D4Dairy-project – How digitalization and data integration pave the way to dairy health improvement
Abstract
Lameness in dairy cattle still remains a widespread animal welfare and economic issue. Early detection and prediction of lameness events may help to reduce negative effects for farms. However, integrating lameness assessment into the daily work routine is not feasible for many farms and may be prone to subjective bias for use in genetics. External assessment, carried out by veterinarians or claw trimmers, is often not done regularly and thus lameness may not be detected before it becomes clinical. Lameness is caused by a variety of factors including housing, feeding and management and may be associated with changes in milk performance or behavior. Technical advances and growing digitalization in various areas of dairy farming increased the amount and quality of data availability on farm supporting data-driven decision making. These advances happened incrementally with the consequence that data from different management areas is available in different formats or software programs and thus mainly used to make informed decisions in the respective area. Integrating these different data sources may enable more informed decisions by considering information from other management areas, which would be missed otherwise.
Thus, one aim of the D4Dairy project is the integration of various data to enhance early lameness detection and decision-support on individual farms. Our approach is based on the idea that lame cows show changes in performance and behavior, even before they show clinical signs of lameness. By integrating already existing data from national performance recordings, farm records, veterinary records, claw trimmings and different kinds of milking and sensor systems measuring e.g. activity, temperature or rumination (smaXtec, SCR by Allflex) a decision-support tool for early lameness detection and prediction should be developed. Subsequently, the outcomes of this approach should be used for the definition of auxiliary traits for claw health to be included into the breeding value estimation. Aside from the integration of different farm data this also requires the integration of data across farms, considering different systems, such as husbandry (e.g. free stall vs. pasture), milking (e.g. automatic milking system vs. conventional milking parlor with fixed milking times) or sensor systems (e.g. activity and temperature vs. activity and rumination monitoring).
In our contribution we want to show the steps towards data integration, which challenges we encountered and how we handled them. Furthermore, we present how we aim to use the outcomes for including claw health into the current breeding program and breeding value estimation.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).