 measurements. Finally, 758 weekly
averages were retained for subsequent analyses.

MIRS Prediction

Most of the milk spectral data were collected by
the farm for DHI testing. In addition to the DHI
sample collections, we also collected milk
samples between two DHI samplings. All milk
samples were analyzed using the
spectrometer (Banteley), which generates a

same

spectrum of 899 wavelength transmittance
values in the mid-infrared (MIR) region. The
following spectral regions were retained for
analysis, including 968.1-1 577.5 cm™, 1
731.8-1762.6 cm™, 1 781.9-1 808.9 cm™, and
2 831.0-2 966.0 cm™ followed Grelet et al.
(2021), leaving a total of 215 wavenumbers.
The spectra were preprocessed using Savitzky-
Golay second-order derivatives, with spectral
quality control conducted using pcout
(Filzmoser et al., 2008). In addition to the MIRS
data, individual information (parity, DIM, and
DMY) were also included in the dataset for
prediction. The data were processed to match a
total of 227 records from 120 cows, which
formed the training set (Dataset A).

Prediction Equation Development

Partial least squares regression (PLSR) was
used to develop the prediction equation. Under
10-fold cross-validation, the model achieved an
R? (coefficient of determination) of 0.66 and a
Root mean square error of prediction (RMSE)
of 1.25.



Then the prediction formula was employed
in the dataset B (21 772 records with MIRS and
individual information) to obtain phenotypes
for a larger population. Dataset A was contained
by dataset B. To ensure the usability of the
prediction equations, the Mahalanobis distance
(Mahalanobis, 1936) was calculated for MIRS
in dataset B. Only data with Mahalanobis
distance within that of dataset A were retained.
Predictive equations for methane emission traits
were built based on the training set and applied
to dataset B for quality control of predicted
methane emission phenotypes. When the
records within the same individual parity was
less than 3, all values for that parity were
deleted. Subsequently, the coefficient of
variation (CV) was calculated for each cow in

single parity. Records with a CV greater than 25%

were removed, leaving a total of 4 995 records
from 1 187 cows.

Pedigree and Genotype

The pedigree of the cows with phenotypic
records were traced back as many generations
as possible. The final pedigree included 10 911
COWS.

A total of 1,120 cows were genotyped using
the [llumina 150K Bovine Bead Chip (Illumina
Inc.). Genomic quality control was performed
using PLINK v1.90 software (Purcell et al.,
2007). Single nucleotide polymorphisms (SNPs)
with minor allele frequencies lower than 0.1 or
those with extreme deviations from Hardy—
Weinberg equilibrium (P-value < 107°) were
excluded. After quality control, a total of 109
619 SNPs were used in the study.

WssGWAS
The (co)variance components were estimated
using AI-REML and EM-REML procedure
implemented in the AIREMLF90 package from
BLUPF90 (Misztal et al., 2014).

The variance components and genetic
parameters was estimated based on the model:

y=Xp+X,p+Za+ Wpe+e

y was the vectors of methane intensity. f was
the vector of fixed effects for colostrum quality
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traits, including farm-season-year of calving
(45 levels), parity (3 levels); ¢ was the
regression coefficient of days in milk. a was
the vector of random additive genetic effects,
following a~N (0, Ho2); pe was the permanent
environment effect following pe~N (0, Jzz,e); e
was the vectors of random residual effects
following e~N(0,162); X1, X5, Z , and W,
were the corresponding incidence matrices; H
was the matrix of additive genetic relationships
constructed from the pedigree and genotype; 2
was the additive genetic variance; / was an
identity matrix, apze was the permanent
environment variance, and o2 was the residual
variance. The inverse of the A matrix (H ') was
calculated as follows:

Bt =4+ [0 0

0 G '—Az
where A™1 is the inverse of the pedigree-based
relationship matrix; Ay is the A~ for the
genotyped animals; and G ~lis the inverse of the
genomic relationship matrix. The G matrix was
calculated according to(VanRaden, 2008):

o ZDZ'

231 P(1-P)

where Z is the matrix of genotypes adjusted for
allele frequencies (0, 1, or 2 for aa, Aa, and AA,
respectively); D is a diagonal matrix of weights
for SNP variances (initially D = 1); M is the
number of SNPs, and P; is the minor allele
frequency of the i” SNP.

The estimates of SNP effects and weights for
the WssGWAS analyses (four iterations) for
colostrum quality traits were obtained
according to (Wang et al., 2014). The weight for

[a;]
each SNP was calculated as: d; = 1.125%4@)
(VanRaden, 2008), where i is the i” SNP. The
percentage of the total addictive genetic
variance explained by the " region was
calculated as:

Var(a; Var(332, Za;
@D 1000 = Y121 5%)
a Oq

where a; is genetic value of the i region that

consists of contiguous 10 SNPs, ¢ is the total

additive genetic variance, Z; is a vector of gene

content of the j SNP for all individuals, and ;

is the marker effect of the jth SNP within the i

region.

X 100%




Non-overlapping
windows that explained 0.15% or more of the
total additive genetic variance were considered

contiguous  genomic

to be associated with the trait. Candidate genes
were identified by examining genomic
windows based on the ARS-UCDI1.2. The
biological functions of these genes, Gene
Ontology (GO) terms (Ashburner et al., 2000)
enrichment were identified using the R package
“BiomaRt” (Durinck et al, 2009) and
“clusterProfiler” (Wu et al, 2021). The
genomic regions were compared to cattle QTL
database (Hu et al., 2022).

Results & Discussion

As presented in Table 2, the average Mel was
7.22 £ 1.99 g/kg in the current population. The
predicted methane intensity closely followed
the observed values, with a predicted Mel of
7.67 £ 1.52 g/kg.

Table 2: Descriptive statistics of methane intensity
(Mel) and predicted methane intensity (PMel) in
Chinese Holstein cattle.

Trait mean SD min max
Mel

7.22 1.99 3.11 15.04
(g/kg)
PMel

7.67 1.52 3.14 13.62
(g/kg)

Different Mel values have been recorded in
earlier studies. In a mixed cow herd, Mel ranged
from 3.0 to 36.0 g/kg, with an average of 13.5 +
3.92 g/kg reported by Niu et al. (2018).
Similarly, in a population of French Holstein
cattle, Fresco et al. (2023) reported a Mel of
11.7 + 2.6 g/kg. In this study, Mel was lower
than those found in these studies, but it was
closer to 8.61 + 1.15 g/kg in dairy cattle
reported by Lassen and Levendahl's (2016).

PMel heritability
according to our research. The results indicate
that the heritability estimate for PMel was
0.15+0.04 and the repeatability was 0.42+0.02.
In previous study, Mel or PMel heritability
ranged from 0.04 to 0.35. In a population of 1
091 Brown Bittante

showed  moderate

Swiss COWS, and
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Cecchinato et al. (2020) observed a heritability
of 0.12 £ 0.06, which is similar to our study.
While Fresco et al. (2024) reported a heritability
of 0.35 + 0.04 using a very large dataset (n =
167 514), Lassen and Levendahl (2016)
estimated a heritability of 0.21 + 0.06 using a
population of 3 121 cows. Higher heritability
values than those obtained in our study were
found in both of these studies. However, our
result was lower such as the heritability of 0.04
+ 0.03 estimated by Manzanilla-Pech et al.
(2022) using of 1 962 Danish Holstein cows.
The breed, gas measurement techniques and
equipment, and raising conditions of dairy cows
are some of the variables that affect the
heritability estimate of Mel or PMel in various
populations. The heritability estimates in the
current population are in the medium range
when compared to the findings of other studies.

In this study, we identified eleven genomic
regions on Bos taurus autosome (BTA) 1, 5, 8,
15, 19, 20, 24, 26, and 27 that explained more
than 0.15% of the genetic variance as Figure 2.
These regions, which harbor a total of 19
protein-coding genes, accounted for 2.17% of
The window that
explained the highest genetic variance was
located on BTA15, which explained 0.34% of
additive genetic variance and contained five
genes, including JAML, SCN2B, TMPRSS4,
SCN4B, and MPZL3. Two of these genes were
enriched by the significant GO terms, which
were SCN2B and MPZL3.

the genomic variance.

e e e

Figure 2. Proportion of the total additive genetic
variance of 10-SNP genomic windows based on the
weighted single-step genome association study for
predicted methane intensity. Red points represent the
windows exceed the 0.15% threshold of the total
additive genetic variance.



Table 3: Quantitative trait loci reported for Bos
taurus associated with genomic regions that
explained more than 0.15% of the additive genetic
variance for predicted Methane intensity

Regions Exp 1a}ned Associated
Chr genetic .

(Mb) . o trait

variance, %

1 20.03-20.29  0.20 MP
5 44.96-4520  0.15 MF, MY
24 47.10-47.32  0.16 MF
24 56.77-56.93  0.22 MP, BW
26 19.74-20.23  0.19 MF, MP

MP: milk protein, MF: milk fat, MY: milk yield, BW:
body weight

Additionally, we referred to the Cattle QTL
database to examine potential QTL overlaps
with genomic regions that explained more than
0.15% of the additive genetic variance. Table 3
shows five genomic regions containing QTLs
associated with milk protein, milk fat, milk
yield, and body weight. the
relationships of Mel with these traits still needs
to be further explored.

However,

Conclusions

Methane
predicted by milk mid-infrared spectra. It is a
moderate heritable, polygenic trait in Chinese
Holstein population. these are
relatively preliminary findings, and further

intensity can be measured and

However,
research is still necessary.
Acknowledgments

Thanks for Project of National Key R&D
Program of China (2022YFE0115700), and all
the support from Team 459 in China
Agricultural University, Aarhus University,
Beijing Sunlon Livestock.

194

References

Ashburner, M., C. A. Ball, J. A. Blake, D.
Botstein, H. Butler, J. M. Cherry, A. P.
Davis, K. Dolinski, S. S. Dwight, J. T.
Eppig, M. A. Harris, D. P. Hill, L. Issel-
Tarver, A. Kasarskis, S. Lewis, J. C.
Matese, J. E. Richardson, M. Ringwald, G.
M. Rubin, and G. Sherlock. 2000. Gene
ontology: tool for the unification of
biology. The Gene Ontology Consortium.
Nat Genet. 25(1), 25-29.
https://doi.org/10.1038/75556

Bittante, G. and A. And Cecchinato. 2020.
Heritability estimates of enteric methane
emissions predicted from fatty acid
profiles, and their relationships with milk
composition, cheese-yield and body size
and condition. ftal J Anim Sci 19(1), 114-
126.

Coppa, M., A. Vanlierde, M. Bouchon, J.
Jurquet, M. Musati, F. Dehareng, and C.
Martin. 2022. Methodological guidelines:
Cow milk mid-infrared spectra to predict
reference enteric methane data collected
by an automated head-chamber system. J
Dairy  Sci. 105(11),  9271-928s5.
https://doi.org/10.3168/jds.2022-21890

de Haas, Y., M. Pszczola, H. Soyeurt, E. Wall,
and J. Lassen. 2017. Invited review:
Phenotypes to  genetically
greenhouse gas emissions in dairying. J
Dairy Sci. 100(2),855-870.
https://doi.org/10.3168/jds.2016-11246

Dehareng, F., C. Delfosse, E. Froidmont, H.

C. Martin, N. Gengler, A.

and P. Dardenne. 2012.

Potential use of milk mid-infrared spectra

reduce

Soyeurt,
Vanlierde,

to predict individual methane emission of
dairy cows. Animal. 6(10).\,1694-1701.
https://doi.org/10.1017/s17517311120004
56



https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/taurine-cattle
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/taurine-cattle
https://doi.org/10.3168/jds.2022-21890
https://doi.org/10.1017/s1751731112000456
https://doi.org/10.1017/s1751731112000456

Durinck, S., P. T. Spellman, E. Birney, and W.
Huber. 2009. Mapping identifiers for the
integration of genomic datasets with the
R/Bioconductor package biomaRt. Nat
Protoc. 4(8), 1184-1191.
https://doi.org/10.1038/nprot.2009.97

Filzmoser, P. and R. Maronna and M. Werner.
2008. Outlier identification in high
dimensions. Comput Stat Data an 52(3),
1694-1711.
https://doi.org/10.1016/j.csda.2007.05.01
8

Fresco, S., D. Boichard, S. Fritz, R. Lefebvre, S.
Barbey, M. Gaborit, and P. Martin. 2023.
Comparison production,
intensity, and yield throughout lactation in
Holstein cows. J Dairy Sci. 106(6), 4147-
4157.  https://doi.org/10.3168/jds.2022-
22855

Fresco, S., D. Boichard, S. Fritz, and P. Martin.
2024. Genetic parameters for methane

of methane

production, intensity, and yield predicted
from milk  mid-infrared spectra
throughout lactation in Holstein dairy
cows. J Dairy Sci. 107(12),11311-11323.
https://doi.org/10.3168/jds.2024-25231
Garnsworthy, P. C., G. F. Difford, M. J. Bell, A.
R. Bayat, P. Huhtanen, B. Kuhla, J. Lassen,
N. Peiren, M. Pszczola, D. Sorg, M. Visker,
and T. Yan. 2019. Comparison of Methods
to Measure Methane for Use in Genetic
Animals

9(10).

Evaluation of Dairy Cattle.
(Basel).
https://doi.org/10.3390/ani9100837

Grelet, C., P. Dardenne, H. Soyeurt, J. A.
Fernandez, A. Vanlierde, F. Stevens, N.
Gengler, and F. Dehareng. 2021. Large-
scale phenotyping in dairy sector using
milk MIR spectra: Key factors affecting
the quality of predictions. Methods. 186,
97-111.
https://doi.org/10.1016/j.ymeth.2020.07.0
12

Hu, Z. L. and C. A. Park and J. M. Reecy. 2022.
Bringing the Animal QTLdb and CorrDB
into the future: meeting new challenges
and providing updated services. Nucleic

195

Acids  Res  50(D1). D956-D961.
https://doi.org/10.1093/nar/gkab1116
Kjeldsen, M. H., M. Johansen, M. R. Weisbjerg,
A. Hellwing, A. Bannink, S. Colombini, L.
Crompton, J. Dijkstra, M. Eugeéne, A.
Guinguina, A. N. Hristov, P. Huhtanen, A.
Jonker, M. Kreuzer, B. Kuhla, C. Martin,
P. J. Moate, P. Niu, N. Peiren, C. Reynolds,
S. Williams, and P. Lund. 2024. Predicting
CO(2) production of lactating dairy cows
from animal, dietary, and production traits
using an international dataset. J Dairy Sci.
107(9), 6771-6784.
https://doi.org/10.3168/jds.2023-24414

Lassen, J. and P. Levendahl. 2016. Heritability
estimates for enteric methane emissions
from Holstein cattle measured using
noninvasive methods. J Dairy Sci. 99(3),
1959-1967.
https://doi.org/10.3168/jds.2015-10012

Mahalanobis, P. C. 1936. On the generalized
distance in statistics. National Institute of
Science of India. 49-55.

Manzanilla-Pech, C. 1. V., G. F. Difford, G.
Sahana, H. Romé, P. Levendahl, and J.
Lassen. 2022. Genome-wide association

study for methane emission traits in
Danish Holstein cattle. J Dairy Sci. 105(2),
1357-1368.
https://doi.org/10.3168/jds.2021-20410

Misztal, I.; Tsuruta, S.; Lourenco, D.; Masuda,
Y.; Aguilar, 1.; Legarra, A.; Vitezica, Z.
2014. Manual for BLUPF90 family of
programs.

Niu, M., E. Kebreab, A. N. Hristov, J. Oh, C.
Arndt, A. Bannink, A. R. Bayat, A. F.
Brito, T. Boland, D. Casper, L. A.
Crompton, J. Dijkstra, M. A. Eugéne, P. C.
Garnsworthy, M. N. Haque, A. Hellwing,
P. Huhtanen, M. Kreuzer, B. Kuhla, P.
Lund, J. Madsen, C. Martin, S. C.
McClelland, M. McGee, P. J. Moate, S.
Muetzel, C. Mufioz, P. O'Kiely, N. Peiren,
C. K. Reynolds, A. Schwarm, K. J.
Shingfield, T. M. Storlien, M. R.
Weisbjerg, D. R. Yaifiez-Ruiz, and Z. Yu.
2018. Prediction of enteric methane



https://doi.org/10.3168/jds.2015-10012
https://doi.org/10.3168/jds.2021-20410

production, yield, and intensity in dairy
cattle using an intercontinental database.
Global Change Biol. 24(8), 3368-33809.
https://doi.org/10.1111/gcb.14094

Purcell, S., B. Neale, K. Todd-Brown, L.
Thomas, M. A. Ferreira, D. Bender, J.
Maller, P. Sklar, P. 1. de Bakker, M. J. Daly,
and P. C. Sham. 2007. PLINK: a tool set
for whole-genome association and
population-based linkage analyses. Am J
Hum Genet. 81(3), 559-575.
https://doi.org/10.1086/519795

Sjaunja, L. O., L. Baevre, L. Junkkarinen, and J.
Pedersen. 1990. A Nordic proposal for an
energy corrected milk (ECM) formula.
27Th Session of [CRPMA:156-157.

VanRaden, P. M. 2008. Efficient methods to
compute genomic predictions. J Dairy Sci.
91(11), 4414-4423.
https://doi.org/10.3168/jds.2007-0980

Wang, H., I. Misztal, I. Aguilar, A. Legarra, R.
L. Fernando, Z. Vitezica, R. Okimoto, T.
Wing, R. Hawken, and W. M. Muir. 2014.
Genome-wide mapping
including phenotypes relatives
without genotypes in a single-step
(ssGWAS) for 6-week body weight in
broiler chickens. Front Genet. 5, 134.
https://doi.org/10.3389/fgene.2014.00134

association
from

196

Wang, Y., Z. Zhu, H. Dong, X. Zhang, S. Wang,
and B. Gu. 2024. Mitigation potential of
methane emissions in China's livestock
sector can reach one-third by 2030 at low
cost. Nat Food. 5(7), 603-614.
https://doi.org/10.1038/s43016-024-
01010-0

Wu, T., E. Hu, S. Xu, M. Chen, P. Guo, Z. Dai,
T. Feng, L. Zhou, W. Tang, L. Zhan, X. Fu,
S. Liu, X. Bo, and G. Yu. 2021.
clusterProfiler 4.0: A universal enrichment

tool for interpreting omics data. Innovation

(Camb). 2(3), 100141.
https://doi.org/10.1016/j.xinn.2021.10014
1


https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.1038/s43016-024-01010-0
https://doi.org/10.1038/s43016-024-01010-0
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1016/j.xinn.2021.100141

Genetic evaluation for longevity of dairy cattle in the Netherlands

M.L. van Pelt' and G. de Jong'
! Cooperation CRV, Animal Evaluation Unit, PO Box 454, 6800 AL Arnhem, the Netherlands
Corresponding author: mathijs.van.pelt@crv4all.com

Abstract

Longevity of dairy cattle is an important trait from an economic and welfare perspective, as well as from
a societal and government perspective. For a farmer it is beneficial to keep older cows, as it will reduce
costs of rearing. The Dutch government aims to reduce the environmental impact of livestock, and for
that it is also beneficial to keep older cows. Older cows produce more on average, and feed is converted
more efficiently. In the Dutch-Flemish genetic evaluation of functional longevity a random regression
animal model with a fifth order Legendre polynomial is used, where within-herd production level is
fitted as an explanatory effect. Published breeding values for longevity are partially based on predictor
traits. The breeding values for milk production, as well as udder health, claw health and locomotion are
added as predictor traits through selection index theory. In this paper the impact of the introduction of
genetic evaluation of longevity is assessed. Over the past 25 years all statistics on longevity metrics have
been favorable. Productive life increased with 337 days to 1,445 days for cows culled in 2024. Together
with a reduced amount of youngstock, the rearing period reduced 40 days to 763 days. The mean number
of calvings increased by 0.8 to 3.9 calvings. Lifetime production increased in 25 years by 14,329 kg to
38,283 kg of milk (with 4.40% fat and 3.58% protein), resulting in 1,684 kg fat and 1,369 kg protein.
Production per day of life increased by 4.8 kg to 17.1 kg of milk. Longevity is a result of management
(e.g. feeding, housing and culling decisions), environment, and genetics. Genetically, longevity
increased by 600 days, which suggests that the full genetic potential is not yet utilized. The strong
increase of the genetic trend for longevity was supported by selection on udder health, claw health and
feet & legs. Culling decisions can also be affected by governmental changes in regulations. The genetic
trend is more consistent over the years than the phenotypic trend. Long-term trends show that all these
factors together resulted in significant improvements for longevity and lifetime production. With the
continuing improvement of production and health traits further improvement of longevity is expected.

Key words: longevity, genetic evaluation, trends

Introduction hazard model and the published breeding value
was for functional longevity, where functional
Longevity of dairy cattle is an important trait longevity is longevity corrected for within-herd
from an economic and welfare perspective, as production level. The published breeding value
well as from a societal and government changed in 2008 to true longevity, meaning that
perspective. For a farmer it is beneficial to keep the adjustment for production was removed
older cows, as it will reduce costs of rearing. from the statistical model. In 2018 the statistical
The Dutch government aims to reduce the model was revised and changed to a random
environmental impact of livestock, and for that regression animal model, and true longevity is
it is also beneficial to keep older cows. Older published.
cows produce more on average, and feed is Since the introduction of the breeding value
converted more efficiently. of longevity it has not been investigated how
The genetic evaluation for longevity was lifetime performance of Dutch and Flemish

introduced in 1999 based on a proportional
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cattle has evolved, and in this paper the impact
of genetics on lifetime performance is assessed.

Genetic evaluation

Data

Length of productive life is defined as the time
from first calving to the last test date for milk
production, before the animal died or was culled
for slaughter; this also included dry periods.
The analysed period is length of productive life
until 72 mo after first calving. The data set is
constructed from records of pedigree, lactations
and movements of cows in the Netherlands and
Flanders. Herdbook-registered cows from a
dairy breed with a test-day record on or after
January 1, 1988 are included for Dutch data,
and on or after January 1, 2006 for Flemish data.
Data up to February 14, 2025 are included in the
most recent genetic evaluation of April 2025.
Cows are required to have an age at first calving
between 20 and 40 mo. If the first calving of a
cow took place before the starting date of the
study, the record is considered to be left-
truncated. Records of cows that are still alive at
the time of data collection are considered to be
right-censored. Records of cows that moved to
another milking herd are also considered to be
right-censored, if this herd is not participating
in a milk recording scheme.

Records are constructed for each month a cow
is present in a herd, from first calving up to the
month the cow is culled, or 72 mo, or when the
cow is censored. A cow culled in month j has j
— 1 records with score 100 (alive), and record j
with score 0 (culled). Monthly records are
treated as missing after culling.

Additional selection criteria included: 1)
data of a cow is used after a waiting period of
120 days after first calving; 2) Culled heifers
without a milk testing, mostly culled before the
first milk test, present in a herd with milk
recording, are included; 3) Herd-year-months
need to have a survival rate of at least 70%; 4)
Herd-year-months with 5 or more culled
animals need to have a survival rate that is
higher than the mean survival rate of the past 12
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months minus three times the standard
deviation of survival of the past 12 months.

Statistical model

The genetic evaluation for the Netherlands and

Flanders is a random regression animal model

where survival per month is analysed:

Yijkimno = HYS_LS; + YSAM_LS; + HSCy,
+ het; + recy,
5
+ Z animaly, leg,yq
q=0
+ errorijkimno

where

Yijkimno : observation for survival in month o
after first calving; mo 1 — 72;

HYS_LS; : fixed effect for herd-year-season x
lactation-stage i; year-season observation,
lactation split in 1, 2, 3+, stage of lactation
split in mo 1-2, 3-9, 10+ and dry period;

YSAM_LS) : fixed effect for year-season x AFC
x within-herd production level x lactation-
stage j; year-season of observation, AFC in
months 20, 21, ..., 34, 35+, within-herd
production level is defined per 3 years and
is divided in 5 classes of 20% each for
predicted or realised age-corrected 305-day
yield of kg fat and protein;

HSC, : fixed effect for herd size change k; HSC
is calculated by comparing the number of
cows present in a herd in a year with the
number of cows in the same herd one year
later. Seven classes are distinguished:
shrinkage between 90 and 50%, shrinkage
between 50 and 30%, shrinkage between 30
and 10%, neither shrinkage nor growth over
10%, growth between 10 and 30%, growth
over 30%, and herds that were terminated
(more than 90% shrinkage).

het; : covariable for heterosis / of animal #;

rec, :
animal »;

covariable for recombination m of

animaly, : additive genetic random regression
coefficient of animal n corresponding to
polynomial g;



legoq covariates of order ¢ Legendre
polynomial for month o;

random residual effect of

rest; jklmno

Yijklmno-

Within-herd production level is fitted to correct
for culling due to low production, which is
assumed to be the major source of voluntary
culling yielding EBV for functional longevity.

Breeding values

In the direct breeding value estimation breeding
values for functional longevity are estimated,
because survival per month is adjusted for
within-herd production level in the statistical
model. Bull owners and farmers are used to
using the breeding value for true longevity.
With a selection index true longevity is derived
from functional longevity and the production
traits kg milk, kg fat, and kg protein.

Indirect information is used next to the direct
information for longevity to increase the
reliability of the breeding value longevity for
young animals, as little direct information is
available. Traits that are early available in life
are preferred to increase the reliability, and for
this the breeding values for subclinical mastitis,
claw health and locomotion are used in a
selection index.

Results & Discussion

The total data set for the routine genetic

evaluation of longevity of April 2025
comprised 481,058,418  records  from
14,292,149 animals in 44,328 herds. The
pedigree included 16,834,548  animals

including 226 phantom groups.

Genetic trend

The genetic trend for longevity for black &
white Holstein cows is shown in figure 1. Since
2000 the genetic level increased by 615 days.
Up to 2010 the average increase per year was 17
days, and since 2010 the increase per year
increased to 37 days.
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Figure 1. Genetic trend for black and white Holstein
cows in the Netherlands.

Phenotypic trend

The phenotypic trend for productive life for
culled herdbook cows in the Netherlands is
shown in figure 2. From 2000 to 2024 the
productive life increased by 337 days from
1,108 days to 1,445 days. This increase
fluctuates over these 25 years. From 2000 to
2008 every year there was an increase in
productive life. After 2008 productive life
stabilized until 2016. From 2017 to 2019 the
productive life declined because of culling
excess cows related to national phosphate
regulation. Since 2019 the productive life
shows a sharp increase of 200 days in just four
years. In the last two years, 2023 and 2024, the
increase in productive life leveled off, likely
due to more culling due to blue tongue
infections.
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Figure 2. Phenotypic trend for productive life for
culled herdbook cows in the Netherlands.



Genetic vs. phenotypic trend

The genetic trend and phenotypic trend both
showed an increase since 2000. However, the
phenotypic progress was 337 days, and the
genetic progress was 615 days. Genetically the
cows have the potential to get older than what is
currently achieved.

The genetic trend for longevity shows a
steady yearly increase with an acceleration
since 2010 due to the introduction of genomics.
The phenotypic trend shows more fluctuations,
where especially the decline in the years 2017
to 2019 showed that national regulations can
have significant effect. Also, the increase in
productive leveled off in 2023 and 2024 showed
that the environment in the form of disease
pressure (blue tongue infections) has a marked
effect.

The sharp increase in productive life since
2019 is the result of a change in replacement
strategy of farmers. The incentive in change in
replacement strategy is that it is more profitable
to have a larger proportion of dairy cows
compared to replacements. Genetically the
cows are able to produce longer, and the sharp
increase in productive life showed that cows are
able to show their genetic potential.

Figure 3 shows the realized extra days for
productive life for the daughters of black &
white Holstein bulls born in 2012. The bulls are
divided in four EBV classes. The daughters of
the bulls with a breeding value longevity
between -250 and 0 days had 1266 productive
days after their first calving. Compared to the
lowest EBV class these daughters have on
average 112 days longer productive life. The
daughters of bulls in the highest EBV class had
1484 productive days. The achieved productive
life corresponds well with the breeding value of
the EBV class. The difference between the
productive life of the daughters of the best and
the lowest scoring bulls for longevity is 330
days, and the difference in EBV is with 719
days. The expected difference is half of the
EBV when mated on average cows, and the
phenotypic difference is close to half of the
genetic difference.
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Figure 3. Realised extra days for productive life for
daughters of black & white Holstein bulls born in
2012 divided in four EBV classes.

Change over time

Previous research showed that longevity
changed over time. Van Pelt et al. (2016b)
showed that the culling for low production
reduced phenotypically. To compare animals
genetically over time it is preferred to account
for within-herd production level (Van Pelt e al.,
2016a), as genetically functional longevity
showed less or no bias over years. For this
reason, the genetic evaluation is analysing
functional longevity.

The genetic parameters used in the genetic
evaluation are based on phenotypic data from
1988 up to 2015. From the parameters genetic
part-whole correlations can be derived as
described in Van Pelt ef al. (2015). The genetic
parameters were re-estimated on a more recent
data set with phenotypic data from 2008 up to
2023. In figure 4 the part-whole correlations for
functional longevity are shown for the current
parameters and the re-estimated parameters.
With the current parameters the genetic
correlation of cumulative survival up to 6
months after first calving with 72 months after
first calving is 0.81, and then gradually
increases. This shows that survival in early life
is genetically different from survival later in
life. With the re-estimated parameters based on
more recent years the genetic correlations up to
24 months after first calving with total survival
up to 72 months are lower than with the current



parameters, and as low as 0.75. Over the years,
survival in early life is genetically more
different from survival in later life.
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Figure 4. Genetic part-whole correlations for
functional longevity based on phenotypic data from
1988 up to 2015 and from 2008 up to 2023.

Lifetime performance statistics

Over the past 25 years all statistics (CRV, 2024)
on longevity metrics have been favorable
(Table 1). Productive life increased with 337
days to 1,445 days for cows culled in 2024.
Together with a reduced amount of youngstock,
the rearing period reduced 40 days to 763 days.
The mean number of calvings increased by 0.8
to 3.9 calvings. Lifetime production increased
in 25 years by 14,329 kg to 38,283 kg of milk
(with 4.40% fat and 3.58% protein), resulting in
1,684 kg fat and 1,369 kg protein. Production
per day of life increased by 4.8 kg to 17.1 kg of
milk. The highest relative change of 61% was
achieved for lifetime production kg fat +
protein. This is a result of the underlying traits;
the rearing period reduced (-5%), production
days increased (+34%), and kg m/day increased
(+19%).

Longevity is a result of management (e.g.
feeding, housing and culling decisions),
environment, and genetics, as shown by the
genetic and phenotypic trends. The genetic
trend is also a result of the genetic response
achieved by selecting on the Dutch/Flemish
total merit index NVIL.
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Table 1. Lifetime performance statistics of culled
herdbook cows in the Netherlands in 2000 and 2024.

Culling year Change

2000 2024 Abs.  Rel.
Calvings (nr) 3.1 3.9 0.8 26%
Production days 967 1,291 324 34%
Herdlife (d) 1,957 2,238 281  14%
kg m/day! 24.9 29.7 4.8 19%
LTP kg f+p*? 1,895 3,053 1,158  61%
LTP kg m 24,044 38,283 14,239 58%
Productive life(d) 1,108 1,445 337 30%
Rearing period(d) 803 763 40 -5%
kg m/day of life 12.3 17.1 4.8  39%
kg ftp/day of life 0.97 1.36 040 41%

'kg m : kg milk, 2LTP: lifetime production, kg f+p :
kg fat + protein

The breeding goal has evolved over time from
only including production traits, followed by
including and put more emphasis on longevity
and health traits. All traits in the NVI have
favorable genetic correlations with longevity,
resulting in the highest genetic response for
longevity from all breeding goal traits.

Conclusions

Phenotypically, longevity increased by 337
days since 2000. Genetically, longevity
increased by 600 days, which suggests that the
full genetic potential is not yet utilized. The
strong increase of the genetic trend for
longevity was supported by selection on udder
health, claw health and feet & legs. Culling
decisions can also be affected by governmental
changes in regulations. The genetic trend is
more consistent over the years than the
phenotypic trend. Long-term trends show that
all these factors together resulted in significant
improvements for longevity and lifetime
production. With the continuing improvement
of production and health traits further

improvement of longevity is expected.
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Abstract

National selection indexes combining important traits are frequently used by dairy farmers, breeders,
and A.I. companies to achieve their breeding goals. The Canadian dairy industry has made significant
genetic progress with two national selection indexes, the Lifetime Performance Index (LPI) and Pro$,
which are now double the rate compared to the pre-genomics era. Since its introduction in 1991 the LPI
formula has changed alongside the expansion of national breeding objectives. With the introduction in
recent years of genetic evaluations for its portfolio of traits related to sustainability, the timing was right
for Lactanet to modernize several aspects of Canada’s LPI, effective April 2025. A key strategic change
is the creation of six subindexes, which are each published on their own using a standardized scale with
an average of 500 and standard deviation of 100. Subindexes include the Production Index (PI),
Longevity & Type Index (LTI), Health & Welfare Index (HWI), Reproduction Index (RI), Milkability
Index (MI), and Environmental Impact Index (EI). For the Holstein breed, the relative weights placed
on these subindexes are 40% PI, 32% LTI, 8% HWI, 10% RI, 5% MI, and 5% EI. The six other dairy
breeds evaluated have differing relative weights in accordance with the respective breed objectives. A
second important change is an increased focus on presenting the genetic response over the next five
years that can be expected for each trait based on the average level of selection gain realized for LPL
While this approach recognizes the impact of direct inclusion of a trait in one of the six LPI subindexes,
it also reflects the expected response for correlated traits. Defining six subindexes that contribute to LPI
demonstrates the increased diversity of traits currently evaluated and acknowledges the continued
expansion of Canada’s overall breeding goal for dairy cattle breeds.

Key words: Lifetime Performance Index, subindexes, expected response

Introduction al., 2015). With the relatively small population
size of the Brown Swiss, Canadienne, Guernsey
Given the vast number of traits evaluated in and Milking Shorthorn breeds in Canada,
dairy cattle breeding, most countries use at least combined with the very high correlation (i.e.:
one national genetic selection index to identify over 85%) between the two national indexes,
superior males and females in each breed. In Pro$ values are only published for the three
Canada, the Lifetime Performance Index (LPI) other breeds, Ayrshire, Holstein and Jersey.
was introduced in 1991 as the official ranking Since the introduction of LPI in 1991, the
index for all seven dairy breeds, namely traits included, and their relative weights, were
Ayrshire, Brown Swiss, Canadienne, Guernsey, previously reviewed and modified seven times
Holstein, Jersey and Milking Shorthorn. A with the latest being in 2019. While the original
second national genetic selection index, named LPI formula included only production (60%)
Pro$, was introduced in 2015 (Van Doormaal et and type (40%) traits, herd life and somatic cell

203



score were included in 2001, and a Health &

Fertility component was first introduced with

the addition of daughter fertility in 2005. The

formula changes in 2008, 2015 and 2019 all
increased the relative emphasis on the Health &

Fertility component compared to the Production

and Durability components, which have been

20:40:40, respectively, since 2019.

Canada was among the first countries
globally to introduce national genetic
evaluations for Feed Efficiency in 2021
(Jamrozik et al. 2021), which was then included
in the Holstein LPI formula as an add-on trait
starting in April 2022. In April 2023, two more
traits related to environmental sustainability
were launched by Lactanet Canada. Body
weight data, converted to metabolic body
weight, is used as the input phenotype to
produce single-step genetic evaluations for
Body Maintenance Requirements (Fleming et
al., 2023). Together with Feed Efficiency,
selection aims to reduce on-farm feed costs.
Lactanet Canada was the first country to use
milk mid-infrared (MIR) spectral predictions of
methane yield as input phenotypes for its single-
step genetic evaluation for Methane Efficiency
(Van Doormaal et al., 2023; Oliveira et al.,
2024). With this portfolio of traits available to
help farmers genetically select to reduce the
carbon footprint of their herd, the timing was
right to modernize the LPI formula to allow for
the inclusion of traits related to environmental
sustainability.

There were multiple other goals underlying
the need to modernize Canada’s LPI formula,
including:

e Reduce the mathematical nature of the
formula and how to communicate it to
breeders.

e Replace the three LPI components with six
subindexes to be published on their own as
well as be combined into LPI.

e Enhance the breeder understanding and
language towards expected response by trait
from index-based selection, instead of
focusing on the specific traits included in the
index and their relative weights.
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Materials and Methods

Correlation Matrix and Expected Response
Official genetic evaluations for bulls within
each breed served as the basis for the analysis
of correlations and expected selection response.
For each breed, progeny proven sires included
in the genetic base definition for each breed
were combined with younger genomic bulls
with at least 30 registered daughters in Canada
but not progeny proven for production and type
traits. A matrix of simple correlations among all
traits and indexes was calculated based on the
official genetic evaluations published for the
group of bulls included for each breed.

As described by Van Doormaal et al. (2015)
for the development of Canada’s profit-based
national selection index, Pro$, correlations
between any given index and individual traits
can be used to estimate the expected response
for the trait resulting from selection for the
given index. Technically speaking, this requires
true genetic correlations, but the use of bull
evaluation correlations leads to easier
calculations and serves as an excellent proxy.
Such expected selection responses are more
relevant than the traditional use of relative
weights on traits included in an index, which
often ignore the underlying correlation matrix
among all traits.

To facilitate dairy farmer understanding of
the concept of expected selection response, the
bull evaluation trait correlations with the LPI
national selection index were converted to units
of expected genetic gain in the next five years.
To accomplish this, the total genetic gain
realized in Canadian cows and heifers born in
the most recent 5-year period was calculated
and then expressed in terms of standardized
units based on the standard deviation of LPI
values for Canadian females. For each
individual trait, the 5-year expected response
from selection for LPI was estimated by
multiplying the total realized standardized gain
for LPI by the trait correlation with LPI and the
trait standard deviation based on published cow
evaluations.



Formulation of LPI Subindexes
Since 2005, the Canadian LPI formula has
included three components: Production,
Durability and Health & Fertility. A key goal of
the new modernized LPI formula was the
development of six subindexes to better reflect
the diverse groups of traits currently in Canada:

e Production Index (PI)

e Longevity & Type Index (LTI)

e Health & Welfare Index (HWI)

e Reproduction Index (RI)

e Milkability Index (MI)

e Environmental Impact Index (EI)

For the development of each subindex by
breed, consultations with each breed association
were held to identify any specific traits for
which they desired targeted gains for the future.
For the Production and the Longevity & Type
subindexes, breed associations and industry
organizations agreed to implement only minor
modifications. In addition to separating the
former Health & Fertility component into the
new Health & Welfare and Reproduction
subindexes, there was also a desire to include
new traits in each subindex based on the
underlying correlation matrix.

Given the increasing adoption of robotic
milking systems in Canadian herds, which now
represents one-quarter of milk-recorded cows,
the industry agreed to develop a new
Milkability subindex of LPI. In addition, with
the launch of three new traits aimed at reducing
the carbon footprint of dairy farms, a new
Environmental Impact subindex was developed
and included in the LPI for Holsteins.

Results & Discussion

Following industry consultation including the
comparison of results from various LPI
scenarios, Table 1 represents the final relative
weight on each of the six subindexes in the
modernized LPI for the Holstein breed, as well
as the resulting correlation between each
subindex and LPI. Similar relative weights were
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used for building the LPI for the six other dairy
cattle breeds evaluated by Lactanet but are not
presented here.

Table 1: Relative weight (%) of each subindex of the
modernized LPI for Holsteins and their resulting
correlation with LPI.

% LPI Corr
0.83
0.69
0.57
0.39
0.01
0.00

Longevity & Type LTI 32

The Production Index has the highest
relative weight of 40%, which also yields the
highest correlation with LPI of 0.83. The
Longevity & Type Index represents 32% of the
LPI formula and has a relatively strong
correlation of 0.69 with LPI. Results for the
Health & Welfare and Reproduction Indexes
are of particular interest since their relative
weights of 8% and 10%, respectively, result in
LPI correlations of 0.57 and 0.39. The lower
LPI correlation for Reproduction stems from
the underlying negative correlation between
female fertility traits and other key traits in the
LPIL, especially milk yield and some key
conformation traits. Both the Milkability and
Environmental Impact Indexes
subindexes of the LPI formula.

are new
Based on
discussions with industry organizations, a
weight of 5% on
implemented. As shown in Table 1, these

relative each was
weights yield a correlation with LPI that is near
zero at 0.01 and 0.00, respectively. In both
cases, exclusion of these new subindexes of LPI
would have yielded a negative correlation and
expected selection response, which is not
desired. In addition, for the Environment
Impact Index the relative weight of 5% serves
as a starting point to raise dairy farmer and
industry awareness for the opportunity to
genetically select for the underlying traits
related to the carbon footprint of a dairy herd,
even while there is no direct financial incentive
to do so at the present time.



The 2025 update to the LPI formula
represents the sixth significant modification
since its inception in 1991. Figure 1 presents the
evolution of traits that have been included by
presenting them in groups aligned with the six
subindexes included in the 2025 LPI formula
for Holsteins.

Figure 1: Evolution of the Holstein LPI formula
expressed as relative weights (%) on traits grouped
by the six subindexes of the 2025 modernized LPIL.
2025 | I

2019
2015
2008

2005
2001
1991

0% 20% 40% 60% 80% 100%

m Production m Longevity & Type Health & Welfare

u Milkability

m Reproduction Environmental Impact

In the 1990s, the LPI formula only included
production and type, with relative weights of
60:40, respectively. Herd Life and Somatic Cell
Score were added in 2001. Daughter Fertility
was added in 2005 and then increased in
emphasis in 2008. The updates in 2015 and
2019 included higher relative weights on traits
related to the current Health & Welfare and
Reproduction subindexes, which therefore
decreased the relative emphasis placed on the
other subindexes, including production traits.
Since 2015, however, the Production Index has
maintained a 40% weight in the Holstein LPI,
even with the addition of the new Milkability
and Environmental Impact subindexes in 2025.
The 2025 focus on estimates of expected
response by trait resulting from LPI selection,
rather than on traits included and their relative
weights, slightly reduced the overall weight on
traits related to the Health & Welfare and
Reproduction subindexes (Figure 1).

Production Index (PI)

Figure 2 shows Fat and Protein Yields as the
only two traits directly included in the
Production Index, with relative weights of 60%
and 40%, respectively. The inclusion of only
these two traits also applies for all other breeds.
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When selecting for LPI, however, five other
traits related to the Production subindex are
monitored as correlated traits, namely Milk
Yield, Fat and Protein Deviations and Lactation
Persistency.

Holstein Pl

Protein Yield
40%

Fat Yield
60%

Correlated Traits
- Milk Yield

- Fat Deviation

- Protein Deviation

- Lactation Persistency

Figure 2. Traits included in the Production Index
(PD) of LPI for Holsteins, with their relative weights,
and key correlated traits.

the
the

In addition to the trait weights for
Production Index, Table 2 provides
resulting correlation that the direct and
correlated traits have with LPI, given the
relative weight of all six subindexes in Table 1.
These correlations are also expressed in terms
of the expected selection response (ESR) for
each trait based on selection for LPI over the
next five years.

Table 2: Relative weight (%) of traits included in the

Production Index (PI) of LPI for Holsteins, their

resulting correlation with LPI, and the expected

selection response (ESR) by trait over the next 5
ears resulting from selection for LPI.

% LPI Corr ESR
Milk Yield 0.43 534
Fat Yield 0.81 42.1
Protein Yield 0.74 28.0
Fat Deviation 0.56 0.29
Protein Deviation 0.54 0.13
Lactation Persistency 0.10 0.5

The results in Table 2 clearly demonstrate
the importance of concentrating on expected
response versus trait emphasis in any index. For
example, although Milk Yield has no direct
weight in the Production Index, selection for
LPI is still expected to result in over 500 kg of
genetic gain for milk production in the
Canadian Holstein population over the next five



years, in addition to 42.1 kg and 28.0 kg for Fat
and Protein Yields, respectively. In a similar
manner, selection for the yields of milk
components, without any direct weight on milk
production also results in relatively strong
expected gains for Fat and Protein Deviations
(Table 2). Without direct inclusion of Lactation
Persistency in the Production Index for
Holsteins, the resulting correlation with LPI of
0.10 translates to little expected selection
response but the ESR value is in the desired
direction.

Longevity & Type Index (LTI)

The main goal of the Longevity & Type Index
is to provide a subindex that allows dairy
farmers the opportunity to select for increased
longevity and functional conformation. For this
reason, Mammary System, Feet & Legs and
Herd Life have the highest direct emphasis in
this subindex, with relative weights of 37%
33% and 20%, respectively (Figure 3).

Holstein LTI

Rump
Dairy Strength 5%

"

Feet & Legs
33%

Herd Life
20%

Mammary System

Correlated Trait 37%

- Conformation
Figure 3. Traits included in the Longevity & Type
Index (LTI) of LPI for Holsteins, with their relative
weights, and key correlated traits.

Rump and Dairy Strength both have relative
weights of 5% for Holsteins to maintain the
current genetic level of their underlying traits
without targeting further genetic gain per se.
Given the fact that overall Conformation is a
composite index of the four major scorecard
traits, it is monitored only as a correlated trait of
this subindex.

Given the relative weights of each trait in the
Longevity & Type Index and the relative
weights of each subindex in LPI presented in
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Table 1, the resulting correlations with LPI and
the expected selection response (ESR) by trait
are presented in Table 3. These results clearly
show that applying a relative weight of only
20% on Herd Life still yields the highest LPI
correlation and an ESR of 3.4 units of Relative
Breeding Value (RBV) for the next five years.
Similar to the result discussed for Milk Yield
under the Production Index, having no direct
weight on Conformation still yields a
correlation with LPI of 0.51 and also a relatively
strong 5-year ESR of 3.2 EBV units. The key
composite traits of Mammary System and Feet
& Legs also show moderate correlations with
LPI of 047 and 0.46, respectively, and
associated levels of 5-year ESR.

Table 3: Relative weight (%) of traits included in the

Longevity & Type Index (LTI) of LPI for Holsteins,

their resulting correlation with LPI, and the expected

selection response (ESR) by trait over the next 5
ears resulting from selection for LPI.

% LPICorr ESR
Herd Life 20 0.64 3.4
Conformation 0.51 3.2
Mammary System 37 0.47 2.9
Feet & Legs 33 0.46 2.7
Dairy Strength 5 0.07 0.5
Rump 5 0.09 0.6

Health & Welfare Index (HWI)

Compared to the previous Health & Fertility
component of the LPI formula in Canada, the
new Health & Welfare Index was separated out
to facilitate the genetic selection and
improvement for multiple traits related to
disease resistance and animal welfare. With the
goal of reducing the incidence of important
dairy cattle diseases, Mastitis Resistance and
Metabolic Disease Resistance are directly
included in the new Health & Welfare subindex
with relative weights of 47% and 27%,
respectively (Bjelland et al. 2025), as shown in
Figure 4. Hoof Health is currently the only
family of traits evaluated in Canada related to
animal welfare but has a relative weight of 21%
in this LPI subindex. While Somatic Cell Score,
Metritis and Retained Placenta are correlated
traits not directly included in the Health &
Welfare Index, Cystic Ovaries is included with



a weight of 5% to achieve a desired selection
outcome.

Holstein HWI

Mastitis Resistance

Cystic Ovaries
5%

47%

Hoof Health
21%

Metabolic Disease
27%

Correlated Traits

- Somatic Cell Score
- Metritis

- Retained Placenta
Figure 4. Traits included in the Health & Welfare
Index (HWI) of LPI for Holsteins, with their relative

weights, and key correlated traits.

Mastitis Resistance is an index that
combines Clinical Mastitis with Somatic Cell
Score, which is an indicator of sub-clinical
mastitis. For this reason, the LPI correlation
with these two traits are very similar at 0.44 and
0.46, respectively, and the 5-year ESR exceeds
2 RBYV points for both traits (Table 4).

Table 4: Relative weight (%) of traits included in the

Health & Welfare Index (HWI) of LPI for Holsteins,

their resulting correlation with LPI, and the expected

selection response (ESR) by trait over the next 5
ears resulting from selection for LPI.

% LPICorr ESR
Mastitis Resistance 0.44 2.1
Somatic Cell Score 0.46 2.8
Metabolic Disease Resistance 0.40 2.1
Hoof Health 0.27 14
Cystic Ovaries 0.20 1.0
Metritis 0.37 1.9
Retained Placenta 0.19 1.0

Compared to these two traits, even though
Metabolic Disease Resistance has a lower direct
weight of 27% in this subindex, it has a similar
LPI correlation of 0.40 and ESR of 2.1 RBV
points over the next five years. With a relative
weight of 21%, Hoof Health has a relatively low
LPI correlation of 0.27, which translates to an
ESR of 1.4 RBV points after 5 years of LPI
selection.

In Canada,
evaluations for three fertility disorders. For two
of them, namely Metritis and Retained Placenta,

Lactanet provides genetic

positive correlations with LPI resulted even
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without direct emphasis in the Health &
Welfare Index (Table 4). This stems from the
positive correlations that these traits have with
both Herd Life and Daughter Calving Ability,
which are directly included in the modernized
LPI formula. For Cystic Ovaries, however,
which has a relatively low correlation of 0.34
and 0.19 with the other two fertility disorders,
respectively, direct inclusion with a 5% relative
weight was decided to obtain the desired 5-year
ESR of 1.0 RBV points.

Reproduction Index (RI)
The
improvement of traits related to female fertility,
calving ease and calf survival (i.e.: reverse
expression of stillbirth rate). Given the major
importance of female fertility, the Daughter

Reproduction  Index focuses on

Fertility index has a relative weight of 90% and
10% is allocated to Daughter Calving Ability
(Figure 5). Calving Ability, which is an index
that includes service sire traits for calving ease
and calf survival, is monitored as a correlated
trait to this LPI subindex.

Holstein RI

Daughter Calving Ability
10%

Daughter Fertility

Correlated Trait 90%

- Calving Ability

Figure 5. Traits included in the Reproduction Index
(RI) of LPI for Holsteins, with their relative weights,
and key correlated traits.

As shown in Table 5, even though Daughter
Fertility has the highest emphasis in the
Reproduction Index, Daughter Calving Ability
has the highest correlation with the resulting
LPI at 0.58, compared to 0.32 for Daughter
Fertility. These correlations translate to 5-year
ESR values of 2.8 and 1.6 RBV points,
respectively. Without direct inclusion of
Calving Ability in this subindex, the LPI



correlation slightly exceeds that of Daughter
Fertility at 0.34 and the associated ESR is 1.9
RBYV points after 5 years of selection for LPI.

Table 5: Relative weight (%) of traits included in the

Reproduction Index (RI) of LPI for Holsteins, their

resulting correlation with LPI, and the expected

selection response (ESR) by trait over the next 5
ears resulting from selection for LPI.

% LPICorr ESR
Daughter Fertility 0.32 1.6
Daughter Calving Ability 0.58 2.8
Calving Ability 0.34 1.9

Milkability Index (MI)

With the growing adoption of robotic milking
systems, the objective of creating a new
Milkability Index for inclusion in the LPI was
to allow dairy farmers to specifically select for
a group of traits related to milking ability and
efficiency. As shown in Figure 6, Milking
Speed and Temperament are directly included
in the subindex, with relative weights of 25%
and 18%, respectively.

Holstein Ml

Milking Speed
25%

Teat Length
36%

Udder Floor ' 18%

Temperament
-6%

Udder Depth
15%

Correlated Traits
- Rear Teat Placement
- Fore Teat Placement

Figure 6. Traits included in the Milkability Index
(MI) of LPI for Holsteins, with their relative
weights, and key correlated traits.

Multiple descriptive type traits related to the
udder and teats were also considered for direct
inclusion. The result of various analyses led to
the inclusion of Teat Length at 36%, Udder
Depth at 15% and Udder Floor at -6%, with the
negative value encouraging selection away
from udders with a reverse tilt. Rear and Fore
Teat Placement are considered as correlated
traits.

The relative weights used for directly
including Milking Speed and Temperament in
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the Milkability Index do not, however, lead to
strong correlations with LPI (i.e.: 0.03 and 0.10,
respectively), and therefore high levels of ESR
are not expected, as shown in Table 6.

Table 6: Relative weight (%) of traits included in the

Milkability Index (MI) of LPI for Holsteins, their

resulting correlation with LPI, and the expected

selection response (ESR) by trait over the next 5
ears resulting from selection for LPI.

% LPICorr ESR
Milking Speed 0.03 0.1
Temperament 0.10 0.5
Udder Depth 0.31 2.0 Shallow
Udder Floor -0.01 -0.1 Tilt
Teat Length -0.19 -1.2 Short
Rear Teat Placement 0.03 0.2 Close
Fore Teat Placement 0.15 0.9 Close

All five of the descriptive type traits
considered for inclusion in this subindex are
evaluated on an intermediate optimum scale
whereby bull EBVs with higher numerical
values (i.e.: either above or below zero) reflect
sires that will move the breed toward one
extreme or the other, with both being undesired.
This expression scale means that correlations
with these traits need to be carefully interpreted.
The 15% emphasis on Udder Depth in the
Milkability subindex results in a correlation
with LPI of 0.31 based on the 5% relative
weight of this subindex in LPI as shown in
Table 1. Based on how this trait is measured by
the classifiers and designated a linear score
from 1 to 9, positive EBV correlations would
lead toward more shallow udders instead of
deeper. The 5-year ESR for Udder Depth of 2.0
EBYV units in the direction of shallow udders is
the desired target to reduce problems in robotic
and parlour milking systems. For Udder Floor,
a negative relative weight of -6% was required
to achieve a near-zero LPI correlation and ESR
so that selection for LPI would not increase the
frequency of reverse tilt udders, which are
especially problematic with robotic milkers.

Teat Length was a trait of particular interest
since breeders and the industry have taken steps
to mitigate the past trend towards shorter teats.
For this reason, this trait receives the highest
relative weight in the Milkability Index at 36%.
Even with this emphasis, however, the resulting



correlation between Teat Length and LPI is -
0.19, which yields a 5-year ESR of 1.2 EBV
units towards shorter teats. Without the 36%
emphasis on this trait in this subindex, this
suboptimal selection direction would be even
stronger. During the industry consultation
process, various relative weights for Teat
Length were tested but an ESR toward shorter
teats was a consistent result. This is caused by
the underlying correlation matrix between traits
since Teat Length has a moderate negative
correlation (i.e.: toward shorter teats) ranging
from -0.20 to -0.28 with other traits directly
included in the LPI, including Fat Yield, Herd
Life, Udder Depth and Daughter Calving
Ability. Without any direct inclusion of Rear
and Fore Teat Placement in the Milkability
Index, the correlation with LPI is either neutral
or slightly favourable, at 0.03 and 0.15,
respectively, to avoid selection towards teats
that become wider apart (Table 6).

Environmental Impact Index (EI)

Since 2021, Lactanet introduced genetic
evaluations for three traits directly targeting the
reduction of greenhouse gas emissions
produced by animals on dairy farms. These
include Feed Efficiency and Body Maintenance
Requirements, which reflect the volume of feed
consumed, and Methane Efficiency that reflects
methane yield independent of production levels.
As shown in Figure 7, all three of these traits are
directly included in the Environmental Impact
Index with relative weights of 25%, 38% and
37%, respectively, based on analysis reported
by Richardson et al. (2025).

The trait correlations with LPI and ESR
based on five years of LPI selection are
presented in Table 7. For Methane Efficiency
and Feed Efficiency, the LPI correlations are
relatively low but in the desired direction at 0.19
and 0.09, respectively. Even with only 5%
weight of this subindex in the current LPI, some
favourable response is expected with 5-year
ESR values of 0.9 and 0.5 RBV points.
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Holstein El

Methane Efficiency
37%

Body Maintenance
Requirements
38%

Feed Efficiency
25%

Figure 7. Traits included in the Environmental
Impact Index (EI) of LPI for Holsteins, with their
relative weights, and key correlated traits.

Table 7: Relative weight (%) of traits included in the
Environmental Impact Index (EI) of LPI for
Holsteins, their resulting correlation with LPI, and
the expected selection response (ESR) by trait over
the next 5 years resulting from selection for LPI.

% LPICorr ESR
Methane Efficiency 0.19 0.9
Feed Efficiency 0.09 0.5
Body Maintenance Requirements -0.16 -0.8

The same result is not found for Body
Maintenance Requirements, which has an LPI
correlation of -0.16 and an ESR of -0.8 after five
years of LPI selection (Table 7). Fleming et al.
(2023) developed the single step evaluation
system for this trait using metabolic body
weight as the phenotypic measure. Resulting
sire RBV are expressed such that higher values
result in the selection of more moderately sized
daughters. The genetic trend for this trait has
been negative so inclusion in the Environmental
Impact subindex of LPI is an important step to
at least reducing the rate of the observed genetic
trend. As financial incentives are introduced in
the future to encourage dairy farmers to reduce
the carbon footprint of their herd, it is expected
that this subindex will have higher emphasis in
the LPI formula.

Expression of LPI Subindexes

Lactanet  currently  calculates  genetic
evaluations for over 100 individual traits and
indexes. On its LactanetGen.ca website, which
provides genetic information and associated
tools, over 50 traits are displayed on each

animal’s Genetic Evaluation Summary page.



In general, while some breeders have a keen
interest in studying the detailed genetic profile
of sires and the females in their herd, most dairy
farmers are overwhelmed by the number of
traits to consider for their selection and mating
decisions. To simplify such decisions, each of
the six subindexes of Canada’s modernized LPI
formula are expressed on a standardized scale
within each breed and can therefore be used as
an overall trait on their own. As presented in
Figure 8, each subindex has an average of 500
and a standard deviation of 100 points based on
the group of progeny proven sires that forms the
genetic base within each breed. For Holsteins,
this includes proven bulls born in the most
recent complete 10-year period (i.e.: for 2025
includes bulls born from 2009 to 2019). The key
advantages of this standardized scale include (a)
easily identifies elite sires for each subindex
(i.e.: 700 or higher), the higher range results in
fewer animals tied at the same level, and (¢) the
higher average results in all animals in the
active population of bulls and females have
positive subindex values.

-2SD -1SD Mean 1SD 2

I T T T 1
300 400 500 600 700

Figure 8. Scale of expression used for each LPI
subindex within each breed.

Conclusions

The Lifetime Performance Index (LPI) was
Canada’s first national genetic selection index
introduced in 1991. At that time, only six traits
were included to meet the breeding goal of
balancing production and type with relative
weights 0of 40:20. Over the past 30+ years, many
new traits were introduced, and breeding
objectives were broadened. Most recently, the
launch of genetic evaluations associated with
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environmental sustainability served as strong
motivation to modernize the LPI formula for all
seven dairy breeds evaluated in Canada.

The new modernized LPI maintains focus on
production traits with its Production Index,
which is followed by the Longevity & Type
Index in terms of relative weight. The increased
number of evaluations targeting selection for
enhanced disease resistance led to the creation
of a new Health & Welfare Index. The
Reproduction Index was broadened to include
calving performance traits in addition to female
fertility. With the increase adoption of robotic
milking systems, a new Milkability Index was
created, which allows dairy farmers to
specifically select for key traits in this area. For
the Holstein breed, a new Environmental
Impact Index combines the three traits currently
evaluated and was introduced in the LPI
formula to increase awareness and initiate
genetic selection for this novel family of traits.
Within each breed the subindexes are expressed
on a standardized scale to facilitate producer
understanding and they are published alongside
LPI to give increased visibility.

An important shift with the modernized LPI
is the focus towards the communication of
expected selection response (ESR) achieved by
selection for LPI, rather than concentrating on
the list of traits included and their relative
weight. This approach is more appropriate for
describing the rate of genetic change that can be
expected by index selection and accounts for the
underlying correlations among the traits and
indexes.
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Abstract

The use of mating technologies, including genomic testing and sexed semen, has recently increased in
the breeding programs of commercial dairy herds, along with the use of beef semen. We aimed to
quantify the utilization of advanced mating strategies in US dairy herds and the influence of these
strategies on genetic merit. Breeding records (n = 35,124,479) that resulted in successful pregnancies
of cows and heifers by semen type (conventional dairy, sexed dairy, and beef) and records of genomic
testing of female dairy cattle were extracted from the National Cooperator Database for the years 2008
to 2023. Herds were categorized within year by semen type used and use of genomic testing of heifers
and the genetic merit of heifers born in 2023 (n = 678,064) was compared by herd mating strategy.

Female dairy cattle in the US are genotyped, on average, at 6 months of age. When the net merit of a

genotyped heifer increased by one standard deviation, the odds that she remained in the herd through
first lactation increased by 13%. Breeding values of net merit ($1,203) and most of the traits

investigated were most favorable in heifers born in herds that used all mating strategies investigated
(genotyping of heifers, and a combination of beef, sexed, and conventional semen). Calves born in

herds that used a combination of sexed and conventional semen had the least net merit ($532) and

generally had the least favorable breeding values across production, fertility, and longevity traits.
Results confirm that the incorporation of advanced mating strategies has increased rapidly in US dairy

herds. Heifers were more likely to enter the milking herd as their genomic merit increased and herds
that incorporated all strategies investigated had the greatest genetic progress.

Key words: Genomic testing, sexed semen, beef on dairy

Introduction

Dairy cattle breeders have used artificial
insemination for many decades; now newer
tools, like genomic testing, allow for more
precise breeding strategies. Following the
inception of genomic selection, rapid genetic
progress has occurred in the US dairy cattle
population (Garcia-Ruiz et al., 2016; Guinan et
al., 2023). Recent reports support that there has
been a rapid increase in genotypes of dairy
females (CDCB, 2025) and in dairy cattle being
mated to sexed and beef semen (Lauber et al.,
2023).

Multiple research groups have simulated the
economic and genetic benefits of incorporating
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female genomic testing, sexed semen, beef
semen, and combinations thereof into mating
programs. For example, models suggest that
using genomic information to  select
replacement heifers can reduce genetic lag
through increased selection accuracy and
selection intensity (Weigel et al., 2012; Calus et
al., 2015). Likewise, selection intensity can be
increased by mating genetically superior
females to sexed semen, ensuring replacement
heifers are born to the best cows (Weigel, 2004;
De Vries et al., 2008). Combining sexed semen
with genomic testing of heifers increased the
rate of genetic progress because more heifers in
a herd increased room for selection (Calus et al.,

2015).



Because of the added value beef x dairy
calves have over dairy bull calves, economic
models suggest that profitability can be
maximized in dairy mating programs when
sexed semen and beef semen are selectively
used, though not in herds with poor
reproductive performance (Pahmeyer and Britz,
2020; Cabrera, 2022). Additionally, as
proportions of sexed and beef semen increased,
genetic lag was reduced (Hjorte et al., 2015;
Clasen et al., 2021). Using genomic testing to
inform selective use of sexed and beef semen
further reduced genetic lag, though economic
gains were similar in models that did not use
genomic testing (Hjorte et al., 2015; Clasen et
al., 2021).

The combined use of genomic testing, sexed
semen, and beef semen in US dairy herds and
their influence on genetic progress has yet to be
quantified. We aimed to characterize the
utilization of advanced breeding strategies in
US dairy herds by quantifying genotyping of
replacement heifers, the
conventional, sexed, and beef semen, and

and use of
combinations thereof. Further, we sought to test
the hypothesis that herds that use combinations
of advanced breeding tools produce
replacement dairy calves with greater genetic
merit than those using exclusively conventional

semen.

Materials and Methods

The data used in this study was accessed from
the National Cooperator Database, managed by
the Council on Dairy Cattle Breeding (CDCB).
The phenotypes, genotypes, and pedigree used
in the US national dairy cattle genetic
evaluation and this study included phenotypes
of reproductive events (Format 5), herd test-
date records, and genotypes of females born in
the US.

Predicted breeding values (PBV) on the
lifetime net merit (NM$ index and PBV of traits
evaluated in all dairy breeds from the August
2024 official national genetic evaluation were
extracted. All dairy breeds were included in this
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study, including crossbred animals. Heifers and
cows were classified by the breed base PBV are
reported on (Ayrshire, Brown Swiss, Guernsey,
Holstein, Jersey, or Milking Shorthorn), when
relevant.

Heifer genotypes

Between 2008 and 2023, a total of 5,683,150
individual female dairy cattle born in the United
States were genotyped. The earliest instance of
genotyping was retained to determine the initial
age a farmer intended to genotype a female calf.

Breeding strategies

Breeding events of cows and heifers that were
extracted from Format 5 reproductive records
submitted by dairy records processing centers.
Events that resulted in full-term pregnancies,
verified by a calving event that occurred within
breed average gestation length + 14 days were
retained. Data submitted from herds that use
less than 80% Al were removed. Miles et al.
(2023) recently reported that there are no
Format 5 breeding records associated with 97%
of calves born via embryo transfer (ET). Due to
these data flow and quality issues, we did not
attempt to quantify calvings from ET events and
animals conceived through ET were removed
from the data. Retained Al breeding events that
resulted in calvings between the years 2008 and
2023 (n = 35,124,479) were used to quantify
changes in semen type use over time.

A subset of the genotyped females (n =
982,536) was examined to determine the
proportion of genotyped heifers that remained
in the herd they were born in through their first
calving. For inclusion, cattle had to be
genotyped as heifers (<24 months of age) to
allow for a culling decision to be made prior to
their first calving. Likewise, calves were
required to be born prior to 2022 to provide
adequate opportunity to become cows. To fairly
determine that a heifer reached first lactation,
only animals born in herds that had at least one
DHIA test in 2023 and 2024 were included.
Genotyped calves that began their first lactation
in the same herd they were born in were denoted



as stay = 1, while those that started their first
lactation in a different herd or had no associated
lactation records were denoted as stay = 0.
Breedings were classified by 4 semen types:
conventional dairy-breed semen, sexed (X-
sorted) dairy-breed semen, conventional beef-
breed semen, and sexed (Y-sorted) beef-breed
semen. Breeding strategies were categorized by
herd-year and defined to capture both genomic
testing of heifers and types of semen used to
conceive the calves born within the herd-year.
Herds were binned by semen type within year
as follows: conventional (CON), where calves
born were exclusively conceived with
conventional dairy-breed semen; beef and
conventional (BC), where calves born were
conceived with conventional dairy-breed semen
or with beef-breed semen that could be
conventional or sex-sorted; sexed and
conventional (SC), where calves born were
conceived with sex-sorted or conventional
beef,
conventional (BSC), where calves born were

conceived with sex-sorted or conventional

dairy-breed sexed, and

semen,;

dairy-breed semen or beef-breed semen.
Additionally, SC and BSC herds that utilized
genomic testing (GT) were considered those
that genotyped any heifers born in the year
observed and were binned separately by semen
type as GT-SC, and GT-BSC.

To compare the genetic merit of heifers by
herd breeding strategy calving events, dairy
heifer calves born in 2023 (n = 678,064) were
categorized by the breeding strategy of the herd
they were born in.

Statistical analyses

The effect of genetic merit on whether a
genotyped calf was sold prior to first lactation
was evaluated with following binomial
generalized linear mixed model:

log [ ] = u+ 1 NM; +ﬁ2agej

+ herd) + &
where p = the probability of yiu = 1, where y =
heifer stayed in herd through first lactation; p
= model intercept; B = regression coefficient

14
1-p)
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of stay on NMS$; B, = regression coefficient of
stay on age genotyped; herdx = the random
effect of the herd the heifer was born in £ (herd
1 to herd 2,030); and &jju = residual error.

The odds ratio (OR) of a heifer staying in
the herd when NM$ increased by 1 SD was
generated with a 95% CIL

Merit index PBV and PBV of individual
traits of heifer calves born in 2023 were
compared by herd mating strategy with the
following linear mixed model:

Yijkim = U+ MS; + lact; + BBy + §; +

herd,,(MS;) + &jkim

where y = calf PBV; p = model intercept; MS;
= mating strategy used by the herd the calf was
born in i (CON, BC, SC, BSC, GT-SC, GT-
BSC); lactj=dam parityj (1, 2, 3, 4, or =5);
BBy = the breed base PBV of the heifer calf are
reported on k (Ayrshire, Brown Swiss,
Guernsey, Holstein, Jersey, or Milking
Shorthorn); S; = the random effect of season
calf was born in two-month intervals (1 to 6);
herd, = the random effect of herd m (herd 1 to
herd 5613) nested within mating strategy 7; and
€ijkim = residual error.

Differences in least squares means were
Tukey-Kramer  adjusted  for
comparisons.  Statistical  analyses
performed with SAS (9.4). Data visualization
was conducted in R (v. 4.4.1) using the ggplot2
package (Wickham, 2016).

multiple
were

Results & Discussion

Heifer genotypes

In 2008, 68% of female dairy cattle genotyped
were 24 months or older; average age at
genotyping was 42.4 months (Figure 1). By
2009, just less than 1/3 of females were 2 years
of age or older when genotyped. The proportion
of heifers (< 24 mo. old) genotyped increased
each year. In 2023, average age at genotyping
was lowest at 5.5 months. Over all 15 years of
data, average age at genotyping was 6.3 + 8.5
months.
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Figure 1. The age US female dairy cattle were
genotyped as the percentage of total females
genotyped in a year.

Nearly all genotyped females in the US were
genotyped as heifers, which aligns with
recommendations in the literature to maximize
economic
simulated data, selecting females for breeding
by GEBYV resulted in a gain in NMS$, following
deduction of the cost of genotyping, over
selecting females based on parent average
(Weigel et al., 2012). However, the increase in
genetic merit was reduced when females were
genotyped as cows, thus, authors recommended

return of genomic testing. In

genotyping calves and heifers for the greatest
return on investment (Weigel et al., 2012). By
genotyping youngstock, farmers can also
leverage genomic information to make mating
decisions for an animal in future parities, which
Hjorte et al. (2015) demonstrated increases the
economic returns of genotyping.

The odds that a genotyped heifer calf stayed
through first lactation when NMS$ increased by
1 SD of the mean ($511) increased by 13.6%
(OR =1.136 [1.131,1.141]). We expected that
greater NM$ would increase the likelihood that
a heifer stayed in the herd, but the magnitude is
smaller than anticipated. This may indicate that
strategies
genomic results vary across herds. In a scenario

management implemented with
where a herd utilizing genomic testing has
surplus heifers, culling excess heifers with the
least genetic merit is a logical selection strategy.
However, some herds may choose to market
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their genetically elite heifers as breeding stock
while retaining females with lower genetic
merit for use as embryo recipients or for mating
with beef semen.

Service sire semen type:
Conventional
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Figure 2. The proportion of annual calvings in US
dairy herds by service sire semen type.

Breeding strategies

Over 90% of the calves born from 2008 to 2015
were conceived with conventional semen, with
most of the remaining of calves conceived with
sexed dairy semen (Figure 2). In 2016, 1% of
the calves born were beef-sired and the
proportion of calves conceived with sexed
semen grew to 10%. By 2019, calvings to beef
service sires grew to 9%, and calvings to sexed
dairy semen grew to 21%. The proportions of
calvings to beef and sexed semen continued to
grow through 2023, when the calves born were
conceived with nearly equal proportions of
beef, sexed, and conventional semen.
Additionally, in 2023, about 0.5% of calvings
resulted from insemination with sexed (Y-
sorted) beef semen to produce terminal beef x
dairy steers. Lauber et al. (2023) reported a
similar year-over-year increase in proportion of
US Holsteins and Jerseys mated to beef and
sexed semen from 2019 to 2021.

Calf genetic merit

Calves born in GT-BSC herds had the greatest
NMS$ while calves born in SC herds had the
least (Table 1). The NMS$ breeding value of
calves born in GT-BSC was $240 greater than
calves born in BSC herds. A smaller difference



Table 1. Breeding values of heifers born in 2023 by the mating strategy' used by the herd they were born in.

Herd mating strategy”

CON BC SC BSC GT-SC  GT-BSC SE
n heifers 25,264 26,684 32,902 279,271 17,604 296,335 -
(n herds) (1,117)  (786) (891) (1810)  (231)  (778)
PBV
Net merit, $ 6784 857¢ 532¢ 963° 6784 12032 37
Milk, kg 849°¢ 991° 6894 1,019% 7144 1,091 34
Fat, kg 30.44 37.1°¢ 25.1¢ 42.1° 31.44 51.6* 1.6
Protein, kg 27.7¢ 32.7¢ 23.1° 35.2b 25.9% 40.12 1.1
Somatic cell score 2.90° 2.87¢ 2.938 2.86° 2.90° 2.824 0.01
Productive life, mo. 3.01¢ 3.80° 2.57¢ 4.445 3.53¢ 6.012 0.19
Livability, % -0.13¢ 0.53b -1.194 0.62° -1.044 1.26% 0.16
Daughter pregnancy rate, %  -0.97°  -0.85%® -1.214 -0.812 -1.23¢4 0.712 0.09
Cow conception rate, % -0.504 -0.17¢ -0.98¢ 0.10° -0.86° 0.60% 0.12
Heifer conception rate, % 1.834 2.01¢ 1.78¢ 2.35° 1.85¢% 2.822 0.09
Early first calving, days 8.344 9.63¢ 6.97¢ 10.19% 6.83¢ 11.36* 0.28
Body weight composite 0.51° 0.29¢ 0.86* 0.26° 0.872 0.004 0.06
Udder composite 0.90¢ 0.854 1.39% 1.03¢ 1.692 1.11¢ 0.06
Feet and leg composite 0.54° 0.42¢ 0.90* 0.48b 1.05° 0.42¢ 0.05

'All included model effects, including herd mating strategy, were significant at P < 0.0001.

2CON = calves born to conventional semen only; BC = calves born to beef and conventional semen; SC =
calves born to sexed and conventional semen; BSC = calves born to beef, sexed, and conventional semen; GT-
SC = calves born to sexed and conventional semen and some heifers were genotyped; GT-BSC = calves born
to beef, sexed, and conventional semen and some heifers were genotyped.

abede Values within row with different superscript are different at P < 0.05.

($106) in heifer calf NM$ existed between
BSC herds and BC herds, while NM$ of calves
born in BC herds was $179 greater than that of
calves born in CON and GT-SC herds.

The PBV of production (milk, fat, protein,
and somatic cell score), longevity (productive
life and livability), and fertility (daughter
pregnancy rate, cow conception rate, heifer
conception rate, and early first calving) traits of
heifer calves generally ranked in the same order
of NMS by herd breeding strategy. Across these
trait groups, breeding strategies from most to
least favorable genetic merit ranked as follows:
GT-BSC, BSC, BC, CON, GT-SC, and SC
(Table 1). This is expected because these traits
are included in the NMS$ index (VanRaden et
al., 2021).

An unexpected result was that calves born in
CON herds had similar or greater NM$ and
PBYV of production, fertility, and longevity traits
than heifers born in GT-SC and SC herds. The
use of sexed semen in the dairy herd is expected
to increase the rate of genetic progress by
increasing selection intensity on the dams of
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cows selection pathway (Weigel, 2004; De
Vries et al., 2008). Increased genetic progress
with sexed semen use is clear for GT-BSC and
BSC herds but not in GT-SC and SC herds. We
theorize that this is due to the breeding goals of
SC and GT-SC herd differing substantially from
the herds using other breeding strategies
investigated.

Among type trait composites, genetic merit
of body weight composite (BWC) ranked by
herd mating strategy similarly to that of NMS.
Heifers born in GT-BSC herds had the most
favorable (least) BWC PBV and those in SC
and GT-SC herds had the least favorable (Table
1). Conversely, heifers born in GT-SC herds
had the greatest PBV for udder composite and
feet and legs composite, followed by calves
born in SC herds (Table 1). This may suggest
that SC and GT-SC herds are selecting
primarily for improvement in type traits, while
herds utilizing other breeding strategies select
for genetic improvement in many economically
relevant traits. In NMS$, increased BWC PBV is
not economically favorable because heavier



cows require additional feed for growth and
maintenance (VanRaden et al., 2021).
However, breed association classification
scores do not penalize animal size and, in elite
cattle shows, tall, large-framed cows are often
favored. Thus, in herds prioritizing selection for
conformation, greater BWC may not be

considered unfavorable.
Conclusions

Genomic testing of heifer calves and the
incorporation of sexed and beef semen in
mating programs have increased rapidly in US
dairy herds. On average, female dairy cattle in
the US are genotyped at 6 months of age. The
odds that a genotyped heifer remained in the
herd through first lactation increased slightly
(by 13%) when her NM$ PBV increased by
$511, suggesting that knowledge of genetic
merit from genotypes may have informed
replacement selection. Heifers born in herds
that used all mating strategies investigated
(genotyping of heifers, and a combination of
beef, sexed, and conventional semen) had the
greatest genetic merit when measured on the
four merit selection indexes and across most
PBYV investigated. Calves born in SC and GT-
SC had the least genetic merit across
production, fertility, and longevity traits but had
the greatest merit for udder and feet and legs
conformation, perhaps due to different breeding
objectives. Dairy herds that combine advanced
mating strategies generally produce genetically
superior replacement heifers.
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Abstract

Heat stress is a significant and growing challenge for the Italian dairy industry, adversely affecting milk
production, fertility, and animal welfare. This study presents a renewed genetic evaluation for heat
tolerance in Italian Holstein cattle, expanding upon a previous 2021 index that focused solely on milk
yield. The primary objective was to develop a more comprehensive selection tool by incorporating five
production traits: milk yield (kg), fat yield (kg), protein yield (kg), fat percentage, and protein
percentage. Test-day production records were augmented with meteorological data from 137 weather
stations across Italy to calculate a 7-day average Temperature-Humidity Index (THI) for each record. A
repeatability mixed model was first employed to identify the specific THI thresholds at which each of
the five traits begins to decline. Subsequently, a random regression mixed model was implemented to
estimate genetic parameters and calculate Estimated Breeding Values (EBVs) for both general
production merit and specific heat tolerance. THI thresholds were identified for all traits, with milk yield
declining above a THI of 70. Heritabilities for heat tolerance traits were found to be low to moderate,
ranging from 0.12 for fat yield to 0.37 for protein percentage, indicating sufficient genetic variation for
selection. An aggregate index, the Heat Tolerance Index (IHT), was developed by assigning economic
weights to each trait Heat Tolerance EBV. Validation results demonstrated the index's efficacy:
daughters of high-IHT bulls (+1 SD) lost 0.91 kg/d less milk during summer compared to daughters of
low-IHT bulls (-1 SD). This renewed evaluation provides a robust tool to select for more resilient
animals, offering a tangible strategy to mitigate economic losses and improve animal welfare in a
warming climate.

Key words: heat tolerance, genetic evaluation, Holstein, THI, milk production, regression

Introduction consequences of heat stress are severe. In Italy,
with a population of approximately one million
Heat stress poses a substantial threat to the dairy Holstein cows, summer-related production
industry worldwide, leading to significant losses are estimated to be around 1.5 kg of milk
reductions in milk yield, impaired reproductive per cow per day over a 180-day period,
performance, and compromised animal welfare. culminating in an annual loss of approximately
As global temperatures continue to rise, these 270,000 tons of milk.
challenges are  becoming increasingly While management strategies such as
prevalent, particularly in Mediterranean cooling systems can alleviate some effects, they
climates like in Italy. The economic represent a recurring cost. Genetic selection
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offers a cumulative and permanent solution by
breeding cows that are naturally more resilient
to heat stress. In 2021, a heat tolerance index
based solely on milk yield was introduced for
Italian Holsteins (Finocchiaro et al., 2022). To
enhance the selection process, a more robust
and comprehensive evaluation was desired.

The objectives of this study were therefore
to: 1) expand the genetic evaluation for heat
tolerance to include five key production traits:
milk (kg/d), fat (kg/d and %), and protein (kg/d
and %); 2) determine the specific Temperature-
Humidity Index (THI) thresholds at which these
3) estimate the
heritability of heat tolerance for each trait; and
4) develop and validate a new aggregate
selection index (IHT) to improve heat resilience
in Italian Holstein cattle.

traits begin to decline;

Materials and Methods

Data Source and Preparation

Test-day production records for milk, fat, and
protein yields from first, second, and third
lactation Italian Holstein cows were obtained
from the national database of the Italian

Holstein  Friesian and Jersey Breeders
Association (ANAFIBJ).
Meteorological data, including daily

maximum temperature and relative humidity,
were collected from 137 weather stations across
Italy for the period starting in 1994. Herds were
assigned geographic coordinates based on their
municipality, and each herd was linked to an
average of 2.3 nearby weather stations, with an
average distance of 13.5 km. For each test-day
record, a corresponding Temperature-Humidity
Index (THI) was calculated using the formula
from Kelly and Bond (1971). To account for the
cumulative effects of heat, a 7-day average THI
preceding the test day was used for all analyses.

Statistical Analyses

THI Threshold Identification

To identify the critical THI value above which
production traits decline, a repeatability model
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was fitted using ASReml software. The model
was:

Y=HYS+YC+ DIM x age * parity
+THI +a+pe+e

where Y is the phenotype for a given trait; HYS
is the fixed effect of herd-year-season of test
day; YC is the fixed effect of year of calving;
DIM*age*parity is the fixed effect for the
interaction of days in milk, age at calving, and
parity (1, 2, 3); THI is the linear regression on
the THI value; a is the random additive genetic
animal effect; pe is the random permanent
environmental effect; and e is the random
residual.

Genetic Parameter Estimation

A random regression model was used to
estimate genetic parameters and breeding
values for heat tolerance using MiX99 software.
The model equation was:

Y =HYS+YC+ DIM * age * parity + a
+ a(f(THD) + pe
+B(f(THI)) + e

The fixed effects are as described above. The
function f(THI) models the heat stress effect as
a linear slope only when the THI exceeds the
predetermined threshold for that trait:

f(THI)

_ 0, THI < THIthreshold
THI —

THlthresholdrTHI > THIthreshold

The random effects include the general
additive genetic merit a, the specific genetic
effect for heat tolerance a(f(THI)), the
permanent environmental effect pe, and the
permanent environmental effect related to heat
tolerance B(f(THI)).

Heat Tolerance Index (IHT)

Estimated Breeding Values (EBVs) for heat
tolerance (a) were calculated for all five
production traits. These individual EBVs were
into

then combined an aggregate Heat



Tolerance Index (IHT). The weights assigned to
each trait were: 45% for protein kg, 25% for
milk kg, 15% for fat kg, 10% for protein %, and
5% for fat %. The final IHT EBVs were
standardized to a mean of 100 and a standard
deviation of 5.

Results & Discussion

THI Thresholds and Genetic Parameters

The analysis identified distinct THI thresholds
at which different production traits begin to
decline (Table 1). Milk yield was the most
resilient, with a decline observed only when the
THI exceeded 70. Protein and fat components,
both in kilograms and percentage, were affected
at lower THI values, with thresholds ranging
from 52 to 59. This suggests that metabolic
changes affecting milk composition occur
before a substantial drop in milk volume.

Table 1: THI thresholds for decline in milk
production traits.

Milk production trait Threshold level
Milk (kg/d) 70
Protein (kg/d) 59
Fat (kg/d) 52
Protein % 55
Fat % 52

The estimated heritabilities (h?) for heat
tolerance and genetic correlations are presented
in Table 2. Heritabilities ranged from 0.12 for
fat kg to 0.37 for protein %, indicating that there
is sufficient genetic variation to achieve
progress through selection. The genetic
correlations between general production merit
and heat tolerance were consistently moderate
and negative (from -0.42 to -0.51). This
antagonism implies that selection solely for
high production may lead to a slight decline in
heat tolerance, reinforcing the need for a
balanced, multi-trait breeding goal.

Table 2: Heritabilities (h?) for heat tolerance and
genetic correlations (rg) with general production
merit.

Milk Genetic Heritability
production Correlation (h?)
trait (rg)

Milk (kg/d) -0.51 0.16
Protein (kg/d) -0.48 0.13

Fat (kg/d) -0.42 0.12
Protein % -0.43 0.37

Fat % -0.50 0.26

Validation of the Heat Tolerance Index (IHT)
To wvalidate the IHT, the performance of
daughters from bulls with high heat tolerance
(IHT > +1 SD) was compared to that of
daughters from bulls with low heat tolerance
(IHT < -1 SD). The comparison focused on the
difference in milk yield between summer and
winter test days (Table 3) (Flamenbaum, 2016).

Daughters  of  low-tolerance  bulls
experienced a substantial drop in production of
-1.24 kg/d during the summer. In contrast,
daughters of high-tolerance bulls showed a
much smaller decline of only -0.33 kg/d. This
resulted in a net difference of +0.91 kg/d in
favor of the high-IHT group, providing strong
evidence that the IHT effectively identifies sires
whose progeny are more resilient to heat stress.
This difference represents a significant
economic advantage and a  notable
improvement in animal welfare.

Table 3: Comparison of summer vs. winter milk
yield loss in daughters of high and low IHT bulls.

Group Winter Summer Difference
milk milk (kg/d)
(kg/d) (kg/d)

High HT 30.38 30.05 -0.33

(>+1 SD)

Low HT 31.14 29.90 -1.24

(=-1SD)
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Figure 1. Example of heat stress for low, medium,
high tolerance cows

Conclusions

This study successfully developed and
implemented a renewed, multi-trait genomic
evaluation for heat tolerance in Italian Holstein
cattle. By analyzing milk, fat, and protein traits,
the evaluation provides a comprehensive
assessment of an animal's ability to maintain
productivity under heat stress conditions. The
resulting Heat Tolerance Index (IHT) has been
validated as an effective tool for identifying
genetically superior animals. The daughters of
high-IHT bulls demonstrate significantly lower
milk production losses during hot summer
months. The adoption of the IHT in the national
breeding program offers a powerful,
sustainable, and cumulative strategy to enhance
the resilience of the Italian Holstein population,
thereby reducing economic losses and
improving animal welfare in the face of ongoing
climate change.
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Abstract

Since 2019, the Nordic Cattle Genetic Evaluation (NAV) has published breeding values for Saved Feed
for Holstein (HOL), Jersey (JER), and Red Dairy Cattle (RDC). This trait is integrated into the Nordic
Total Merit (NTM) index. Previously, the genetic evaluation of energy use for maintenance was based
on body weight and indicator traits such as stature, body depth, and body width. Metabolic efficiency
was genetically evaluated by using a two-step model, where the first step is a pre-correction of pheno-
types that introduced challenges. This study developed a one-step genomic model for Saved Feed to
both address these challenges and improve the use of research and Cattle Feed InTake (CFIT) data. The
dataset comprised 741,491 weekly records from 4,541 JER, 5,377 RDC, and 8,030 HOL cows. SNP
genotypes from NAV were used to create breed-specific single-step genomic evaluations. We fitted two-
trait random regression models for each of the traits of dry matter intake (DMI), energy-corrected milk
(ECM), and body weight (BW) where we treated the first and later lactations as separate traits. The
breeding values for BW change (ABW) were derived from the BW model. Across lactation (2—44 weeks
in milk), the heritabilities ranged from moderate to moderately high for DMI and ECM (0.22-0.50 &
0.47- 0.52) and were moderately high for BW (0.46—0.61). The genetic correlations were strong across
parities (=0.82). These genetic parameters estimated with pedigree based BLUP, were used in three
single-step GBLUP models, where lactation-wise breeding values for Saved Feed were calculated within
each breed as:
GEBVsaved Feed = 0.40 x GEBVEeem + 4.0 X GEBVagw — GEBVpwmi

One index unit of Saved Feed corresponds to 18.3 kg of dry matter saved per 305-day lactation, or 183
kg for 10 index units. Among for candidate bulls born in year 2022, the breeding values for Saved Feed
had moderate index correlations with the NTM (0.20-0.30), weak to moderate index correlations with
yield trait (0.07-0.26), and low index correlations with female fertility, udder health, and general health
(-0.14 to 0.12). For HOL and RDC, the index correlations between Saved Feed and frame size were
moderately negative (—0.19 to —0.29), while for JER, this correlation was close to zero. In conclusion,
NTM has been updated with the new NAV one-step Saved Feed index which should promote genetic
progress for feed efficiency in the Nordic Dairy Cattle breeds.

Key words: Saved Feed, Feed Efficiency, Genomic Prediction, Holstein, Jersey, Red Dairy Cattle.
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Introduction

Feed is the largest operating expense on dairy
farms (Stephansen et al., 2021a) and a major
contributor to dairy farms” greenhouse gas
emissions (Kristensen et al., 2015). Conse-
quently, genetic evaluation centers worldwide
have developed breeding values for feed effi-
ciency. The Nordic Cattle Genetic Evaluation
(NAV) has introduced breeding values for
Saved Feed by first including breeding values
for energy use related to maintenance in 2019
(Lidauer et al., 2019) and then including breed-
ing values for metabolic efficiency in 2021
(Stephansen et al., 2021b). The Saved Feed in-
dex has been integrated into the Nordic Total
Merit (NTM) index since 2020 to support selec-
tion for more feed-efficient cows in Holstein
(HOL), Jersey (JER), and Red Dairy Cattle
(RDC) populations.

Historically, the breeding values for energy
use related to maintenance was calculated using
body weight data collected from milking robots,
heart girth collected with tape measurements,
and indicator traits such as stature, body depth,
and chest width. The breeding values for meta-
bolic efficiency were calculated as residual feed
intakes (RFI) using the data from both commer-
cial farms from Cattle Feed InTake (CFIT)
(Lassen et al., 2023) and research farms from
AU-Foulum, Denmark and Luke, Finland. The
breeding values for RFI were calculated using a
two-step approach, where the first step was a
pre-correction using a linear model, from which
the residual was used in a single-step GBLUP.
However, this two-step approach presented
challenges with unrealistic regression coeffi-
cient of feed intake on milk energy, difficulty
with handling of missing data, and poor correc-
tion of fixed effect when using multiple traits in
regression models due to different means and
variances in different levels of fixed effects.
Such issues have previously been documented
for this type of RFI model (Tempelman & Lu,
2020; Stephansen et al., 2024).

To address these limitations, we propose a
one-step Saved Feed model that was inspired by
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the works of Khanal et al. (2022) and Abdalla
et al. (2024). The objective of this study was to
develop and implement a one-step Saved Feed
evaluation model that enhanced the accuracy
and robustness of breeding values for feed effi-
ciency in the NAV evaluation.

Materials and Methods

Animal Care and Ethics Committee approval
was not required for this study as data was col-
lected using standard dairy herd management
practices. Furthermore, no treatment or han-
dling of animals were administered during the
data collection for this study.

Phenotypic data

The analysis included phenotypic data on all
breeds from 24 Danish CFIT farms that were
obtained between January, 2019 and December,
2024, phenotypic data on HOL that were ob-
tained from the Danish Cattle Research Center
(DCRC) between January, 2003 and March,
2022 (Li et al., 2017; Stephansen et al., 2023),
and phenotypic data on RDC from Natural Re-
sources Institute Finland farms between Sep-
tember, 1998 and January, 2022 (Luke; Mehtio
et al.,, 2018). The phenotypic data was com-
prised of weekly averages of dry matter intake
(DMI), weekly averages of body weight (BW),
and monthly test-day records for energy-cor-
rected milk (ECM). In total, the dataset in-
cluded 741,491 DMI records from 4,541 JER
cows, 5,377 RDC cows, and 8,030 HOL cows
(Table 1).

Table 1: Numbers of records, cows, and cows with
genotypes in the phenotypic data.

Breed n records n cows (geno-
DMI ECM typed)
HOL 361,412 202,360 8,030 (5,104)
RDC 233,867 108,255 5,377 (3,828)
JER 146,215 84,486 4,541 (3,040)
Total 741,491 395,101 17,948 (11,972)

HOL=Holstein, RDC=Red Dairy Cattle, JER=Jer-
sey, DMI=Dry Matter Intake, ECM=Energy Cor-
rected Milk



Pedigrees and genotypes

Both the initial breed-specific pedigrees and the
genotypic data were provided by NAV using its
standard operations from routine evaluations.
The initial pedigree was pruned such that it only
contained cows with either phenotypic or geno-
typed individuals and their ancestors within
three generations. Afterwards, we added ge-
netic groups for individuals with unknown par-
ents. The genetic groups were defined based on
the sex, breed, country of origin, and birth year
class of the individual. The final pedigrees in-
cluded 1,120,681 HOL, 488,855 RDC, and
256,551 JER animals. The genotypic data con-
tained information on approximately 45,000
SNPs. The genotyping rates for animals in the
pedigree were 58% for HOL, 66% for JER and
58% for RDC.

Statistical models

DMI, ECM, and BW were analyzed using
breed-specific two-trait random regression
models where primiparous and multiparous lac-
tations were treated different traits:

y=Xb+Za+ Wpe+Mp +e,

where y is a vector of phenotypes for DMI,
ECM, or BW across the two parity groups (pri-
miparous or multiparous) and weeks in lactation
(week 0-45); b is a vector of fixed effects for
age at first calving (only primiparous), parity
(only multiparous), calving herd x calving year
x calving season, the regression on lactation
curve (5™ order Legendre polynomial terms
nested within herd); a is a vector of additive ge-
netic random regression coefficients (Legendre
polynomials: intercept, linear); pe is a vector of
permanent environmental random regression
coefficients (Legendre polynomials: intercept,
linear, quadratic); p is a vector of random ef-
fects for animal x parity (only multiparous); e is
a vector of residuals nested within trait; and X,
7, W, and M are design matrices. The parame-
ters of the model were estimated using Al-
REML in DMU (Madsen and Jensen, 2013)
with a pedigree-based relationship matrix.
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The estimated (co)variance components
were used to predict lactation-wise genomic
breeding values for DMI, ECM and BW using
the ssGTaBLUP model in the MiX99 software
(Méntysaari et al., 2017). For RDC, we pre-
dicted genomic breeding values with (co)vari-
ance components from HOL. The genomic
breeding values for BW change (ABW) were
derived from the BW model as the difference
between GEBVs at day 30 in milk and day 280
in milk.

The new Saved Feed calculation

We used the GEBVs of the traits to calculate
breeding values for Saved Feed within each
combination of parity group and breed:

GEBVsaved Feed = 0.40 x GEBVgem + 4.0 X
GEBVABW - GEBVDMI

Instead of estimating the regression coeffi-
cients for ECM and ABW in the equation above
from genetic parameters, we obtained the re-
gression coefficient for ECM from Abdalla et
al. (2024), while the regression coefficient for
ABW was based on Lidauer et al. (2023). Par-
ity-specific GEBVsaved Feea Vvalues were
weighted with 1/3 emphasis on primiparous lac-
tation and 2/3 emphasis on multiparous lacta-
tions.

The breeding values for Saved Feed were
standardized to have a mean of 100 and a stand-
ard deviation (SD) of 10 for base animals, de-
fined as three to five years old (rolling base)
cows with phenotypes. One index unit repre-
sents 18.3 kg of dry matter feed saved in the first
305 days of lactation.

Results & Discussion

Covariance parameters

Lactation-wise (2 to 44 weeks in milk) herita-
bilities were moderate for DMI (HOLimi:0.43;
HOLmuii:0.49;  JERpimi:0.22;  JERmuii:0.50),
moderate for ECM (HOL pimi:0.50;
HOL mu16:0.48; JER primi:0.47; JERmuii:0.52), and

moderately high for BW (HOLpimi:0.52;



HOLmumZO.Sg; JERprim120.46; JERmu1ﬁ:0.61). The
heritabilities were in accordance with those re-
ported using a CFIT dataset (Stephansen et al.,
2025) and research data for HOL in US (Khanal
et al., 2022). The genetic correlations between
parity groups were high for DMI (HOL: 0.90;
JER: 0.82), high for ECM (HOL: 0.89; JER:
0.94), and high for BW (HOL.: 0.95; JER: 0.90).
This is also in accordance with previous studies
(de Jong et al., 2019; Jamrozik et al., 2022;
Stephansen et al., 2025).

Index correlations and genetic trends

The new index for Saved Feed had correlations
with the previous index of 0.30, 0.50, and 0.25
for HOL, RDC and JER respectively. The levels
of these correlations were expected because the
model changed to a one-step Saved Feed ap-
proach instead of the previous two-step RFI
model with challenges observed in the precor-
rection step, and because we thereby omitted
BW phenotypes from cows without DMI and
ECM information. The NAV Saved Feed index
has been weighted fully into NTM since Febru-
ary 2025 using the economic weights proposed
by Serensen et al., (2018). This has resulted in
moderate index correlations between Saved
Feed and NTM at 0.30, 0.26, and 0.20 for HOL,
RDC and JER, respectively, among candidate
bulls born in 2022 (Table 2).

There has been a positive genetic trend for
Saved Feed among bulls with genotype infor-
mation between 2010 and 2023 with an average
increase of 4 Saved Feed index units over the
past decade (Figure 1).

The correlations between predicted breeding
values for Saved Feed and DMI were moder-
ately high and negative (-0.55 to -0.75), which
means that selection for enhanced Saved Feed
applies selection pressure against feed intake
(Table 2). The correlations between predicted
breeding values for Saved Feed and the Yield
index were low to moderate (0.07 to 0.26),
which indicates that feed efficient cows
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Figure 1: Genetic trends for Saved Feed among bulls
with genotype information from Holstein (HOL),
Red Dairy Cattle (RDC), and Jersey (JER).

tend to produce more solids and less fluids. The
correlations between predicted breeding values
for Saved Feed and Female fertility, Udder
health, and General health were low and ranged
from -0.14 to 0.12 (Table 2). HOL and RDC had
moderately negative correlations between pre-
dicted breeding values for Saved Feed and
frame size (-0.19 to -0.29), whereas for JER this
correlation was approximately zero. For JER,
the correlation between predicted breeding val-
ues for Saved Feed and Longevity was slightly
negative (-0.09; Table 2). Lastly, the correla-
tions between predicted breeding values for



Longevity and BW were low and negative in
JER and HOL (Table 3).

Table 2: Index correlations for 2022 candidate bulls
from Saved Feed to other breeding goals traits.

Saved Feed
HOL (3,267) RDC (2,592) JER (488)

DMI -0.55 -0.75 -0.55
NTM 0.30 0.26 0.20
Yield 0.26 0.07 0.23
FERT -0.02 0.12 -0.14
MAST -0.11 0.06 -0.11
GH -0.11 -0.14 -0.08
Frame -0.19 -0.29 0.01

Udder -0.15 -0.08 -0.22
YSS 0.11 0.14 NA

LONG 0.01 0.17 -0.09

HOL=Holstein, RDC=Red Dairy Cattle, JER=Jer-
sey, DMI=Dry Matter Intake, NTM=Nordic Total
Merit, FERT=Female Fertility, MAST=Mastitis,
GH=General Health, YSS=Young Stock Survival,
LONG=Longevity, NA=Not available.

The slightly negative correlations between
predicted breeding values for Saved Feed and
functional traits may originate from the correla-
tions between DMI and ECM, and the func-
tional traits, since these have mostly negative
correlations (Table 3) to female fertility (DMI:
-0.05 to -0.30; ECM: -0.20 to -0.30), udder
health (DMI: -0.05 to -0.15; ECM: -0.15 to -
0.20), and general health (DMI: 0.00 to -0.15;
ECM: -0.20 to -0.30).

Conclusions

The updated NAV Saved Feed evaluation has
improved utilization of data, and it provides
more enhanced feed efficiency selection indices
to Nordic dairy farmers. The updated Saved
Feed index has been fully weighed into the Nor-
dic breeding goal NTM since February 2025.
This has resulted in moderate correlations be-
tween the new NTM and the updated Saved
Feed index which indicates that selection for
NTM leads to genetic progress for feed efficient
and profitable Nordic Dairy Cattle.

Table 3: Index correlations among 2022 candidate
bulls between component traits for Saved Feed com-
ponent traits and functional traits in the Nordic
breeding goal.
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HOL=Holstein, RDC=Red Dairy Cattle, JER=Jer-
sey, DMI=Dry Matter Intake, ECM=Energy Cor-
rected Milk, BW=Body Weight, FERT=Female Fer-
tility, MAST=Mastitis, GH=General Health,
YSS=Young Stock Survival, LONG=Longevity.
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Abstract

Sustainability traits, such as feed efficiency and enteric methane emissions, are difficult and expensive
to measure. Establishing a large national reference population is therefore challenging, and pooling data
across countries in a joint international evaluation would be beneficial. In beef cattle, data on
sustainability traits are collected across multiple breeds and in small populations, including crossbred
animals of various breed composition. In such scenarios, genomic prediction requires modelling the
individuals’ different genetic background. Additionally, including available data on correlated indicator
traits could improve the accuracy of genomic prediction for sustainability traits. However, current
international beef cattle evaluations led by Interbeef are pedigree-based, performed within each breed
separately, and use data from one trait, or one group of traits, at a time. The “M3GE” project aims to
develop multi-trait multi-breed multi-country genomic evaluations for beef cattle, focusing on
sustainability traits and small populations. The project is the result of a collaboration between WUR,
ICAR (the Netherlands), Interbull Centre (Sweden), ICBF (Ireland), AHDB, SRUC (Great Britain), and
FedANA (Italy), involving six national breeding organisations from three countries. The aims of this
paper are to: i) present the M3GE project and its objectives, ii) give an overview of the status of
collecting and modelling feed efficiency across participating organisations, and iii) present the first
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results of the project. Pedigree, phenotypic, and genomic data for feed efficiency, longevity, and
associated indicator traits have been collected using the Interbull Centre’s GenoEx-GDE and IDEA
platforms. Initial work will focus on feed efficiency for which individual direct measures have been
collected on ~13K phenotyped animals (~9K of which are genotyped), from over 15 different breeds
and crossbreds recorded in Great Britain, Ireland, and Italy. The first steps include the imputation of
collected genotypes to a common reference panel, population structure analysis, estimation of
connectedness measures across populations, and estimation of genetic correlations across countries. The
final step is to develop an international multi-breed single-step evaluation for feed efficiency including
crossbred animals. This project contributes to the development of sustainable genomic evaluations in
beef cattle for large and small populations.

Key words: beef cattle, international evaluations, multi-trait, multi-breed, genomic evaluations, feed
efficiency

Introduction back to each participating country according to
their national scale for a list of publishable sires
Novel and sustainability traits, such as feed (Bonifazi et al., 2023). Bonifazi et al. (2022)
efficiency and enteric methane emissions, are showed the feasibility and advantages of also
difficult and expensive to measure, making it including SNP genotypes at the international
challenging to establish large reference level to implement a joint single-breed single-
populations at the national level. Hence, step beef cattle genomic evaluation for a group
combining data across countries into a single of traits at a time.
international genomic evaluation is an attractive In the Interbeef context, national beef cattle
solution to build a large reference population for evaluations face different challenges that could
genomic predictions. be addressed through international
International beef cattle evaluations led by collaboration. Firstly, the implementation of
Interbeef involve up to fifteen countries genetic evaluations for novel traits is highly
worldwide and are carried out for five major desirable; however, the high costs associated
popular breeds (Angus, Charolais, Hereford, with data recording hinder their widespread
Limousin, Simmental), and four trait groups: adoption. Consequently, genetic progress on
growth (composed by weaning weight), calving new traits remains limited or is delayed,
(composed by calving ease and birth weight), primarily due to the small size of the available
and  carcass (composed by  weight, reference populations at the national level.
conformation and fat) (Macedo, 2023; Venot et Second, small and local breeds risk becoming
al., 2014; Vesela et al., 2019). Interbeef non-competitive in favour of more popular
evaluations are performed within each breed ones. Indeed, small and local breeds are not yet
separately and use data from one group of traits considered in current international, and
at a time. In Interbeef, raw national data sometimes even national, evaluations. Third,
(pedigree and phenotypes) are pooled at the although crossbreeding is already widely used
international level and modelled using a in some countries (e.g., Ireland) and is
pedigree-based evaluation following the becoming more popular in others with the
AMACI model (Animal Model Accounting for increased use of beef-on-dairy, international
Across Country Interactions) (Phocas et al., evaluations are still defined per breed and focus
2005). The resulting estimated breeding values on purebred animals. In particular, in the
(EBVs) and reliabilities (RELs) are distributed presence of crossbred animals of various breed

composition, genomic prediction requires
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modelling of the individual’s different genetic
background. Thus, there is a need to develop
new and improved services for countries and to
expand the current Interbeef portfolio to allow
the inclusion of genomic data, new breeds and
crossbreeds, and new (novel) traits.

We conducted a preliminary survey to
identify which (novel) trait groups were of
interest to Interbeef participating countries and
which breeds already had data collected at the
national level. Results revealed that feed
efficiency and longevity were the most
interesting trait groups to implement, alongside
consideration of crossbred information (e.g.,
beef-on-dairy). Furthermore, the survey
emphasised that pedigree, phenotypic, and
genomic data are already available at the
national level, but collected on different
purebred and crossbred animals across different
countries.

Based on the survey results, the project
called “M3GE” (multi-trait multi-breed multi-
country genomic evaluations) has
launched in 2024. This paper aims to: i) present

been

the M3GE project and its objectives, ii) give an
overview of the status of collecting and
modelling feed efficiency across participating
organisations, and iii) present the first results of
the project.

The M3GE project

The M3GE project aims to develop a multi-trait
multi-breed multi-country genomic evaluation
for beef cattle, focusing on sustainability traits
and small populations. Through such an
evaluation, the project aims to unlock several
potential advantages. First, including data on
new purebred and crossbred animals would help
expand the reference population for genomic
prediction, potentially increasing the accuracy
of genomic EBVs (GEBVs) and providing
international GEBVs for both purebred and
crossbred animals. Second, the evaluation
would facilitate pooling data for new suitability
traits at the international level, effectively
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harnessing collaboration among countries for
novel and complex traits such as feed
efficiency. Third, by involving new numerically
small and local breeds, the project would
increase the use of local genetic resources that
are currently unexplored at the international
level, as is the case for local transboundary
breeds (local and genetically similar
populations separated by national borders).
Fourth, by leveraging the joint international
reference population, the evaluation could
allow countries to deliver GEBVs to their
breeders for traits that are not yet evaluated at
the national level due to the small size of their
national reference population.

The M3GE project is a private-public-
partnership (PPP) supported by the Dutch
Ministry of Economic Affairs and is a
collaboration between Wageningen University
& Research (WUR), the International
Committee for Animal Recording (ICAR), the
Interbull Centre, the Irish Cattle Breeding
Federation (ICBF), the Agriculture and
Horticulture Development Board (AHDB),
Scotland's Rural College (SRUC), and the
National Federation of National Breeders
Associations (FedANA). The project involves a
total of six national breeding organisations from
three countries: Ireland (IRL), Great Britain
(GBR), and Italy (ITA). Next to ICBF (IRL),
and AHDB and SRUC (GBR), there are four
Italian national organisations involved in the
project  through  FedANA:  ANABIFJ
(Associazione Nazionale Allevatori della Razza
Frisona, Bruna e Jersey Italiana), ANAPRI
(Associazione Nazionale Allevatori Bovini di
Razza Pezzata Rossa Italiana), ANABIC
(Associazione Nazionale degli Allevatori delle
razze bovine Charolaise e Limousine Italiane),
ANACLI (Associazione Nazionale degli
Allevatori delle razze bovine Charolaise e
Limousine Italiane).



Materials and Methods

Data collection

Individual pedigree, phenotypic, and genomic
information was collected at the Interbull
Centre (Uppsala, Sweden). Pedigree and
phenotypic repeated records were collected
using IDEA, which was adapted to support the
submission of repeated records. Genomic
information was collected using GenoEx-GDE
(Interbull Centre, 2025a). Data were collected
for two new traits (feed and longevity) and their
associated indicator traits. Therefore, two new
trait groups were defined as follows:

e FEED, composed of feed itself (FEF) and
its associated indicator traits: carcass traits
(weight (CAW), fat (CAF), and
conformation (CCO)), liveweight (LW),
and growth traits (average daily gain
(ADGQG) and average daily carcass weight
(ACQG)).

e LONG, composed of longevity (LON) and
its associated indicator traits: calving traits
(age at first calving (AFC), and calving
interval (CAl)).

Data for FEED were collected for purebred
beef animals, crossbred animals (both beef-on-
beef and beef-on-dairy), and growing purebred
dairy males, such as bulls and steers. Data for
LONG were collected for purebred beef,
crossbred (beef-on-beef and beef-on-dairy)
animals.

Genomic information

Individual genomic information in the form of
(imputed) single-nucleotide polymorphisms
(SNPs) was available at medium-high density at
the national level. Genomic information was
collected for any animal with genomic and/or
phenotypic information and their relatives
(ancestors and sibs) to be later used in a single-
step approach (Legarra et al., 2014). Different
genotyping chips (i.e., panels) may be used
within and across organisations. In total, eleven
chips were collected among all participating
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organisations, with densities ranging from
30,111 to 777,962 SNPs. For each chip, a map
file with information on the SNPs' commercial
names, their physical positions on the genome
(chromosome and base pair position), and their
genome assembly version was collected. Chips
and associated genomic information were
validated to ensure that the collected genomic
information followed the same Illumina AB
coding (Illumina, 2006), and that genotype
information would agree within- and across-
country as well as within- and across-breed.
Finally, all genotypes were mapped to the
UMD3.1 genome assembly (Zimin et al., 2009).

Population structure

A Principal Component Analysis (PCA;
Patterson et al., 2006; Chang et al., 2015) for
FEF was performed using only SNPs
overlapping across all chips (~4,000 SNPs) and
including genotyped animals with phenotype
and their genotyped ancestors. The PCA
included about 18,000 genotyped animals, of
which about 9,000 had a FEF phenotype.

Modelling of FEF at the national level
National information on FEF trait and model
definitions, including (genetic) parameters,
were collected using Interbeef 603 files
(Interbull Centre, 2025b) and extended national
genetic evaluations forms (Interbull Centre,
2025¢).

Results & Discussion

Data collected
Table 1 shows an overview of the number of
phenotypes and genotypes collected within the
M3GE project for each organisation and trait
group. Overall, data from GBR and IRL are
collected on both purebred and crossbred
animals, while data from ITA are collected only
on purebred animals.

For the FEED trait group, about 98.5
thousand FEF repeated records have been
collected across all organisations and breeds.



The number of records collected on FEED
indicator traits ranges from 12.9 thousand for
ADG to 12.9 million for CFA and CCO, with
the majority of indicator traits’ phenotypes
being collected in IRL for carcass and live
weights (Table 1). For FEED indicator traits,
LW records are available in all organisations
and countries, except for the Italian local
breeds. Other indicator traits for FEED are only
collected in either one or two countries. For the
LONG trait group, approximately 10.7 million
LON records have been collected from IRL and
ITA, with the majority of phenotypes
originating from the former. For LONG
indicator traits, phenotypes have been collected
for IRL and ITA with ~3.3 million and ~9.5
million records, respectively.

A total of about 3.1 million genotypes have
been collected across organisations for both
purebred and crossbred animals (Table 1). The
majority of the genotypes are from IRL (~3
million), followed by GBR (~106 thousand),
and ITA (~35 thousand).

Recording and modelling feed in different
national organisations

Ireland

ICBEF collects FEF at the Tully research station
next to other novel phenotypes (e.g., enteric
methane emissions). FEF is collected on
commercial beef animals from targeted
candidate sires, specifically the offspring of Al
bulls, ensuring genetic connectedness to the rest
of the IRL population. FEF recording is done
close to the finishing period, mainly for steers

Table 1. Overview of the number of collected phenotypes (repeated records included) and genotypes '.

Country GBR IRL ITA
Organization AHDB&SRUC ICBF ANAFIBJ ANAPRI ANABIC ANACLI
(breeds) 2 (PBD & XBD) (PBD & XBD) (HOL) (SIM) (ITA breeds) (LIM & CHA)
Trait 3 Total
FEED
FEF 28.4K 8.4K 8.8K 900 27K 24K 98.5K
CWE 12.9M 42K 13M
CFA 12.9M 12.9M
CCO 12.9M 12.9M
LWI 581K 1.0M 26K 7.6K 6K 1.6M
LW2 1.0M 192K 1.0M
LW3 1.3M 1.3M
ADG 7.6K 5.3K 12.9K
CDG 355K 355K
LONG
LON 10.2M 248K 239K 10.7M
CAI 8.5M 912K 9.5M
AFC 3.1IM 255K 3.3M
Genotypes 106K 3.0M 5.3K 3.3K 13.3K 12.9K 3.1M

! K = thousands, M = millions. > PBD = purebred, XBD = crossbred, HOL = Holstein-Friesian, SIM = Simmental,
ITA breeds = Chianina, Marchigiana, Romagnola, Podolica, Maremmana, LIM = Limousin, CHA = Charolais. 3
FEED = feed trait group, FEF = feed, CWE = carcass weight, CFA = carcass fat, CCO = carcass conformation,
LWI1, LW2, LW3 = live weights (different definitions), ADG = average daily gain, CDG = carcass daily gain,
LONG = longevity trait group, LON = longevity, CAI = calving interval, AFC = age at first calving.

and heifers, and a few young bulls. The age at
recording ranges from about 200 to 900 days.
While recording was initially focused on
purebred animals, it is now mostly conducted
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on crossbred animals. Initially, when recording
focused on purebred individuals, the diet was ad
libitum (concentrate and hay), while nowadays
is a TMR (Ryan et al., 2022). A single record



per animal is available, with FEF defined as the
average daily dry matter intake (Kg DMI/day)
over the whole testing period. The minimum
length of the testing period is 30 days and the
average length is 109 days. The national model
used is a multi-breed, multi-trait, two-step
genomic animal evaluation including purebred
and crossbred data for: FEF, three live weights
(365-450 days, 450-550 days, 550-700 days),
skeletal development, and three carcass traits
(CWE, CFO, CCO). In this evaluation, FEF is
modelled as:

FEF = hrbxb + hrbxd + dhrbxb + dhbxd +
dfrac + afi+ a2fi + a3fi + damage +
dampar + byr + twin + hysfi+a+e,

where: FEF = daily DMI, Arbxb = heterosis
beef x beef (covariate), hrbxd = heterosis beef x
dairy (covariate), dhrbxb = dam heterosis beef
x beef (covariate), dhrbxd = dam heterosis beef
x dairy (covariate), dfrac = dam breed fraction
(covariate), afi, a2fi, and a3fi = age at feeding
fitted as a linear, quadratic, and cubic covariate,
respectively, damage = age of the dam
(covariate), dampar = parity of the dam (fixed),
byr = birth year of the animal (fixed), twin =
twinning (fixed), hysfi = hear-year-season
(random), a = animal genetic effect (random), e
= residual effect (random).

Great Britain

AHDB collects FEF data from research and
mostly commercial farms, using the provided
equipment and protocol. Recording is done over
a 63-day period with animals having an ad
libitum diet. FEF is collected during the testing
period on purebred and crossbred steers with
age at recording ranging from about 170 to 560
days. FEF is defined by SRUC as the average
daily dry matter intake (kg DMI/day), with one
record per week, for up to 7 weeks in total. At
the national level, FEF is modelled using a
single-trait, multi-breed, ssGBLUP
repeatability animal model, defined as:
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FEF = fdg + brl + aaf + lve + h13 + h23 +
h34 4+ r12+7r13+1r23+ pe+a+e,

where: FEF = daily DMI, fdg = feeding group
(fixed), brl = birth location (fixed), aaf = age at
feeding (covariate), Ilve = live weight
(covariate), hi3, h23, h34, ri2, ri3, and r23 =
heterosis (/) and recombination () covariates
between dairy breeds (1), beef breeds (2),
continental breeds (3), and UK beef breeds (4),
pe = animal permanent environment effect
(random), a = animal genetic effect (random), e
= residual effect (random).

Italy

In TItaly, breed organisations
independently collect and model FEF recorded
at their own test centre for (young) male
selection candidates.

national

Holstein. ANAFIBJ FEF on
purebred Holstein growing male selection
candidates. The age at recording ranges from

collects

about 100 days to 600 days. Repeated records
are collected over a minimum 30-day period.
FEF is defined as daily dry matter intake (Kg
DMI/day). FEF is modelled using a single-trait,
genomic BLUP (GBLUP) repeatability animal
model, defined as:

FEF = aaev + bidt + dtpt + pe +a +e,

where: FEF = daily DMI, aave = age at
phenotyping (covariate), bidt = birth date
(covariate), dipt = date at phenotyping
(random), pe = animal permanent environment
effect (random), ¢ = animal genetic effect
(random), e = residual effect (random).

Simmental. ANAPRI collects FEF on
purebred Simmental male selection candidates.
The age at recording ranges between about 280
and 340 days. Repeated records are collected
over a 60-day period and summarised into a
single record per animal. FEF is defined as daily
residual feed intake (RFI; Kg DMI/day). FEF is



modelled wusing a single-trait,
GBLUP animal model as:

single-step

FEF = cg + weight + a + e,

where: FEF = daily RFI, cg = contemporary
group (fixed), weight = animal live weight
(covariate), a = animal genetic effect (random),
e = residual effect (random).

Italian local beef breeds, Limousin, and
Charolais. ANABIC collects FEF on purebred
male selection candidates for three Italian local
beef cattle breeds: Chianina, Marchigiana, and
Romagnola. FEF is available over a 30-day
testing period, and the age at recording ranges
between about 200 and 400 days. FEF is defined
as residual feed intake (RFI; kg DMI/day). FEF
data for the three local beef breeds are jointly
modelled using a multi-breed, single-trait,
ssGBLUP repeatability animal model as:

FEF = cg + breed + weight + pe +a +e,

where: FEF = daily RFI, cg = contemporary
group (fixed), breed = breed effect (fixed),
weight = animal weight (covariate), pe = animal
permanent environment effect (random), a =
animal genetic effect (random), e = residual
effect (random).

ANACLI collects FEF
Limousin and Charolais male selection
candidates at the ANABIC test centre using the
same procedure. FEF is defined as residual feed
intake (kg DMI/day). For FEF and Limousin
individuals, a  single-trait,  ssGBLUP
recently

on purebred

repeatability animal model was

developed as:
FEF = cg + weight + pe +a + e,

where: FEF = daily RFI, cg = contemporary
group (fixed), animal

(covariate), pe =

weight =
animal

weight
permanent
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animal
genetic effect (random), e = residual effect
(random). The FEF data from ANACLI was not
included in the PCA as it was not yet available.

environment effect (random), a =

Table 2 shows a summary of the national
trait definitions of FEF, evaluations and model
used, and genetic parameters estimated at the
national level by the different organisations.
Overall, FEF heritabilities are moderate
(average across organisations of 0.22), ranging
between a minimum of 0.05 for the Italian local
beef breeds and 0.32 for IRL. Repeatability
ranged between 0.22 for the Italian local beef
breeds and 0.50 for the Italian Holstein.

Population structure

The first two principal components (PC)
explained a large proportion of variance
(24.4 % and 15.3%, respectively). Figure 1
shows the PCA for purebred individuals. The
first PC separated purebred individuals into
several main breed clusters independent of the
country providing the genotypes: from left to
right, Holstein, Limousin, Angus, and
Simmental. The local Italian breeds clustered
together and separately from other purebred
individuals following the second PC. The
remaining purebred individuals clustered
closely with either the Limousin or the Angus
breed cluster. Finally, Figure 2 shows the PCA
including crossbred animals, demonstrating
how crossbred individuals form a continuum
across purebred animals, except for the local
Italian breeds, which remain distinct as they
were not crossed with other breeds. Such a
pattern was expected as the majority of the
crossbred animals are from unstructured
Crosses.



Table 2. Summary of national models and genetic parameters for the feed trait group across different countries.

Country GBR IRL ITA
Organization AHDB&SRUC ICBF ANAFIBJ ANAPRI ANABIC ANACLI
Breeds' PBD & XBD PBD & XBD HOL SIM ITA breeds  LIM & CHA
Trait? DMI DMI DMI RFI RFI RFI
ssGBLUP two-step GBLUP ssGBLUP  ssGBLUP  ssGBLUP
3 genomic
Model multi-breed  multi-breed multi-breed
single-trait multi-trait single-trait single-trait single-trait single-trait
Heritability 0.14 0.30 0.32 0.29 0.05 0.13
Repeatability 0.26 0.50 0.22 0.24

' PBD = purebred, XBD = crossbred, HOL = Holstein-Friesian, SIM = Simmental, ITA breeds = Chianina,
Marchigiana, Romagnola, LIM = Limousin, CHA = Charolais. 2 DMI = Dry Matter Intake, RFI = Residual Feed
Intake. > ssGBLUP = single-step genomic BLUP, GBLUP = genomic BLUP.

Next steps and implications

The next steps in the project are to impute the
collected genotypes to a common reference
panel, and to estimate connectedness and
genetic correlations across populations and
breeds. Then, an international multi-breed
single-step evaluation for FEF, including
crossbred animals, will be developed. Later, the
project will focus on developing similar multi-
breed single-step evaluations for LON. In the
final phase, the project will focus on including
indicator traits for both FEF and LON using a
multi-trait approach.

The M3GE project is expected to improve
current and future Interbeef evaluations by
optimising existing services and developing
new ones. Such improvements include, for
instance, adapting pipelines to accommodate
repeated records as well as identifying possible
bottlenecks, such as the efficient upload and
routine handling of large volumes of genomic
individuals with diverse breed

Overall, the M3GE project
contributes to the development of sustainable

data from
composition.
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international genomic evaluations in beef cattle
across both large and small populations, thereby
enhancing Interbeef’s capacity to meet future

demands.

Conclusions

The M3GE project is an international
collaboration between different partners,

including six national breeding organisations.
The project aims to develop beef cattle multi-
trait multi-breed multi-country  genomic
evaluations for sustainability traits and small
populations. In the first phase, data (pedigree,
phenotypes, genotypes) have been collected for
feed, longevity, and their associated indicator
traits, for both purebred and crossbred animals,
including (small) local populations. The next
step is to develop a multi-breed, multi-country
genomic evaluation for feed efficiency.
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Figure 1. Plot of the first two principal components (PC) and percentage of explained variance (within brackets)
of the genomic relationship matrix for purebred animals. Shapes indicate the country sending the genotype and
colours indicate the breed (Other = other purebred breeds). GBR = Great Britain, IRL = Ireland, ITA = Italy.

0.01
O GBR
O IRL
FANTY
000 ® AAN MON
® AUB MRY
_ ® BAQ MSH
9
=)
» BBL NWR
w
= BRF @ PAR
o™
o CHA @ PIE
-0.01 ® CA @ RDC
DFR ® RDP
HER @® ROM
HOL @ SAL
JER @ SIv
LM @ XXX
-0.02
® MAR
-0.01 0.00 0.01 0.02
PC1 (24.4%)

Figure 2. Plot of the first two principal components (PC) and percentage of explained variance (within brackets)
of the genomic relationship matrix for purebred and crossbred animals. Shapes indicate the country sending the
genotype and colours indicate the breed. GBR = Great Britain, IRL = Ireland, ITA = Italy.
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