Can genomic data enable genetic evaluation with phenotypes recorded on smallholder farms?
Keywords:
dairy cattle, genetic evaluation, genomic selection, smallholder farms, genetic connectednessAbstract
The huge increases in dairy cattle milk yield in advanced economies over the past century is a powerful example of the role of breeding in improving livestock productivity. However, breeding practices have had poor efficacy and penetrance in smallholder farming systems in regions such as East Africa. Therefore, to meet the continually growing expectations of a more discerning global population for a more varied and nutritious diet, effective dairy cattle breeding programmes need to reach smallholder dairy producers. In advanced economies, large data sets from commercial farms with modest to large herd sizes (e.g. 20 to several thousand cows) and widespread use of AI have provided sufficient animals within each herd and sufficient genetic connectedness between herds. This has enabled the genetic and environmental components of an individual animal’s phenotype to be accurately separated, thus providing accurate genetic evaluations with pedigree information. Typically, herds are neither large nor have high genetic connectedness in smallholder farming systems, such as in East Africa, which limits genetic evaluation with pedigree information. Genomic information keeps track of shared haplotypes rather than animals. This information could capture and strengthen connectedness between herds and through this may enable genetic evaluations based on phenotypes recorded on smallholder dairy farms. The objective of this study was to use simulation to quantify the power of genomic information to enable genetic evaluation under such conditions. The results show; (i) GBLUP produced higher accuracies than PBLUP at all population sizes and herd sizes, (ii) Models with herd fitted as a random effect produced equal or higher accuracies than the model with herd fitted as a fixed effect across all herd size scenarios, (iii) At low levels of genetic connectedness, with four offspring per sire and one to two animals per herd, GBLUP produced EBV accuracies greater than 0.5. Generally, a decrease in the number of sires mated showed consistently higher accuracies compared to when more sires were used. These results suggest that effective breeding programs that use data recorded on smallholder dairy farms in East Africa are possible.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).