Efficient computation of base generation allele frequencies
Keywords:
base generation allele frequencies, genomic predictionAbstract
Several aspects of genomic prediction require use of allele frequencies that ideally reflect the base generation of the available pedigree. This includes computation of model-based reliabilities of direct genomic values (DGV) in the context of multi-step genomic evaluations, computation of genomic relationships to be used in single-step GBLUP, and computation of relationships among metafounders. In many cases, the allele frequencies computed from the currently genotyped population are used instead, motivated by the observation that computation of base generation allele frequencies is time consuming. Our aim was to compare the efficiency and accuracy of different methods to compute base generation allele frequencies. The first method employed the gene content method, by running a BLUP on the SNP genotypes and considering a heritability of 0.99. Either a univariate BLUP run for each SNP, or a multiple-trait BLUP run for several SNPs was performed, considering zero genetic correlations among the SNPs. The second method employed a general least squares estimator that is equivalent to the first method, albeit that it does not consider a residual variance. First analyses on simulated data without selection, missing genotypes or genotype errors in the data showed that the second method is superior in both accuracy and efficiency, but only if the inverse of the A matrix was computed using imputation on the fly. The implementation of the second method required less than two minutes to compute base generation allele frequencies for 1 670 SNPs based on 100 078 genotyped animals, and a total pedigree of 325 266 animals. Subsequent analyses with datasets simulating selection, missing genotypes and genotyping errors, that are closer to data used in practice, supported the results that the second method is more efficient and accurate.Downloads
Published
2018-03-20
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).